CoMeta Project Workshop Preliminary Version

Flat Committed Join in Joih

Roberto Bruni, Heran Melgratti and Ugo Montanari

Dipartimento di Informatica, Universitdi Pisa, I-56127 Pisa, Italy,
{bruni,melgratt,ugo }@di.unipi.it

Abstract

Committedloin (cJoin) is an extension afoin with high-level primitives for programming
dynamic nested negotiations with compensations. In this paper we shdiatleadin pro-

cesses (i.e. processes without sub-negotiations) can be encoded in ardimaajculus by
exploiting a distributed two-phase commit protocdRecC). In particular, we first define a

type system that singles out flat processes and prove subject reduction for it. Then, we show
that all flatcJoin processes can be written in an equivalent canonical form, where a few el-
ementary definition patterns are used. Finally, we show that canonical flat processes can
be implemented idoin. It is worth noting that negotiation primitives are encoded as fully
distributed agreements between all participants, thus avoiding a centralized coordinator.

1 Introduction

Recently, in the area of formal languages, there is a renewed interest from both Aca-
demic and Industrial research concerning the design of orchestration primitives for
programming largely distributed and long-running decision proce&;82,13].
The increasing number of applications in the area of e-commerce, web services
choreography and orchestration patterns demands a rigorous mathematical presen-
tation of such languages, to support formal analysis and verification.
CommittedJoin (cJoin) [5] is an extension of tha@oin calculus with primitives
for handling distributechegotiationgalso calleccontractg. Roughly, negotiations
are processes that execute in a controlled environment until completion, when they
commit and make their results observable to the rest of the system. Additionally,
they can be explicitly aborted, in which case, suitable compensation programs can
be activated to resume a locally consistent state. A distinctive featadeiofis that
several negotiations can be merged during their execution into a larger one. This oc-
curs when two or more participants to different negotiations communicate through
special ports, calletherge namednteracting negotiations are bound together, and
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thus they will jointly reach the same decision, i.e. if one of them eventually com-
mits (resp. aborts) all will eventually commit (resp. abort). This is particularly
interesting for designing multi-party negotiations, where independent participants
can provide transactional services making explicit the ways in which parties can
interact, and where the actual structure of a negotiation is discovered at runtime.

The approach o€Join contrasts with approaches such [@k vhere business
processes are described as graphs that spawn across organization boundaries re-
quiring all participants to be known statically. Moreover, partners cannot hide in-
teractions with third parties that can influence the final decision.

Crucial points about the implementation @foin are: (1) the commit of in-
teracting negotiations as a global decision, and (2) the number of participants and
their identities are not known statically. We show that, for a significant fragment of
cJoin, global decisions can be implemented in a fully distributed way by using the
distributed two phase comnyirotocol @2pPC) proposed in'4] for implementing
zero-safe netff] (a transactional extension of Petri nets). Note thatJtsie code
written for thep2pcin the case of zero-safe nets can be imported and reused with
minor modifications in the encoding ofoin, giving evidence of its generality.

cJoin is much more expressive than zero-safe nets, as it retains the full expres-
sive power of ordinaryloin. The presence of compensations and of merge names
increases the level of complexity of the encoding, making it far from trivial. Indeed,
we restrict ourselves to consideloin processes that can be typediag meaning
that they will never generate nested negotiations. We show that flat processes form
a sub-calculus ofJoin by proving the subject reduction property for them. More-
over, a suitable form of serializability is guaranteed to hold fordlatn. We show
that thecJoin encoding of any zero-safe net is a flat process.

To facilitate the translation, we define the encoding of flat processes that are
written in a suitable canonical form, where only a few elementary definition pat-
terns are allowed. This can be done without loss of generality, as we show that
any flat process can be transformed in an equivalent process in canonical form.
The elementary definition patterns we consider are inspired by the basic shapes of
transitions in zero-safe nets: they are obtained by imposing a strict bound on the
number of messages that can be consumed / produced within a single reduction.

Although we show thaloin is expressive enough to encode fladin, i.e. that
the new primitives for flat negotiations do not increase the expressivity of the lan-
guage, we argue that the syntaxadbin yields a separation of concerns that is
difficult to achieve at the level afoin, thuscJoin facilitates programming and rea-
soning about distributed contracts. We conjecture that by further elaborating the
encoding of flat processes one should be able to implemerthit in Join.

Structure of the paperin 82 we present the syntax and semanticsJafin. In 83

we define the type system for flat processes, prove subject reduction and show that
the encoding of zero-safe nets presente®jiyields flat processes. Moreover, we
show that flat processes have equivalent canonical representatives that employ only
elementary definition patterns. §4 we present a correct and complete distributed
encoding of canonical flatloin processes idoin.
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M,N = 0| x(¥) | M|N D,E :=JcP|J» P|DAE
P.Q = M/|abort|[P:Q]|P|Q|defDinP JK =x({) | JK
Figure 1.cJoin Calculus Syntax.

dn(x(s)={x}  dnQK)=dn@)udn(K) mxF)={y}  MEK)=mI)Um(K)

dno(D AE) =dny(D) Udny(E) dno(J>P) =dn(J) dno(J » P) =0
dnyn(D A E)=dny(D) udnm(E) dnyn(JI>P)=0 dnm(J » P)=dn(J)
fn(D AE)=fn(D) Ufn(E) fn(J3 » P) =fn(J>P)=dn(J) U (fn(P)\rn(J))
fn(0)=0 fn(abort) = 0 fn(x(y))={x} U{y} fn(P|Q)=fM(P) Ufn(Q)
fn(def D in P) = (fn(P) Ufn(D))\dn(D) ([P : Q]) =fn(P)ufn(Q)

Figure 2.Defined, received, and free names.

2 Background

cJoin syntax. The Join calculus [LC] is a process description languag@®DL)
with asynchronous name-passing communication and it has the same expressive
power as the asynchrononcalculus.Committedloin (cJoin) [5] is a conservative
extension ofloin with additional high-level primitives for programming dynamic
nested negotiations with compensations. Liké, cJoin relies on an infinite set
of names,y,...,u,V,... to model communication channels and transmitted values.
Name tuples are writted. The syntax otJoin is given in Figurel. cJoin differs
from Join because of the additional operataisort, [P : Q] andJ » P.

Messaged can be either the inert proce8sthe asynchronous emissiaty)
of messag§ on portx, or the parallel composition of messadésN.

Processe®, can be plain messages, the special constiamitt causing the abort
of its enclosing negotiation, a negotiatif?: Q|, whereP is the normal execution
of the activity andQ is its compensation in case of abort, the parallel composition
of processe®|Q, or a processdef D in P equipped with local ports defined 1.

A definitionD is a conjunction of ordinary and merge reaction rJleP and
J » P respectively, that associgten-patterns] with guarded processdd Names
introduced by the definitio® of defD in P are bound in the whole procegs
as well as in the guarded processes contained.inThe sets of defined names
dn, received names and free namefn are defined in Figur2. In particular,
we distinguish between defineddinary namesdn,(D) and definednergenames
dny(D) that are always assumed to be disjoint sets of names.

CHAM . The operational semanticsa@lfoin is given in the reflexive HAM style [10],
where states (callesblutiong are finite multisets of terms (calledoleculey and
computations are multiset rewrites. Multisets are writtemas. ., m,. We usually
abbreviateny, ..., m, with ®; my. Solutions can be structured in a hierarchical way
by using the operatanembran€{[.]}, grouping a solution into a molecule. Trans-
formations are described by a setabiemical ruleswhich can be of two different
kinds: heating / cooling(or structural) rules= for syntactical rearrangements of
molecules in a solution, an@actionrules— for basic computation steps. Rules
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m:=P | D | Py {S} Si=m|mS
Figure 3.Syntax ofcJoin molecules and solutions.

only address the part of the solution that actually moves and can be applied at any
level in the hierarchy. Molecules and solutionsSfor cJoin are in Figures.

Note that processes and definitions are molecules. Additionally, molecules hav-
ing the form_Q_. denote compensations that are frozen inside a solution and that
will not be executed unless their negotiation aborts. To reason up-to structural
equivalence, we shall overload to denote also sequences —="*.

Operational semantics ofcJoin . The chemical rules fotJoin are given in Fig-
ureld. The first five chemical rules are the ordinary onesiton. Rule STR-NULL
states thab can be added or removed from any solution. Rgles-JOIN andsSTR-
AND stand for the associativity and commutativity |cind A. STR-DEF denotes
the activation of a local definition, which implements a static scoping discipline by
properly renaming defined ports globally freshnames. We write the substitution
of names(; ... xn byy1...ypasao = {¥-%/, .}, withdomo) = {x1,..., %} and
rangg(o) = {y1,...,Yn}. We indicate withoy an injective substitutiom such that
dom(o) = N. We require newly defined names to be globally fresh, which means
fresh w.r.t the implicit context in which the rule is applied. The reactam de-
scribes the application of an active definitidn P to messageso matching the
patternJ (for a suitable substitutioa, with dom(o) = rn(J)). The instance od is
consumed and replaced by a new instaRgef the guarded proce$s

Rule STR-CONT states that a term denoting a contract corresponds to a sub-
solution consisting of two molecules: the procPsand its compensatio@, which
is frozen (because the operator forbids the enclosed process to compute). At
commit time, the local resourcé4 produced inside a negotiation are released via
the rulecommIT, which can be executed only when all internal computations have
finished. At commit time, private definitions of a contract can be discarded, because
neither the messages that are being released contain those names nor they could
have been extruded previously. After commit, its compensation procequres
useless and can be discarded as well. The abortion of a negotiation is handled by
the ruleABORT, which release® wheneveiabortis present in the solution.

Interactions among negotiations are dealt withRGE, which consumes mes-
sages from different contracts and creates a larger negotiation by combining the
definitions and messages of the original ones with a new instance of the guarded
proces$o, wheredom(o) =rn(Jy|...|Jy). Name clashes are avoided because we
assume thasTR-DEF generates globally fresh names. The compensation for the
joint negotiation is the parallel composition of all the original compensations.

Example 2.1 Mailing list. Consider a data structure that allows to send atomically
a message to a list of subscribers (in the sense that it is either sent to all or to none).
Such structure can be definedds = MailingList(k) > MLDef, where:

MLDef = def List in k(add, tell, closé | I (nil)

4
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STR-NULL 0=

STR-JOIN PIQ=PQ

STR-AND DAE=D,E

STR-DEF defDin P = D0gnp), POanp) (rang&(oynpy) globally fresh)
RED J>PJo — I>Po

STR-CONT P:Q] = {[P.Q.]}

COMMIT {{M|defDin 0,LQ.]} — M

ABORT {[abortP,LQ.]} — Q

MERGE Ji|...|dh » P®;{[Ji0,S,.Qiu]} — Ji|...|In» P{®;S,Po,.Q1]...|Qn]}
Figure 4.0Operational semantics ofoin.

List = n|I<v, w) > W()

A Ky) | add(x) >def z(v,w) » x(V) | y(v,w) in [(2)
A y) [ tell(v) > [def 2() > 01in y(v.2) | 1(y) : 1(y)]
A I{y) | clos€) >0

A new mailing list is created by sending a message to the daitingList.
SincecJoin adheres to the “continuation passing” style of programming, the con-
tent of the message sent kdailingList is a continuation pork, which expects
information about the newly created mailing list. The creation of a new list defines
five fresh portsil, I, add, tellandclose three of them (namelgdd, tell, andclosg
will be used to interact with the list from “outside” and will be sent to the pas
the outcome of the creation. The remaining two ports will never be extruded. They
denote the empty lishfl) and the actual state of the lig).(

Once a list is created, a new subscriber can be added by sending a ne$age
with the namex of the port where it will be listening to for new messages. In this
case, the list is modified by installirm{on top of it), a forwarder of messagesxo

The porttell is used to send a messagm the list. Whertell is received a new
negotiation identified by a fresh namés generated, and the state of the structure
IS put inside the negotiation, therefore all other activities, such as adding or closing
are blocked until the negotiation ends. Inside the negotiation, the messagent
to the forwarder at the top of the ligtwith the identifier of the negotiation Note
that each forwarder sends the message to the corresponding subscriber and to the
following forwarder in the list. This is repeated umtil is reached, when a message
to the identifier of the transaction is sent. The firing refe>0 consumes the last
local name and the contract commits by releasing all the messages addressed to the
subscribers and the state of the list. Then the list is ready to serve new requests.

3 Flat cJoin

Flat transactions were introduced in database community as a basic mechanism to
assure atomic execution of composed activities. The term flat specifies that the
activities forming a transaction are basic actions, such as read and write, but they
cannot be transactions themselves. Similarly, we define a sub-calcutusimf
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calledflat cJoin, where negotiations cannot be nested. In this section we character-
ize flat processes as well-typed terms and we show thataoiy process can be
written in an equivalent canonical form.

3.1 Atype system for flaioin

We single out flat processes @foin with the type system in Figui® It takes the
setT = {0Oo,ds, 02} of types and uses the following type judgements:

FP:0op The constructor of negotiatioris: _] does not appear at all i

FP:[O; P does not contain active negotiations but can activate flat contracts.
FP:[, P can have or generate flat negotiations but not nested ones.
FD:Op D does notcontain constructors for negotiations.

FD:[O; D can contain or initiate flat negotiations but not nested ones.

Rules(SuB-P) and(SuB-D) stand for the sub-type ordéty < 1 < Cp. We
say that a proced3(resp. a definitioD) is well-typedif - P : [, (resp.- D : ).

Clearly, the inert procesB, the emission of a messagéy) and the constant
abort do not contain constructors for negotiations, and are tyipgd By rule
(PAR), the parallel compositio?|Q can be typed]; if both P and Q type [J;.
Consequently, the type &f|Q corresponds to the greatest of the lower types that
can be assigned ®andQ. In fact, considerind® andQ well-typed, if P contains
an active negotiation (i.et; P : [Jp), independently of the structure @, the pro-
cessP|Q contains an active contract (i.e.P|Q: ;). Rule(NEG) prevents nesting
by stating thafP : Q] can be typed], only whenP does not have negotiations and
it cannot generate them. Nevertheless, the compensa@tiamich cannot contain
active negotiations, is allowed to initiate them because this will not compromise
flat condition. In fact, compensations execute at the top-level and not inside the ne-
gotiations they are originated from. RUIBEF) combines the typing of definitions
and processes. Note thdef D in P can be typedly only if neitherD nor P use
constructors for negotiations, i.e. if both have typg Instead, it can be typdd;
when negotiations appear only in definitiosdr those contained iR). Finally, if
def D in P typeslly, its active negotiations appearkywhich therefore typesls.

By rule (CoNJ), a conjuction of definitions is typedj only when both sub-
terms typeJ;. By rule (ORD), an ordinary definitiord > P is well-typed when its
guarded processésis well-typed. Moreover, it has tydédg if P does not contain
constructors for negotiations (i.€- P : [lp). Differently, a merge rule is well-typed
only if P has typelp (rule (MERGE)). This is required in order to avoid nesting,
because the instancesPivill execute inside a negotiation.

Example 3.1 Well-typed terms.Consider the mailing list process introduced in
Example2.1. Several subterms and their types are below:

Pr=defz()>0in y(v,2) | I{y) P =[P {y)]
D1 =ly) | tell{v)>P; D2 =I(y) | clos€) >0

|—P13E|o FPy: O FDq:0Op |—D2:Do FDi1ADy:0Oq
6
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(SUB-P) (SuB-D) (ZERO) (MESS) (ABORT)
FP: O FD: Lo
i<j FO:0O Fx{y):0O Fabort: [
-P:0, FD:h ° p:Ho °
(PAR) (NEG) (DEF)
FP:O FQ: L FP: O FQ:4 FD:0 FP:
FPIQ: FP:Q]:O2 FdefDin P:me(i’j)
(ConNy) (ORD-0) (ORD) (MERGE)
FD:0 FE: O FP: O FP: O FP:Oo
FDAE: FJoP: O FIoP:O4 FJw» P: O

Figure 5.FlatcJoin Typing.

Moreover, MLDef : [J; (it does not have active negotiations but can initiate
them), and alsé ML : ;.

Example 3.2 CounterexampleThe termdef x() » [P: 0] in [def D in x() : 0] is not
well-typed because it has a merge definition whose guarded process is a negotiation
(rule (MERGE) cannot be applied becauge() » [P: 0] : Clp). In fact, it reduces to
defx() » [P:0]in [defD in [P:0]: 0] whenx¢ dn(D), which has nested contracts.

Proposition 3.3 Join processes arély) LetP be aJoin process, thei P : Cp.

Lemma 3.4 (Subject Reduction forJg) LetP:g. If P—* P’ thenP’ : .
The following result assures that flat processes do not introduce nesting.

Theorem 3.5 (Subject Reduction fordy) LetP: . If P—* P thenP’ : .

Subject reduction does not hold fah. Conside = defx()>[Q: Q] in x(),
wheret Q: Og and- Q' : ;. Althought P: (s, P reduces td® = defx() > [Q:
Q'lin [Q: Q], which can be typedl, but not[];.

Definition 3.6 [Flat cJoin] Let P be acJoin process.P is flat iff = P : ,. Flat
cJoin is the sub-calculus of all flat processes.

In [5] we defined the class of shallow processes and proved a serializability re-
sult for them, meaning that disjoint negotiations cannot interfere with each other
(unless they are merged). Although the definition of shallow processes is not re-
ported here, it is trivial to check that flat processes are also shallow.

Corollary 3.7 (Serializability) Any flat proces® is shallow and thus serializable.

3.2 Zero Safe Nets arwdoin.

Zero-safe netszs net9 [6] have been introduced to model serializable transactions
in concurrent systems. They support multiway transactions, i.e. with several entry
and exit points and a statically unknown number of participants. Recently, they
have been used i@] to encode short-running transactions of Microsoft Biz@lk
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(FIRING) (STEP)
S+Z[)S+Z'€T (S1,21) =71 (S1,Zy) (2,22) =7 (S,,2)
(S+8,2+72") -1 (S+S,Z7+Z") (S1+$,Z1+2Z2) =7 (3,4 S, 21+ Z))
(CONCATENATION) (CLOSE)
(8.2) =1 (81,2") (£,2") =7 (S,,Z)) (S0) -1 (S,0)
(S1+$,2) >1 (§+8,2) (S0) =7 (S.0)

Figure 6.0perational semantics @k nets ¢ denotes multiset union).

a commercial workflow management systelfi][ However,zs nets are not suit-
able to model interesting aspects such as name mobility, programmable compensa-
tions and nesting, which are the main featuresJofn.

Analogously to Petri netg,s nets rely orplaces(i.e. repositories of resources,
messages)okens(i.e. instances of placesnarkingsU (i.e. multisets of place)
andtransitionsU[)U’ (i.e. basic activities to fetch and produce multisets of to-
kens). However, the places @t nets are partitioned into ordinary and transac-
tional ones (calledtableandzerg respectively). Correspondingly, markings
can be seen as paifS, Z) with U = S+ Z, whereSandZ are the multisets of stable
and zero resources, respectively. Tokens in zero places are transient data belonging
to some ongoing negotiation, while tokens in stable places model committed deci-
sions achieved via negotiations, which start from and leagtable markinggi.e.
multisets of stable places). The key point is that stable tokens produced inside a
negotiation are made available only at commit time, when no zero tokens are left.

The operational semantics af nets is defined by the two relatioast and
—7 (indexed by the set of transitiody in Figure6. RulesFIRING andSTEPare
the ordinary ones for Petri nets. The r(leNCATENATION composes zero tokens
in series but stable tokens in parallel, hence stable tokens produced by the first
step cannot be consumed by the second step. A negoti@ionh=-1 (S,0) is a
concatenation of steps from a stable marking to a stable markingscroleg).

In the literature,zs nets have been already encodediain [4] (via a dis-
tributed two-phase commit protocol for establishing the end of a negotiation) and in
cJoin [5] (almost straightforwardly, taking advantage of the additional negotiation
primitives). We briefly recall the latter encodifid.; because:

» Without loss of generality, both encodings are definedzZ®mets made with
the basic shapes in Figuréa) (which are as expressive as the general nets), for
E any stable place anele;, e; any zero places. We use mnemonic names like
E open e to denote a transitiok |) e that can spawn a fresh local negotiation
andefork e, e to denote a transitioa|) e; + e that can create parallel threads
within a running negotiation. Basic shapes are analogous to the elementary defi-
nition patterns we shall consider when encodingdbain in Join.

7S nets do not have programmable compensations. The encédingshows
that suitable default compensations can just restore the initial state of the nego-
tiation. As an original result, in Propositih& below we prove thats nets are
encoded as flat processes.
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E € [E open €]c; = E() > [defz()>0in e(z) : E()]
open calc [efork e, e i=e(2) » e1(2)|ex(2)
e € [e1,€ join €]y i=e1(z)|ex(z2) » e(z1)
Eopene e calce
e e [e1 calc &y i=e1(2) » ex(2)
fork drop [edrop ey :=¢e(2) » O
Sl & [eclose E]cy i=e(2) » E()
eforkey, e €drop
€1 € e
join close [Eles :=E()
e E [[Sl+82]]cJ = IISl]]chSZ]]cJ
e, & joine ecloseE
(a) Basic shapes @fs nets. (b) Translation of basic shapes and markings.

Figure 7.Encoding ofzs Nets incJoin.

Encoding zs nets incJoin . The translatiorf_], in Figure7(b) associates aJoin
definition (resp. message) with each basic shape of transitions (resp. stable mark-
ing). Places are seen as ports and tokens as messages. Tokens in stable places carry
no value, while tokens in zero places carry the identifier of the transaction they be-
long to. ForT the set of transitions an8the initial marking of thezs nets, we let
[Tles = Atetlt]es @and then take thedoin procesddef [T]c; in [S]cy, which con-
sists of the translation of the initial markir®n the environment containing all the
definitions associated with transitionsTin Transitions whose pre-sets contain zero
places are translated as merge definitions, otherwise as ordwiamyefinitions.

We shortly discuss a few peculiarities of the encoding (details arfg]nThe
translation of a transition of the forig open e is acJoin definition that can open
a new negotiation containing the definition of a fresh nan(gle identifier of the
transaction) together with the message), and whose default compensation is
the only stable resourde(). The dummy definitiorz() >0 is a convenient way to
define a local identifier for the negotiation and has no computational meaning. In
fact, no message will ever be produced on oriThe porte corresponds to the
homonymous zero place and it is a name defined externally via merge definitions
(originated from those transitions i fetching from placee), which can be used
to compute inside negotiations and even merge them via the reacHRGE of
cJoin. For example, two disjoint negotiations with local tokengirande, can be
merged by firing a transitior;, e join e, i.e. by executing th&1ERGE reaction
for e1(z1)|ex(z2) » €(z;). Note that the identifierg; andz become then equiva-
lent identifiers for the same larger negotiation. The key point is that when stable
messagek () are released inside a negotiation, e.g., by fierg ose E, then they
cannot be fetched before the negotiation commits, because all the rules that can
consume them are ordinary ones and float outside the negotiation boundaries.

While the correctness and completeness of the encoding can be fousid in [
here we state the following original result based on the type system in Fsgure
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coun{0) =1 coun{x(t)) =1 coun{P|Q) = coun{P) + coun{Q)
counfabort) =1 coun([P: Q]) = coun{P) coun{defD in P) = coun{P)

Figure 8.Definition of coun{P).

OPEN x(Vy>P & FP:O; & coun(P)=1
ORD-Mov x(t)>P & FP:0O7 & coun(P)<2
MERGEMoV x(U) » P & FP:0Op & coun{P)<2
ORD-JOIN x{(V) |y(w) > P & FP:O; & coun(P)=1
MERGEJOIN X3 (V)|...[ % (V) » P & FP:Op & coun(P)=1

Figure 9.Definitions in canonical form

Proposition 3.8 (ThecJoin encoding ofzs nets is flat) - def [T]c; in [Fcs : Oa.

3.3 A canonical form for flat processes

As done withzs nets, we will restrict our attention to processes built with some
basic shapes to simplify the definition of the encoding of ¢&iin into Join. In
particular, we forbid definitions to consume and produce messages freely. The
auxiliary functioncountin Figure8 counts the atomic agents present in a process.

Definition 3.9 [Canonical Form] LeP be a flat process? is in canonical form if
any definition inP satisfies one of the conditions in Figife

It is worth noting that these conditions match with the basic shapes péts.
By (OPEN), a reaction that creates a new negotiation consumes exactly one mes-
sage and produces only one agent inside the new negotiation. (BRI JOIN)
assures that a synchronization consumes two messages and produces exactly a new
agent. Differently, rul§MERGEJOIN) allows to join several negotiations simul-
taneously. Moreover, a join cannot spawn directly a new negotiation (a task left to
(OPEN)). Finally, rules(ORD-Mov) and(MERGEMoV) are instances of transi-
tionscalc, fork, andclose (with drop as a particular case) @t nets.

Proposition 3.10 LetP be a flat process? can be written as an equivalent canon-
ical flat process.

Example 3.11 The processiLDef in Example2.1is not in canonical form. In fact,
the definitionTell = I (y) | tell(v) > [defz() >0in y(v,2) | I{y) : I{y)] iS a join that
creates a negotiation with two internal messages. It can be rewritten as

Tell = 1{y) | tell{v)>a(y,V)

Aafy,vy>[defz()>0in def b(v,zl,y)>y(v,2) | I{y) in b{v,z1,y) : 1{y)]
wherea andb are fresh names. Note thafTell’ : OJ;. Its first rule is arORD-JOIN,
while the second is a®PEN. In fact, the process contained in the negotiation has
type 0o and the count of emitted messages is 1 (bés,z1,y)). The definitions

appearing inside the contract are in canonical form, actually they corresponds to
ORD-MovV: z()>0is adrop andb(v,z1,y) >y(v,2) | I{y) is afork.
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TOP-LEVEL PROCESSES

[O]s8 =0

[X(@]s.s = x() if x¢B&UES

[x(W]s.8 = x°(0) if xZB& UeB

Ix(W]s.e =0 if xeB

%PLQHS]}B = Q[)PHS,BH[Q]]S,B

abort]s, =

[defD isnBP]]S,B = def[D]g g in [Pls & S'=Swdn,(D) & B’ = Bwdn,(D)
[P:Qlss = defDAcmp)>[Qlsp in statel{cmp}) | [PJ2E™
PROCESSES IN A NEGOTIATION

%g]gg}]]i’” _ péﬁ % e U if xeS&UES

SB, = P, 7{Xb< )}) T xe €

X(@IEs" = p(6,0,{x*(@)}) if xeS&UeB
X(@]EE =0 if xeS& Ug (SUB)
[[x<u>]]§;"§f = x(, p,a, ¢) if Xx¢SUB&TES
[[x<u>]]gj8f = x°(0, p,a,) if x¢ SUB& TieB
[[x<u>]]§gf = x2(U,p,a,!) if x¢ SUB& I¢ZSUB
[[x<a>]]%1§§ = x3(, p,a, ¢) if xcB&UES
[[x(U)]]g;B" x2(d, p,a 0) if xcB&UcB
[[x<u>sgf = x2(0, p,a,£) if xcB&U¢SUB
[abort] &5 = a()

[defD in P]]pa" = def [D]{ g in [P]25’ if count(P) =1

[def D |n P]l (Pepe)(@2)t _ gef [D]L , in ﬂpﬂ%ﬁ’l P2)-@22).L it countP) = 2

[P | Qs P 2l = [PIEE™" | [QIE%™ if count(P) = coun(Q) =1

Figure 10.Encod|ng of canonical flat processes.

Proposition 3.12 (The encoding ofs is in canonical form) LetN = (T,S) be a
zs net, therdef [T], in [, is already in canonical form.

4 Encoding flatcJoin in Join.

In this section we describe the encodinglain of canonical flaicJoin processes.

As we are interested in computations that start from and lead to consistent states,
we restrict our attention to processes that start without active negotiations, that is
canonical flatJoin processes that additionally typ&. For simplicity, the encod-

ing relies onJoin calculus extended with the data tyB&T, for finite sets and the
standard operations of empty€euunionu, and difference,.

Processes are encoded by considering two sets of n&résnoting a set of
ordinary names anB containing merge names, which are used to decide whether
a free name irP is an ordinary or a merge one. Therefore, the encoding is well-
defined only wherfin(P) C SUB andSNB = 0.

Definition 4.1 [Encoding]. TheJoin process associated to a canonical ¢latin
process with type s is [P]mp) 0 (See Figurd().

Top-level processesThe function[P]s g defines the encoding for top-level pro-
11
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cesses. Note that the emission of a message in a stablexsnanslated as a
message ox® or x° considering whether the paramet@rare ordinary or merge
names. Ports® or x® are introduced by the encoding of definitions presented be-
low. For simplicity we assume all namesirare either ordinary or merge, but the
presentation can be extended by using a different port for any possible combination.
A top-level messagg(t) on a merge namex(€ B) lives outside a negotiation
and cannot be consumed. Moreover, it is not observable besassa defined
name. Consequently, it is useless and encoded as the inert process 0. Analogously
for abort, which is meaningless outside contracts.
Note thatS andB are updated when encoding a top-level process with local
definitions, i.e. toS’ andB’ when defining[def D in P]s g. In this case, bottD
andP are encoded by taking into accoui(D). We use_ _ to denote the union
of disjoint sets. (Note that defined names can always be renamed with fresh ones.)
When a negotiation is translated irltain, it is associated with a new coordina-
tor D (Figurel12), which will monitor the execution of the contract. Rswill run as

part of a negotiation, it is encoded @B]]p“tabt’{'o‘:k} whereput, abt, lock € dng(D).

We can safely assume thatinitiates with a unique thread because we are trans-
lating canonical processes with typa, and therefore negotiationiB : Q| appear

in definitions withcoun{P) = 1. The compensatio is encoded as a top-level
process, which is activated with a message on the localgomgt As cmpis used
only to initialize the state of the coordinatatétg {cmp})), the messagemp() is
emitted only when the coordinator (and consequently the contract) aborts.

Processes in negotiationsThe auxiliary encoding- ]]p’ag describes the implemen-
tation of a thread being monitored by a managéhat defines channefsanda for
receiving commit or abort confimations. The éebllects the references to known
parties in the same negotiation (callgghchronization s¢t The inert process 0 in
a negotiation means thread completion and it is translat@déa8, 0) to notify that

it is ready to commit. The message contairs inform D about known parties.

The encoding of a messagél) requires a case analysis on the different kinds
of names involved in it. When the message is sent to a free name or to an ordinary
name defined at the top-level€ S) there are two different cases. If the arguments
are not local names, e.g.€ S, then the thread is attempting to close the negotiation
by releasingx(t). Hence it is encoding as a commit notificatipt?, 0, {x*(U) }).

Note that< (U) will be released if the negotiation finally commits.

Instead, when the arguments are names defined in a contract, the negotiation
can enter in a stall situation unless other participants abort the whole contract. In
fact such message cannot be consumed before commit, which is required to en-
able the commit of the contractOMMIT requires all local names not to appear
in messages). The stall situation is encoded with 0, in this way the thread finishes
without notifying its coordinator neither commit nor abort, and the coordinator will
be blocked (unless one of its parties aborts).

On the other hand, a namelefined in a negotiation is encoded by using three
different ports: x?, x° andx® to handle different types of parameters, i.e., local,

12
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merge and top-level. Similarly, merge names are encoded taking into account the
type of their parameters, but they also should consider that a negotiation can finish
when the received names are not local. Rb(with k € {z,b,s}) is used to encode

the behavior of a merge name that receives names ofktgoel continues the exe-
cution of the negotiation. Instead, pattallows also the possibility of committing

a contract even when the message is not consumed. Note that the emisgion on
Is translated as a message that carries the vaugand/ for interacting with the
manager. (A thoughful discussion about encoding merge definitions is below).

The constant procesabort is translated into a messa@é) that informs the
manager about the abort. The translation of a prodetb in P involves the trans-
lation of D andP. Whencoun{P) = 1, P is encoded by using the same coordinator
assigned to the whole process.We remark that the sets of variabledB are not
updated in this case, becau3entroduces just local names. Alsb,is encoded
with [ 3 g and not with[ ] 5, which is used only for top-level defintions.

The encoding of the parallel executi®fQ requires information about two dif-
ferent coordinators: two portg; and p, for notifying the commit, and two ports
a; anday for aborting. ThenP is encoded by using;, a; andQ using p2, a.
Similarly for [def D in P]s g whencoun{P) = 2. The generation of different co-
ordinators is due to the encodingfdrk definitions described below.

Definitions. The encoding of definitions is in Figutiel. We recall thalﬂ,]]gB is

for top-level definitions, whilq,]]gB is for definitions inside negotiations. In both
cases the encoding of a conjunctibm E is the obvious one. The translation of
a top-level definition of the port creates two new port& andx®, which handle
ordinary and merge parameters respectively. Such ports are associated to different
translations of the guarded procéasx® considerdl as ordinary names and as
merge names. We recall that, for simplicity, we assume all namébaing of the
same kind. We also ommit in FiguiEl the encoding of a join, which generates
four different rules: one for each combination of argument types.

The definition in a contract of(U) > P wherecoun{P) = 1 is translated into
three rules. Each rule introduces a new pbrtk € {z,b,s}) to handle a particular
kind of received names Portx? receives local names? merge names, and top-
level names. Additionally, the new pont§ have as parametefs a and/ because
the encoding in Figurd(0 needs such information to contact the manager of the
contract where the messagdelongs to. In fact, the guarded proc&smust be
encoded w.r.t. the valugs a, ¢ of the manager of the fetched messagedon

Similarly, afork is encoded with three rules (Figuté& shows only the rule for
X%) but the guarded processis translated by using two new coordinat@s and
D,. Portsput, abt andlock are defined names of the new coordinatoyswhile
p anda are the channels associated to the thread that forks (they are retrieved from
the message ox). Channeldock are added to the participant liét which will
be common to both new threads. For simplicity, we close the original thread (and
create two new ones) instead of reusing it. The compensations for the new threads
are the channels necessary to abort the other two participants.

The remaining shape for ordinary definitions i$cdin x{U)|y(V) > P where two

13
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DEFINITIONS
[DAElsg =[Dls g [Elsg for i=1,2
[x(T) > PJ2 g = (U) > [Plswsqay.e AX(U) > [Pls guay (remaining patterns ommitted
[[X<a> > PH%,B = XZ<U7 p,a, £> > [[Pﬂg:anf A Xb<U7 p,a, E) > Hpﬂggé{u} A XS<U, p,a, €> > HP]]SS{EH}B
if count(P) =1

[x(8)>P]% 5 = (0, p,a,¢) >def Dy ADz in [P PHe) (@Puabe)locklocke}it
| p(¢U{lockq,locky}, {abt;,abt},0)
| statg ({abb, a}) | state({abt;,a})
U, p,al)>... N x¥(Up,al)>... if countP) =2
x*(U, p1, a1, (1)[Y*(V, P2, @2, (2)>
defDin py(f1Uf2U{lock}, {abt ap},0) | [P+ /2 10
| p2(/1U U {lock}, {abt a; },0) | statg{as,az})
A X2 (U, p1,ag, 1) [YP (V, P, @, £2) ... A ... if countP) =1
[X(@) > PI2 g = Akesp (%(0, p,a,£)> p(£,0,0) A x5(U, p,a,£)>x5(T, p,a,{))
A X;<U7 p7 a-7 £> > [[P]]ES{%}VB A X2<U, pa a7€> > [[Pﬂsp:aéé{n}
A (T, p,a, l) > [[P]]E:E’Z if countP) =1

[X(@) » PIS g = Ak=sp ((U, p,,€) > p(¢,0,0) A x(, p,a,£) >x; (U, p,a,f))
X (U, py,ar, €)>def D1 A Dz in [P PHe) (@ abe) flocklockejut
| p{¢U {locks, locky }, {abty, abt}, 0)
| state ({abbk, a}) | state({abt;,a})
XU, pr,ag, O)>... A... if count(P) =2
[x1(2) | - | % () » P18 g = Aw—sp AiXi (0, P2, £)> p(f,0,0) A
/\k:S7b /\i Xiks<ui7 p, a-7€> ‘>X|kZ<UI7 p,a, €>
N XiZ<Jla pl7al7£1>’ s ‘Xﬁz<Jn7 pnaan7£n>|>
def D in stateU{a}) | [PIE """ 1° |

M; pi (Ui i U{lock}, Ui {ai } U {abt},0)
A if count(P) =1

A xb
[X(@) ly(V) > P]§ g =

Figure 11.Encoding of canonical flat definitions.

different threads are synchronized and only one of them remains amwei{(P) =

1). The translation states that the execution of a join ends both threads (messages
to p;), and encodes the guarded procBssith a new coordinatob. The partic-

ipant list for the three threads 5 U¢>; U {lock}. In this case, the omitted rules
correspond to the different combinations of ports associat&éimly.

The last rules encode merge definitions, whose basic shapes are similar to ordi-
nary definitions, consequently they are translated analogously. The main difference
Is that merge names have a non-deterministic behavior, because a negotiation can
commit also when it contains messages addressed to a merge name or it can wait
until those messages are consumed. Therefore, a mergexiznemcoded with
five different ports:x§ encode the waiting behavior (i.e., the negotiation will not
commit until the message is consumed), ahdndx? allow both behavior because
they can choose non-deterministically either to commit or to wait. Note that mes-
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D = statgA) | put(¢,A’,C) > commit?\ {lock},?,{lock},C,AUA)
A statgA) |abt<> > failed() | release(A)
A commit{l}u¢, ¢ ¢" C,A) > commitl, ¢, ¢" C,A)|1{¢, lock abt)
A commit?, ¢’ 0" C A) [lock(¢" 1;a) > commit¢U (¢ \ ), ue” " U{l},C,AU{a})
A commit0,¢,¢,C,A) > release(C)
A commit0, ¢, ¢",C A) |a t() > failed() | release(A)
A failed() |put(¢,A’,C) > failed() | release(A’)
A falled<>\lock<€,l,a> > failed() |a()
A failed() |abt() > failed()

Figure 12.The encoding of coordinators.

sages sent to merge names that are not used inside a negotiation are discarded when
the thread commits, because they are useless outside contracts. In the encoding of
a generalizedoin (with n participants) we abbreviai; A ... A Dy with A; D and
P1|...|Pnwith []; B. In this case all threads are finished and the guarded prétess

is encoded using a new coordinator.

Finally, when a merge nameis defined more than once in a conjunction,
redundant definitions fox% are introduced. However, redundant definitions do
not change the behavior of a process. Additionally, merge definitions are useless
when appearing inside negotiations, because no sub-negotiations exist that can be
merged. Hence, we omit their translation (the special symbadénotes this fact).
Coordinator. Coordinator®d in Figure12, which are reused with minor variations
from the encoding ofs nets inJoin [4], implement thepD2pPc, a variant of the or-
dinary two-phase commit protocol, where the role of the coordinator is played by
all participants (it differs from thdecentralize®pPc[1] because i 2rPcthe num-
ber of participants and their names are not statically fixed). We use the operation
release which takes a set of messages and delivers them.

Roughly, the channeadtaterecords the messages that must be released in case
of abort: (i) the channel that activates the compensation of the negotiation; and (ii)
the list of portsabt of known participants. The commit protocol starts upon emis-
sion of the messagaut(¢,A’,C) (via ajoin, or close, or drop), which triggers a
commitmessage (first rule db). Each participant can also abort when it receives
the messagabt, which changes the modality of the coordinatorfaded() and
releases the abort notification to any other known participant.

During the commit phase, messagescommitcarry values¢, ¢, ¢ ,C,A):

¢ records the set of known participants that must still be contacted;

« /' stores the synchronization set of the thread (i.e. the list of known participants
involved in the same transaction), which is typically augmented during 2re
with the synchronization sets of other participants;

« (" records the parties who have already sent their consensus for commit;

e SetsC andA store the messages to be released in case of successful and unsuc-
cessful completion, respectively.

Theb2pcis based on the following steps performed by every participant:
15
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(i) first phase The participant sends a request to every thread in its own syn-
chronization set (third rule dd). The message contains known patrticipants.

(i) second phaseThe patrticipant collects the messages sent by other parties and
updates its own synchronization set (fourth ruleddf A request will be also
sent to the new items in the synchronization set (by repeating (i) for them).

(iii) When the synchronization set is transitively closed, the commit protocol ter-
minates locally an€ is released (fifth rule ab).

(iv) If the participant transits in the stafi@iled, it releaseg\, i.e. the compensation
and the abort messages to known parties.

In the rest of this section we discuss the correctness and completeness of our
encoding. Given doin process?, norm(P) denotes the process obtained by the
repeated application of definitions in coordinat@rantil termination, i.e., com-
pleting the executions of the2prc protocol.norm(P) is defined for anyP because
theDp2pcalgorithm always terminated], Moreover, we sayporm(P) stable, when
it does not contain messages to patse i.e., all instances of the2pc have fin-
ished either with the commit or abort of their participants. Hence, definitions in
coordinators will never be used, and therefore they can be removed (for instance,
as part of a garbage collection process). Moreover, when a negotiation aborts,
norm(P) can also contain messages sent by aborted negotiations (e.g. a negotiation
sends(U, pi, &, 4i) and then aborts), which can also be removed. Wenose\(P)
to denote the process obtained by removing garbage from a staiéP). Note
thatnorm(P) is well-definedonly when all negotiations have finished.

The following results state that our encoding is correct and complete. We use
the symbok to denote weak barbed bisimilaritZ].

Theorem 4.2 (Correctness)Let P be a canonical flat process andP : [J;. If
P —¢y P/ with= P’ : 0y, then3Q s.t. [Plnp) ¢ —3 Q, and normiQ) = [P' e o-

Theorem 4.3 (Completeness) et P be a canonical flat process amdP : [J1. If
[Plinp),0 —3 Q such that norrfQ) is well-defined, theP’ s.t. P —¢; P and

[PTin(p).0 = NOrmM(Q).

Concluding remarks

cJoin is a conservative extension of thein calculus coming equipped with few
primitives for programming dynamic multi-party negotiations and their compensa-
tions. In this paper we show that flaloin processes can be implementediain
in a fully distributed way. The result is achieved by first defining a type system for
flat processes and proving the subject reduction property for it, then providing a
canonical representative of flat processes that employs a few elementary definition
patterns. Finally, it is shown that canonical representatives can be encattéd in

By Proposition3.12, the encoding ofs nets incJoin produces processes in
canonical form, which can therefore be encodedaim by exploiting the im-
plementation described in Sectidh We conjecture that the resulting encoding
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[def [D]cy in [P]cs] is just a slightly redundant version of the direct translation
in [4], but we leave as future work to spell out the formal details and proofs.
Finally, the results presented here suggest thatoih, including nested ne-
gotiations and compensations, can be modeled back in ordiémby further
elaborating on the2prc, but we leave this as a challenging future work.
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