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Abstract

Zero-safe nets are a variation of Petri nets, where transactions can be suitably modeled. The
idea is to distinguish between stable places (whose markings define observable states) and
zero-safe places (where tokens can only be temporarily allocated, defining hidden states):
Transactions must start and end in observable states. We propose an extension of the co-
ordination languageLinda, calledTraLinda, where a few basic primitives for expressing
transactions are introduced by means of different typing of tuples. By exploiting previous
results of Busi, Gorrieri and Zavattaro on the net modeling of Linda-like languages, we
define a concurrent operational semantics based on zero-safe nets forTraLinda, where the
typing of tuples reflects evidently on the distinction between stable and zero-safe places.
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Introduction

Place/transition Petri nets (PT nets) are a basic model for concurrent and distributed
systems where two fundamental design postulates are exploited:

(i) states are multisets (of typed resources, i.e. tokens); and

(ii) elementary actions (transition firings) can atomically fetch (and release) sev-
eral state components, thus synchronizing tokens at the event level.

A main advantage of these assumptions is that the notion of concurrent firing
(step) comes as a consequence of the multiset structure of states, i.e., computations
can be straightforwardly equipped with a truly concurrent semantics (as opposed to
interleaving semantics). Moreover, building on (i) and (ii), it is possible to define a
taxonomy of models that encompasses some limitations of the basic paradigm:

• nets with read arcs(r-nets) allow for modeling “read without consume,” where
many readers can access concurrently the same resource (whereas in ordinaryPT

nets these operations are usually rendered via sequentializing self-loops);
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• zero-safe nets(ZS nets) introduces “transition synchronization” (as opposed to
token synchronization discussed in point (ii) above), hence regarding suitable
finite, but possibly complex and concurrent, computations as atomic events;

• nets with inhibitor arcs(i-nets) allow for testing the “absence of tokens,” an
operation that makes the framework Turing complete (as opposed to the models
discussed so above, where reachability and deadlock are decidable).

Moreover:coloredor high-levelnets allows for using “structured data” as to-
kens; inreconfigurablenets, transition postsets may depend on the values got from
the presets (whereas in all the above models connections are static), addressing
network reconfigurability; indynamicnets, not only a firing can modify the current
marking, but can also increase the set of transitions (i.e., the control). The differ-
ent flavors of nets are too many to be mentioned here (e.g., with time, probability,
priorities). An interesting correspondence between some of the above models and
typed subclasses ofJoin agents [15] has been hinted at in [1] and formally drawn
in [8]. Note that certain features are to some extent orthogonal and can be mixed
together with a minimum effort. For example, read and inhibitor arcs can be eas-
ily combined together to model a general concept of positive/negativecontextin
ri-nets, 3 while in [6] we introduced read arcs inside the zero-safe framework.

Points (i–ii) are also at the basis of the coordination languageLinda [16], which
represents the distributed environment as atuple space(a multiset-based store
where structured data are allowed), with agents built on primitives for adding tuples
to and retrieving tuples from the store, reading without consuming, and testing for
presence of a particular tuple. These operations makeLinda suitable for expressing
non-atomic process coordination in a concurrent setting. When tuples are seen as
non-structured data, the concurrent semantics ofLinda can be suitably modeled via
ri-nets [10,9]. In particular, it is interesting the distinction between theorderedand
unorderedsemantics ofLinda-like process algebras drawn in [12,11,9]: in the for-
mer semantics, the output of a tuple is seen as the atomic execution of the emission
of the message followed by its rendering in the tuple space (making it available
to other agents), whereas in the latter view these two phases are made autonomous
(emitted messages can be rendered asynchronously). This distinction reflects on the
expressivity of the language: the ordered semantics originates a Turing complete
language, whilst, in the unordered case, deadlock is decidable [12].

Building on these representation results, our aim is twofold: on the one hand
we want to extend the zero-safe approach to handle inhibitor arcs, and on the other
hand, the nets obtained in this way can find straightforward application to the con-
current modeling ofLinda-like languages equipped with a primitive mechanism
for transactions (along either the ordered or unordered semantics). In fact, though
ad-hoc transaction mechanisms are integrated in languages such asBizTalk Orches-
tration and JavaSpaces, we look for a uniform treatment of transactions for the
many calculi proposed in the literature.

3 In the literature, the termscontextual netsandc-netare abused in denoting either just positive
contexts or both kinds of contexts; to avoid confusion, we stick to the unambiguous notationri-net.
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Transaction as transition synchronization.While PT nets rely on place syn-
chronization, they lack synchronization of transitions, which would allow to regard
some (finite, but possibly complex and concurrent) computations as atomic events.
Transition synchronization is e.g. essential in modeling distributed decision algo-
rithms, where no particular location can implement a choice point. Our observation
is probably not surprising, since the necessity of defining entities in isolation that
can cooperate by sending and receiving information, but are otherwise seen like
black boxes from the environment, was already evident in Dijkstra communicating
processes and in process algebras. Transition synchronization is also a key aspect
of open ended systems: When designing the processes in isolation, the programmer
must consider all the interactions that can take place, but these may well depend on
the received data and may require some atomicity assumptions on their execution
(think e.g., of communication protocols, with transmission requests and acks, or of
e-commerce applications, where customer’s payment and goods/service delivery
must be either both guaranteed or both canceled when the transaction ends).

We denote atomic computations in a concurrent scenario by the termtransac-
tions(abusing databases terminology). When adding transactions, two main issues
must be handled:semantics, i.e. a theoretical characterization of transactions, mak-
ing it possible to study their properties and the way in which they can be combined
together (e.g., in parallel, sequentially); andalgorithms, i.e. the development of dis-
tributed interpreters able to implement transactions, consistently with the semantic
level (e.g., using backtrack). Hence, it is convenient to select a formal language
where these issues can be easily dealt with also at the syntax level. The solution
proposed in [5] tries to make these intuitions concrete. In fact, the simplest way to
synchronize the execution of transitions inPT nets is via token exchanging over (a
subset of) places.ZS nets exploit this idea by distinguishing betweenstableplaces
(the ordinary repositories for resources, defining observable states) andzero safe
places that cannot contain tokens in any observable state. The firing of a transition
will possibly put tokens in zero-safe places, beginning a transaction; these tokens
(calledzero tokens) are used to coordinate the transaction. All zero tokens must be
removed to commit the transaction. Moreover, all the stable tokens produced dur-
ing the transaction are effectively released only when the transaction ends. Thus,
all the stable resources fetched during the transaction must be present in the initial
stable marking. This describes, to some extent, the low-level model.

At the abstract level, transactions must be seen as ordinary transitions. This
viewpoint yields aPT net AB, which is the abstract counterpart of theZS net B:
the places ofN are the stable places ofB, and each transition ofAB corresponds
to an elementary transaction ofB (i.e., a transaction that cannot be decomposed in
two smaller disjoint transactions). Note thatAB can become infinite also whenB is
finite, and that transactions retain all the causal and concurrent information about
the synchronized evolution ofB. Moreover, a distributed interpreter forZS nets has
been proposed in [4], which is based on the ordinary net unfolding. Hence,ZS nets
can be used, e.g. to give a modular presentation of distributed decision making, as
any net can be modeled as the abstract counterpart of a free choiceZS net [4].
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Transactions in Linda . Linda is the most representative language for coordi-
nation, where asynchronous communication is obtained by inserting, reading and
withdrawing elements to and from a shared multiset of tuples. In a way which is
analogous to the use of positive/negative contexts in nets,Linda also allows for test-
ing the presence/absence of messages in the tuple space. Its communication mecha-
nism is calledgenerativebecause, once generated and until removed, each message
become equally accessible to all processes without being bound to a particular one.
However, no primitive for expressing transactions is in the core language (but see
e.g., the extension proposed in [13] for studyingserializability in JavaSpaces).

Thanks to the analogy with Petri nets (tuples as tokens), the idea is to provide a
way for programming transactions by distinguishing a class oflow-levelmessages
whose only role is to coordinate the exchange of services or information between
agents. We callzero-safethese messages, because it only makes sense for them
to exist inside a transaction, i.e., their lifetime lasts as long as necessary for their
producers and consumers to agreeing on some decision. The remaining messages
are calledstableto make clear that the information they contain contributes sub-
stantially to the actual configuration of the system.

As a simple example, let us consider the modeling of multiset rewriting: An
agentP needs all the messagesa1, ...,an, regardless of the order in which they are
consumed, to start a taskQ. Of course, we look for a simple way of specifying that
no processP′ can in the meantime fetch the resourcesa1, ...,an, deadlockingP. The
idea is to writeP as the parallel composition ofin(a1) out(pZ), ..., in(an) out(pZ)
andin(pZ) ... in(pZ) Q, where: allai are stable,pZ is zero-safe,in is the input op-
eration,out is the output operation anddenotes the atomic prefixing, withQ pre-
fixed n times byin(pZ). Then, the transaction starts as soon as anyai is consumed
and the atomic prefixing force the output of a zero-safe messagepZ; moreover, the
transaction can only commit whenn messagespZ have been produced, which the
atomic prefix ofQ can consume. Note thatQ cannot be activated unless allai have
been retrieved. We callTraLinda the language obtained by extending the kernel of
Linda with the primitives for transactions, which are partially described above.

Structure of the paper.
In Section1, we recall the basics of Petri nets with read arcs, inhibitor arcs and
zero-safe places, together with the syntax and the concurrent semantics ofLinda.
Section2 introduces inhibitor arcs in the zero-safe approach, while Section3 de-
finesTraLinda and its concurrent semantics based on the nets discussed in Section2.

1 Background

1.1 Petri nets

A net is a tripleN = (SN,TN,FN), whereSN is the set ofplacesa,a′, . . ., TN is the
set of transitionst, t ′, . . . (with SN ∩TN = ∅), andFN ⊆ (SN×TN)∪ (TN×SN) is
called theflow relation.
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u∈ S⊕

u
buc
=⇒R u

t:u
w−→ v∈ T

u⊕w
w=⇒R v⊕w

u1⊕w1
w1=⇒R v1⊕w1, u2⊕w2

w2=⇒R v2⊕w2

u1⊕u2⊕bw1⊕w2c bw1⊕w2c=⇒R v1⊕v2⊕bw1⊕w2c

Figure 1.The inference rules for=⇒R .

The elements ofFN are calledarcs, and we writexFN y for (x,y)∈ FN. We shall
denoteSN ∪TN by N and omit subscripts when no confusion can arise. As usual,
thepre-andpostsetof x∈N, are •x = {y∈N | y F x} andx• = {y∈N | x F y}. We
assume•t 6=∅ for all t ∈ T.

A markingu:S→ N is a finite multiset of places. It can be written either as
u = {n1a1, ...,nkak} where eachni dictates the number oftokensin ai (if ni = 0
then niai is omitted), or as the formal sumu =

L
ai∈Sniai denoting an element

of the free commutative monoidS⊕ on S (the monoidal operation is defined by
(
L

i niai)⊕ (
L

i miai) = (
L

i(ni +mi)ai) with 0 as the unit). We shall overload the
symbol⊆ to denote multiset inclusion.

A marked place/transition Petri net(PT net) is a tupleN = (S,T,F,W,uin) such
that(S,T,F) is a net, the functionW:F→ N assigns a positiveweightto each arc
in F, and the finite multisetuin:S→ N is theinitial markingof N.

We find convenient to viewF as a functionF:(S×T)∪ (T×S)→ {0,1}, with
x F y ⇐⇒ F(x,y) 6= 0. Then, forPT nets we can represent bothF andW as the
multiset relationF:(S×T)∪ (T×S)→ N. For any transitiont ∈ T, let pre(t) and
post(t) be the multisets overSsuch thatpre(t)(a) = F(a, t) andpost(t)(a) = F(t,a),
for all a∈ S. We writet:u→ v for a transitiont with pre(t) = u andpost(t) = v.

A markednet with read arcs(r-net) is a tupleR= (S,T,F,R,uin), whereNR =
(S,T,F,uin) is the underlyingPT net andR:S×T → {0,1} is thecontext relation.
Though there are no technical difficulties in dealing with context multirelations (see
e.g. [6]), for the current presentation is simpler to consider just context relations,
having in mind themaximum sharing hypothesisof [7]. We denote byctx(t) the
(multi)set of places defined byctx(t)(a) = R(a, t) for all a∈ Sand bybuc the set
{a | u(a) > 0} of non-empty places ofu. The minimum amount of resources that
t requires to be enabled ispre(t)⊕ ctx(t): The tokens inpre(t) are fetched, while
those inctx(t) are just read, and other transitions can access them, concurrently
with t. For t ∈ T with pre(t) = u, post(t) = v andctx(t) = w, we writet:u

w−→ v.
For X a multiset of transitions, andu a marking, we say thatX is enabled at

u if bLt∈X ctx(t)c⊕Lt∈T X(t) ·pre(t) ⊆ u. We say thatu evolves to the marking
v via X, written u [X〉 v, if X is enabled atu and v = u⊕Lt∈T X(t) · post(t)�L

t∈T X(t) ·pre(t), with � denoting multiset difference. Note that ifu has enough
tokens to satisfy also the ‘context’ ofX, thenv is obtained fromu just by removingL

t∈T X(t) ·pre(t) and then adding
L

t∈T X(t) ·post(t).
The step relation can be equivalently defined by the inference rules in Figure1,

that carry also information about the context used in the step. The meaning of
u

w=⇒R v is that a step can lead fromu to v readingw (note thatbuc ⊇ w⊆ bvc).
Idle tokens contribute to contexts. Transitions yield basic steps. When building
larger steps, the maximum common context of the substeps is shared.
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u⊕x
w=⇒RD v⊕y,

(u,x)
w
⇒D (v,y)

(u1⊕w,x)
w
⇒D (v1⊕w,y), (u2⊕w,y)

w
⇒D (v2⊕w,y′)

(u1⊕u2⊕w,x)
w
⇒D (v1⊕v2⊕w,y′)

(u,0)
w
⇒D (v,0)

u
w
VD v

Figure 2.The inference rules forVD .

1.2 Zero-safe nets

According to the ordinary terminology, in a ‘0-safe’ net all places cannot contain
any token in all reachable markings. We use the terminologyzero-safe net—note
the word ‘zero’ instead of the digit ‘0’— to mean that the net contains special
places, calledzero places, whose role is that of coordinating the atomic execution
of transitions. However, no new interaction mechanism is needed, and the coordi-
nation of the transitions participating in a step is handled by the usual token-pushing
rules of nets, assuming late delivery of stable tokens (postponed to the end of the
transaction). Zero-safe places cannot contain any token in anyobservablestate.

A zero-safe net(ZS net) is a tupleB = (S,T,F,uin,Z) whereNB = (S,T,F,uin)
is theunderlyingPT net of B andZ ⊆ S is the set ofzero places. The places in
LB = SrZ are calledstable places. A stable markingis a multiset of stable places,
and the initial markinguin must be stable. Stable markings describeobservable
states, whereas the presence of one or more zero tokens in a given marking makes it
beunobservable. We callstable tokensandzero tokensthe tokens that respectively
belong to stable places and to zero places. SinceS⊕ is a free commutative monoid,
S⊕' L⊕×Z⊕ and we can writet:(u,x)→ (v,y) for a transitiont with pre(t) = u⊕x
andpost(t) = v⊕y, whereu andv are stable multisets andx,y∈ Z⊕.

Zero-safe nets have been introduced in [2,3] and then extended in [6], by al-
lowing the combined use of zero places and read arcs. AZS r-net is a tuple
D = (S,T,F,R,Z,uin) such thatRD = (S,T,F,R,uin) is a r-net and(S,T,F,Z,uin) is
a ZS net. Though zero places can be used as context in [6], for simplicity we shall
assume thatctx(t)⊆ SrZ for all t ∈ T. In defining the dynamics ofZS r-nets, we
can follow two main alternatives. The crucial point is whether to forbid or not that
a stable token is read (possibly many times) and then also fetched during the same
transaction. In the following we consider the semantics that forbids these kinds of
consumptions, which is illustrated in Figure2 (whereu,v,w∈ L⊕ andx,y,y′ ∈ Z⊕).
The second rule is crucial: it sequentializes on zero tokens, while composing in
parallel on stable tokens (sharing the whole stable contextw of the two substeps).

At the abstract level, the system modeled byD can be equivalently described via
an r-netAD such thatSAD = SDrZD and( ⇒AD ) = ( VD ). Among the several
r-nets that satisfy these conditions we can choose the optimal one, whose transitions

represent the proofs of transaction stepsu
w
VD v taken up to equivalence (permu-

tation of concurrent events) and that cannot be decomposed into shorter proofs.
When these two conditions are verified, the concurrent kernel of the behavior has
been identified, and all the steps can be generated by it. (The abstract net can be
defined according to either the collective or the individual token philosophy noticed
in [17]: the two approaches yield the same step relation but different abstract nets.)
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P ::= 0 | M | η.P | µ?P : P | P+P | P|P M ::= 〈a〉
η ::= out(a) | rd(a) | in(a) | !in(a) µ ::= rdp(a) | inp(a)

Figure 3.Linda-like process calculus.

1.3 Concurrent semantics forLinda

Thanks to their visual representation and their straightforward encoding of con-
currency, nets have often been used as a computational model for concurrent and
distributed languages such asLinda. The communication primitives ofLinda are:
(1) the output of a messageout(a); (2) the reading of a message (without consum-
ing it) rd(a); and (3) the fetching of a messagein(a), after which the message is
no longer available in the tuple space. Two additional predicatesrdp(a) andinp(a)
allow, respectively, for (4) checking for the presence of a message without con-
suming it; and (5) atomically testing and consume the message if present. The two
predicates can be used as the boolean component of conditional constructs.

In [10,9], first a process calculus is introduced, which embeds all the above
primitives and then ri-nets are used to give a truly concurrent semantics to the
calculus. In particular, therd(a) operation is modeled via read arcs (allowing for
multiple concurrent readings ofa), while predicates also require inhibitor arcs (to
acknowledge the absence of messages, acting consequently). We recall that anri-
net is an r-net(S,T,F,R,uin) together with a relationI ⊆ T ×S, which expresses
negative enabling conditions: ifI(t,a), thent is never enabled atu with u(a) > 0.

It is worth noticing that the semantics of theout(a) operation can give rise
to two different interpretations:ordered, where the emission and the rendering
of a message form a single and atomic action; orunordered, where emission and
rendering are two autonomous actions. The difference is crucial, because in the
second case, deadlock is decidable (it is possible to find an ordinaryPT nets which
is deadlock equivalent to the ri-net of the original encoding [10]). The syntax of the
language is recalled in Figure3, where the prefix!in(a) means guarded replication
and〈a〉 represents a message in the tuple space. Due to space limitation we refer to
[10] for the net encoding. Roughly speaking, the net modeling ofLinda is defined
by associating distinct places with messages〈a〉 and sequential processesP, and
suitable transitions with computational moves of sequential processes. A marking
of the resulting net is a multiset of active processes and messages in the tuple space.

For example, for any process of the formP = rdp(a)?P1 : P2, the modeling net
involves two transitions having the placeP as preset, a read (resp. inhibitor) arc
to 〈a〉, anddec(P1) (resp.dec(P2)) as postset, withdec( ) the obvious decomposi-
tion function of processes into the multiset of their sequential components. Then,
according to the ordered semantics, outputs are modeled via transitions with preset
out(a).P and postset〈a〉⊕dec(P), whereas according to the unordered semantics,
for each messagea an additional place〈〈a〉〉 is considered that models emitted
messages not yet available to other processes, and consequently, two transitions are
considered: one fromout(a).P to 〈〈a〉〉⊕dec(P) and the other from〈〈a〉〉 to 〈a〉.
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•07162534 / /a1 t1 / / ◦ //

◦

z1
t2 //07162534a2

•07162534 //a3 t3 //07162534a4

Figure 4.Is the abstract behavior of this net correct?

u∈ S⊕

∅ ��������� u
buc
=⇒C u

t:u
w−→ v∈ T,

t I ��������� u⊕w
w=⇒C v⊕w

X1 ��������� u1⊕w1
w1=⇒C v1⊕w1, X2 ��������� u2⊕w2

w2=⇒C v2⊕w1

bX1⊕X2c ��������� u1⊕u2⊕bw1⊕w2c bw1⊕w2c=⇒C v1⊕v2⊕bw1⊕w2c
Figure 5.The inference rules for ��������� =⇒C .

2 Zero-safe nets with inhibitor arcs

Our first goal is to extend the zero-safe approach to nets with inhibitor arcs. This
is not completely straightforward, as the following example demonstrates. Let us
consider the net in Figure4. At the abstract level, there are two apparently inde-
pendent transactions: one froma1 to a2 (atomic execution oft1 followed byt2) and
one froma3 to a4, but of course at the low level this activities can hardly be seen as
independent because of the token flow inz1, which disappears at the abstract level.
To solve this ambiguity, we restrict the usage of inhibitor arcs to stable places only.

Definition 2.1 A zero-safe ri-net(ZS ri-net) is a tupleE = (S,T,F,R, I,uin,Z),
whereDE = (S,T,F,R,uin,Z) is a ZS r-net, andI ⊆ T × (SrZ) is the inhibitor
relation. The underlying ri-net ofE is CE(S,T,F,R, I,uin)

We let t I = {a | I(t,a)}, and assume that relationsF, R, I are pairwise disjoint.
The operational semantics of ordinary ri-netsC is recalled in Figure5, where in the
third rule we assume(X1⊕X2)∩ (u1⊕u2⊕w1⊕w2⊕v1⊕v2) =∅. In fact, when
composing two steps in parallel, we must check that each step does not involve to-
kens that inhibit the execution of the other step. A generic stepX ��������� u

w=⇒C v means
thatv can be reached fromu readingw, and also that this step can be applied inside
any other markingu′ ⊇ u provided thatu′(a) = 0 for all a ∈ X. The operational
semantics ofZS ri-nets is then the obvious extension illustrated in Figure6 (where
in the third rule we assume again(X1⊕X2)∩ (u1⊕u2⊕w⊕v1⊕v2) =∅), because
we never concatenate on inhibitor places (they must be stable, and therefore the
third rule just behaves like the parallel composition for them).

Analogously to [5], we can define the abstract ri-netAE of E according to the
two main philosophies of concurrency (collective or individual token), by char-

acterizing the minimal concurrent stepsX ��������� u
v

VE v and viewing them as atomic
activities with presetu, postsetv, readingw and inhibited byX.
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X ��������� u⊕x
w=⇒CE v⊕y,

X ��������� (u,x)
w
⇒E (v,y)

X ��������� (u,0)
w
⇒E (v,0)

X ��������� u
w
VE v

X1 ��������� (u1⊕w,x)
w
⇒E (v1⊕w,y), X2 ��������� (u2⊕w,y)

w
⇒E (v2⊕w,y′)

bX1⊕X2c ��������� (u1⊕u2⊕w,x)
w
⇒E (v1⊕v2⊕w,y′)

Figure 6.The inference rules for ��������� VE .

•07162534 //Q t1 // ◦ // t2 // ◦ // t3

� �
??

??
??

?

��•07162534

& &NNNNNNNNNNNNN〈a〉 •07162534

ppppppppppppp

O O

〈b〉 07162534〈c〉 07162534 0

•07162534 //R t4 // ◦ // t5 // ◦ // t6

? ?ÿÿÿÿÿÿÿ

O O

Figure 7.TheZS ri-net forP = rd(a) in(b) out(c).0|rd(b) in(a) out(c).0|〈a〉|〈b〉.

3 Transactions in Linda

Our second goal is to define a satisfactory treatment of transactions inLinda. The
idea is to distinguishing betweenlow-level(i.e., zero-safe) andhigh-level(i.e., sta-
ble) messages. Hence we assume two disjoint types,H andL, and a typing relation
a : τ are given, such that the predicatesµ of conditional expressions can only test
for presence of observable messagesa : H. Moreover, we introduce the atomic pre-
fixing η P, whereη can only be executed ifP can commit.

The suitable semantic framework where to interpret the resulting language, that
we call TraLinda, is then provided byZS ri-nets. In fact we can straightforwardly
adopt the translation in [10] to get a finite ri-netC(P) for each agentP, and then take
the subset of places associated to temporary messages as the set of zero-safe places.
To handle atomic prefixing, we must also introduce a zero-safe placePZ for each
sequential agentP, which replacesP in the postsets of transitions associated with
(atomic) prefixing. Since inhibitor arcs are only inserted because of conditional
statements and the boolean predicates can only involve observable messages, we
have that the resulting netE(P) is a ZS ri-net, and as such it comes equipped with
an abstract view of the system, which is the ri-netAE(P).

For example, inP = out(a).0|in(a).0, the two sequential subprocessesQ =
out(a).0 andR= in(a).0 can communicate asynchronously ifa : H, but must com-
municate synchronously ifa : L. In fact, inE(P) we have the initial markingQ⊕R,
with a transitiont1:Q→〈a〉⊕0 for the first process, and a transitiont2:R⊕〈a〉→ 0
for the second process, where〈a〉 is zero-safe iffa : L. Thus, ifa : L, a firing of t1
opens a transaction that only the firing oft2 can commit, resulting in the abstract
transition fromQ⊕R to 2·0 (two inactive processes/tokens), where the two opera-
tions are executed atomically (i.e., they are synchronized at the abstract level).
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As another example, leta,b,c : H and take the process

P = rd(a) in(b) out(c).0|rd(b) in(a) out(c).0|〈a〉|〈b〉.
Then, only one of the two atomic threads can be executed, because the same sta-

ble token (e.g.,〈a〉 or 〈b〉) cannot be first read and then consumed during the same
transaction. Thus, ifQ = rd(a) in(b) out(c).0 is executed first, then the message
〈b〉 is fetched and cannot be read byR= rd(b) in(a) out(c).0, while if Rexecutes,
then〈a〉 is consumed (see Figure7). In fact, at the abstract level we have a tran-
sition fromQ⊕〈b〉 to 〈c〉⊕0 and context〈a〉 associated with theQ thread, and a
transition fromR⊕〈a〉 to 〈c〉⊕0 and context〈b〉 corresponding to theR thread. The
situation is very different ifP′ = rd(a).in(b).out(c).0|rd(b).in(a).out(c).0|〈a〉|〈b〉
is considered, where first the two read operations can be executed concurrently,
then the two messages〈a〉 and〈b〉 can be retrieved, and finally two copies of the
messageout(c) can be emitted.

Conclusion

We have shown how to handle inhibitor arcs inside the zero-safe approach, with
application to the modeling of transactions in the original extensionTraLinda of the
languageLinda. The results presented here are part of a broader research, which
aims at integrating the zero-safe approach with distributed languages such as the
Join calculus or theJavaSpaces middleware [18], to obtain a general purpose en-
vironment where distributed transactions can be faithfully designed, programmed
and executed. In particular, though recent results suggest that several techniques
inspired byLinda-like coordination languages are also adequate to deal withJavaS-
paces, due to space limitation, we leave to the full version of this paper the com-
parison with the coordination primitives considered e.g. in [14,13], together with
a precise relationship between the zero-safe approach and the ordered/unordered
semantics ofLinda.
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