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Motivation
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Fresh names

� Names are fundamental in process calculi

�

mobility aspects

�

dynamic reconfigurations of the network

�

private resources and ports

� Handling of fresh names is still a hot topic

�

CCS-like notions, techniques and tools hardly reusable

�

Needs of rigorous foundations and techniques

�

Montanari&Pistore, Gabbay, ...

� Overall aim

�

Clean syntax and operational/abstract semantics

�

Model-theoretically: Final semantics

�

Practical viewpoint: Efficient verification
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Our proposal

� �
�

-calculus: a conservative extension of the

�-calculus

� A third binding operator

�

models (locally-bound) fresh
names

� Transitions exploiting fresh names are based on

�

-abstracted processes and labels

� Finitely branching semantics (w.r.t. fresh names)

� No need of side-conditions on free/bound names in
bisimulation

� Amenable to (bi)coalgebraic semantics

� Effective procedure for checking bisimilarity via

�

-automata (for finitary processes) CMCS 2004, Barcelona, Spain – p.5/50



From -calculus to -calculus
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-calculus

�-calculus is a process calculus for communicating
systems where mobility is modeled through name passing

Two primitive entities:

names ( ��� � � �

) and processes (

�
�

� � �
)

rec

(the bound process variable must be guarded in rec )

Processes are taken up-to -equivalence

There is a plethora of LTS operational semantics: we focus
on the original one for early operational semantics
Drawbacks: the LTS is infinitely branching and the abstract
semantics requires constraints about bound names
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Early Operational Semantics

�

� ��� ��� � 	
� � � �� ��� � (IN)

�
�� � �� � � (TAU)

� 	
� � � � � 	 ��
 �
� � � �

� � � �� � ���  � � � � � � � �  ��� ��� � � �

(CLOSE � )

�  � � � �

���  � �  � � ���  � � � 
��� � ��! �

(RES)

�  � � � �

� � �  � � � � � �
" � ��! �# ��� � � �%$ &

(PAR � )

�

� � � 	
� � � (OUT)

� 	 
� � � �

���  � � 	 ��
 �
� � � �

 �$ � (OPEN)

�  � � � �

' �$ � ( �  � � � � (MATCH)

� �
rec

)� � � ) �  � � � �

rec

)� �  � � � � (UNFOLD)

� 	
� � � � � 	 
� � � �

� � � �� � � � � � � (COM � )

Two examples about name extrusion
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� � �� � � � � � �� � � � �� � �� � � � � � � � � � � � � � � 
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Early Bisimilarity
A symmetric relation

�� ��� �

is an early bisimulation iff,
for all processes

��� � � �

, if

� � �

then

for each

� ! � � � �

with

	�
 �� ��� �
 � � � � � � �
then

there exists

� �

such that

� ! � � � �
and

� � � � �

.

Early bisimilarity � is the greatest early bisimulation.

Remark: Actions are not taken up-to �-equivalence

The side condition on free variables is problematic to deal
with in a coalgebraic framework!
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-calculus

�
�

-calculus is a conservative extension of �-calculus, where processes

can be prefixed by a finite sequence of the new binding operator

�

The sets of -processes and -actions are:

(where is the set of free actions and is the set of bound actions)

Terms are taken up-to -renaming of bound variables.

represents a process abstraction obtained by instantiating
with a fresh name. The name which has to be fresh remains bound in

so that its freshness is guaranteed implicitly.

By abuse of notation, and will range also over and , resp.
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A few remarks on notation

� � �� � �

and

� � �� � � stand for the process

� � �  �
� � �

� � ���
� �

, and for the
label

� � �  �
� � �

� � � �
�

�, respectively, where

�

and � are

�

-free.

binds the occurrences of in and in .

Both processes and labels are taken up-to -equivalence;
hence in can always be assumed to be all distinct
(e.g., is the same as ).

in the process is vacuous if .

For a finite set of names, we denote by and , the sets of
-processes and -labels whose free names are in , respectively.

The set of closed -processes is .

The operational semantics is defined by a family of relations
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Early Operational Semantics

�

�� � �� ���� � (TAU)

�

� � ��� � 	� � �� � � � � � � � � �

(IN)

�

� � ��� � 	 ��
 �
� �� � � � � � (IN

�

)

�

� � � 	
 � �� � � (OUT)

�  � ���� � �

� � �  � ���� � � � � ! � ��� (PAR � )

�  � ���� � � � � � �

� � �  � ���� � � � � � � � � (PAR
�� )

� 	 
 � �� � � � � 	
 � ���� � �

� � � �� �� � � � � � �
(COM � )

� 	 
 � �� � �	 
 
 � �

� �  � � 	 ��
 �
� �� � � � � � � (OPEN)

� �

rec

)� � � ) �  � �� � � �
rec

)� �  � ���� � � (UNFOLD)

�  � �� � � �

' �$ � ( �  � �� � � � (MATCH)

�  � �� � �	 
 
 � �

� �  � �  � ���� ���  � � � 
��� ��� �! ��� ! � ��

(RES)

�  � �� � �	 
 
 � �� � � �

� �  � �  � ���� � �� ����  � � � 
��� ��� ��! �

(RES

�

)
� 	 ��
 �
� �� � � � � � � � � 	 ��
 �
� �� � � � � � �

� � � �� ���� � �  � � � � � � (CLOSE � )

�  � ���� �	 	 
 �

� � � � � � � 	 �  � �� � � � � � � (THETA)
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A few remarks on the LTS
Rule IN receives a “previously known” name � � �

,
while rule IN

�

receives a fresh,

�

-bounded name �:
Input transitions differing by the choice of the fresh name are collapsed (by �-rule) in a

single transition, and the LTS becomes finitely branching.

Example:

has just one move:

As in rule IN , also in rule OPEN, the allocation of a fresh name is
delegated to the constructor .

The rules PAR and RES are duplicated, to deal with -bound names in
the target process.

Remark: All side conditions (IN) and (RES and RES )

are redundant, because they are always ensured by the type of .
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Remark: All side conditions (IN) and (RES and RES )

are redundant, because they are always ensured by the type of .
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Some properties of the LTS
If

� � �� � � � � ��� � �

� �� � � � �
�
� �

, then

��� � � � �� � ��
� � �

�
� � � � ��� � � � �� � � �

.

Hence, if

� � �� � � � � �
� , then

�

can be set to

�

.

Lemma
For all finite, for all :

i) : iff

ii) : iff

Remark

Processes and behave differently, in general: Rules RES

and OPEN do not allow for output actions whose subject is exactly ,

while the process could make an output transition under .
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Adequacy of the LTS
Proposition
For all

�

finite, for all

�
� not in

�

, and

� � � � � � ��� � , �� � � �
:

� � �
� � �

iff

� � �
�
� � � � ��� � �

� �� � � � �
�
� �

;

� � � � �
� � �

iff

� � �
�
� � � � ��� � � � �

� �� � � � �
�
� �

;

� � � �
� � �

iff if � � � � � �
�

�

then

� � �
�
� � � � ��� � � �

� �� � � � �
�
� �

else
� � �

�
� � � � ��� � � � � �

� �� � � � �
� � � �

;

� � � � � � �

� � �

iff

� � �
�
� � � � ��� � � � � � �

� �� � � � �
� � � �

.
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The case of -free processes
In particular, when

�
 is empty:

Corollary
For all

�

finite, for all

� � � � , for all � � � � :

� � � � � �

iff

� � � �� � �

;

� � � � � � �

iff

� � � � �� � �

;

� � � � � �

iff if � � �

then
� � � �� � �

else

� � � � � �� � � � � � �

;

� � � � � �� � �

iff

� � � � � � �� � � � � � �

.
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From

�
� to

�
�

The relations � �� � can be seen as a family of coherent
approximations of the usual early operational semantics:

For � action of the �
�

-calculus, we define
! � �� �

�
! � �� �

Note that

� each � �� � is truly finitely branching, because the
names which can be chosen in the rule IN must
belong to

�

, which is finite.

� if we drop the

�

parameter and consider all the
transition systems simultaneously, the operational
semantics would then be finitely branching only
w.r.t. fresh names.
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Early -bisimilarity
Let

�

be a finite set of names. A symmetric relation� � � � � � � � � � is an early

�

-bisimulation at stage
�

iff, for
all

��� � � � � � processes,

� � � �

implies:

if

� ! � �� � � �

, then there exists

� �
such that� ! � �� � � �

and

� � � � � �

.

The early

�

-bisimilarity at stage
�

, � � , is the greatest
early

�

-bisimulation at stage
�

.

The early

�

-bisimilarity � is defined as �
�

� � � .

Remark: No side conditions in the definition

CMCS 2004, Barcelona, Spain – p.18/50



A trade-off
We could disregard

�

completely. Anyway, for

�

-closed
processes, any reference to names disappears altogether.

The price to pay is that each time a fresh name is needed,
an extra (possibly vacuous)

�

is generated, and the set of
processes reached during the evolution of a finitary
process is finite, only up-to vacuous

�

’s.

Next we show examples of

�

evolutions with vacuous
�

’s that one would like to eliminate

�

situation where elimination of vacuous

�

’s is not safe, (even if we
restrict to processes whose occurrences of names are all active,
in the sense that they can be exposed in some action)
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On vacuous ’s (1)
Example
Let

� � 	 � 

and

� � rec

�� � �� �� � � � � � � � �
In the �-calculus,

� � � � �� � � � � � �� � � � �

In the �
�

-calculus,

� � � �� �� �� � � � � � � � � �� � � � �� �� �� � � � � � � �
� � � �� � ��� � �� �� �� � � � � � � � � � � � � � �

The states reached by

�
after a finite number of transition

steps differ by a finite number of vacuous

�

’s.
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On vacuous ’s (2)
Example
Let

� � � � � � ��� �� � �� � � � � � ��� �� �

and

� � � � � � ��� �� � �� � � � � � ��� � � �

.

� � � �

, because the last action of

�

consists in
communicating the first extruded name, while

�

communicates the second extruded name.

If we allow to eliminate vacuous
�

’s from �
�

-processes,
then

�

and

�

are erroneously equated:

� � � �� � � � � � � ��� �� �

(in two steps), where

� � is vacuous

� � � �� � � � � � � �� � � �
(in two steps), where

� � is vacuous

� but the pair of processes

� � � � �� � and

� � � � �� � , are
trivially �-equivalent and thus bisimilar!
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Relating abstract semantics
As a main correspondence result, early

�

-bisimilarity is a
conservative extension of usual bisimilarity:

Theorem: Let

��� � � �

.
Then,

� � �

iff

� � �

.

The proof is by coinduction and it exploits the following
lemma.

Lemma: Let

� � �� � ��� � � �� � � � � � � .
Then,

� � �� � � � � � � �� � �

iff
� � �� �� � � �

.

Back to

�

-automata
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Further motivations
We can further capitalize on �

�

-calculus w.r.t. two issues:

� There might be names which are not active like in

� � �� � � � � � � � 
 � � �� � � � � �� � � � � � � �

Can we get rid of them in the semantics?

YES: Final semantics!

� Can we abstract away from some vacuous

�

’s?

YES: -automata!

This is what the rest of the story is about...
... and it explains the reason why the story is told at CMCS
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Finitary (bi)coalgebraic
semantics
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Final semantics
The gist of Final Semantics is to express the interpretation
function as a co-algebra morphism from the dynamical
system, given by the transition relation, to the set of
behaviours. Behavioural equivalence is induced by this
unique morphism.

In this view dynamical systems come equipped with
algebraic operations, arising from the syntax, but there can
be more. One would like to have that behavioural
equivalence be a congruence w.r.t. to such operations.

It is here that structured co-algebras and bialgebras, i.e.
objects which have both an algebra and a coalgebra
structure, come into play.
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Bialgebras
Algebras offer a uniform account of Syntax.

�

A signature yields a functor

� � � � � � ���

� �

.

�

Terms over a set of variables

�

are the initial
� � 	 �

-algebra, i.e.
the initial such that:


 � � � 	 � � 
 � �

.

Coalgebras offer a uniform account of Dynamical systems.

The pattern of the transition system yields a functor
.

Behaviours of objects labeled by a set of names are the final
-coalgebra, i.e. the final such that .
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Formally

�
�

�� � � �

� �

-algebra:

� �
�

� � �
�

� � � � � � �

� �

-coalgebra:

� �
� � � �
� � � � � � � �

� � �
�

� �

-bialgebra:

� �
�

� � � � � �

//

��

//

�� ��
// //

is

a -algebra homomorphism from to
if it makes diagram (1) commute.

an -coalgebra homomorphism from to
if it makes diagram (2) commute.

a -bialgebra homomorphism from
to if it makes both diagrams and
commute.
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Bialgebraic approaches
Structured (Co)-algebras [Corradini,Heckel,Montanari]:
define coalgebras over algebras, or viceversa.

E.g. show that the behavioural functor can be lifted to the category of algebras for the

given signature and show that � � is an algebra morphism w.r.t. to that lifting. The final

structured coalgebra is the lifting of the final coalgebra.

-bialgebras [Plotkin,Turi]:
define a category of special bialgebras, i.e. -bialgebras, and show
that the given coalgebra is, in fact a -bialgebra.

A -bialgebra, for , is a -bialgebra s.t.:

//

##GG
GG

GG
GG

G;;wwwwwwwww
// //
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�
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A

�

-bialgebra, for

��� �� � � � �

, is a

� �� � �
-bialgebra

� �� 	� � �� �

s.t.:

�� � 
 �

// � � �

� �� � �

##GG
GG

GG
GG

G

� �
 ��� � � ;;wwwwwwwww

� �

// � � � // � �
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Permutation algebras
We work in a category of stuctured coalgebras. More precisely, we
consider coalgebras over the category

���� � of permutation algebras

Notation:
Let us consider permutations over natural numbers .
The kernel of is the set .

finite is the countable group of finite-kernel
permutations.

Signature:
consists of finite-kernel permutations, together with the axioms

schemata and .

A permutation algebra is an algebra for .
A permutation morphism is an algebra homomorphism.
(i.e., a function such that )

is the category of permutation algebras and their morphisms.
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���� � of permutation algebras

Notation:
Let us consider permutations � over natural numbers

� �
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�
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The algebraic structure of
The set

� �& of closed �
�

-calculus processes can be
endowed with a structure of a permutation algebra.

The name reindexing operator is defined as
, where:

(thus ).

denotes the process obtained by the application of to the
free names occurring in .

We let be the countable set of unary operators .

Proposition:
The pair is a permutation algebra.
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The semantic functor
The functor


� ���� � � ���� � is the canonical extension to arrows of:


 ��
� �� � � �

�

f

� � � � � �
� � �

f

�� ��� � �

� � � �

f

�� ��� � �

�

�
� � �� 	
 �� �

�

where, for any � � �

f

� � � � � �

, � � �� 	
 ��

,

� �

f

�� ��� � �

�

� � � � � � � � �  � � � � � � � � � � �
�

�
�
� � � 	 � � � � � �  � � � � �

�
�� 	 � � � �

is the lifting of the corresponding polynomial functor et et,

hence we lift the adjunction et
++

ii to -Coalg
,,

-Coalgmm .

Proposition
The functor has a final coalgebra .
Moreover, is the final -coalgebra.
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-bisimulation
The equivalence on a




-coalgebra

��
� �

�

induced by the unique arrow

� � ��
� �

� � � �
� � � � is the counterpart (in the final semantics

approach) of the ordinary notion of bisimulation.

A relation is a -bisimulation if s.t.
can be lifted to -coalgebra morphisms

Proposition
Let be defined as .
Then, is a -coalgebra.

Theorem
Let . Then iff , a -bisimulation on the
coalgebra , such that .

Proposition

The equivalence induced by the unique morphism

coincides with the union of all -bisimulations on the -coalgebra .
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Some considerations
All the constructions work because we have done away with the
conditions in the definition of bisimulation.

Can we consider other algebraic structures beside �’s?

The key point is that has to respect the algebraic structures.
This holds for and but it does not hold in the case of input prefix!

Counterexample: let defined by:

Then, for we have , whatever is
the effect of on labels.
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Some considerations
[Montanari&Pistore] shows that the support of the interpretation of a

�-calculus process in the final model amounts exactly to the active
names of the process.
We mention a similar result for �

�

-calculus:

Proposition
For and , the family

has at most distinct elements
(where is the number of active names of )

Explanation
The action of commutes with the final semantics.
Swapping non-active names in the process does not change its bisimilarity class.

Therefore, the number of distinct elements is bounded by the number of different

permutations of objects, of which are equal.
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-automata
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Why -automata
The last part of the talk concerns the quest for an effective
procedure for testing bisimilarity.

Our approach is inspired by HD-automata of
[Montanari&Pistore]

Here, the crucial problem is to get rid of vacuous

�

’s.

-automaton are designed for representing in a finite way
the evolution of finitary -processes.

These are processes whose descendants have a bounded
number of possible parallel actions.
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Finitary processes
The degree of parallelism

��� � � � �

of a �
�

-process
�

is
defined as follows (for � a generic action prefix):

�� � �� � 	 � �� � �
 � 	 �

�� � ����  � � � 	 �� � � � � ��� � � � �  � � � 	 �� � � � �

�� � ��  	 � � � � 	 �� � � � � �� � �

rec


 � � � 	 �� � � � �

��� � � � � � � 	 � ��� � � � � � � 	 �� � � � � � �� � � � �

The set of descendants of is .

Let .
A process is finitary if .
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Structural congruence
The structural congruence � on �-calculus processes is the smallest
congruence that satisfies the following:

(alpha)

� � �

if

�

and

�

are �-equivalent

(par)

�� � � � �� � � �� � �� � �� � � � � �� � � � �

(res)

��� � � � � � � � � � ��� � � � � ��� � � ��� � � �

� � � � � �� � � � �� ��� � � �

if � 	� 
�� � � �

� � � �� � � �  � � � � � �

if � 	� 
�� � �

(match)

� � � � � � � � � � � � � � � �

(unfold) � �� � � � � ��

rec

� � � � �
.

iff .

Note that does not imply (by rule (match)).

For each class of congruent processes, let us fix a
representative process such that
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Preliminary definitions (1)
The states of a

�

-automaton represent sets of �� -processes, differing
by vacuous

�

’s.
Without loss of generality (see Lemma on slide 22), we introduce

�

-automata only for closed �� -processes.

is canonical if it is the representative of a -class
and if no is vacuous.

can denotes the set of canonical -processes.

The orbit of a canonical process , is the set
orbit

.
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Preliminary definitions (2)
We denote by

� ��� � � � the set of partial strictly monotone functions
from

� �
� � � �� � �

to

� �
� � � �� � � and by

�

the set

�
��� � 	


� ��� � � � .

The normalization function can is defined by
, where

is the representative of the equivalence class of ,

,

(where ).

The reindexing of is the partial strictly monotone function
defined by .

CMCS 2004, Barcelona, Spain – p.40/50



Preliminary definitions (2)
We denote by

� ��� � � � the set of partial strictly monotone functions
from

� �
� � � �� � �

to

� �
� � � �� � � and by

�

the set

�
��� � 	


� ��� � � � .

The normalization function

�

�

�

�

� �
� � can

� � ��
�

�

is defined by

� �� ��� � � � � �
� � �  �� �� � � � � �
� � �

, where

� � �

is the representative of the equivalence class of

�

,

� � �� � � � �� � �
� � 
� � � � �

,

� �� � � � � � � � ��� �� � �� � � � � � � � � (where
� � �� � � �

).

The reindexing of is the partial strictly monotone function
defined by .

CMCS 2004, Barcelona, Spain – p.40/50



Preliminary definitions (2)
We denote by

� ��� � � � the set of partial strictly monotone functions
from

� �
� � � �� � �

to

� �
� � � �� � � and by

�

the set

�
��� � 	


� ��� � � � .

The normalization function

�

�

�

�

� �
� � can

� � ��
�

�

is defined by

� �� ��� � � � � �
� � �  �� �� � � � � �
� � �

, where

� � �

is the representative of the equivalence class of

�

,

� � �� � � � �� � �
� � 
� � � � �

,

� �� � � � � � � � ��� �� � �� � � � � � � � � (where
� � �� � � �

).

The reindexing of

�� ��� � � � � �
� �

is the partial strictly monotone function� � �� ��� � � � � �
� � � � �

defined by

� � �� ��� � � � � �
� � � � 
 � � � �� �� � �� .

CMCS 2004, Barcelona, Spain – p.40/50



-automata, formally
The

�

-automaton

��� induced by

� � � �
� is the triple

� �
�

� � �
� � � � ,

where:

� �

is the set of states. Each state is the orbit of the canonical process

corresponding to a descendant of

�

, and it is denoted by the canonical

representative itself.

� � � �

is the initial state.

� � � � ��� � � � �

is the transition relation defined by:

�
�

�� � �
	 iff there exists

� �	 such that

�
�

�
� �� � � �	 and

� � �	 � � �
	 �
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Finiteness result
Theorem
Let

� � � � � � � �
� be a finitary process. Then � � ��� � � is finite.

The fundamental Theorem above is based on the lemma below.

Lemma
If , then the set of its subprocesses is finite.
Moreover, for all : .

Definition
The set of subprocesses of is , where:

rec rec

CMCS 2004, Barcelona, Spain – p.42/50



Finiteness result
Theorem
Let

� � � � � � � �
� be a finitary process. Then � � ��� � � is finite.

The fundamental Theorem above is based on the lemma below.

Lemma
If

� � � �

, then the set � � � � � �

of its subprocesses is finite.
Moreover, for all

� � � � � � � �

: � � � � � � � � � � � � �

.

Definition
The set of subprocesses of

�
is � � � � � � � � � � � � � � � � �

, where:

� � � � � � � � � � � � � � �  �

� � � � � �� � � 
� � � � � � � � � � � � �
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� � � �  � ��
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� � � � � �� � � � � � � � � �
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-automata at work
The natural application for

�

-automata is in checking
bisimilarity of � �

-processes.

To this aim, we must keep track, at each step, of the correspondence

between -bound names in the canonical processes, which is where

the reindexing function comes into play.

More precisely, we define a notion of -indexed bisimilarity
on -automata and show that

Theorem
Let , and let
Then, iff and are -bisimilar.
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Indexed bisimulation
Let

� � � �
�

� �� � � � ,

� � � � � �
�

� �� � � � � be

�

-automata.
An indexed bisimulation

� � � � �� � �

is a relation such that,
for

�� �� � � � �

,

�� �� � � � � �

,

� � � �� ��� � � ��� �

, if

� �� �� � �
�

�
�

�� �� � � � � �

then:
let dom

�� ��� �� � � � � � � ��� �

,

���� �	�
 ��� �� � � � � ���� ��� ,

�	�� �	�
 �� � � � � �	�� � � � �� � � � � �	�� ,

��� � ��� �

,

�	�� �� 
 � �
 ��� �� � �	�� � � � � ��� �	�� �	�� ,

�

if

� � � � � � �� ��� ���� �� � � � �	� � � !

, then there exists

� � �	� �� !
such that

� � � � � �� � ��� " �� � � � � � � � � � ���� " �� � ��� � � �� ��� ���� �� � � � �	� �� !

� �# � � � � � � ! # � � ! � # � � �	� � � ! � # $ %

, where
� !&� ' � � � �	� �� ! �)( � ' � � � �	� � � ! � �+* �

.

�

if

� � � � � � �� ��� ���� �� � � � �	� � ! � � !

, then there exists

� � �	� � ! � � !

such that

� � � � � �� � ��� " �� � � � � � � � � � ���� " �� � ��� � � �� ��� ���� �� � � � �	� � ! �� !

� �# � � � � � ! � � ! # � � ! � # � � �	� � ! � � ! � # $ % �

, where

� !&� � � , �.- ,� � � ' � � � �	� � ! � � ! �( � ' � � � � � � ! � � ! � � * �

and

�.- �
/10

2
� �43 56 �

dom
�� � � �87  � 3 56 �

cod

�� � � � 7  � �

if � ! $ 9;: � � ! � � 9;: �� ! �

�

otherwise

� � � � �� � � � � * � � � � � � � � � $ %

.
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Indexed bisimilarity
The indexed bisimilarity, �, is the greatest indexed
bisimulation.
We say that the automata and

�

are

�

-bisimilar if

� ��
� �

�
�

�
�

� � �, for some

� � � � � � � � �� � � .

Now we have all ingredients to show that if the sets of states and
of the -automata are finite, then indexed bisimulations are finite
objects, making verification effective

In particular, the next result gives an upper bound of the domain of
the reindexing functions between all descendents of and .

Since is finite, there are only finitely many candidate relations
to be indexed bisimulations.

Hence, we have an algorithm for deciding bisimilarity of finitary
processes.
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Finite verification is possible
Theorem
Let � � ��� � � 	 � �
�

� � � � � � �
� � � � and

� � ��� �� 	 � � �
�

� � � � � � �
� � � � � , for

�
�

� � � � � � �� � � � � � � finitary.
Let

� 	 � �� � ��� � � � �	� ��
 � � � �
�

�� � � � �� �
 � � � � �
.

Then

� � �

iff

� � �� � �
�

� � � � �
, an indexed

bisimulation, such that

� � � � � � � �
�

�
�

� � � � � � � � � 

(where

� � � � �� �� � � ��� � � � �� �� � � � � � � )
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Concluding remarks
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Recap

�

We have introduced �� -calculus, a conservative extension of

�-calculus

�

The operational semantics is finitely branching,

�

The operational and abstract semantics of �� -calculus do not
involve any side conditions on names,

�

We have given a (bi)coalgebraic presentation of bisimilarity, in
the spirit of final semantics

�

We have introduced

�

-automata which allow us to get finite
representations for finitary processes by dealing with vacuous

�

’s
and structural congruence

�

We have also shown that, by exploiting

�

-automata, finite
verification of bisimilarity is possible for finitary processes
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Related and future work
Closely related work

�

HD-automata [Montanari&Pistore]

�

Fresh graphs [Gabbay]

Future directions

To address late and open bisimilarity

HOAS presentation of -calculus

Push further the study of -automata, by

introducing a general notion of -automaton, independent
from the -calculus

prove standard results on automata such as minimalization

define corresponding notion of transition system,
generalizing the transition system of the -calculus.
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