
CoMeta Project Workshop Preliminary Version

Flat Committed Join in Join1

Roberto Bruni, Herńan Melgratti and Ugo Montanari

Dipartimento di Informatica, Università di Pisa, I-56127 Pisa, Italy,
{bruni,melgratt,ugo }@di.unipi.it

Abstract

CommittedJoin (cJoin) is an extension ofJoin with high-level primitives for programming
dynamic nested negotiations with compensations. In this paper we show thatflat cJoin pro-
cesses (i.e. processes without sub-negotiations) can be encoded in ordinaryJoin calculus by
exploiting a distributed two-phase commit protocol (D2PC). In particular, we first define a
type system that singles out flat processes and prove subject reduction for it. Then, we show
that all flatcJoin processes can be written in an equivalent canonical form, where a few el-
ementary definition patterns are used. Finally, we show that canonical flat processes can
be implemented inJoin. It is worth noting that negotiation primitives are encoded as fully
distributed agreements between all participants, thus avoiding a centralized coordinator.

1 Introduction

Recently, in the area of formal languages, there is a renewed interest from both Aca-
demic and Industrial research concerning the design of orchestration primitives for
programming largely distributed and long-running decision processes [3,8,2,13].
The increasing number of applications in the area of e-commerce, web services
choreography and orchestration patterns demands a rigorous mathematical presen-
tation of such languages, to support formal analysis and verification.

CommittedJoin (cJoin) [5] is an extension of theJoin calculus with primitives
for handling distributednegotiations(also calledcontracts). Roughly, negotiations
are processes that execute in a controlled environment until completion, when they
commit and make their results observable to the rest of the system. Additionally,
they can be explicitly aborted, in which case, suitable compensation programs can
be activated to resume a locally consistent state. A distinctive feature ofcJoin is that
several negotiations can be merged during their execution into a larger one. This oc-
curs when two or more participants to different negotiations communicate through
special ports, calledmerge names. Interacting negotiations are bound together, and

1 Research supported by the MSR Cambridge ProjectNAPI, by the FET-GC Project IST-2001-
32747AGILE, by the MIUR Project COFIN 2001013518COMETA, and by the MURST-CNR 1999
Project,Software Architectures on Cooperative WAN.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bruni, Melgratti and Montanari

thus they will jointly reach the same decision, i.e. if one of them eventually com-
mits (resp. aborts) all will eventually commit (resp. abort). This is particularly
interesting for designing multi-party negotiations, where independent participants
can provide transactional services making explicit the ways in which parties can
interact, and where the actual structure of a negotiation is discovered at runtime.

The approach ofcJoin contrasts with approaches such as [3], where business
processes are described as graphs that spawn across organization boundaries re-
quiring all participants to be known statically. Moreover, partners cannot hide in-
teractions with third parties that can influence the final decision.

Crucial points about the implementation ofcJoin are: (1) the commit of in-
teracting negotiations as a global decision, and (2) the number of participants and
their identities are not known statically. We show that, for a significant fragment of
cJoin, global decisions can be implemented in a fully distributed way by using the
distributed two phase commitprotocol (D2PC) proposed in [4] for implementing
zero-safe nets[6] (a transactional extension of Petri nets). Note that theJoin code
written for theD2PC in the case of zero-safe nets can be imported and reused with
minor modifications in the encoding ofcJoin, giving evidence of its generality.

cJoin is much more expressive than zero-safe nets, as it retains the full expres-
sive power of ordinaryJoin. The presence of compensations and of merge names
increases the level of complexity of the encoding, making it far from trivial. Indeed,
we restrict ourselves to considercJoin processes that can be typed asflat, meaning
that they will never generate nested negotiations. We show that flat processes form
a sub-calculus ofcJoin by proving the subject reduction property for them. More-
over, a suitable form of serializability is guaranteed to hold for flatcJoin. We show
that thecJoin encoding of any zero-safe net is a flat process.

To facilitate the translation, we define the encoding of flat processes that are
written in a suitable canonical form, where only a few elementary definition pat-
terns are allowed. This can be done without loss of generality, as we show that
any flat process can be transformed in an equivalent process in canonical form.
The elementary definition patterns we consider are inspired by the basic shapes of
transitions in zero-safe nets: they are obtained by imposing a strict bound on the
number of messages that can be consumed / produced within a single reduction.

Although we show thatJoin is expressive enough to encode flatcJoin, i.e. that
the new primitives for flat negotiations do not increase the expressivity of the lan-
guage, we argue that the syntax ofcJoin yields a separation of concerns that is
difficult to achieve at the level ofJoin, thuscJoin facilitates programming and rea-
soning about distributed contracts. We conjecture that by further elaborating the
encoding of flat processes one should be able to implement fullcJoin in Join.

Structure of the paper.In § 2 we present the syntax and semantics ofcJoin. In § 3
we define the type system for flat processes, prove subject reduction and show that
the encoding of zero-safe nets presented in [5] yields flat processes. Moreover, we
show that flat processes have equivalent canonical representatives that employ only
elementary definition patterns. In§ 4 we present a correct and complete distributed
encoding of canonical flatcJoin processes inJoin.

2

Bruni, Melgratti and Montanari

M,N ::= 0 | x〈~y〉 |M|N D,E ::= J.P | J I P | D∧E
P,Q ::= M | abort | [P : Q] | P|Q | def D in P J,K ::= x〈~y〉 | J|K

Figure 1.cJoin Calculus Syntax.

dn(x〈~y〉)={x} dn(J|K)=dn(J)∪dn(K) rn(x〈~y〉)={~y} rn(J|K)=rn(J)∪ rn(K)

dno(D∧E) =dno(D)∪dno(E) dno(J.P) =dn(J) dno(J I P) = /0
dnm(D∧E)=dnm(D)∪dnm(E) dnm(J.P)= /0 dnm(J I P)=dn(J)

fn(D∧E)=fn(D)∪ fn(E) fn(J I P) = fn(J.P)=dn(J)∪ (fn(P)\rn(J))
fn(0)= /0 fn(abort) = /0 fn(x〈~y〉)={x}∪{~y} fn(P|Q)=fn(P)∪ fn(Q)
fn(def D in P) = (fn(P)∪ fn(D))\dn(D) fn([P : Q]) = fn(P)∪ fn(Q)

Figure 2.Defined, received, and free names.

2 Background

cJoin syntax. The Join calculus [10] is a process description language(PDL)
with asynchronous name-passing communication and it has the same expressive
power as the asynchronousπ-calculus.CommittedJoin (cJoin) [5] is a conservative
extension ofJoin with additional high-level primitives for programming dynamic
nested negotiations with compensations. LikeJoin, cJoin relies on an infinite set
of namesx,y, ...,u,v, ... to model communication channels and transmitted values.
Name tuples are written~u. The syntax ofcJoin is given in Figure1. cJoin differs
from Join because of the additional operatorsabort, [P : Q] andJ I P.

MessagesM can be either the inert process0, the asynchronous emissionx〈~y〉
of message~y on portx, or the parallel composition of messagesM|N.

ProcessesP, can be plain messages, the special constantabortcausing the abort
of its enclosing negotiation, a negotiation[P : Q], whereP is the normal execution
of the activity andQ is its compensation in case of abort, the parallel composition
of processesP|Q, or a processdef D in P equipped with local ports defined byD.

A definitionD is a conjunction of ordinary and merge reaction rule,J. P and
J I P respectively, that associatejoin-patternsJ with guarded processesP. Names
introduced by the definitionD of def D in P are bound in the whole processP
as well as in the guarded processes contained inD. The sets of defined names
dn, received namesrn and free namesfn are defined in Figure2. In particular,
we distinguish between definedordinary namesdno(D) and definedmergenames
dnm(D) that are always assumed to be disjoint sets of names.

CHAM . The operational semantics ofcJoin is given in the reflexiveCHAM style [10],
where states (calledsolutions) are finite multisets of terms (calledmolecules), and
computations are multiset rewrites. Multisets are written asm1, . . . ,mn. We usually
abbreviatem1, . . . ,mn with ⊗i mi . Solutions can be structured in a hierarchical way
by using the operatormembrane{[.]}, grouping a solution into a molecule. Trans-
formations are described by a set ofchemical rules, which can be of two different
kinds: heating / cooling(or structural) rules® for syntactical rearrangements of
molecules in a solution, andreactionrules→ for basic computation steps. Rules

3

Bruni, Melgratti and Montanari

m ::= P | D | xPy | {[S]} S::= m | m,S

Figure 3.Syntax ofcJoin molecules and solutions.

only address the part of the solution that actually moves and can be applied at any
level in the hierarchy. Moleculesm and solutionsS for cJoin are in Figure3.

Note that processes and definitions are molecules. Additionally, molecules hav-
ing the formxQy denote compensations that are frozen inside a solution and that
will not be executed unless their negotiation aborts. To reason up-to structural
equivalence, we shall overload→ to denote also sequences­∗→­∗.

Operational semantics ofcJoin . The chemical rules forcJoin are given in Fig-
ure4. The first five chemical rules are the ordinary ones forJoin. RuleSTR-NULL

states that0 can be added or removed from any solution. RulesSTR-JOIN andSTR-
AND stand for the associativity and commutativity of| and∧. STR-DEF denotes
the activation of a local definition, which implements a static scoping discipline by
properly renaming defined ports byglobally freshnames. We write the substitution
of namesx1 . . .xn by y1 . . .yn asσ = {y1...yn/x1...xn}, with dom(σ) = {x1, . . . ,xn} and
range(σ) = {y1, . . . ,yn}. We indicate withσN an injective substitutionσ such that
dom(σ) = N. We require newly defined names to be globally fresh, which means
fresh w.r.t the implicit context in which the rule is applied. The reactionRED de-
scribes the application of an active definitionJ . P to messagesJσ matching the
patternJ (for a suitable substitutionσ, with dom(σ) = rn(J)). The instance ofJ is
consumed and replaced by a new instancePσ of the guarded processP.

Rule STR-CONT states that a term denoting a contract corresponds to a sub-
solution consisting of two molecules: the processP and its compensationQ, which
is frozen (because the operatorx.y forbids the enclosed process to compute). At
commit time, the local resourcesM produced inside a negotiation are released via
the ruleCOMMIT, which can be executed only when all internal computations have
finished. At commit time, private definitions of a contract can be discarded, because
neither the messages that are being released contain those names nor they could
have been extruded previously. After commit, its compensation procedurexQy is
useless and can be discarded as well. The abortion of a negotiation is handled by
the ruleABORT, which releasesQ wheneverabort is present in the solution.

Interactions among negotiations are dealt withMERGE, which consumes mes-
sages from different contracts and creates a larger negotiation by combining the
definitions and messages of the original ones with a new instance of the guarded
processPσ, wheredom(σ) = rn(J1| . . . |Jn). Name clashes are avoided because we
assume thatSTR-DEF generates globally fresh names. The compensation for the
joint negotiation is the parallel composition of all the original compensations.

Example 2.1 Mailing list. Consider a data structure that allows to send atomically
a message to a list of subscribers (in the sense that it is either sent to all or to none).
Such structure can be defined asML ≡ MailingList〈k〉.MLDef, where:

MLDef ≡ def List in k〈add, tell,close〉 | l〈nil〉

4

Bruni, Melgratti and Montanari

STR-NULL 0 ®
STR-JOIN P |Q ® P,Q
STR-AND D ∧ E ® D,E
STR-DEF def D in P ® Dσdn(D),Pσdn(D) (range(σdn(D)) globally fresh)
RED J.P,Jσ → J.P,σ

STR-CONT [P : Q] ® {[P,xQy]}
COMMIT {[M|def D in 0,xQy]} → M
ABORT {[abort|P,xQy]} → Q
MERGE J1| . . . |Jn I P,

N
i{[Jiσ,Si ,xQiy]} → J1| . . . |Jn I P,{[Ni Si ,Pσ,xQ1| . . . |Qny]}

Figure 4.Operational semantics ofcJoin.

List ≡ nil〈v,w〉I w〈〉
∧ l〈y〉 | add〈x〉.def z〈v,w〉I x〈v〉 | y〈v,w〉 in l〈z〉
∧ l〈y〉 | tell〈v〉. [def z〈〉.0 in y〈v,z〉 | l〈y〉 : l〈y〉]
∧ l〈y〉 | close〈〉.0

A new mailing list is created by sending a message to the portMailingList.
SincecJoin adheres to the “continuation passing” style of programming, the con-
tent of the message sent toMailingList is a continuation portk, which expects
information about the newly created mailing list. The creation of a new list defines
five fresh portsnil, l, add, tellandclose: three of them (namelyadd, tell, andclose)
will be used to interact with the list from “outside” and will be sent to the portk as
the outcome of the creation. The remaining two ports will never be extruded. They
denote the empty list (nil) and the actual state of the list (l).

Once a list is created, a new subscriber can be added by sending a messageadd
with the namex of the port where it will be listening to for new messages. In this
case, the list is modified by installingz (on top of it), a forwarder of messages tox.

The porttell is used to send a messagev to the list. Whentell is received a new
negotiation identified by a fresh namez is generated, and the state of the structure
is put inside the negotiation, therefore all other activities, such as adding or closing
are blocked until the negotiation ends. Inside the negotiation, the messagev is sent
to the forwarder at the top of the listy with the identifier of the negotiationz. Note
that each forwarder sends the message to the corresponding subscriber and to the
following forwarder in the list. This is repeated untilnil is reached, when a message
to the identifier of the transaction is sent. The firing rulez〈〉 .0 consumes the last
local name and the contract commits by releasing all the messages addressed to the
subscribers and the state of the list. Then the list is ready to serve new requests.

3 Flat cJoin

Flat transactions were introduced in database community as a basic mechanism to
assure atomic execution of composed activities. The term flat specifies that the
activities forming a transaction are basic actions, such as read and write, but they
cannot be transactions themselves. Similarly, we define a sub-calculus ofcJoin,

5

Bruni, Melgratti and Montanari

calledflat cJoin, where negotiations cannot be nested. In this section we character-
ize flat processes as well-typed terms and we show that anycJoin process can be
written in an equivalent canonical form.

3.1 A type system for flatcJoin

We single out flat processes ofcJoin with the type system in Figure5. It takes the
setT = {¤0,¤1,¤2} of types and uses the following type judgements:

` P : ¤0 The constructor of negotiations[:] does not appear at all inP.
` P : ¤1 P does not contain active negotiations but can activate flat contracts.
` P : ¤2 P can have or generate flat negotiations but not nested ones.
` D : ¤0 D does not contain constructors for negotiations.
` D : ¤1 D can contain or initiate flat negotiations but not nested ones.

Rules(SUB-P) and(SUB-D) stand for the sub-type order¤0 < ¤1 < ¤2. We
say that a processP (resp. a definitionD) is well-typedif ` P : ¤2 (resp.`D : ¤1).

Clearly, the inert process0, the emission of a messagex〈~y〉 and the constant
abort do not contain constructors for negotiations, and are typed¤0. By rule
(PAR), the parallel compositionP|Q can be typed¤i if both P and Q type ¤i .
Consequently, the type ofP|Q corresponds to the greatest of the lower types that
can be assigned toP andQ. In fact, consideringP andQ well-typed, ifP contains
an active negotiation (i.e.,̀ P : ¤2), independently of the structure ofQ, the pro-
cessP|Q contains an active contract (i.e.,`P|Q : ¤2). Rule(NEG) prevents nesting
by stating that[P : Q] can be typed¤2 only whenP does not have negotiations and
it cannot generate them. Nevertheless, the compensationQ, which cannot contain
active negotiations, is allowed to initiate them because this will not compromise
flat condition. In fact, compensations execute at the top-level and not inside the ne-
gotiations they are originated from. Rule(DEF) combines the typing of definitions
and processes. Note thatdef D in P can be typed¤0 only if neitherD nor P use
constructors for negotiations, i.e. if both have type¤0. Instead, it can be typed¤1

when negotiations appear only in definitions (D or those contained inP). Finally, if
def D in P types¤2, its active negotiations appear inP, which therefore types¤2.

By rule (CONJ), a conjuction of definitions is typed¤i only when both sub-
terms type¤i . By rule (ORD), an ordinary definitionJ. P is well-typed when its
guarded processesP is well-typed. Moreover, it has type¤0 if P does not contain
constructors for negotiations (i.e.,` P : ¤0). Differently, a merge rule is well-typed
only if P has type¤0 (rule (MERGE)). This is required in order to avoid nesting,
because the instances ofP will execute inside a negotiation.

Example 3.1 Well-typed terms.Consider the mailing list process introduced in
Example2.1. Several subterms and their types are below:

P1 ≡ def z〈〉.0 in y〈v,z〉 | l〈y〉 P2 ≡ [P1 : l〈y〉]
D1 ≡ l〈y〉 | tell〈v〉.P2 D2 ≡ l〈y〉 | close〈〉.0

` P1 : ¤0 ` P2 : ¤2 ` D1 : ¤1 ` D2 : ¤0 ` D1∧D2 : ¤1

6

Bruni, Melgratti and Montanari

(Sub-P)

` P : ¤i

` P : ¤ j

i< j

(Sub-D)

` D : ¤0

` D : ¤1

(Zero)

` 0 : ¤0

(Mess)

` x〈y〉 : ¤0

(Abort)

` abort : ¤0

(Par)

` P : ¤i `Q : ¤i

` P|Q : ¤i

(Neg)

` P : ¤0 `Q : ¤1

` [P : Q] : ¤2

(Def)

` D : ¤i ` P : ¤ j

` def D in P : ¤max(i, j)

(Conj)

` D : ¤i ` E : ¤i

` D∧E : ¤i

(Ord-0)

` P : ¤0

` J.P : ¤0

(Ord)

` P : ¤i

` J.P : ¤1

(Merge)

` P : ¤0

` J I P : ¤0

Figure 5.Flat cJoin Typing.

Moreover,` MLDef : ¤1 (it does not have active negotiations but can initiate
them), and alsò ML : ¤1.

Example 3.2 Counterexample.The termdef x〈〉I [P : 0] in [def D in x〈〉 : 0] is not
well-typed because it has a merge definition whose guarded process is a negotiation
(rule (MERGE) cannot be applied because6` x〈〉I [P : 0] : ¤0). In fact, it reduces to
def x〈〉I [P : 0] in [def D in [P : 0] : 0] whenx 6∈ dn(D), which has nested contracts.

Proposition 3.3 (Join processes are¤0) LetP be aJoin process, theǹ P : ¤0.

Lemma 3.4 (Subject Reduction for¤0) LetP : ¤0. If P→∗ P′ thenP′ : ¤0.

The following result assures that flat processes do not introduce nesting.

Theorem 3.5 (Subject Reduction for¤2) LetP : ¤2. If P→∗ P′ thenP′ : ¤2.

Subject reduction does not hold for¤1. ConsiderP≡ def x〈〉. [Q : Q′] in x〈〉,
where`Q : ¤0 and`Q′ : ¤1. Although` P : ¤1, P reduces toP′ ≡ def x〈〉. [Q :
Q′] in [Q : Q′], which can be typed¤2 but not¤1.

Definition 3.6 [Flat cJoin] Let P be acJoin process.P is flat iff ` P : ¤2. Flat
cJoin is the sub-calculus of all flat processes.

In [5] we defined the class of shallow processes and proved a serializability re-
sult for them, meaning that disjoint negotiations cannot interfere with each other
(unless they are merged). Although the definition of shallow processes is not re-
ported here, it is trivial to check that flat processes are also shallow.

Corollary 3.7 (Serializability) Any flat processP is shallow and thus serializable.

3.2 Zero Safe Nets andcJoin.

Zero-safe nets (ZS nets) [6] have been introduced to model serializable transactions
in concurrent systems. They support multiway transactions, i.e. with several entry
and exit points and a statically unknown number of participants. Recently, they
have been used in [4] to encode short-running transactions of Microsoft BiztalkR©,

7

Bruni, Melgratti and Montanari

(firing)

S+Z [〉 S′+Z′ ∈ T

(S+S′′,Z+Z′′)→T (S′+S′′,Z′+Z′′)

(step)

(S1,Z1)→T (S′1,Z
′
1) (S2,Z2)→T (S′2,Z

′
2)

(S1 +S2,Z1 +Z2)→T (S′1 +S′2,Z
′
1 +Z′2)

(concatenation)

(S1,Z)→T (S′1,Z
′′) (S2,Z′′)→T (S′2,Z

′)

(S1 +S2,Z)→T (S′1 +S′2,Z
′)

(close)

(S, /0)→T (S′, /0)

(S, /0)⇒T (S′, /0)
Figure 6.Operational semantics ofZS nets (+ denotes multiset union).

a commercial workflow management system [13]. However,ZS nets are not suit-
able to model interesting aspects such as name mobility, programmable compensa-
tions and nesting, which are the main features ofcJoin.

Analogously to Petri nets,ZS nets rely onplaces(i.e. repositories of resources,
messages),tokens(i.e. instances of places),markingsU (i.e. multisets of place)
and transitionsU [〉U ′ (i.e. basic activities to fetch and produce multisets of to-
kens). However, the places ofZS nets are partitioned into ordinary and transac-
tional ones (calledstableand zero, respectively). Correspondingly, markingsU
can be seen as pairs(S,Z) with U = S+Z, whereSandZ are the multisets of stable
and zero resources, respectively. Tokens in zero places are transient data belonging
to some ongoing negotiation, while tokens in stable places model committed deci-
sions achieved via negotiations, which start from and lead tostable markings(i.e.
multisets of stable places). The key point is that stable tokens produced inside a
negotiation are made available only at commit time, when no zero tokens are left.

The operational semantics ofZS nets is defined by the two relations⇒T and
→T (indexed by the set of transitionsT) in Figure6. RulesFIRING andSTEPare
the ordinary ones for Petri nets. The ruleCONCATENATION composes zero tokens
in series but stable tokens in parallel, hence stable tokens produced by the first
step cannot be consumed by the second step. A negotiation(S, /0)⇒T (S′, /0) is a
concatenation of steps from a stable marking to a stable markings (ruleCLOSE).

In the literature,ZS nets have been already encoded inJoin [4] (via a dis-
tributed two-phase commit protocol for establishing the end of a negotiation) and in
cJoin [5] (almost straightforwardly, taking advantage of the additional negotiation
primitives). We briefly recall the latter encodingJ KcJ because:

• Without loss of generality, both encodings are defined forZS nets made with
the basic shapes in Figure7(a)(which are as expressive as the general nets), for
E any stable place ande,e1,e2 any zero places. We use mnemonic names like
E open e to denote a transitionE [〉 e that can spawn a fresh local negotiation
andefork e1,e2 to denote a transitione [〉 e1+e2 that can create parallel threads
within a running negotiation. Basic shapes are analogous to the elementary defi-
nition patterns we shall consider when encoding flatcJoin in Join.

• ZS nets do not have programmable compensations. The encodingJ KcJ shows
that suitable default compensations can just restore the initial state of the nego-
tiation. As an original result, in Proposition3.8below we prove thatZS nets are
encoded as flat processes.

8

Bruni, Melgratti and Montanari

07162534
²²

E ©²ª±­°®̄
²²

e1

open

²²

calc
²²©²ª±­°®̄ e

Eopene
©²ª±­°®̄ e2

e1calce2©²ª±­°®̄
²²

e ©²ª±­°®̄
²²

e

fork drop

©²ª±­°®̄~~ }}}e1 ©²ª±­°®̄ÁÁ
===

e2
eforke1,e2 edrop
©²ª±­°®̄

ÃÃ
@@@e1 ©²ª±­°®̄

¢¢£££
e2 ©²ª±­°®̄

²²
e

join

²²

close
²²©²ª±­°®̄ e

e1,e2joine
07162534 E

ecloseE
(a) Basic shapes ofZS nets.

JE open eKcJ ::= E〈〉. [def z〈〉.0 in e〈z〉 : E〈〉]
Jefork e1,e2KcJ ::= e〈z〉I e1〈z〉|e2〈z〉
Je1,e2 join eKcJ ::= e1〈z1〉|e2〈z2〉I e〈z1〉
Je1 calc e2KcJ ::= e1〈z〉I e2〈z〉

Jedrop KcJ ::= e〈z〉I 0

Jeclose EKcJ ::= e〈z〉I E〈〉

JEKcJ ::= E〈〉
JS1 +S2KcJ ::= JS1KcJ|JS2KcJ

(b) Translation of basic shapes and markings.

Figure 7.Encoding ofZS Nets incJoin.

Encoding ZS nets in cJoin . The translationJ KcJ in Figure7(b) associates acJoin
definition (resp. message) with each basic shape of transitions (resp. stable mark-
ing). Places are seen as ports and tokens as messages. Tokens in stable places carry
no value, while tokens in zero places carry the identifier of the transaction they be-
long to. ForT the set of transitions andS the initial marking of theZS nets, we let
JTKcJ =

V
t∈TJtKcJ and then take thecJoin processdef JTKcJ in JSKcJ, which con-

sists of the translation of the initial markingS in the environment containing all the
definitions associated with transitions inT. Transitions whose pre-sets contain zero
places are translated as merge definitions, otherwise as ordinaryJoin definitions.

We shortly discuss a few peculiarities of the encoding (details are in [5]). The
translation of a transition of the formE open e is acJoin definition that can open
a new negotiation containing the definition of a fresh namez (the identifier of the
transaction) together with the messagee〈z〉, and whose default compensation is
the only stable resourceE〈〉. The dummy definitionz〈〉.0 is a convenient way to
define a local identifier for the negotiation and has no computational meaning. In
fact, no message will ever be produced on portz. The porte corresponds to the
homonymous zero place and it is a name defined externally via merge definitions
(originated from those transitions inT fetching from placee), which can be used
to compute inside negotiations and even merge them via the reactionMERGE of
cJoin. For example, two disjoint negotiations with local tokens ine1 ande2 can be
merged by firing a transitione1,e2 join e, i.e. by executing theMERGE reaction
for e1〈z1〉|e2〈z2〉 I e〈z1〉. Note that the identifiersz1 andz2 become then equiva-
lent identifiers for the same larger negotiation. The key point is that when stable
messagesE〈〉 are released inside a negotiation, e.g., by firingeclose E, then they
cannot be fetched before the negotiation commits, because all the rules that can
consume them are ordinary ones and float outside the negotiation boundaries.

While the correctness and completeness of the encoding can be found in [5],
here we state the following original result based on the type system in Figure5.

9

Bruni, Melgratti and Montanari

count(0) = 1 count(x〈~u〉) = 1 count(P|Q) = count(P)+count(Q)
count(abort) = 1 count([P : Q]) = count(P) count(def D in P) = count(P)

Figure 8.Definition ofcount(P).

OPEN x〈~v〉.P & ` P : ¤2 & count(P) = 1

ORD-MOV x〈~u〉.P & ` P : ¤1 & count(P)≤ 2

MERGE-MOV x〈~u〉I P & ` P : ¤0 & count(P)≤ 2

ORD-JOIN x〈~v〉|y〈~w〉.P & ` P : ¤1 & count(P) = 1

MERGE-JOIN x1〈~v1〉| . . . |xn〈~vn〉I P & ` P : ¤0 & count(P) = 1

Figure 9.Definitions in canonical form

Proposition 3.8 (ThecJoin encoding ofZS nets is flat) ` def JTKcJ in JSKcJ : ¤2.

3.3 A canonical form for flat processes

As done withZS nets, we will restrict our attention to processes built with some
basic shapes to simplify the definition of the encoding of flatcJoin into Join. In
particular, we forbid definitions to consume and produce messages freely. The
auxiliary functioncountin Figure8 counts the atomic agents present in a process.

Definition 3.9 [Canonical Form] LetP be a flat process,P is in canonical form if
any definition inP satisfies one of the conditions in Figure9.

It is worth noting that these conditions match with the basic shapes ofZS nets.
By (OPEN), a reaction that creates a new negotiation consumes exactly one mes-
sage and produces only one agent inside the new negotiation. Rule(ORD-JOIN)
assures that a synchronization consumes two messages and produces exactly a new
agent. Differently, rule(MERGE-JOIN) allows to join several negotiations simul-
taneously. Moreover, a join cannot spawn directly a new negotiation (a task left to
(OPEN)). Finally, rules(ORD-MOV) and(MERGE-MOV) are instances of transi-
tionscalc, fork, andclose (with drop as a particular case) ofZS nets.

Proposition 3.10 LetP be a flat process.P can be written as an equivalent canon-
ical flat process.

Example 3.11 The processMLDef in Example2.1is not in canonical form. In fact,
the definitionTell ≡ l〈y〉 | tell〈v〉 . [def z〈〉 . 0 in y〈v,z〉 | l〈y〉 : l〈y〉] is ajoin that
creates a negotiation with two internal messages. It can be rewritten as

Tell′ ≡ l〈y〉 | tell〈v〉.a〈y,v〉
∧ a〈y,v〉. [def z〈〉.0 in def b〈v,z, l ,y〉.y〈v,z〉 | l〈y〉 in b〈v,z, l ,y〉 : l〈y〉]

wherea andb are fresh names. Note that` Tell′ : ¤1. Its first rule is anORD-JOIN,
while the second is anOPEN. In fact, the process contained in the negotiation has
type¤0 and the count of emitted messages is 1 (i.e.b〈v,z, l ,y〉). The definitions
appearing inside the contract are in canonical form, actually they corresponds to
ORD-MOV: z〈〉.0 is adrop andb〈v,z, l ,y〉.y〈v,z〉 | l〈y〉 is afork.

10

Bruni, Melgratti and Montanari

TOP-LEVEL PROCESSES

J0KS,B = 0
Jx〈~u〉KS,B = xs〈~u〉 if x 6∈ B & ~u∈ S
Jx〈~u〉KS,B = xb〈~u〉 if x 6∈ B & ~u∈ B
Jx〈~u〉KS,B = 0 if x∈ B
JP|QKS,B = JPKS,B|JQKS,B

JabortKS,B = 0
Jdef D in PKS,B = def JDK0S′,B′ in JPKS′,B′ S′ = S]dno(D) & B′ = B]dnm(D)
J[P : Q]KS,B = def D∧cmp〈〉. JQKS,B in state〈{cmp}〉 | JPKput,abt,{lock}

S,B

PROCESSES IN A NEGOTIATION

J0Kp,a,`
S,B = p〈`, /0, /0〉

Jx〈~u〉Kp,a,`
S,B = p〈`, /0,{xs〈~u〉}〉 if x∈ S & ~u∈ S

Jx〈~u〉Kp,a,`
S,B = p〈`, /0,{xb〈~u〉}〉 if x∈ S & ~u∈ B

Jx〈~u〉Kp,a,`
S,B = 0 if x∈ S & ~u 6∈ (S∪B)

Jx〈~u〉Kp,a,`
S,B = xs〈~u, p,a, `〉 if x 6∈ S∪B & ~u∈ S

Jx〈~u〉Kp,a,`
S,B = xb〈~u, p,a, `〉 if x 6∈ S∪B & ~u∈ B

Jx〈~u〉Kp,a,`
S,B = xz〈~u, p,a, `〉 if x 6∈ S∪B & ~u 6∈ S∪B

Jx〈~u〉Kp,a,`
S,B = xs

s〈~u, p,a, `〉 if x∈ B & ~u∈ S
Jx〈~u〉Kp,a,`

S,B = xb
s〈~u, p,a, `〉 if x∈ B & ~u∈ B

Jx〈~u〉Kp,a,`
S,B = xz

z〈~u, p,a, `〉 if x∈ B & ~u 6∈ S∪B
JabortKp,a,`

S,B = a〈〉
Jdef D in PKp,a,`

S,B = def JDK1S,B in JPKp,a,`
S,B if count(P) = 1

Jdef D in PK(p1,p2),(a1,a2),`
S,B = def JDK1S,B in JPK(p1,p2),(a1,a2),`

S,B if count(P) = 2
JP |QK(p1,p2),(a1,a2),`

S,B = JPKp1,a1,`
S,B | JQKp2,a2,`

S,B if count(P) = count(Q) = 1

Figure 10.Encoding of canonical flat processes.

Proposition 3.12 (The encoding ofZS is in canonical form) Let N = (T,S) be a
ZS net, thendef JTKcJ in JSKcJ is already in canonical form.

4 Encoding flat cJoin in Join .

In this section we describe the encoding inJoin of canonical flatcJoin processes.
As we are interested in computations that start from and lead to consistent states,
we restrict our attention to processes that start without active negotiations, that is
canonical flatcJoin processes that additionally type¤1. For simplicity, the encod-
ing relies onJoin calculus extended with the data typeSET, for finite sets and the
standard operations of emptyset/0, union∪, and difference\.

Processes are encoded by considering two sets of names:S denoting a set of
ordinary names andB containing merge names, which are used to decide whether
a free name inP is an ordinary or a merge one. Therefore, the encoding is well-
defined only whenfn(P)⊆ S∪B andS∩B = /0.

Definition 4.1 [Encoding]. TheJoin process associated to a canonical flatcJoin
processP with type¤1 is JPKfn(P), /0 (see Figure10).

Top-level processes.The functionJPKS,B defines the encoding for top-level pro-

11

Bruni, Melgratti and Montanari

cesses. Note that the emission of a message in a stable namex is translated as a
message onxs or xb considering whether the parameters~u are ordinary or merge
names. Portsxs or xb are introduced by the encoding of definitions presented be-
low. For simplicity we assume all names in~u are either ordinary or merge, but the
presentation can be extended by using a different port for any possible combination.

A top-level messagex〈~u〉 on a merge name (x∈ B) lives outside a negotiation
and cannot be consumed. Moreover, it is not observable becausex is a defined
name. Consequently, it is useless and encoded as the inert process 0. Analogously
for abort, which is meaningless outside contracts.

Note thatS andB are updated when encoding a top-level process with local
definitions, i.e. toS′ andB′ when definingJdef D in PKS,B. In this case, bothD
andP are encoded by taking into accountdn(D). We use] to denote the union
of disjoint sets. (Note that defined names can always be renamed with fresh ones.)

When a negotiation is translated intoJoin, it is associated with a new coordina-
tor D (Figure12), which will monitor the execution of the contract. AsP will run as

part of a negotiation, it is encoded asJPKput,abt,{lock}
S,B whereput, abt, lock∈ dno(D).

We can safely assume thatP initiates with a unique thread because we are trans-
lating canonical processes with type¤1, and therefore negotiations[P : Q] appear
in definitions withcount(P) = 1. The compensationQ is encoded as a top-level
process, which is activated with a message on the local portcmp. As cmp is used
only to initialize the state of the coordinator (state〈{cmp}〉), the messagecmp〈〉 is
emitted only when the coordinator (and consequently the contract) aborts.

Processes in negotiations.The auxiliary encodingJ Kp,a,`
S,B describes the implemen-

tation of a thread being monitored by a managerD that defines channelsp anda for
receiving commit or abort confimations. The set` collects the references to known
parties in the same negotiation (calledsynchronization set). The inert process 0 in
a negotiation means thread completion and it is translated asp〈`, /0, /0〉 to notify that
it is ready to commit. The message contains` to informD about known parties.

The encoding of a messagex〈~u〉 requires a case analysis on the different kinds
of names involved in it. When the message is sent to a free name or to an ordinary
name defined at the top-level (x∈S) there are two different cases. If the arguments~u
are not local names, e.g.~u∈ S, then the thread is attempting to close the negotiation
by releasingx〈~u〉. Hence it is encoding as a commit notificationp〈`, /0,{xs〈~u〉}〉.
Note thatxs〈~u〉 will be released if the negotiation finally commits.

Instead, when the arguments are names defined in a contract, the negotiation
can enter in a stall situation unless other participants abort the whole contract. In
fact such message cannot be consumed before commit, which is required to en-
able the commit of the contract (COMMIT requires all local names not to appear
in messages). The stall situation is encoded with 0, in this way the thread finishes
without notifying its coordinator neither commit nor abort, and the coordinator will
be blocked (unless one of its parties aborts).

On the other hand, a namex defined in a negotiation is encoded by using three
different ports: xz, xb and xs to handle different types of parameters, i.e., local,

12

Bruni, Melgratti and Montanari

merge and top-level. Similarly, merge names are encoded taking into account the
type of their parameters, but they also should consider that a negotiation can finish
when the received names are not local. Portxk

z (with k ∈ {z,b,s}) is used to encode
the behavior of a merge name that receives names of typek and continues the exe-
cution of the negotiation. Instead, portxk

s allows also the possibility of committing
a contract even when the message is not consumed. Note that the emission onx
is translated as a message that carries the valuesp, a and` for interacting with the
manager. (A thoughful discussion about encoding merge definitions is below).

The constant processabort is translated into a messagea〈〉 that informs the
manager about the abort. The translation of a processdef D in P involves the trans-
lation ofD andP. Whencount(P) = 1, P is encoded by using the same coordinator
assigned to the whole process.We remark that the sets of variablesS andB are not
updated in this case, becauseD introduces just local names. Also,D is encoded
with J K1S,B and not withJ K0S,B, which is used only for top-level defintions.

The encoding of the parallel executionP|Q requires information about two dif-
ferent coordinators: two portsp1 and p2 for notifying the commit, and two ports
a1 anda2 for aborting. Then,P is encoded by usingp1, a1 andQ using p2, a2.
Similarly for Jdef D in PKS,B whencount(P) = 2. The generation of different co-
ordinators is due to the encoding offork definitions described below.
Definitions. The encoding of definitions is in Figure11. We recall thatJ K0S,B is

for top-level definitions, whileJ K1S,B is for definitions inside negotiations. In both
cases the encoding of a conjunctionD∧E is the obvious one. The translation of
a top-level definition of the portx creates two new portsxs andxb, which handle
ordinary and merge parameters respectively. Such ports are associated to different
translations of the guarded processP: xs considers~u as ordinary names andxb as
merge names. We recall that, for simplicity, we assume all names in~u being of the
same kind. We also ommit in Figure11 the encoding of a join, which generates
four different rules: one for each combination of argument types.

The definition in a contract ofx〈~u〉 . P wherecount(P) = 1 is translated into
three rules. Each rule introduces a new portxk (k ∈ {z,b,s}) to handle a particular
kind of received names~u. Portxz receives local names,xb merge names, andxs top-
level names. Additionally, the new portsxk have as parametersp, a and` because
the encoding in Figure10 needs such information to contact the manager of the
contract where the messagex belongs to. In fact, the guarded processP must be
encoded w.r.t. the valuesp, a, ` of the manager of the fetched message onxk.

Similarly, afork is encoded with three rules (Figure11shows only the rule for
xz) but the guarded processP is translated by using two new coordinatorsD1 and
D2. Portsputi , abti andlocki are defined names of the new coordinatorsDi , while
p anda are the channels associated to the thread that forks (they are retrieved from
the message onx). Channelslocki are added to the participant list`, which will
be common to both new threads. For simplicity, we close the original thread (and
create two new ones) instead of reusing it. The compensations for the new threads
are the channels necessary to abort the other two participants.

The remaining shape for ordinary definitions is ajoin x〈~u〉|y〈~v〉.P where two

13

Bruni, Melgratti and Montanari

DEFINITIONS

JD∧EKiS,B = JDKiS,B∧ JEKiS,B for i = 1,2

Jx〈~u〉.PK0S,B = xs〈~u〉. JPKS]{~u},B∧xb〈~u〉. JPKS,B]{~u} (remaining patterns ommitted)
Jx〈~u〉.PK1S,B = xz〈~u, p,a, `〉. JPKp,a,`

S,B ∧xb〈~u, p,a, `〉. JPKp,a,`
S,B]{~u}∧xs〈~u, p,a, `〉. JPKp,a,`

S]{~u},B
if count(P) = 1

Jx〈~u〉.PK1S,B = xz〈~u, p,a, `〉.def D1∧D2 in JPK(put1,put2),(abt1,abt2),{lock1,lock2}∪`
S,B

| p〈`∪{lock1, lock2},{abt1,abt2}, /0〉
| state1〈{abt2,a}〉 | state2〈{abt1,a}〉

∧ xb〈~u, p,a, `〉. . . . ∧ xs〈~u, p,a, `〉. . . . if count(P) = 2

Jx〈~u〉|y〈~v〉.PK1S,B = xz〈~u, p1,a1, `1〉|yz〈~v, p2,a2, `2〉.
def D in p1〈`1∪ `2∪{lock},{abt,a2}, /0〉 | JPKput,abt,`1∪`2∪{lock}

S,B
| p2〈`1∪ `2∪{lock},{abt,a1}, /0〉 | state〈{a1,a2}〉

∧ xz〈~u, p1,a1, `1〉|yb〈~v, p2,a2, `2〉. . . . ∧ . . . if count(P) = 1

Jx〈~u〉I PK0S,B =
V

k=s,b (xk
s〈~u, p,a, `〉. p〈`, /0, /0〉 ∧ xk

s〈~u, p,a, `〉.xk
z〈~u, p,a, `〉)

∧ xs
z〈~u, p,a, `〉. JPKp,a,`

S]{~u},B ∧ xb
z〈~u, p,a, `〉. JPKp,a,`

S,B]{~u}
∧ xz

z〈~u, p,a, `〉. JPKp,a,`
S,B if count(P) = 1

Jx〈~u〉I PK0S,B =
V

k=s,b (xk
s〈~u, p,a, `〉. p〈`, /0, /0〉 ∧ xk

s〈~u, p,a, `〉.xk
z〈~u, p,a, `〉)

xz
z〈~u, p1,a1, `〉.def D1∧D2 in JPK(put1,put2),(abt1,abt2),{lock1,lock2}∪`

S,B

| p〈`∪{lock1, lock2},{abt1,abt2}, /0〉
| state1〈{abt2,a}〉 | state2〈{abt1,a}〉

xs
z〈~u, p1,a1, `〉. . . .∧ . . . if count(P) = 2

Jx1〈~u1〉 | . . . | xn〈~un〉I PK0S,B =
V

k=s,b

V
i x

k
is〈~ui , p,a, `〉. p〈`, /0, /0〉 ∧V

k=s,b

V
i x

k
is〈~ui , p,a, `〉.xk

iz〈~ui , p,a, `〉
∧ xz

1z
〈~u1, p1,a1, `1〉| . . . |xz

nz
〈~un, pn,an, `n〉.

def D in state〈Si{ai}〉 | JPKput,abt,
S

i `i∪{lock}
S,B |

∏ j p j〈Si `i ∪{lock},Si{ai}∪{abt}, /0〉
∧ . . . if count(P) = 1

JJ I PK1S,B =>
Figure 11.Encoding of canonical flat definitions.

different threads are synchronized and only one of them remains active (count(P) =
1). The translation states that the execution of a join ends both threads (messages
to pi), and encodes the guarded processP with a new coordinatorD. The partic-
ipant list for the three threads is̀1∪ `2∪{lock}. In this case, the omitted rules
correspond to the different combinations of ports associated tox andy.

The last rules encode merge definitions, whose basic shapes are similar to ordi-
nary definitions, consequently they are translated analogously. The main difference
is that merge names have a non-deterministic behavior, because a negotiation can
commit also when it contains messages addressed to a merge name or it can wait
until those messages are consumed. Therefore, a merge namex is encoded with
five different ports:xk

z encode the waiting behavior (i.e., the negotiation will not
commit until the message is consumed), andxs

s andxb
s allow both behavior because

they can choose non-deterministically either to commit or to wait. Note that mes-

14

Bruni, Melgratti and Montanari

D ≡ state〈A〉 |put〈`,A′,C〉 . commit〈`\{lock}, `,{lock},C,A∪A′〉
∧ state〈A〉 |abt〈〉 . failed〈〉 | release〈A〉
∧ commit〈{l}∪ `,`′, `′′,C,A〉 . commit〈`,`′, `′′,C,A〉 | l〈`′, lock,abt〉
∧ commit〈`,`′, `′′,C,A〉 | lock〈`′′′, l,a〉 . commit〈`∪ (`′′′ \ `′), `′∪ `′′′, `′′∪{l},C,A∪{a}〉
∧ commit〈 /0, `,`,C,A〉 . release〈C〉
∧ commit〈 /0, `′, `′′,C,A〉 |abt〈〉 . failed〈〉 | release〈A〉
∧ failed〈〉 |put〈`,A′,C〉 . failed〈〉 | release〈A′〉
∧ failed〈〉 | lock〈`, l,a〉 . failed〈〉 |a〈〉
∧ failed〈〉 |abt〈〉 . failed〈〉

Figure 12.The encoding of coordinators.

sages sent to merge names that are not used inside a negotiation are discarded when
the thread commits, because they are useless outside contracts. In the encoding of
a generalizedjoin (with n participants) we abbreviateD1∧ . . .∧Dn with

V
i Di and

P1| . . . |Pn with ∏i Pi . In this case all threads are finished and the guarded processP
is encoded using a new coordinator.

Finally, when a merge namex is defined more than once in a conjunction,
redundant definitions forxk

s are introduced. However, redundant definitions do
not change the behavior of a process. Additionally, merge definitions are useless
when appearing inside negotiations, because no sub-negotiations exist that can be
merged. Hence, we omit their translation (the special symbol> denotes this fact).
Coordinator. CoordinatorsD in Figure12, which are reused with minor variations
from the encoding ofZS nets inJoin [4], implement theD2PC, a variant of the or-
dinary two-phase commit protocol, where the role of the coordinator is played by
all participants (it differs from thedecentralized2PC [1] because inD2PC the num-
ber of participants and their names are not statically fixed). We use the operation
release which takes a set of messages and delivers them.

Roughly, the channelstaterecords the messages that must be released in case
of abort: (i) the channel that activates the compensation of the negotiation; and (ii)
the list of portsabti of known participants. The commit protocol starts upon emis-
sion of the messageput〈`,A′,C〉 (via ajoin, or close, or drop), which triggers a
commitmessage (first rule ofD). Each participant can also abort when it receives
the messageabt, which changes the modality of the coordinator tofailed〈〉 and
releases the abort notification to any other known participant.

During the commit phase, messages oncommitcarry values〈`,`′, `′′,C,A〉:
• ` records the set of known participants that must still be contacted;
• `′ stores the synchronization set of the thread (i.e. the list of known participants

involved in the same transaction), which is typically augmented during theD2PC

with the synchronization sets of other participants;
• `′′ records the parties who have already sent their consensus for commit;
• SetsC andA store the messages to be released in case of successful and unsuc-

cessful completion, respectively.

TheD2PC is based on the following steps performed by every participant:

15

Bruni, Melgratti and Montanari

(i) first phase. The participant sends a request to every thread in its own syn-
chronization set (third rule ofD). The message contains known participants.

(ii) second phase. The participant collects the messages sent by other parties and
updates its own synchronization set (fourth rule ofD). A request will be also
sent to the new items in the synchronization set (by repeating (i) for them).

(iii) When the synchronization set is transitively closed, the commit protocol ter-
minates locally andC is released (fifth rule ofD).

(iv) If the participant transits in the statefailed, it releasesA, i.e. the compensation
and the abort messages to known parties.

In the rest of this section we discuss the correctness and completeness of our
encoding. Given aJoin processP, norm(P) denotes the process obtained by the
repeated application of definitions in coordinatorsD until termination, i.e., com-
pleting the executions of theD2PC protocol.norm(P) is defined for anyP because
theD2PCalgorithm always terminates [4]. Moreover, we saynorm(P) stable, when
it does not contain messages to portsstate, i.e., all instances of theD2PC have fin-
ished either with the commit or abort of their participants. Hence, definitions in
coordinators will never be used, and therefore they can be removed (for instance,
as part of a garbage collection process). Moreover, when a negotiation aborts,
norm(P) can also contain messages sent by aborted negotiations (e.g. a negotiation
sendsx〈~u, pi ,ai , `i〉 and then aborts), which can also be removed. We usenorm(P)
to denote the process obtained by removing garbage from a stablenorm(P). Note
thatnorm(P) is well-definedonly when all negotiations have finished.

The following results state that our encoding is correct and complete. We use
the symbol≈ to denote weak barbed bisimilarity [12].

Theorem 4.2 (Correctness)Let P be a canonical flat process and̀P : ¤1. If
P→∗

cJ P′ with ` P′ : ¤1, then∃Q s.t. JPKfn(P), /0 →∗
J Q, and norm(Q)≈ JP′Kfn(P′), /0.

Theorem 4.3 (Completeness)Let P be a canonical flat process and̀P : ¤1. If
JPKfn(P), /0 →∗

J Q such that norm(Q) is well-defined, then∃P′ s.t. P→∗
cJ P′ and

JP′Kfn(P′), /0 ≈ norm(Q).

Concluding remarks

cJoin is a conservative extension of theJoin calculus coming equipped with few
primitives for programming dynamic multi-party negotiations and their compensa-
tions. In this paper we show that flatcJoin processes can be implemented inJoin
in a fully distributed way. The result is achieved by first defining a type system for
flat processes and proving the subject reduction property for it, then providing a
canonical representative of flat processes that employs a few elementary definition
patterns. Finally, it is shown that canonical representatives can be encoded inJoin.

By Proposition3.12, the encoding ofZS nets incJoin produces processes in
canonical form, which can therefore be encoded inJoin by exploiting the im-
plementation described in Section4. We conjecture that the resulting encoding

16

Bruni, Melgratti and Montanari

Jdef JDKcJ in JPKcJK is just a slightly redundant version of the direct translation
in [4], but we leave as future work to spell out the formal details and proofs.

Finally, the results presented here suggest that fullcJoin, including nested ne-
gotiations and compensations, can be modeled back in ordinaryJoin by further
elaborating on theD2PC, but we leave this as a challenging future work.

References

[1] Bernstein, P., V. Hadzilacos and N. Goodman, “Concurrency, Control and Recovery in
Database Systems,” Addison-Wesley Longman, 1987.

[2] Bocchi, L., C. Laneve and G. Zavattaro,A calculus for long-running transactions, in:
Proceedings of FMOODS 2003, Lect. Notes in Comput. Sci. (2003), to appear.

[3] Business Process Execution Language for Web Services (BPEL-WS) ver.1.1, (2003).
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel .

[4] Bruni, R., C. Laneve and U. Montanari,Orchestrating transactions in join calculus,
in: L. Brim, P. Jancar, M. Kretinsky and A. Kucera, editors,Proceedings of CONCUR
2002, Lect. Notes in Comput. Sci.2421(2002), pp. 321–336.

[5] Bruni, R., H. Melgratti and U. Montanari,Nested commits for mobile calculi:
extending Join(2003), submitted manuscript. Available at the URL
http://www.di.unipi.it/˜melgratt/publications/cjoin.ps

[6] Bruni, R. and U. Montanari,Zero-safe nets: Comparing the collective and individual
token approaches, Inform. and Comput.156(2000), pp. 46–89.

[7] Bruni, R. and U. Montanari,Transactions and zero-safe nets, in: H. Ehrig, G. Juh́as,
J. Padberg and G. Rozenberg, editors,Advances in Petri Nets: Unifying Petri Nets,
Lect. Notes in Comput. Sci.2128, Springer Verlag, 2001 pp. 380–426.

[8] Butler, M., M. Chessell, C. Ferreira, C. Griffin, P. Henderson and D. Vines,Extending
the concept of transaction compensation, IBM Systems Journal41 (2002), pp. 743–
758.

[9] Fournet, C., “The Join-Calculus: a Calculus for Distributed Mobile Programming,”
Ph.D. thesis, Ecole Polytechnique (1998).

[10] Fournet, C. and G. Gonthier,The reflexive chemical abstract machine and the Join
calculus, in: Proceedings of POPL’96(1996), pp. 372–385.

[11] Fournet, C., G. Gonthier, J.-J. Lévy, L. Maranget and D. Ŕemy,A calculus of mobile
agents, in: U. Montanari and V. Sassone, editors,Proceedings of CONCUR’96, Lect.
Notes in Comput. Sci.1119(1996), pp. 406–421.

[12] Fournet, C. and C. Laneve,Bisimulations in the join-calculus, Theoret. Comput. Sci.
266(2001), pp. 569–603.

[13] Roxburgh, U., Biztalk orchestration: Transactions, exceptions, and debugging,
Microsoft BizTalk Server Technical Articles (2001). Available at the URLhttp:
//msdn.microsoft.com/library/en-us/dnbiz/html/btsorch.asp?_r=1 .

17

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel�
http://www.di.unipi.it/~melgratt/publications/cjoin.ps�
http://msdn.microsoft.com/library/en-us/dnbiz/html/btsorch.asp?_r=1�
http://msdn.microsoft.com/library/en-us/dnbiz/html/btsorch.asp?_r=1�

