Bisimilarity Congruences for Open Terms and
Term Graphs via Tile Logic*

R. Bruni!, D. de Frutos-Escrig?, N. Marti-Oliet?, and U. Montanari!

! Dipartimento di Informatica, Universita di Pisa, Italia.
2 Dept. Sistemas Informéticos y Programacién, Univ. Complutense de Madrid, Spain.
bruni@di.unipi.it, {defrutos,narciso}@sip.ucm.es, ugo@di.unipi.it

Abstract The definition of sos formats ensuring that bisimilarity on
closed terms is a congruence has received much attention in the last two
decades. For dealing with open terms, the congruence is usually lifted
from closed terms by instantiating the free variables in all possible ways;
the only alternatives considered in the literature are Larsen and Xinxin’s
context systems and Rensink’s conditional transition systems. We pro-
pose an approach based on tile logic, where closed and open terms are
managed uniformly, and study the ‘bisimilarity as congruence’ property
for several tile formats, accomplishing different concepts of open system.

Introduction

The semantics of many languages can be conveniently expressed via labelled tran-
sition systems (LTSs) whose states are terms over a certain signature and whose
labels give some abstract information about system evolution. If such informa-
tion is sufficient to model the interactions between the various (sub)systems
when they are composed through the operators of the language, then the spec-
ification can be assembled compositionally. Plotkin’s structural operational se-
mantics (SOS) [18] is surely one of the most successful frameworks for LTS de-
scriptions, where transitions are defined by induction on the structure of states;
then, one is interested in equating all those states with the same behavior. In
this paper we rely on bisimulation equivalence [17]: two states are equivalent if
every action of the one can be simulated by the other, still ending in equivalent
states. The need of a compositional framework, where each subcomponent of a
state can be safely replaced by any equivalent subcomponent without affecting
the overall behavior, motivated a lot of efforts in the definition of sos formats
(e.g., De Simone [8], Gsos [1], tyft/tyxt [12]) whose syntax guarantees that
bisimilarity is a congruence — bisimilarity meaning the largest bisimulation.
However, the congruence is usually defined on closed terms only; it can be ex-
tended to conterts (terms with variables) by letting two contexts be equivalent
if they are equivalent under all possible instantiations of their arguments. This

* Research supported by CNR Integrated Project Progettazione e Verifica di Sistemi
Eterogenei, Esprit WG CONFER2 and COORDINA, MURST project TOSCA, and
CICYT project Desarrollo Formal de Sistemas Distribuidos (TIC97-0669-C03-01).

yields the coarsest conservative extension of the equivalence that is preserved by
instantiation and, to some extent, is analogous to reducing an equivalence on
closed terms to the congruence respected by all contexts.

When designing open systems, the preservation of a given equivalence under
all possible instantiations should of course be a necessary property; however, it is
not very practical to define it by universal quantification on all possible instanti-
ations, since proofs of properties will become difficult. It would be preferable to
extend the bisimulation game from closed states to contexts, providing a uniform
framework. Thus, the variables of a context C' can be viewed as forming its in-
put interface, used by C for communicating with its arguments. Then, the label
of a transition with source C' must include some information about the moves
accomplished by each argument for allowing the context to evolve. Moreover,
for nonlinear contexts, the degree of subterm sharing may make a difference. In
fact, for partially specified components it is convenient to distinguish between
the situation in which different copies of a nondeterministic resource are avail-
able, which can evolve independently, and the situation in which the resource is
shared between many components (and thus the resource must offer the same
behavior to all its users). Conceptually, this originates two kinds of open systems
that we call incomplete systems and coordinators.

A first situation would be the case in which variables represent software
components possibly used by several processes. For example, one can take a
ccs-like context C[z]|D[z], with x a process variable, where the same protocol
specification should be employed by both C' and D to provide a certain service.
In such a case, the two instances of z in C[z]|D[z] must be instantiated with two
copies of the same pattern (a suitable agent), which can progress independently.

On the other hand, if the process C[z]|D[z] represents a coordinator which
regulates the execution of the argument z then, when z is instantiated to a
process ¢, replication must be avoided: both C' and D become connected to the
same agent ¢. In this case the two occurrences of ¢ must evolve in the same way
and at the same time. Notationally this situation can be expressed by writing
let 2 = ¢ in C[x]| D[] instead of C[q]|D[g]. A concrete example for this situation
is when several consumers receive information from a single producer by means of
possibly replicated handshaking channels: We desire all the consumers to receive
the same information through all their channels at the same time.

Ordinary sos formats do not seem suitable to deal with this latter view in
the correct way. For example, let us consider the well-known SOS specification
for Milner’s finite ccs [17], whose rules are in De Simone format, and take the
contexts C[z] = z\a|z\a and D[z] = (z|z)\. Then, the two contexts cannot
react as coordinators to any move of x and thus they are equivalent according
to bisimilarity (since z is shared, each move of z is replicated along its two
occurrences and it is not possible to have complementary actions). However,
if we instantiate with the process p = a.nil + a.nil, then C[p] is no longer
bisimilar to D[p], because the former is stuck and the second can make a 7.

These two cases do not exhaust all the possible ways to treat nonlinear con-
texts, but they give us a motivation to study different ways to cope with the

problem: (1) considering only linear contexts; (2) allowing free duplication of
shared components, as if, e.g., the ccs context (z|z)\qo could make a transition
to (z1]z2)\a, disconnecting the shared resource, and observing that its argu-
ment z has been duplicated; (3) employing term graphs [9] instead of terms to
describe states. The first approach avoids sharing at all. The second proposal
enriches the observation algebra. The third proposal is especially attractive for
the specification and analysis of distributed systems. In fact, term graphs are
finer than terms and allow one to express the sharing of closed subterms, hence
distinguishing, e.g., the coordinated system let z = p in (z|z)\o from (p|p)\q-

As far as we know, the extension of good s0s formats to incomplete systems
has been addressed only recently by Rensink [19], who exploited a previous idea
of De Simone. Rensink formalized several extensions to open terms of the bisimi-
larity on closed terms, based on the notion of conditional transition systems. We
propose instead the use of tile systems, where the extensions (1)—(3) discussed
above can be straightforwardly handled, at the levels of both specifications and
computational models. The tile model [11] is a formalism for modeling open
compositional systems. It relies on certain rewrite rules with side effects, called
basic tiles, which are reminiscent of both SOS rules and context systems [14]. It
collects intuitions coming from structured transition systems [7] and rewriting
logic (RL) [15], and by analogy with RL, the tile model has a logical presentation,
called tile logic, where tiles are seen as sequents subject to certain inference rules.

a
Tiles are written a: s_b>t, where s and ¢t can be open terms, stating that the
initial configuration s evolves to the final configuration t producing the effect b.
However, such a step is allowed only if the subcomponents supplied as arguments
to s evolve to the subcomponents of ¢, producing the observation a, which is the
trigger of the tile a. Triggers and effects are called observations.

In this paper, we want to stress that tiles are designed for open systems, and
in fact, the notion of bisimulation can be generalized to that of tile bisimula-
tion, which directly operates over contexts. More precisely, we investigate tile
formats guaranteeing that tile bisimilarity is a congruence. The first tile format
appeared in the literature is the algebraic tile format (ATF) [10,11]. It has a
cartesian structure of configurations and a monoidal structure of observations.!
We show that the ATF is not completely satisfactory for our aims, due to the
different structure of configurations and observations. We focus instead on three
tile formats that reflect the approaches — linearity, free duplication and explicit
sharing — discussed above: (1) the monoidal tile format (MTF) [16], whose con-
figurations and observations have a monoidal structure; (2) the term tile format
(TTF) [4], whose configurations and observations have a cartesian structure; (3)

! Essentially, cartesian configurations can be seen as substitutions over a given sig-
nature (e.g., substitution [t1(z1,...,%n)/Y1, -, tm(Z1,...,2Tn)/ym] corresponds to
a configuration t:n — m). In monoidal configurations terms t1,...,tm, are linear in
their variables. In gs-monoidal configurations, sharing of subterms is possible, but
it cannot be eliminated by copying, i.e., let x = ¢; in t; is different from #a[t; /]
whenever does not occur, or occurs more than once, in ¢».

the gs-monoidal tile format (GSTF, from graph substitution), whose configura-
tions have a gs-monoidal structure and observations have a monoidal structure.

By imposing the so called basic source constraint (initial configurations of
basic tiles must consist of a basic operator) on the ATF, one can recover a slightly
more general format than De Simone but stricter than Gsos. In this case, tile
bisimilarity recovers the ordinary congruences for closed terms, but not for con-
texts. The basic source on MTF and TTF yields respectively De Simone and a
format more general than (positive) Gsos. In both cases, tile bisimilarity is a con-
gruence also for open terms. The GSTF is hard to recast in existing Sos formats,
due to its treatment of subterm sharing. We are indeed confident that GSTF can
find a meaningful application in the modeling of systems with shared resources.
Again, the basic source guarantees that tile bisimilarity is a congruence.

Outline. In Section 1 we fix the notation and recall the notions of bisimulation
and tile bisimulation, while in Section 2 we review the most common sSOs for-
mats and several tile formats. In the presentation, category theory and algebraic
theories are employed in a mild way. Sections 3, 4 and 5 deal with MTF, TTF and
GSTF respectively, showing the main results of the paper, namely that for all of
them the basic source implies that tile bisimilarity is a congruence. Due to space
limitation, we omit all proofs, which can be found in the technical report [3].
Section 6 compares our approach with Rensink’s proposal in [19].

1 Tiles and Bisimulation

Notation. To ease the presentation we will consider only one-sorted signatures,
though our results extend to the many-sorted case. A one-sorted signature is
a set of operators X together with an arity function ar: ¥ — N. For n € N,
we let X, = {f € X | ar(f) = n}. Operators in Xy are called constants. We
denote by Tx(X) the term algebra over X' and variables in X (disjoint from X),
with Ty = Tx(9). For t € Tx(X) we denote by var(t) the set of variables that
appear in t. If var(t) = @ then t is called closed, otherwise open. A term is linear
if each variable occurs at most once in it.

A substitution is a mapping 0: X — Tx(X). It is closed if each variable is
mapped into a closed term. Substitutions uniquely extend to mappings from
terms to terms as usual: o(t) is the term obtained by simultaneously replacing
all occurrences of variables z in ¢ by o(x). The substitution mapping z; to ¢; for
i € [1,n] is denoted by [t1/z1, ... ,tn/%ys], and it is linear if each t; is linear and
var(t;) Nvar(t;) = @ for i # j. A substitution ¢’ can be applied elementwise to
o =[t1/x1,...,tn/zy] yielding o;0' = [0/ (t1) /21, ..., 0" (tn)/2n].

A context t = C[zy,...,%,] denotes a term in which at most the distinct
variables z1, ..., z, appear. The term C[ty,...,t,] is then obtained by applying
the substitution [t1/z1,...,tn/Zys] to the context C[z1,...,z,], which can thus
be regarded as a function from n arguments to 1. Note that the x; may as well not
appear in C[z1,...,%,]. For example, the context zz[z1, z2, 3] is a substitution
from three arguments to one, which is the projection on the second argument.

Bisimulation. A labelled transition system (LTS) is a triple L = (S, A, —), where
S is a set of states, A is a set of labels, and -C S x A x S. We let s,t,... range
over S and a,b,c,... range over A. For (s,a,t) € — we say that s is the source,
t is the target and a is the observable, and use the notation s — ¢t.

Definition 1. Given an LTS L = (S, A, =), a bisimulation on L is a symmetric,
reflexive relation ~ C S x S such that if s ~ t then for any transition s — s'
there exists a transition t — t' such that s' ~ t'. We denote by ~ the largest
bisimulation, called bisimilarity, and we say that two states s and t are bisimilar
whenever s ~ t, i.e., whenever there exists a bisimulation ~ such that s ~ t.

When S = Ty, an essential property of bisimilarity is compositionality w.r.t.
operators in X, guaranteeing that operationally equivalent subsystems can be
safely replaced in any context. This amounts to requiring that ~ is a congruence,
i.e., that for all f € X, s; ~ t; for i € [1,ar(f)] implies f(s1,...,8ar(s)) ~
f(t1, ..., ter(s))- Bisimilarity can be lifted to contexts by letting Clz1,...,2,] ~
Diz1,...,zp] if for all ¢y,...,t, € Ty we have C[t1,...,ts] =~ D[t1,...,tn]

Tile bisimulation. The point of view of the tile model [11] is that bisimulation
can be defined uniformly on both closed terms and contexts, without resorting to
instantiation closure. In the following we use monoidal categories for providing
an abstract presentation of tile systems. As a matter of notation, sequential com-
position and monoidal tensor product are denoted by _; _ and - ® _, respectively.
The unfamiliar reader may consult, e.g., [11,2].

A tile system is a tuple R = (#H,V,N,R) where H and V are monoidal
categories with the same set of objects Oy = Oy, N is the set of rule names and
R:N — H xVxVxHis afunction such that for all « € N, if R(a) = (s,a,b,t)
then s:x — y, a:x — z, by = w, and ¢: 2 — w for suitable objects z, v, z and

a
w. We will write such rule a either as a: sTt, or as the tile
s

—Y
a b
4“ w

a

N8

The category H is called horizontal and its arrows are called configurations. The
category V is called vertical and its arrows are called observations. The objects of
H and V are called interfaces. Starting from the basic tiles, more complex tiles
can be constructed by means of horizontal, vertical and parallel composition.
Moreover, the horizontal and vertical identities are always added and composed
together with the basic tiles. All this is illustrated in Figure 1.

Depending on the chosen tile format (see Section 2), H and V can be spe-
cialized (e.g., to cartesian categories) and suitable auziliary tiles are added and
composed with basic tiles and identities in all the possible ways. The set of re-
sulting tiles (also called flat sequents) define the flat tile logic associated to R.

a a
We say that s—, 7t is entailed by the logic, written R + s, 7t, if the sequent

a
s_b)t can be expressed as the composition of basic and auxiliary tiles.

a b a c a c
sT’t h—f sT’t t?h s—b)t hT’f ttx >yeH a:xr—2z€Y

. d . as¢, a®c x a
s;h—7t; f Eowe s@hyg t® f t=7 Ttz

Figure 1. Composition and identity rules for tile logic.

{si “Sti|ieT} {zi Sy liel}
(@ ————— 2 (b)
s—t f(z1,-..,20) — Dly1,---,Yn]

Figure 2. sos schema (a), and De Simone format (b).

Definition 2. Let R = (H,V,N,R) be a tile system. A symmetric relation

~¢ on configurations is called tile bisimulation if whenever s ~y t and R +
a a
s_b)s’, then there exists t' such that R t_b>t’ and s' ~; t'. The mazimal tile

bisimulation is called tile bisimilarity and denoted by ~.

An interesting question concerns suitable conditions under which tile bisim-
ilarity yields a congruence (w.r.t. the operations of the underlying horizontal
structure); two main properties have been investigated: basic source and tile
decomposition [11]. The former is strongly related to tile formats and will be
discussed later. Tile decomposition has a completely abstract formulation that
applies to all tile systems, and it will be very useful in our congruence proofs.

Definition 3. A tile system R = (H,V, N, R) enjoys the decomposition prop-
a
erty if for all arrows s € H and for all sequents s_b’t entailed by R, then:

[+
(1) if s = s1;82 then 3¢ € V, t1,t5 € H such that R F sl%tl, R F 32—b>t2
and t = ty;ta; (2) if s = 81 ® sy then Jay,as,b1,bs € V, t1,t2 € H such that

a1l a2
R"Slb_1>t1, R"Szb_2>t2, a=a ®as, b:b1®b2 andt:t1®t2.

This property characterizes compositionality: It amounts to saying that if
a system s can undergo a transition a, then for every subsystem s; of s there
exists some transition o/, such that a can be obtained by composing o' with a
transition of the rest.

Proposition 1 (cf. [11]). If R enjoys decomposition, then ~ is a congruence.

2 Relating SOS and Tile Formats

SOS formats. LTSs over Ty and A can be more conveniently specified via a
collection of inductive proof rules, called transition system specification (TSS).
Such rules have the form in Figure 2(a), where the s;, t;, s and ¢ are in T (X)
and the a;, a are in A. The generated LTS has set of states Ty and all transitions
s — t that can be proved by using the Tss rules. In the SOS approach [18] the

behavior of s is defined in terms of the behaviors of its subterms, but in general
this is not enough to guarantee that bisimilarity is a congruence. To ensure this
important property, suitable rule formats have been defined. For example, in the
De Simone format (DSF) [8] rules have the form in Figure 2(b), where f € X,
I C{1,...,n}, the context D is linear and the variables z; and y; are distinct,
except for y; = x; if i € I. Hence each z; can be used at most once in the premises,
and if used cannot appear in D. The (positive) ¢sos format [1] extends the DSF
in several ways (e.g., the same z; can appear more than once in the premises and
also in the D, which can be nonlinear). The tyft/tyxt format [12] generalizes
Gsos by allowing generic terms t; as sources of the premises. However, in all
such formats, the main requirement is that rule conclusions must have the form
flz1,...,) -5 t, i.e., their sources must consist of a single f € X, applied to
n different variables, a crucial fact in the proof that bisimilarity is a congruence.

Tile formats. Since we are particularly interested in considering tile systems
where configurations and observations are freely generated by the horizontal sig-
nature X' and by (the signature associated to) the set of labels A, in what follows
we shall present tile systems as tuples of the form R = (X, A, N, R). In particu-
lar, we employ categories of substitutions on X and A. In fact, substitutions and
their composition _; _ form a cartesian category Subsy, with linear substitutions
forming a monoidal subcategory. An alternative presentation of Subsy can be
obtained resorting to algebraic theories [13]. The free algebraic theory associ-
ated to a signature X' is the category Th[X]: Its objects are ‘underlined’ natural
numbers, the arrows from m to n are n-tuples of terms in the free X-algebra
with (at most) m variables, and composition of arrows is term substitution. The
arrows of Th[X] are generated from X' by the inference rules in Figure 3, modulo
the axioms in Table 1. It is folklore that Th[X] is isomorphic to Subsy;, and the
arrows from 0 to 1 are in bijective correspondence with the closed terms over J..
An object n (interface) can be thought of as representing the n (ordered)
variables 1, ..., 2,. This allows us to denote [t1/x1,...,tn/2z,] just by the tu-
ple {t1,...,t,), since a standard naming of substituted variables is assumed. We
omit angle brackets if no confusion can arise. The rule op defines basic sub-
stitutions [f(z1,...,2zn)/z1] = f(z1,...,2y) for all f € X,,. The rule id yields
identity substitutions {x1, ..., z,). The rule seq represents application of « to 3.
The rule mon composes substitutions in parallel (in a® 3, a goes from 1, .. ., T,
t0 Z1, - - ., Tm, while 8 goes from 11, - .., Tnik 10 Tint1,- - -, Tmii)- Three ‘aux-
iliary’ operators (i.e., not dependent on X') are introduced that recover the carte-
sian structure (rules sym, dup and dis). The symmetry vp,m, is the permutation
(Tnt1s .-y Tngm, 1, -« Tn). The duplicator Vy, = (z1,...,Tn,T1,...,%y) in-
troduces sharing and hence nonlinear substitutions. The discharger !, is the
empty substitution on z1, ..., z,, recovering cartesian projections. Due to space
limitations we cannot detail the axioms in Table 1 (consult, e.g., [2,4]).
Monoidal theories relate to algebraic theories as linear substitutions relate
to generic substitutions. This originates a subcategory M[X] of Th[X] whose
arrows are those generated by rules op, id, seq, and mon in Figure 3 modulo
the axioms of category and tensor product (first and second rows in Table 1).

fex,) neN an—m Bm—k an—m B:k—1

op id seq mon
fin—o1 idp:n —n a;f:in—k a®pintk—o>m+l
n,méeN neN neN
sym dup dis
Yom:m+m—>m+n Vain—>n+mn lnin—0

Figure 3. The inference rules for the generation of Th[X].

category ||o; (B50) = (a; B); 6 Q;idpm = a = idy; o
tensor (a)Y@ (B;8)=(a®pB);(d ®a) idnym = tdp @ idm
product RBRIH=(aRB)RI a®idg=a=1idy®a
symmetries|| Ynm+k = (Ynm ® idr); (idm @ Vnk) Y00 = dn YnmiVmm = nim
duplicators || Vagm = (Vi ® Vim); (idn ® Yn,m ® idm) Vo =ido

Va; (idn ® Vi) = Va; (Vi ®idn) Va; Ym0 = Va
discharger ||!n+m ='n®'m lo = ido Via; (idn®!n) = idn
naturality ||(@® B); Ym.i = Ynk; (B® a) & Vm = Vy;(@®a) o 'lm =y

Table 1. Axiomatization of Th[X].

Term graphs [9] are in some sense situated between linear and cartesian terms,
because they allow for explicit sharing and discharging, in such a way that this
information is preserved by composition. In fact, it has been shown in [6] that by
abandoning the naturality of V and !, one obtains a gs-monoidal category GS[X]
which is isomorphic to the category of (ranked) term graphs on X. For example,
in GS[X] the composition [t1/z1]; C[z1] can be written as let z1 = ¢ in C[z1],
with the convention that it evaluates to C[t1] when z; occurs exactly once in C.

The tile format proposed in the original presentation of tiles [11] is the so-
called algebraic tile format (ATF) that recollects the perspective of most Tss:
configurations are terms, and observations are the arrows of the monoidal cate-
gory freely generated by labels (regarded as unary operators). Auxiliary tiles lift
the horizontal cartesian structure to the horizontal composition of tiles. In the
ATF basic tiles have the form in Figure 4(a), where the a; and a can be either
labels (viewed as arrows from 1 to 1) or identities and s,t € Tx({z1,...,2Zn}).
The ATF corresponds to SOS rules as in Figure 4(b), where I C {1,...,n}, C' and
D are contexts (that correspond to s and ¢ in the tile), and all the y; and z; are
different if 4 € I, but y; = xp whenever k & I. The correspondence follows since

for all s,t € Ty andforalla € A, R+ s%t holds if and only if s =% # in the LTS
associated to the sos specification. Typical auxiliary tiles for the ATF are those
in Figure 5: V, duplicates the observation a (trigger of the tile) propagating it to
two instances of the unique variable in the initial interface, while v, swaps the
subcomponents in the initial interface, together with their observations, and !,
discharges the initial interface and its move a. We refer to [11] for more details.

In the ATF, H is cartesian, whereas V is only monoidal. We will show in
Section 4 that this combination can compromise the tile bisimilarity as congru-

{xii)yﬂief}

1
la (b)
1

n
(a) a1®---®anl -
n Clz1,-.-,Za] — Dly1,--.,Yn]

Figure 4. A generic ATF tile (a) and its sOS counterpart (b).

(z1,21) (z2,21) 1
1——2 2———2 1——0
al Va J/a@a a®b\l/ Ya,b lb@a al 'a J/idg
1—2 2———2 1—0
(z1,21) (z2,21) I

Figure 5. Auxiliary tiles for ATF.

ence property. In particular, it will be convenient either to consider the term tile
format (TTF) [4], where also V is cartesian, or renounce the horizontal cartesian
structure. This latter option can be achieved in (at least) two ways: either using
the monoidal tile format (MTF) [16] where also #H is monoidal, or resorting to
the gs-monoidal tile format (GSTF), where a faithful account of subterm sharing
is provided. The MTF deals only with linear terms and has no auxiliary tiles. Its
basic tiles are similar to those of the ATF (but configurations must be linear).
Though the auxiliary tiles of the GSTF are the same as those of the ATF, the
former deals with term graphs rather than terms and thus the naturality axioms
of V and ! are not valid. Basic TTF tiles have the form:

4S> m
lu
—)1

@
[~ IS

with s,t € Th[X] and v,u € Th[A]. If labels in A are regarded as unary opera-
tors, then m = 1. We present term tiles more concisely as sequents n< s — ¢ ,

where the number of variables in the ‘upper-left’ interface is explicit. Auxiliary
term tiles consist of all tiles that perform consistent rearrangements in the two di-

mensions, i.e., tiles n< s — ¢ such that s;u = v;t with either (1) s, ¢, u and v are
terms over the empty signature @ (hence s,t,v,u € Th[X]NTh[A]); or (2) s,t €
Th[X] and u,v € Th[@]; or (3) u,v € Th[A4] and s,t € Th[g]. Typical auxiliary

. Z1 1,21 .
term tiles are 7; = 14 21 s T and 14 = 14 21,21 r’wg Z1,%2 that dupli-
- b - 9

cate the unary interface, 01,1 = 2< 22,71 % T1,Z2 that swaps the two compo-
e Vz

nents of the initial interface, and Vy = 24 f(z1,22) < (f(z1,22), f(z3,24))
1

that vertically duplicates the configuration f(z1,x2) (see [4,2] for more details).
Table 2 summarizes the differences between the tile formats we consider.

| || H | \% | auxiliary tiles

monoidal tile format M[X] | M[A none

gs-monoidal tile format||GS[X]| M[A Ya,bs Va, la

algebraic format Th[X]| M[A Ya,bs Va, la

term tile format Th[X]|Th[A]|Va,b, Va, la; Ys.ts Vi, ¢, 01,1, T1, 71, ..

Table 2. Features of MTF, GSTF, ATF and TTF.

Our aim is to find syntactic constraints on basic tiles that enforce the ‘tile
bisimilarity as congruence’ property. One such constraint, already noted in [11],
is called basic source (it is reminiscent of analogous restrictions required by most
well-behaved sos formats): A tile system enjoys the basic source property if the
initial configuration of each basic tile consists of a single operator f: ar(f) — 1.

Proposition 2 (cf. [11]). If an algebraic tile system R enjoys the basic source
property, then tile bisimilarity on closed terms is a congruence.

2.1 Tiles and CCS

In this section, we recall the operational semantics of Milner’s calculus for com-
municating systems (Ccs) [17] and the tile systems proposed in the literature
for recovering the behavior of (finite) agents. We let A (ranged over by a) be
the set of basic actions, and A the set of complementary actions (with (_) an
involutive function such that A = A and AN A = @). We denote AU A by A
(ranged over by A), let 7 € A be a distinguished action, and let Act = AU {7}
(ranged over by) be the set of ccs actions. Then, CCS processes (also agents)
are generated by the grammar: P :=mnil | u.P | P\o | P+ P | P|P.

Assuming the reader familiar with the notation, we just recall that the oper-
ations above correspond to the inactive process, action prefix, restriction, non-
deterministic sum and parallel composition. We let P, Q, R, ...range over the
set Proc of ccs processes. The sOs system for cCs processes is defined by the
set of De Simone rules in Figure 6 (the obvious symmetric rules for sum and
asynchronous communication are omitted).

The basic ATF tiles for ccs proposed in [11] are given in Figure 7. The ba-
sic MTF tiles for ccs proposed in [16] differ from those in the ATF only in the
treatment of nondeterministic sum. This is because the MTF has no horizontal
discharger and therefore an explicit unary operator !(_) must be introduced for
garbaging discarded arguments. Thus, the MTF tile for (left choice in) nondeter-

ministic sum is (+, : 21 + wgl%;im@!(wg). There are no tiles with source !(x;)
and therefore the operator !(_) locks its argument. The basic GSTF tiles for ccs
have not been presented in the literature, but they are essentially the same as
those of the MTF case, where the operator !(_) is the discharger !;. The basic TTF
tiles for ccs proposed in [4] are given in Figure 8. Apart from the notation, the
main difference w.r.t. the ATF tiles resides again in the rule for sum (the unused
argument can be discarded at the level of observations).

Pt

Q
(if u & {a,a})

wP 5 P P\o % Q\
P25 Q PQ P2Q, P 25Q
P+R-%5Q PR % Q|R PP 5 Q|Q

Figure 6. De Simone rules for finite ccs.

id . _
acty : p.o1 27>:c1 Tes, o : wl\a%)xl\a (f p & {a,a})
®1id ®id A®X
{(+p: 21+ .’132‘%).’171 Ju: w1|w2%x1|w2 Ix : z1]|ze—x1|22

Figure 7. ATF tiles for finite ccs.

p(z1)

act, : 1< p.o1 LN N resyq 14 £1\a —= z1\a (if p & {,a})
p(ey) p(z1)
, A A
(+p 292 +x2”(w—13 Ti 29 21|22 M zi|z2 ||a: 29 z1|x2 (1) (wz)w1|w2
w(z1) w(z1) T(z1)

Figure 8. TTF tiles for finite ccs.

3 The Monoidal Tile Format

If the MTF is employed, the basic source property establishes a bijective corre-
spondence between basic tiles and rules in DSF (as noted in [11]). Hence it is easy
to show that tile bisimilarity on closed terms coincides with bisimilarity on the
LTS generated by the TTS associated to the tile system. However, we can extend
the congruence to contexts in a different way from instantiation closure.

Theorem 1. If a monoidal tile system R = (X, A, N, R) enjoys the basic source
property, then tile bisimilarity defines a congruence also on contexts.

Of course a congruence on contexts is closed under instantiations, and there-
fore ~; C ~. It can be shown that ~ is in general finer than ~ on contexts. We
propose the following example, inspired by [19].

Ezample 1. Let us consider finite CCS (see Section 2.1) extended with the family
of unary operators doj,(-) with n € N and g an action. For all n > 0, the be-
haviour of doj;(-) is described by the DSF rule in Figure 9(a), whose corresponding

MTF tile is doﬁ(wl)%)doﬁfl(:cl). There are no rules for dog(_). Then the con-
texts C1[z1] = B.dol, (1) + B.c.nil + B.nil and Cs[z1] = B.a.nil+ B.nil are bisim-
ilar but not tile bisimilar. In fact, if p is a process, then C[p] N do(ll(p), and
dol,(p) has either no transition (when p cannot do a) or a transition leading to
the deadlocked state do? (¢) for some q with p = q. Thus Cs[p] = S.a.nil+f.nil

Vi (z1]z2)\a

1 2 1
P Q Vll ey ”:Iff lid
) doj(P) 5 dop™'(Q) 2 id—— 2~z 1 (b)
a(zl),a(w)l 04(701)\1/07(902) lr
2 id— 2 —(z1]z2)\a— 1

Figure 9. DsF rule for doj, (a) and the cell pasting of Example 2 (b).

can always match the g move, i.e., Cy[p] ~ Ca[p] for all closed p. On the other
id
hand, the tile C, [wl]?do}l(ml) cannot be bisimulated by C[z1]. In fact, if
id ;
C’g[:cl]?a.nil, then a.m’l%*m’l cannot be matched by do:;(:cl). If instead

id
Cy [ml]?m'l then dol,(z1) % nil. Note that we have slightly abused the no-
tation by writing, e.g., nil instead of nil[z1] = nil®!(z1) as required by MTF.

4 Algebraic vs. Term Tile Formats

When dealing with nonlinear contexts and tile bisimulation, the ATF can give
rise to unexpected results, as the following example illustrates.

Ezample 2. Let us consider the ATF tiles for finite CCS in Section 2.1. Tt is
straightforward that on closed terms tile bisimilarity ~ coincides with bisimi-
larity ~ on the ordinary 1TS. Moreover, we know that ~ is a congruence. How-
ever, on open terms ~; is different from ~. In fact, let us consider the contexts
Cilz1] = (z1]z1)\a and Caz1] = (z1\a|z1\a). Then Ci[z1] ~¢ C2[z1], but
Ci]z1] # Ca[z1], since there exists a process p (e.g., p = a.nil + &.nil) such that
Ci[p] = @ and Cy[p] cannot move. But then, of course, Cy[p] #; C:[p] and
therefore ~ is not a congruence on contexts. Finite cCS admits also a presenta-
tion in TTF (also recalled in Section 2.1). Again we have that, on closed terms,
~; and ~ coincide. However, thanks to the auxiliary TTF tiles, C1[z1] %4 Ca[z1],
a(z1),a(zr1)
7(z1)
Ci[z1] = Vi; (@1]z2)\a) cannot be mimicked by Ca[z1].

because the tile 1 <« Cj[z1] (z1]z2)\a (see Figure 9(b), noting that

A more general result demonstrates that the fact that the TTF for ccs behaves
better than its ATF counterpart is not a mere coincidence.

Theorem 2. If o term tile system R = (X, A, N, R) enjoys the basic source
property, then tile bisimilarity is a congruence (also for open terms).

The previous theorem states that if a system can be expressed in TTF with
basic source, then we have a more satisfactory equivalence on open terms than
the one obtained by closing contexts under all possible instantiations. In fact
it is completely analogous and consistent with that of closed terms and takes

p Vi (z1]z2)\a P®P (z1lz2)\a

0 1 2 1 0 2 2
(a) idgl é Va la@a i ”-dgl aéd LT (b)
0 — 1 2— - — =7 Q—2 1
nal Vi nil@mnil (z1|z2)\a

Figure 10. Tile pastings described in Example 3.

care of the specification constraints (initial configurations can be seen, e.g., as
incomplete open software modules) rather than just of the effective realizations
(closed systems). As for MTF, tile bisimilarity for TTF is in general finer than ~.

5 The Gs-Monoidal Format for Explicit Sharing

The definition of good sos formats for process algebras based on term graphs
rather than terms is not straightforward, since the interplay between configura-
tions and observations is difficult to manage. Tiles can be used to overcome this
inconvenience. The idea is to consider a monoidal category of observations and
a gs-monoidal category of configurations. Though the auxiliary and basic tiles of
GSTF are much like those of ATF, this time the gs-monoidal (not the cartesian)
structure is lifted from configurations to (horizontal composition of) tiles.

Ezample 3. The term graph representation let z; = a.nil+a.nil in (21|21)\4 of
the ccs agent ((a.nil +a.nil)|(a.nil + @.nil))\, can only evolve by synchronizing
the moves that p = a.nil + @.nil can perform with the open behavior of the
nonlinear context (z1]|z1)\a = V1; (21|Z2)\- Since p can execute either a or a
but not both at the same time, then no such synchronization is possible (see
the incomplete tile pasting in Figure 10(a)). This is not the case of (p|p)\a,
where there are two subcomponents p that can perform complementary moves
and synchronize (see Figure 10(b), noticing that p; Vi # Vo; (p ® p) = pQ p).

Likewise MTF and TTF, also tile bisimilarity for GSTF enjoys a nice congruence
property, providing a good format for the specification of resource aware systems.

Theorem 3. If a gs-monoidal tile system R = (X, A, N, R) enjoys the basic
source property, then tile bisimilarity is a congruence (also for open terms).

6 Related Work: Conditional Transition Systems

The basic ingredients of Rensink’s conditional transition systems (CTSs) are con-
ditional transitions I' - s — t, where s and t are open terms, and the envi-
ronment I' is a finite graph {z; 5 y1,...,Z, — y,} that provides suitable
assumptions on the arguments of s and ¢ for the open transition to exist. Build-
ing on this, Rensink proposes two kinds of bisimilarities called formal hypothesis
(~™) and hypothesis preserving (~"P). The difference between them is that in
the latter the I are persistent, and thus can be reused during bisimulation.

Although one could expect that conditional transitions correspond to tiles

s—s)t for I' belonging to a suitable category of observations, a comparison
with the tile model is not straightforward. One important difference is that
in Rensink’s approach the environment I is observed, which provides all the
potential triggers of the systems, while in the tile approach the observation of a
particular step includes the actual trigger. Moreover, a different operation closure
is introduced by Rensink via conditional transition system specifications (CTSSS)
that come equipped with three administrative rules (called variable, weakening
and substitution) that operate on the basic conditional transitions of any speci-
fication. The main theorem of [19] states that for (recursion based) cTsSs both
~M and ~"P are congruences and ~ C ~"P C ~. Rensink also conjectured
that in the ATF setting ~ = ~ = ~PP_probably inspired by the fact that tile
triggers define acyclic environments, where the assumptions made in the past
cannot influence successive steps. The fact that for the ATF the basic source
property does not imply that ~; is a congruence gives evidence that the models
built via ¢TSS and tiles can be very different, and indeed a formal correspondence
between administrative rules and tile operations is hard to state — informally,
variable, substitution and weakening rules correspond respectively to horizon-
tal identities, horizontal composition and parallel composition. Nonlinear terms

also introduce tiles such as z;|z; a—i)a:ﬂxl (it appears in all the tile systems for
ccs that we have considered, except MTF); this corresponds to using the same
assumption to prove ‘atomically’ two consecutive steps, which can have some

interpretation for ~PP, but not for ~.

Concluding Remarks and Future Work

We have proposed several tile formats for defining bisimilarity congruences di-
rectly on both closed and open terms. The simpler MTF is designed for linear
systems. The more expressive TTF reflects nonlinearity of configurations at the
level of observations. The GSTF provides a sound formal framework for the treat-
ment of resource aware systems, previously missing in the literature. In many
such cases the congruence proofs (via the decomposition property) can be carried
out at the pictorial level as tile pastings (see details in the technical report [3]).
Though at a first look open systems seem just the natural extensions of closed
systems, we have noted an initial classification that would distinguish between
incomplete systems, which define the behavior (at the top level) of the system to
be refined by providing the corresponding components, and coordinators, which
define services to be used by the processes instantiating their free arguments.
Thus, the latter class corresponds to bottom-up design and the most usual notion
of reusable component. As discussed in the Introduction, it is reasonable to cope
with variables in these two classes of open systems in a different way, specially
when their interfaces contain repeated occurrences of the same variables.
Another interesting point is the duality between the extension of a process
by (partial) instantiation of its variables, and by embedding it in a context (seen

as an incomplete system by itself). In [5], the notion of ground tile bisimulation
has been developed, which thanks to additional transitions labelled by contexts
(in the style of dynamic bisimilarity) is a congruence, practically without any
format limitation on basic tiles. It seems rather interesting to try to unify the
advances in both directions to obtain a uniform treatment of both internal and
external contexts. Finally, an interesting open problem is the extension of our
results to the adequate notion of weak tile bisimulation.

Acknowledgements. We thank Arend Rensink for some preliminary discus-
sions on the relationship between conditional transition systems and tiles. We
also thank the anonymous referees for their helpful comments.

References

1. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42(1):232-268, 1995.

2. R. Bruni, Tile Logic for Synchronized Rewriting of Concurrent Systems, Ph.D.
Thesis TD-1/99, Computer Science Department, University of Pisa, 1999.

3. R. Bruni, D. de Frutos-Escrig, N. Marti-Oliet, and U. Montanari. Tile bisimi-
larity congruences for open terms and term graphs. Technical Report TR-00-06,
Computer Science Department, University of Pisa, 2000.

4. R. Bruni, J. Meseguer, and U. Montanari. Process and term tile logic. Technical
Report SRI-CSL-98-06, SRI International, 1998.

5. R. Bruni, U. Montanari, and V. Sassone. Open ended systems, dynamic bisimula-
tion and tile logic. In Proc. IFIP-TCS 2000, LNCS. Springer, 2000. To appear.

6. A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via
gs-monoidal categories. Applied Categorical Structures, 7(4):299-331, 1999.

7. A. Corradini and U. Montanari. An algebraic semantics for structured transition
systems and its application to logic programs. Th. Comput. Sci., 103:51-106, 1992.

8. R. De Simone. Higher level synchronizing devices in MEIJE-SCCS. Theoret.
Comput. Sci., 37:245-267, 1985.

9. M.C. van Eekele, M.J. Plasmeijer, and M.R. Sleep, editors. Term Graph Rewriting:
Theory and Practice, Wiley, London, 1993.

10. F. Gadducci and U. Montanari. Rewriting rules and CCS. in Proceeding WRLA 96,
vol. 4 of Elect. Notes in Th. Comput. Sci., Elsevier Science, 1996.

11. F. Gadducci and U. Montanari. The tile model. In Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 1999. To appear.

12. J.F. Groote and F. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100:202-260, 1992.

13. F.W. Lawvere. Functorial semantics of algebraic theories. Proc. National Academny
of Science, 50:869-872, 1963.

14. K.G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. In Proc. ICALP’90, vol. 443 of LNCS, pages 526-539, Springer, 1990.

15. J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoret.
Comput. Sci., 96:73-155, 1992.

16. J. Meseguer and U. Montanari. Mapping tile logic into rewriting logic. In Proc.
WADT’97, vol. 1376 of LNCS, pages 62-91. Springer, 1998.

17. R. Milner. A Calculus of Communicating Systems, vol. 92 of LNCS Springer, 1980.

18. G. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Aarhus University, Computer Science Department, 1981.

19. A. Rensink. Bisimilarity of open terms. Inform. and Comput. 156:345-385, 2000.

