
Complete Axioms for Stateless Connectors?

Roberto Bruni, Ivan Lanese, and Ugo Montanari

Computer Science Department, University of Pisa, Italy.
{bruni,lanese,ugo}@di.unipi.it

Abstract. The conceptual separation between computation and coordination in
distributed computing systems motivates the use of peculiar entities commonly
called connectors, whose task is managing the interaction among distributed com-
ponents. Different kinds of connectors exist in the literature, at different levels
of abstraction. We focus on a basic algebra of connectors which is expressive
enough to model, e.g., all the architectural connectors of CommUnity. We first
define the operational, observational and denotational semantics of connectors,
then we show that the observational and denotational semantics coincide and fi-
nally we give a complete normal-form axiomatization.

Introduction

The advent of modern communication technologies shifted the focus of computer sci-
ence researchers from isolated computing systems to distributed communicating sys-
tems, in which interaction plays the prominent role. In Milner’s words [21], “computing
has grown into informatics and Turing’s logical computing machines are matched by
a logic of interaction”. In this perspective, the analysis of global computing systems is
facilitated by approaches, techniques and paradigms that exploit a clean conceptual sep-
aration between computation and coordination. This is much evident at several levels
of abstraction (architecture, software, processes), where issues like reusability, main-
tenance, heterogeneity call for modular specifications, theories and models.

When separating coordination from computation, the notion of a connector emerges
in different contexts, with slightly different meaning, expressiveness and functionalities.
The common trait is the role of a connector: a component that mediates the interaction
of other computational components and connectors. In particular, connectors have been
studied within both algebraic and categorical approaches to system modeling.

The algebraic approach [14,20] models systems a elements of a suitable term al-
gebra, with constants modeling basic components that can be composed via the other
operators, e.g., parallel composition and name restriction. Operational and abstract se-
mantics are usually based on a labelled transition system defined by structural induction.

The categorical approach [13] models systems as objects in a category, with morph-
isms defining relations such as subsystem or refinement. Complex software architec-
tures can be modeled as diagrams in the category, with universal constructions, such
as colimit, building an object in the same category that behaves as the whole system

? Research supported by the FET-GC Project IST-2001-32747 AGILE and by the project HPRN-
CT-2002-00275 SEGRAVIS.



2 R. Bruni, I. Lanese, and U. Montanari

and that is uniquely determined up to isomorphism. The use of architectural connectors
within the categorical approach is well exemplified by CommUnity [11,10].

Having rigorous mathematical foundations is crucial for the analysis of coordinated
distributed systems. Several different kinds of connectors have been studied in the lit-
erature, studying e.g. the observational semantics of process contexts [17,24,12,16], or
analysing suitable equational theories and reduction to normal forms [25,6,3,15].

In this paper, we concentrate on the algebraic approach by promoting a small al-
gebra of connectors, for which we define suitable operational, observational and denota-
tional semantics. The first one is expressed using the Tile Model [12]. The observational
semantics we select is tile bisimilarity, that also coincides with tile trace equivalence
for the algebra under inspection. The denotational semantics is original to this contri-
bution and it is based on (an algebra of) suitable boolean matrices, called tick-tables.
We first show that the observational and denotational semantics coincide and then give
a complete normal-form axiomatization for them, which is the main result of the paper.

Our connectors are rather simple: they essentially model basic synchronization,
mutual exclusion and hiding and they are all stateless. Nevertheless, we think that
the analysis of these connectors is quite interesting, since they allow to build a wide
range of coordination connectors. For instance, they are expressive enough to model
the multiple-action synchronization mechanism of CommUnity which uses morphisms
and complex architectural connectors. This is shown in the previous work [2], where
an encoding from CommUnity into the Tile Model is defined. One of the main results
of [2] is that the translation of a diagram is tile bisimilar to the translation of its colimit.

The above mentioned main result of this paper, namely the complete axiomatiza-
tion of abstract semantics, improves the work in [2] by showing that, for the part of
action coordination, tile bisimilarity can be axiomatized as a suitable equational the-
ory, where equivalence classes have standard representatives. While in the algebraic
approach equivalence classes are usually abstract entities, having a normal form gives a
concrete representation that matches a nice feature of the categorical approach, namely
that the colimit of a diagram is its best concrete representative.

The research initiated in [2] and extended in this paper is a first step towards a more
general reconciliation between the categorical and the algebraic approach, of which
CommUnity and the Tile Model are just intended to be two selected representatives.

With respect to other approaches to synchronization connectors existing in the lit-
erature [3,5,25,6,15], our main contribution is the introduction of the mutual exclusion
connector, which allows to specify a wider range of possible synchronization policies.
Furthermore, the semantics based on matrices is new and it provides a clean mathem-
atical definition of connectors. Finally, we characterize the classes of matrices that can
be specified, both with and without mutual exclusion.

Structure of the paper. § 1 contains some background on symmetric monoidal categor-
ies and on the Tile Model. § 2 presents syntax and semantics of connectors, showing the
correspondence between the observational and denotational semantics. § 3 contains the
main results of the paper, namely the axiomatization of connectors and the theorems for
semantic equivalence and normal form: we consider the case without mutual exclusion
first (§ 3.1) and the general case later (§ 3.2). Conclusion and future work are in § 4.
Due to space constraints, proofs are just sketched: full proofs can be found in [4].



Complete Axioms for Stateless Connectors 3

1 Background

Symmetric monoidal categories for connectors. It has been shown in the literature that
distributed systems can be conveniently modeled as graphs [8,22,9] that straightfor-
wardly account for the network distribution of processes, mobile agents, etc. The ad-
vantage representing configuration graphs as (freely generated) symmetric monoidal
categories is three-fold. First, they introduce a suitable notion of (observable) interfaces
for configurations. Second, they introduce two key operations for composing graphs,
namely sequential and parallel compositions. Third, the natural isomorphism defined
by symmetries allows to take graphs up to interface-preserving graph isomorphism.

We recall that a (strict) monoidal category [18] (C ,⊗,e) is a category C together
with a functor ⊗ : C ×C → C called the tensor product and an object e called the unit,
such that for any arrows α1,α2,α3 ∈ C we have (α1 ⊗α2)⊗α3 = α1 ⊗ (α2 ⊗α3) and
α1 ⊗ ide = α1 = ide ⊗α1. Note that, by functoriality of ⊗ we have, e.g., α1 ⊗α2 =
α1 ⊗ ida2; idb1 ⊗α2 = ida1 ⊗α2;α1 ⊗ idb2 for any αi : ai → bi, i ∈ {1,2}.

Definition 1.1. A symmetric (strict) monoidal category (C ,⊗,e,γ) is a (strict) mon-
oidal category (C ,⊗,e) together with a family of arrows, called symmetries, {γa,b : a⊗
b → b⊗a}a,b indexed by pairs of objects in C such that for any two arrows α1,α2 ∈ C
with αi : ai → bi, we have α1 ⊗α2;γb1,b2 = γa1,a2 ;α2 ⊗α1 (that is γ is a natural iso-
morphism) that satisfies the coherence equalities (for any objects a,b,c):

γa,b;γb,a = ida⊗b γa⊗b,c = ida ⊗ γb,c;γa,c ⊗ idb.

The categories we are interested in are those freely generated from an unsorted
(hyper)signature Σ, i.e., from a ranked family of operators σ : n → m. The objects are
just natural numbers expressing the arities of the interfaces, i.e., the number of “attach
points”, with n⊗m = n + m and e = 0. The operators σ ∈ Σ are seen as basic arrows
with source and target defined accordingly to the arity of σ. Symmetries can be always
expressed in terms of the basic symmetry γ1,1 : 2 → 2. Intuitively, symmetries can be
used to rearrange the input-output interfaces of graph-like configurations. We call per-
mutation any composition of identities and symmetries. A generic arrow can always be
expressed as a suitable composition of id1, γ1,1 and σ ∈ Σ.

Lemma 1.2. Any arrow α can be decomposed as idn1 ⊗σ1⊗ idm1 ; . . . ; idnk ⊗σk ⊗ idmk

for some natural numbers k,n1, . . . ,nk,m1, . . . ,mk and σ1, . . . ,σk ∈ {γ1,1}∪Σ.

An arrow expressed using only identities and (possibly multiple instances of) one
particular σ ∈ {γ1,1}∪Σ is called a layer of σ. For example, a permutation is a layer of
γ1,1.

Tile Model. In this paper, we choose the Tile Model for defining the operational and ob-
servational semantics of connectors. In fact, tile configurations are suitable to represent
connectors, which include input and output interfaces where actions can be observed
and that can be used to compose configurations and to coordinate their behaviours.

The Tile Model [12] is a rule-based framework whose main ingredients are rewrite
rules with side effects, called basic tiles that combine inspirations from SOS rules [23],
context systems [17], structured transition systems [7] and rewriting logic [19].



4 R. Bruni, I. Lanese, and U. Montanari

x s
//

a
��

A

initial input interface y

b
��

initial output interface

z
t

//

final input interface
w

final output interface

Fig. 1. Graphical representation of a tile A.

A tile A : s
a
−→
b

t is a rewrite rule stating that the initial configuration s can evolve to

the final configuration t via A, producing the effect b; but the step is allowed only if the
‘arguments’ of s can produce a, which acts as the trigger of A (see Figure 1). Triggers
and effects are called observations and tile vertices are called interfaces.

The operational semantics of concurrent systems can be expressed via tiles if system
configurations form a monoidal category H , and observations form a monoidal category
V with the same set of objects as H . Abusing the notation, we denote by ⊗ both
monoidal functors of H and V and by ; both sequential compositions in H and V .

Definition 1.3. A tile system is a tuple R = (H ,V ,N,R) where H and V are monoidal
categories with the same set of objects OH = OV , N is the set of rule names and R : N →
H ×V ×V ×H is a function such that for all A ∈ N, if R(A) = 〈s,a,b, t〉, then the
arrows s,a,b, t can form a tile like in Figure 1.

Tiles can be composed horizontally, in parallel, and vertically to generate larger
steps. Horizontal composition A;B coordinates the evolution of the initial configuration
of A with that of B, yielding the ‘synchronization’ of the two rewrites. Horizontal com-
position is possible only if the initial configurations of A and B interact cooperatively:
the effect of A must provide the trigger for B. The parallel composition A⊗B builds
concurrent steps. Vertical composition A∗B is sequential composition of computations.

Tiles can be seen as sequents of tile logic: the sequent s
a
−→
b

t is entailed by the tile

logic associated with R , written R ` s
a
−→
b

t, if it can be obtained by composing some

basic tiles in R (possibly using also auxiliary tiles, like identities id
a
−→
a

id propagating

observations). The “borders” of composed sequents are defined in Figure 2.
The main feature of tiles is their double labeling with triggers and effects, that allows

to observe the input-output behaviour of configurations. By taking 〈trigger,effect〉 pairs
as labels one can see tiles as a labeled transition system. In this context, the usual notion
of bisimilarity is called tile bisimilarity.

Definition 1.4. Let R = (H ,V ,N,R) be a tile system. A symmetric relation ∼t on
configurations is called tile bisimulation if whenever s ∼t t and R ` s

a
−→
b

s′, then t ′

exists such that R ` t
a
−→
b

t ′ and s′ ∼t t ′.

The maximal tile bisimulation is called tile bisimilarity and it is denoted by 't. Note
that s 't t only if s and t have the same input-output interfaces.

A syntactic property on tiles guaranteeing that 't is a congruence, i.e. that the se-
mantics is compositional, is the so-called basic source format [12], which amounts to



Complete Axioms for Stateless Connectors 5

s
a
−→
b

t h
b
−→
c

f

s;h
a
−→
c

t; f
(hor)

s
a
−→
b

t h
c
−→
d

f

s⊗h
a⊗c

//

b⊗d
t ⊗ f

(par)
s

a
−→
b

t t
c
−→
d

h

s
a;c
−−→
b;d

h
(ver)

Fig. 2. Inference rules for tile logic.

require that H is generated from a (hyper)signature Σ and that the initial configuration
of each basic tile consists of a basic operator in Σ.

We shall focus on tile systems of stateless connectors, meaning that in all basic tiles
the final configuration is equal to the initial one. Operatively, this means that the beha-
viour of a connector is history independent. An easy consequence is that 't coincides
with tile trace equivalence.

2 Algebra of connectors

We present here a rich algebra of connectors for action coordination. We have developed
such an algebra to model systems where multiple actions can be executed at each time,
either independently or synchronized. Connectors are used to guarantee the global con-
sistency of local evolutions. For instance, in the translation of CommUnity [2], connect-
ors are used in conjunction with other operators representing the computational entities.
Roughly these have n attach points associated with actions and according to the com-
puted action they emit 1 tick (action performed) and n−1 unticks (forced inactivity).

We remark that all structures that we are going to present are based on the symmetric
strict monoidal structure given by symmetries γ, tensor product ⊗ and unit 0.

The complete list of connectors is in Figure 3. The ordinary basic connectors are in
the leftmost part of the table, while their duals are on the right (symmetry is self-dual).
The term mex stands for “mutual exclusion”. We also speak about synch connectors
(∇ and

∇

), choice connectors (∇� and

∇

� ), hiding connectors (! and

!

) and inaction con-
nectors (0 and 0). This set of connectors has been used in [2] to model action coordina-
tion in CommUnity, an architectural design language which has the extreme separation
between computation and coordination as distinctive feature.

We now define the tile semantics for our connectors. As usual for tiles, we first fix
the categories of configurations and of observations and then we give the basic tiles.

As explained in Section 1, the objects of our categories are natural numbers.
The horizontal category of configurations is the free symmetric (strict) monoidal

category generated by the basic connectors. The basic connector γ is the symmetry γ1,1.
We call connector any arrow in the horizontal category. Given a connector α : n → m
we denote by αc : m → n its dual, defined in the obvious way for basic connectors (see
Figure 3) and then inductively by (α;β)c = βc;αc and (α⊗β)c = αc ⊗βc.

The vertical category is the free monoidal category generated by the arrows tick :
1 → 1 and untick : 1 → 1.

The tiles defining the semantics of ordinary connectors are in Figure 4. The first
rule specifies that a symmetry can accept any input pair which is swapped in the output.
Then there are the two rules for duplicator, where the constraint is that all the actions



6 R. Bruni, I. Lanese, and U. Montanari

Ordinary structure Dual structure
name symbolic graphical name symbolic graphical

symmetry γ : 2 → 2
·

UUUUUU ·
·

iiiiii ·
symmetry γ : 2 → 2

·
UUUUUU ·

·
iiiiii ·

duplicator ∇ : 1 → 2
·

·
iiiiii
UUUUUU
·

coduplicator

∇

: 2 → 1
·

·
UUUUUU
iiiiii

·
bang ! : 1 → 0 · � cobang

!

: 0 → 1 ·�

mex ∇�: 1 → 2
·

·
iiiiii
UUUUUU•
·

comex

∇

� : 2 → 1
·

·
UUUUUU
iiiiii•

·
zero 0 : 1 → 0 · ◦ cozero 0 : 0 → 1 ·◦

Fig. 3. Syntax of basic connectors.

γ x⊗y
−−→
y⊗x

γ where x,y ∈ {tick,untick} ∇ tick
−−−−−→
tick⊗tick

∇ ∇ untick
−−−−−−−−−→
untick⊗untick

∇ 0 untick
−−−−→

id0

0

!
tick
−−→
id0

! !
untick
−−−−→

id0

! ∇� untick
−−−−−−−−−→
untick⊗untick

∇� ∇� tick
−−−−−−−→
tick⊗untick

∇� ∇� tick
−−−−−−−→
untick⊗tick

∇�

Fig. 4. Basic tiles for ordinary connectors.

must coincide. Last rule in the first row defines the only allowed behaviour for zero,
which admits just untick on its interface. Rules in the second row specify the behaviour
of bang, which hides any action on its interface, and mex: if the trigger is untick, then
the effects are two unticks, otherwise the trigger tick is propagated to exactly one effect.

Dual connectors have symmetric tiles. For instance, the tiles for

∇

are:

∇tick⊗tick
−−−−−→

tick

∇ ∇untick⊗untick
−−−−−−−−→

untick

∇

From the tile system we can derive an observational semantics using tile bisimilar-
ity. This semantics is compositional, as proved by the following theorem.

Theorem 2.1. In all the tile systems built using only the above tiles for connectors, 't

is a congruence (w.r.t. parallel and sequential composition).

Proof. Trivial, since all the basic tiles satisfy the basic source property. ut

It is worth noting that the axioms for symmetry “bisimulate”, in the sense that the
left hand side and the right hand side of each axiom are tile bisimilar.

The coordination policy of a connector α : n → m can be represented as a 2n × 2m

tick-table whose cells contain boolean values. Each row (resp. column) represents a
combination of tick/untick values (denoted as 1 or 0 in the tick-tables) for the n inputs



Complete Axioms for Stateless Connectors 7

id 0 1

0 X

1 X

γ 00 01 10 11

00 X

01 X

10 X

11 X

∇ 00 01 10 11

0 X

1 X

! ∅

0 X

1 X

∇� 00 01 10 11

0 X

1 X X

0 ∅

0 X

1

Fig. 5. Denotational semantics.

(resp. m outputs). If a cell is true (i.e., marked), then the corresponding combination of
inputs and outputs is admissible, otherwise (the cell is false, i.e., empty, unmarked) the
corresponding combination of inputs and outputs is forbidden. The tick-tables for basic
connectors are in Figure 5 (dual basic connectors have transposed tables).

We denote with T (α) the tick-table associated to connector α. Furthermore, given
a position [i, j] in a tick-table T we denote with dT ([i, j]) its domain, that is the set of
elements in its input and output interfaces on which tick actions are performed.

A connector α : n → m can be seen as an hypergraph where basic connectors are
edges and elements of interfaces are nodes. The solution of the network of constraints
S associated with α is the set of consistent assignments of tick/untick values to all the
nodes appearing in the graph denoted by α in such way that a corresponding “tiling” can
be found. However this semantics is too concrete when one is not interested in knowing
the way in which all constraints of the network are satisfied. A more abstract semantics
of α is the solution of the network, where all the internal nodes have been existentially
quantified. Thus tick-tables can be seen as the denotational semantics of connectors.

Next lemma shows the effect on tick-tables of the operations on connectors.

Lemma 2.2. For any two connectors α : n→ h,β : h→m, T (α;β) is the product matrix
T (α)× T (β), i.e., T (α;β)[i, j] =

∨
k(T (α)[i,k] ∧ T (β)[k, j]). For any two connectors

α : n → h,β : l → m, T (α⊗β) is obtained by refining each marked entry of T (β) by
a copy of T (α), and each unmarked entry of T (β) by the empty table with the same
dimension as T (α). Moreover, for any connector α, T (αc) is the transposition of T (α).

The denotational semantics of connectors given by tick-tables agrees with the obser-
vational semantics defined by tile bisimilarity, that is two connectors are tile bisimilar
iff they have the same associated tick-table.

Theorem 2.3. For each pair of connectors α and β, α 't β iff T (α) = T (β).

Proof. Since all connectors are stateless, two connectors are tile bisimilar iff their al-
lowed combinations of ticks and unticks on the interfaces are equal, i.e., iff their tables
are equal. ut

3 Normal form

We first show an axiomatization of connectors which is correct and complete w.r.t. their
denotational semantics, and then we show an algorithm to derive a standard represent-
ative for each equivalence class, i.e., a normal form. From the categorical point of view,
this corresponds to compute the colimit of a diagram (such as a CommUnity one).



8 R. Bruni, I. Lanese, and U. Montanari

Several axioms for connectors have been proposed, studied and applied in the liter-
ature, see e.g. [1,5,25,6,3]. Axioms over connectors are usually aimed at characterizing
a category of links between objects as the equational term algebra freely generated from
a restricted set of basic connectors. Usually the axioms have just to consider the few pos-
sible ways in which two or three basic connectors can be composed together. However,
our algebra is very rich and thus a few more complex patterns need to be considered.

The consistency of all the axioms we are going to present w.r.t. the denotational
semantics can be checked just by looking at the tables associated to each term. More
precisely, for each axiom α = β that we propose, it is easy to check that T (α) = T (β).

Notation. Given a set of connectors S we denote with CC(S) the class of connectors generated
by connectors in S. Note that symmetries are always included in CC(S), even when S = ∅.

Two edges are adjacent if they share a node in the graph representation of the connector.
An edge is adjacent to any node in its interfaces. A path in the graph is a sequence of nodes
{ni|i ∈ {1, . . . ,n}} such that for each i ∈ {1, . . . ,n−1} ni is an element of the input interface of
a basic connector and ni+1 is an element of the output interface of the same basic connector if
the connector is not a symmetry. As suggested by their graphical representation, for symmetries
the path can only enter in the first element of the input interface and exit from the second one in
the output interface, or enter from the second one and exit from the first one. The components
of a path are all its nodes and all the edges traversed. We say that two components of a graph
are linearly connected iff there exists a path of which they are both components. The relation of
connectedness is the transitive closure of the relation of linear connectedness.

We let ∇n denote the “tree” of ∇ connectors with n leaves, inductively defined as ∇ 0 =! and
∇n+1 = ∇; id⊗∇n. Note that ∇1 = id. We also define connectors for structured objects in terms
of connectors defined for smaller objects:

∇0 = id0 ∇n+1 = ∇⊗∇n; id⊗ γ1,n ⊗ idn !0 = id0 !n+1 =!⊗!n

Note that ∇1 = ∇ and !1 =!. Similar notations are used for the other connectors.

3.1 Connectors for synchronization

First, we focus on the class of connectors CC(∇,

∇

, !,

!

). The tick-tables associated to
these connectors can be characterized as below.

Proposition 3.1. Let α ∈ CC(∇,

∇

, !,

!

). Then T (α) satisfies the following properties.

– T (α)[~0,~0] = X;
– suppose T (α)[i1, j1] = X and T (α)[i2, j2] = X;

• if dT (α)([i, j]) = dT(α)([i1, j1])∪dT(α)([i2, j2]) then T (α)[i, j] = X

• if dT (α)([i, j]) = dT(α)([i1, j1])∩dT(α)([i2, j2]) then T (α)[i, j] = X

• if dT (α)([i, j]) = dT(α)([i1, j1])r dT(α)([i2, j2]) then T (α)[i, j] = X

• if dT (α)([i, j]) = dT(α)([i1, j1]) then T (α)[i, j] = X

Proposition 3.1 says that the cell with empty domain is always enabled and that
table entries are closed under domain union, intersection, difference and complement.

Intuitively, the last four properties are true because connectors built of synch and
hiding connectors individuate equivalence classes on the elements of the interfaces



Complete Axioms for Stateless Connectors 9

(connected elements are in the same class), different equivalence classes act independ-
ently and domains are unions of such classes. It is an easy consequence of the proposi-
tion that, for instance, for any α ∈ CC(∇,

∇

, !,

!

), T (α)[~1,~1] = X.
We call synch-tables the tables that satisfy these properties.

Definition 3.2 (Base). Given a synch-table T its base b(T ) is the set of the domains of
its marked cells that are minimal w.r.t. set inclusion.

The synch-tables are uniquely identified by their bases.

Lemma 3.3. Let T1 and T2 be any two synch-tables with the same dimension. Then
T1 = T2 iff b(T1) = b(T2).

Proof. The if part is trivial. The only if part follows from Proposition 3.1. ut

Analogous structures have been already studied in the literature [5,25,6,3]. If we
inspect which equalities are satisfied among those in [3], then according to the termin-
ology therein, we have a gs-monoidal structure (∇, !), a cogs-monoidal structure (

∇

,

!

),
a match-share structure (∇,

∇

) and a new-bang structure (!,

!

). The whole structure is
called a p-monoidal structure. Interestingly, the p-monoidal axioms characterize exactly
tile bisimilarity and allow for normal-form reduction. This is explained below in detail.

As far as the gs-structure is concerned there are three axioms expressing the “asso-
ciativity”, “commutativity” and “unit” for the ∇ (with ! as “unit”).

∇;(id⊗!) = id ∇;γ = ∇ ∇;(∇⊗ id) = ∇;(id⊗∇)

A cogs-monoidal structure is just a gs-monoidal structure in the dual category.
Therefore the axioms are obtained by reversing the order of composition.

The axioms of match-share categories have been proposed in [3], where the free
algebra of match-share connectors has been shown to model partition relations between
non-empty source and target objects. There are three match-share axioms:

∇;

∇

= id

∇

;∇ = (id⊗∇);(

∇

⊗ id)

∇

;∇ = (∇⊗ id);(id⊗

∇

)

The leftmost axiom essentially says that the multiplicity of connections between
two objects is not important. The other two axioms (which are in fact equivalent, thus
one of them can be dropped) say that the path connecting two objects is not important.

The new-bang categories just contain the axiom

!

; ! = id0 which represents garbage-
collection of isolated nodes.

We want to use the axioms to reduce any connector in a suitable normal form. We
start by defining a sorted form that forces a standard order on connector layers.

Definition 3.4 (Sorted form). A connector α ∈ CC(∇,

∇

, !,

!

) is in sorted form iff

α ≡ α !;αγ;α ∇;β∇;βγ;β!

where ασ and βσ are layers of σ and ≡ is syntactic identity.

Proposition 3.5. Any connector α ∈ CC(∇,

∇

, !,

!

) can be transformed in sorted form
using the axioms.



10 R. Bruni, I. Lanese, and U. Montanari

Proof. The proof is by induction on the construction of the connector. Essentially, we
have to prove that given a connector α in sorted form, we can transform in sorted form
any connector idn1 ⊗σ⊗ idn2 ;α. For each σ one can find axioms that make it to com-
mute with all the other connectors that it must traverse to reach its final position. ut

We want now to define for connectors a normal form which is strictly related to
tick-tables. We first need an auxiliary definition.

Definition 3.6 (Central point). A central point is any element of interface shared by
layers α ∇and β∇.

Definition 3.7 (Normal form). A connector α ∈ CC(∇,

∇

, !,

!

) is in normal form iff:

1. it is in sorted form;
2. hiding connectors have central points as interface;
3. each central point is linearly connected to at least an external interface.

Theorem 3.8. Any connector α ∈ CC(∇,

∇

, !,

!

) can be transformed in normal form
using the axioms.

Proof. Trivial, using Proposition 3.5. ut

The theorems below show the connection between normal forms and synch-tables.

Theorem 3.9. For each synch-table T , we can build a connector α ∈ CC(∇,

∇

, !,

!

)
in normal form such that T = T (α). Moreover the construction is unique up to the
axioms of symmetric monoidal categories and of associativity and commutativity of
synch connectors.

Proof. Let b(T ) be the base of T . We build α in the following way:

– we create a central point Pb for each element b ∈ b(T );
– we build a tree

∇n (resp. ∇m) on the left (resp. right) of each central point Pb, where
n (resp. m) is the number of elements in b that are in the left (resp. right) interface;

– we add permutations to connect the trees

∇n and ∇m to the corresponding elements
of the interfaces. ut

Theorem 3.10. We have a bijective correspondence between synch-tables and connect-
ors in CC(∇,

∇

, !,

!

) up to the axioms.

Proof. The proof is done by showing that the function from synch-tables to connectors
up to the axioms defined in Theorem 3.9 is bijective. ut

3.2 Adding the mutual exclusion connector

As we have already seen, connectors in CC(∇,

∇

, !,

!

) allow to specify only a small class
of tick-tables. In particular, we can express synchronization constraints but not mutual
exclusion constraints. This is proved by the fact that the class CC(∇,

∇

, !,

!

) has limited
expressiveness. For instance, it is not expressive enough to model all CommUnity con-
nectors. To solve that problem we will add the mutual exclusion connector ∇�: 2 → 1.



Complete Axioms for Stateless Connectors 11

∇�;

∇

� = id (1)

∇;

∇

� = 0;0 (2)

∇

� ;∇ = ∇2;

∇

� ⊗

∇

� (3)

∇

� ;0 = 0⊗0 (4)

∇; id⊗0 = 0;0 (5)

∇

;0 = 0⊗0 (6)

∇�; !2 = ! (7)

∇; ∇�

⊗ id = ∇�;∇⊗∇; id⊗

∇

� ⊗id; id⊗ γ (8)

∇�;∇⊗ id = ∇; ∇�⊗∇�; id⊗

∇

⊗ id; id⊗ γ (9)

∇

� ; ∇� = ∇�

2;∇⊗∇⊗∇⊗∇; id⊗

∇

� ⊗(

∇

� ; !)⊗

∇

� ⊗id;γ⊗ γ; id⊗ (

∇

� ; !)⊗ id (10)

!

; ∇�; ∇�⊗ id =

!

3; ∇�⊗∇�⊗∇�; id⊗ γ⊗ γ⊗ id;

∇

⊗

∇

⊗

∇

(11)

id2 = ∇�

⊗∇�; id⊗

∇

⊗ id; id⊗∇⊗ id;

∇

� ⊗

∇

� (12)

id2 = ∇�⊗ (

!

; ∇�)⊗ ∇�; id⊗ γ⊗ γ⊗ id;

∇

⊗

∇

⊗

∇

; id⊗∇⊗ id;

∇

� ⊗

∇

� (13)

!n = idn ⊗

!

; idn ⊗∇n;

∇

� n; !n (14)

Fig. 6. Axioms for mutual exclusion, textually.

Following the analogy with Section 3.1, one may think that also the dual connector∇

� must be explicitly introduced, but this is not strictly required since the complex term
id ⊗ (

!

;∇)⊗ id; id ⊗ ∇�⊗ id2; id2 ⊗ γ ⊗ id;

∇

⊗ id ⊗

∇

; ! ⊗ id⊗! exhibits the same be-
haviour as

∇
� . Similarly both inaction connectors 0 and 0 can be derived as auxiliary

connectors. In fact we have for instance T (0) = T (∇�;

∇
; !).

One may start considering just the axiomatization of choice and inaction connect-
ors, separately w.r.t. synch and hiding connectors. Thus one individuates a gs-monoidal
structure (∇�

,0), a cogs-monoidal structure (

∇

� ,0) and a new-bang structure (0,0). Un-
luckily no simple axiomatization can be found for (∇�

,

∇

� ), since they form neither a
match-share category since T (

∇

� ; ∇�) 6= T (∇�⊗ id; id⊗

∇

� ) nor an r-monoidal [3] category
since T (

∇

� ; ∇�

) 6= T (∇�

⊗∇�; id⊗ γ⊗ id;

∇

� ⊗

∇

� ).
Thus we resort to a complex axiomatization that deals with all the four classes of

connectors at the same time. The axioms are textually written in Figure 6. For simplicity,
dual axioms are omitted. Axioms 1–9 are quite simple. The other ones, which are more
complex, are depicted in Figure 7 and commented below. The last one, which is actually
an axiom scheme, is drawn only for n = 3. Axiom 10 deals with commutation of

∇

� and
∇�, but w.r.t. the conceptually similar axiom 3, we have to force mutual exclusion on
all the paths. Axiom 11 shows that mutual exclusion on three actions can be enforced
by imposing mutual exclusion separately on each pair of actions. Axiom 12 shows
that given two independent actions we can freely add an action for their synchronized
execution and in that case axiom 13 says that we can also force mutual exclusion on
the two paths corresponding to the asynchronous execution of the two starting actions.
Finally, axiom 14 means that if all the elements of the interfaces of a connector are
adjacent to a node in the interface of a connector

∇

� ; ! (or of the dual form), then for



12 R. Bruni, I. Lanese, and U. Montanari

each denotation we can obtain a concrete correct behaviour by performing an untick on
each internal node, thus there is no real constraint on the behaviour of the elements of
the interfaces, which can be considered disconnected and closed by an hiding connector.

We present here some useful equivalence lemmas.

Lemma 3.11. ∇�

n;

∇n ⊗

∇n =

∇n; ∇�.

Proof. The proof is by induction on n. ut

Lemma 3.12. For each connector α : m → n let αc : n → m be its dual connector. We
have α⊗ idn;

∇

n; !n = idm ⊗αc;

∇

m; !m.

Proof. The proof is by induction on the number of basic connectors in α. ut

Also for CC(∇,

∇

, !,

!

,∇�) we can define a sorted form and a normal form.

Definition 3.13 (Sorted form). A connector α ∈ CC(∇,

∇

, !,

!

,∇�) is in sorted form iff:

α ≡ α !;α0;α∇�;αγ;α ∇;β∇;βγ;β ∇

�

;β0;β!

where ασ and βσ are layers of σ and ≡ is syntactic identity.

Note that the definition of central point (Definition 3.6) can be applied also to this
new sorted form. Central points can be linearly connected to both free variables (i.e.,
external interfaces) and hidden variables (i.e., interfaces of hiding connectors).

Proposition 3.14. Any connector α ∈ CC(∇,

∇

, !,

!

,∇�

) can be transformed in sorted
form using the axioms.

Proof. The proof strategy is the same of Proposition 3.5, but here when moving con-
nectors to their final layer, other basic connectors may be created, and in this case we
have to check that the procedure indeed terminates.

In most cases the proof can be done by induction on the width of layer that must be
traversed, that is on the maximum number of connectors in all the paths of the layer.
The complex case is the one dealing with connectors ∇ and

∇

� .
The only risk to cycle is when a ∇ connector while traversing layer α∇� creates a

∇

�

connector that while traversing layer α ∇creates again a ∇� connector that goes back to
the original ∇ connector. One can see that this may happen only if there are two different
paths starting from the same ∇ connector, one for each element of its right interface,
which arrive to the same

∇

connector. These paths can be deleted by isolating either the
connector ∇; ∇�⊗∇�; id⊗

∇

⊗ id or the connector ∇�;

∇

, which can be transformed using
the axioms respectively into ∇�;∇⊗ id; id⊗ γ and into 0;0. ut

Definition 3.15 (Normal form). A connector α ∈ CC(∇,

∇

, !,

!

,∇�) is in normal form
if and only if:

1. α has the form α !;α0;α∇�;αγ;α ∇;β∇;βγ;β ∇

�

;β0;β!;
2. hiding connectors are adjacent to either roots of mex trees or central points;
3. there exists at most one path between a fixed central point and a fixed variable;
4. no two central points are linearly connected to exactly the same set of variables;



Complete Axioms for Stateless Connectors 13

· MMM ·
·

qqq
MMM••

·
qqq ·

(10)
=

·
· ·

qqq · MMM
·

qqq
MMM• ·• ·
·

..
..

..
. · MMM ·

qqq

· MMM · �•
· �•

·
qqq

·

�������
·

qqq · MMM
·

qqq
MMM• ·• ·
· · MMM ·

qqq

·

·
·

qqq
MMM•

·� qqq
MMM• ·
· ·

(11)
=

· · MMM
·� qqq

MMM• ·
· MMM ·

qqq

·
qqq · MMM

·� qqq
MMM• ·
· MMM ·

qqq

·
qqq · MMM

·� qqq
MMM• ·
· ·

qqq

· ·
· ·

(12)
=

· · · PPP
·

ooo
PPP• ·•
· PPP ·

ooo

·
ooo
PPP

·
ooo · PPP

·
ooo
PPP• ·•
· · ·

ooo

(13)
=

· · PPP
· ·

ooo
PPP• · · PPP
· PPP ·

ooo ·•
·

ooo · PPP ·
ooo

·� ooo
PPP• · PPP

ooo

· PPP ·
ooo · PPP

·
ooo · PPP ·•

· ·
ooo
PPP• · ·

ooo

· ·
ooo

· �

· �

· �
(14)
=

· · · · PPP
· · ·

OOOOOOO · �•
· · ·

>>
>>

>>
>>

> ·
ooo

· PPP
· �•

· ·

xxxxxxxx
·

ooo

·� ooo
PPP ·

ggggggg · PPP
·

ooo
PPP · �•
· ·

ooo

Fig. 7. Complex axioms for mutual exclusion, graphically.

5. each central point is linearly connected to at least one free variable;
6. each hidden variable is linearly connected to at most two central points;
7. no two hidden variables are linearly connected to the same set of central points;
8. each pair of central points associated with disjoint sets of free variables is linearly

connected to an hidden variable;
9. hidden variables are on the left of central points, unless they are adjacent to them.

Theorem 3.16. Any connector α ∈ CC(∇,

∇

, !,

!

,∇�) can be transformed in normal
form using the axioms.

Proof. Thanks to Proposition 3.14, α can be transformed in sorted form. Then the con-
ditions can be satisfied one at the time using the axioms. ut

Again, there is a precise correspondence between normal forms and tick-tables.

Theorem 3.17. For any tick-table T with T [~0,~0] = X, we can build a connector α in
normal form such that T (α) = T . Moreover the construction is unique up to the axioms
of symmetric monoidal categories and of associativity and commutativity of synch and
choice connectors.



14 R. Bruni, I. Lanese, and U. Montanari

Proof. Given a tick-table T , the connector α is realized in the following way:

– variables that always have value 0 are connected to 0 or 0 connectors;
– for other input (resp. output) variables, we build a tree of ∇� (resp.

∇

� ) with as many
leaves as the number of checked cells that have that variable in the domain;

– for each pair of central points with disjoint sets of free variables, we create an
hidden variable for them;

– for each checked cell in the table, we create a central point with two outgoing trees
of synch connectors. The number of leaves is the number of free variables (input on
the left, output on the right) in the domain, plus (on the left) the number of hidden
variables associated to the central point;

– we connect leaves of synchronization trees with leaves of mutual exclusion trees
using permutations, connecting each central point to the associated variables. ut

The theorem below establishes a bijective correspondence between denotations and
standard implementations of connectors.

Theorem 3.18. We have a bijective correspondence between tick-tables T with T [~0,~0] =
X and connectors in CC(∇,

∇

, !,

!

,∇�

) up to the axioms.

Proof. Analogously to Theorem 3.10, the proof is done by showing that the function
from tick-tables to connectors up to the axioms defined in Theorem 3.17 is bijective.

ut

These results can be used to extend the research in [2], where a mapping from Com-
mUnity to the Tile Model was presented, and the main result was that the translation of
a CommUnity diagram is tile bisimilar to the translation of its colimit. Using the cor-
respondence between observational semantics and connectors up to the axioms we can
state that the (synchronization part of the) translation of a CommUnity diagram is equal
up to the axioms to the (synchronization part of the) translation of its colimit. More
in general, colimit computation in the categorical approach is now strongly related to
normalization using suitable axioms in the algebraic approach.

4 Conclusion and future work

We have presented different classes of connectors and we have shown how they can
be analyzed from different points of view: their concrete structures can be described
by graphs, their operational and observational semantics are given using tiles and tile
bisimilarity, while the representation based on tick-tables provides a denotational se-
mantics. We have proved that there is a bijective correspondence among connectors up
to axioms, classes of bisimilar connectors and denotations. This allows to extend the
result of [2] proving that there is a correspondence between colimit computation in a
categorical framework and normalization up to the axioms in an algebraic framework.

Our work leaves an open problem: we argue that the axiom schema 14 (see Figure 7)
is needed for the completeness of the axiomatization, but we do not know whether a
different finite axiomatization of CC(∇,

∇

, !,

!

,∇�) exists or not.



Complete Axioms for Stateless Connectors 15

As future work we plan to study the complexity of our reduction to normal form.
Furthermore we want to generalize our connectors to a setting where we have a richer
set Act of actions ruled by a synchronization algebra, instead of just two possible obser-
vations (tick/untick). Another interesting extension is given by probabilistic connectors.

References

1. J.A. Bergstra, C.A. Middelburg, and G. Stefanescu. Network algebra for asynchronous data-
flow. International Journal of Computer Mathematics, 65:57–88, 1997.

2. R. Bruni, J.L. Fiadeiro, I. Lanese, A. Lopes, and U. Montanari. New insights on architectural
connectors. In Proc. IFIP TCS 2004, pp. 367–379. Kluwer Academics, 2004.

3. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connections. Theoret.
Comput. Sci., 286(2):247–292, 2002.

4. R. Bruni, I. Lanese, and U. Montanari. Normal forms for stateless connectors. Tech. Rep.
TR-05-11, Computer Science Department, University of Pisa, Italy.

5. V.E. Cazanescu and G. Stefanescu. Towards a new algebraic foundation of flowchart scheme
theory. Fundamenta Informaticae, 13:171–210, 1990.

6. A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via gs-monoidal
categories. Applied Categorical Structures, 7:299–331, 1999.

7. A. Corradini and U. Montanari. An algebraic semantics for structured transition systems and
its application to logic programs. Theoret. Comput. Sci., 103:51–106, 1992.

8. P. Degano and U. Montanari. A model for distributed systems based on graph rewriting.
Journal of the ACM, 34(2):411–449, 1987.

9. H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: an algebraic approach. In Proc.
IEEE Conference on Automata and Switching Theory, pp. 167–180, 1973.

10. J. L. Fiadeiro. Categories for Software Engineering. Springer, 2004.
11. J.L. Fiadeiro, A. Lopes, and M. Wermelinger. A mathematical semantics for architectural

connectors. In Generic Programming, LNCS 2793, pp. 190–234. Springer, 2003.
12. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction: Essays

in Honour of Robin Milner, pp. 133–166. MIT Press, 2000.
13. J. A. Goguen. Categorical foundations for general systems theory. In Advances in Cybernet-

ics and Systems Research, pp. 121–130. Transcripta Books, 1973.
14. C.A.R. Hoare. CSP – Communicating Sequential Processes. International Series in Com-

puter Science. Prentice-Hall, 1985.
15. P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of Processes. Journal of Pure and

Applied Algebra, 115:141–178, 1997.
16. Y. Lafont. Interaction combinators. Inform. and Comput., 137(1):69–101, 1997.
17. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.

In Proc. ICALP’90, LNCS 443, pp. 526–539. Springer, 1990.
18. S. MacLane. Categories for the Working Mathematician. Springer, 1971.
19. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret. Comput.

Sci., 96:73–155, 1992.
20. R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer, 1989.
21. R. Milner. Turing, computation and communication. Turing anniversary lecture, 1997.
22. R. Milner. Bigraphical reactive systems. In Proc. CONCUR 2001, LNCS 2154, pp. 16–35.

Springer, 2001.
23. G.D. Plotkin. A structural approach to operational semantics. Tech. Rep. DAIMI FN-19,

Aarhus University, 1981.
24. A. Rensink. Bisimilarity of open terms. Inform. and Comput., 156(1/2):345–385, 2000.
25. G. Stefanescu. Network Algebra. Discrete Math. and Theoret. Comp. Sci., Springer, 2000.


