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Abstract. Event structures have been used for giving true concurrent semantics
to languages and models of concurrency such as CCS, Petri nets and graph gram-
mars. Although certain nominal calculi have been modeled with graph gram-
mars, and hence their event structure semantics could be obtained as instances
of the general case, the main limitation is that in the case of graph grammars
the construction is more complex than strictly necessary for dealing with usual
nominal calculi and, speaking in categorical terms, it is not as elegant as in the
case of Petri nets. The main contribution of this work is the definition of a par-
ticular class of graph grammars, calledpersistent, that are expressive enough to
model name passing calculi while simplifying the denotational domain construc-
tion, which can be expressed as an adjunction. Finally, we apply our technique to
derive event structure semantics for pi-calculus and join-calculus processes.


1 Introduction


The paper by Varacca and Yoshida [23] advocates the definition of true concurrent se-
mantics forπ-calculus, renewing the interest in the use of event structures in connection
with process calculi, a long-standing thread initiated by Winskel’s semantics of Milner’s
CCS [24]. Their main contribution is an original typing system on the event structure
for controlling the behavior of linear processes. Actually, they also suggest that their
formalization is the first event structure semantics for theπ-calculus, which (as also
discussed in their concluding section) is true just in part.


We argue that the techniques were already available for deriving an event structure
semantics (but not the results in [23]), even if the pieces were not put together yet. To
explain this, we have to go back to the joint work of the third author with Pistore [19]
on the encoding ofπ-calculus in Graph Transformation Systems (GTS), under the so-
called Double Pushout approach (DPO) [9,10]. While Petri nets can account for CCS-
like languages, it seems that nominal calculi fit better in the GTS approach, where name
creation, dynamic network topology, and causality due to name passing can be more
easily accounted for. However, some of the latest results about concurrent semantics
for GTS were not available at that time, and the existing techniques were not as much
sophisticated as available today, so that no explicit definition of the associated event
structure semantics was given. More recently, [1] made some substantial advancements
on the true concurrent semantics of DPO, by explaining in terms of the so-calledin-
hibitor event structuresthe semantics of a large class of GTS. This result was achieved
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Fig. 1.A recollection of event structure semantics.


as part of a larger research programme aimed at extending the chain of coreflections
defined for Petri nets [20,24,18] first to contextual nets [3] (usingasymmetric event
structures) and then to graph grammars (exploiting some analogy between these two
models). The price to pay was the introduction of much more sophisticated event struc-
tures. For DPO grammars the adjunction between unfolding and event structures breaks
down to a functorial construction in just one direction. A recent result [4] has shown
that the missing link can be re-established when considering the Single Pushout (SPO)
approach [17,12]. This is summarized in Figure 1. The category of prime algebraic
domains is equivalent to the category of prime event structures (PES), thus all con-
structions can ultimately lead to PES. It is worth noting that, under a mild assumption
on graph grammars, namelynode preservation, the elegant SPO constructions can be
transferred also to the DPO approach. To some extent, the above informal discussion
paves the way to the definition of an event structure semantics ofπ-calculus, (almost)
obtained by applying the PES construction available for GTS to the encoding in [19].


We observe that the event structure semantics in this case are unnecessarily compli-
cated (by the need of dealing with features pertaining to graph grammars but not needed
in the encoding). Hence, we devise a simpler class of grammars, large enough to allow
the encoding, but restricted as much as needed to obtain a PES via a chain of core-
flections. Incidentally, the class we take is node preserving, and thus we can carry the
construction under both the DPO and the SPO approach, still getting the same result.
Our contribution aims to promote GTS as a suitable modeling framework for nomi-
nal calculi. The technique is demonstrated by addressing the case studies ofπ-calculus
and join-calculus. We remark that this is the first event structure semantics for the latter,
whose synchronization pattern challenges the reuse of other techniques in the literature.


Structure of the paper.Section 2 summarizes the basics of typed graph grammars
under the DPO (§ 2.1) and SPO (§ 2.2) approaches, and their event structure semantics
(§ 2.3). Section 3 defines the class of persistent grammars. Sections 4 and 5 illustrate,
respectively, how to associate PES toπ-calculus processes and join calculus processes.
Related works and final remarks are in Section 6.







Event Structure Semantics for Nominal Calculi 3


2 Typed Graph Grammars and True Concurrency


Given a partial functionf : A� B its domainis dom( f ) = {a∈A | f (a) is defined}. For
f ,g : A � B partial functions, we writef ⊆ g whendom( f )⊆ dom(g) and f (x) = g(x)
for all x∈ dom( f ). Whendom( f ) = A we say thatf is total and write f : A→ B.


A (directed, unlabeled) graphis a tupleG = 〈NG,EG,sG, tG〉, whereNG is a set of
nodes(or vertices), EG is a set ofedges(or arcs), andsG, tG : EG→ NG are thesource
andtarget functions. We shall omit subscripts when obvious from the context.


A partial graph morphism f: G � G′ is a couplef = 〈 fN : N � N′, fE : E � E′〉
such that:s′ ◦ fE ⊆ fN ◦ s andt ′ ◦ fE ⊆ fN ◦ t. It is total if both components are total.
The inclusions ensure thatany subgraph of a graphG can be the domain of a partial
morphismf : G� H. Instead, the stronger constraints′ ◦ fE = fN ◦sandt ′ ◦ fE = fN ◦ t
would requiref to be defined over an edge if it is defined on its source or target nodes.


In typed graph grammars[9], graphs are typed over a structure that is itself a graph,
i.e., the typing is a graph homomorphism. In this setting, category theory serves as a
tool to characterize constructions in a succinct, elegant way, favoring flexibility and
generality. Since category theory is mainly atheory of morphisms, structure / behavior
preserving mappings play a key role. Given agraph of types T, a T-typed graphis a
pair 〈|G|,τG〉, where|G| is theunderlyinggraph andτG : |G| → T is a total morphism.


In GTS the graph|G| defines the (dynamically evolving) configuration of the system
and its elements (nodes and edges) model resources, whileτG defines the (static)typing
of the resources. For example, when encoding Petri nets in GTS the places of the net
form the (discrete) graph of types, while tokens form the configuration of the system.


A partial (resp. total) morphismbetweenT-typed graphsf : G1 � G2 is a par-
tial (resp. total) graph morphismf : |G1|� |G2| consistent with the typing, i.e., such
that τG1 ⊇ τG2 ◦ f . We denote byT-PGraph the category ofT-typed graphs and par-
tial morphisms and byT-Graph its subcategory of total morphisms. Focusing on total
morphisms, the DPO approach is basedT-Graph, whereas the SPO approach exploits
T-PGraph. Since in this paper we work only with typed notions, we will usually omit
the qualification “typed”, and we will not indicate explicitly the typing morphisms.


In GTS the key notion toglue graphs together is that of a categorical pushout.
Roughly, a pushout pastes two graphs together by injecting them in a larger graph that
is (isomorphic to) their disjoint union modulo the collapsing of some common part. We
recall that aspanis a pair(b,c) of morphismsb : A→ B andc : A→C. A pushoutof
the span(b,c) is then an objectD together with two (co-final) morphismsf : B→ D
andg : C→D such that: (i)f ◦b= g◦c and (ii) for any other choice off ′ : B→D′ and
g′ : C→ D′ s.t. f ′ ◦b = g′ ◦c there is a uniqued : D→ D′ s.t. f ′ = d◦ f andg′ = d◦g.
If the pushout is defined, thenc andg is called thepushout complementof 〈b, f 〉.


2.1 DPO Direct Derivations


A (T -typed) DPO production p: (L l← K
r→ R) is a span of injective typed graph mor-


phismsl : K→ L andr : K→R. TheT-typed graphsL, K, andRare called theleft-hand
side, theinterface, and theright-hand sideof the production, respectively. The produc-
tion is calledconsumingif the morphisml : K→ L is not surjective.
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Fig. 2.Graph grammar derivations.


Definition 2.1 (DPO graph grammar).A (T-typed) DPO graph grammarG is a tuple
〈T,Gin,P〉, where Gin is theinitial (T-typed) graphand P is a set of DPOproductions.


Given a graphG, a productionp : (L l← K
r→ R), and amatch(i.e., a total graph


morphism)g : L→ G, a direct derivationδ from G to H using p (based on g)exists,
written δ : G⇒p H, if and only if the diagram in Figure 2(a) can be constructed, where
both squares are pushouts inT-Graph: (1) the rewriting step removes from the graphG
the itemsg(L− l(K)) (images of the left-hand side but not of the interface), yielding the
graphD (with k,b as a pushout complement of〈g, l〉); (2) then, fresh copies of the items
in the right-hand sideR that are not in the image of the interface, namelyR− r(K), are
added toD yielding H (as a pushout of(k, r)). The interfaceK specifies both what is
preserved and how fresh items must be glued to the existing part.


The existence of the pushout complement of〈g, l〉 is subject to the satisfaction of
the followinggluing conditions[10]:


– identification condition:∀x,y ∈ L if x 6= y andg(x) = g(y) thenx,y ∈ l(K) (note
however that the match can be non-injective on preserved items: the same resource
can be used with multiplicity greater than one if preserved by the derivation);


– dangling condition:no arc inG−g(L) is attached to a node ing(L− l(K)) (other-
wise the derivation would leave such arc dangling after the removal of the node).


The identification condition is satisfied by the so-calledvalid matches: a match is
not valid if it requires an item to be consumed twice, or to be both deleted and preserved.


2.2 SPO Direct Derivations


A (T -typed) SPO productionis an injective partial graph morphismq : L � R. It is
calledconsumingif the morphism is not total. Without loss of generality, we will as-
sume thatq is just the partial inclusionL∩R⊆ R. The typed graphsL andR are called
the left-hand sideand theright-hand sideof the production, respectively.


Definition 2.2 (SPO graph grammar).A (T-typed) SPO graph grammarG is a tuple
〈T,Gin,Q〉, where Gin is theinitial (T-typed) graphand Q is a set ofproductions.
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Given a graphG and amatch g: L→ G, there is adirect derivationδ from G to H
using q (based on g), writtenδ : G⇒q H, if the diagram in Figure 2(b) forms a pushout
square inT-PGraph. Roughly, the rewriting step removes from the graphG the image
of the items of the left-hand side that are not in the domain ofq, namelyg(L−R), and
it adds the items of the right-hand side that are not in the image ofq, namelyR−L. The
items in the image ofdom(q) = L∩Rare preserved by the rewriting step.


The key difference w.r.t. the DPO approach is that in SPO there is nodangling
conditionpreventing a rule to be applied. In fact, asT-PGraph is the base category,
when a node is deleted by the application of a rule, then all the edges having such node
as source or target are deleted by the rewriting step, as a kind ofside-effect.


On the contrary, theidentification conditionand the notion ofvalid matchare still
required to hold for the correct application of a production.


In the special case ofnode preservinggrammars, the effect of SPO and DPO is very
close. An SPO grammar is node preserving if each productionq : L � Rdefines a total
map on nodes. Similarly, a DPO grammar is node preserving if in each productionp :


(L l←K
r→R) the functionsl andr are surjective on nodes. Then there is an isomorphism


between SPO and DPO node preserving grammars that maps each productionq : L � R


to D(q) : (L l← dom(q) r→ R), with l andr the obvious inclusions.


2.3 Unfolding Constructions and Event Structure Semantics


A DPO/SPOderivationρ = {Gi−1⇒qi−1 Gi}i∈{1,...,n} in G is a sequence of direct deriva-
tions, withG0 = Gin. A derivation isvalid if it involves only valid matches.


We will consider onlyconsuminggraph grammars andvalid derivations. The re-
striction to consuming grammars is essential to obtain a meaningful semantics com-
bining concurrency and nondeterminism. In fact, the presence of non-consuming pro-
ductions, which can be applied without deleting any item, would lead to an unbounded
number of concurrent events with the same causal history. This would not fit with the
approach to concurrency (see, e.g., [16,24]) where events in computations are iden-
tified with their causal history (formally, the unfolding construction would not work
properly). This corresponds, in the theory of Petri nets, to the common requirement that
transitions must have non-empty preconditions. The requirement about valid deriva-
tions is needed to have a computational interpretation that is resource-conscious, i.e.,
where a resource can be consumed only once.


To equip graph grammars with event structure semantics, by analogy with Petri
nets, the idea is to first unfold all graph grammar derivations into the same “space of
computations”, collecting all items that can ever be produced and relating them to the
applicable direct derivations. Then, we can project such unfolding so to keep just the
events and the causality≺, concurrencycoand conflict # relationship between them.


In the case of Petri nets, the unfolding can be represented as a special kind of acyclic
net, called occurrence net, whose places model all the tokens that can ever be produced
and whose transitions model all the possible firings (events). For example, two events
requesting the same token are in conflict, while an event is causally dependent on those
events that generated the tokens it fetches and two events can be concurrently exe-
cuted if they are neither causally dependent nor in conflict. The event structure is then
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obtained by keeping the events and forgetting the tokens. The appropriateness of the
construction is supported by categorical arguments: (1) the maps from Petri nets to
their unfoldings and from unfoldings to event structures are functors, i.e. they preserve
net morphisms; (2) it is possible to go backward, in the sense of deriving a standard
occurrence net from each event structure, and a standard net from each occurrence net
(actually itself); (3) the backward maps are again functors; (4) forward and backward
maps form a particularly nice kind of adjunctions, called co-reflections, which are the
categorical means to relate different domains in the best possible way (formally, the
unit of the adjunction is a natural isomorphism establishing an equivalence between a
full subcategory of the domain of computational models and the denotational domain).


The case of DPO grammars is complicated by the fact that derivations can introduce
subtle dependencies between events. Here the “tokens” are both the nodes and the arcs
of the graph, hence it is possible: (1) to access the same resource concurrently, in read-
only modality so to speak; (2) to haveasymmetric conflictsbetween a direct derivation
that attempts to read a resource and one that wants to fetch it; (3) to have events that
by attempting to remove a node are inhibited by the presence of edges connected to
that node. The consequences are that: (1) it is still possible to unfold DPO grammars in
special acyclic DPO occurrence grammars accounting for all the above features; (2) a
more complicated notion of event structure is needed, calledinhibitor event structures;
(3) the constructions are still functorial, but there is no fully satisfactory way back from
inhibitor event structures to occurrence graph grammars.


The case of SPO is still more sophisticated than Petri nets, but more satisfactory
than DPO. In fact: (1) it is possible to unfold SPO graph grammars in special acyclic
SPO occurrence grammars; (2) a more sophisticated notion of event structure is needed,
calledasymmetric event structures, which can account for multiple concurrent readings
and asymmetric conflicts; (3) all the constructions are coreflections.


Notably, for the special case of node preserving grammars the DPO construction can
be carried on in close analogy with SPO, yielding the same asymmetric event structures.
We do not have enough space here to formalize the above discussion, but details are not
needed to follow the rest of this paper. Interested readers can check [4] for technicalities.


An important point to mention is that all the above constructions work only for a
special kind of grammars, calledsemi-weightedand inspired by a similar requirements
on Petri nets. Roughly, semi-weighted grammars enforce disambiguation in the seman-
tics by preventing the generation of “equivalent” resources carrying the same history.
We recall that a typed graphG is calledinjectiveif the typing morphismτG is injective.


Definition 2.3 (Semi-Weighted Grammar).A graph grammarG = 〈T,Gin,P〉 issemi-
weightedif Gin is injective and the target of every production p∈ P is injective.


3 Persistent Graph Grammars


In this section we revisit the general theory developed for SPO and DPO approaches
when considering a special kind of graph grammars, calledpersistent. Sections 4 and 5
show that such restriction is a reasonable enough compromise between the applicability
of the approach to nominal calculi and the categorical adequacy of the semantics.
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A type graphT is persistentif its edges are partitioned in two subsets:E+
T of per-


sistent edges andE−T of removable edges. Given a persistentT, and aT-typed graphG,
we denote byE+


G andE−G the set of edges mapped respectively to persistent edges and
to removable edges ofT. In the following assume a persistent type graphT is given.


Definition 3.1 (Persistent Productions).A DPO production p: (L l← K
r→ R) is per-


sistentif all of the following hold:


– node persistence:NL = l(NK) (i.e., all nodes in L are images of nodes in K);
– removal of removable arcs:E−K = /0 (i.e., no removable arc is in K);
– preservation of persistent arcs:E+


L = l(E+
K ) (i.e., all persistent arcs in L are images


of persistent arcs in K).


Similarly, an SPO production q: L � R ispersistentif:


– node persistence:NL ⊆ NR (i.e., all nodes in L are also in R);
– removal of removable arcs:E−L ∩ER = /0 (i.e., no removable arc in L is preserved);
– preservation of persistent arcs:E+


L ⊆ E+
R (i.e., all persistent arcs in L are in R).


Definition 3.2 (Persistent graph grammar).A (T-typed, DPO/SPO) graph grammar
G is persistentif all its productions are consuming, semi-weighted and persistent.


We have already analyzed and discussed the requirements about the grammar being
consuming and semi-weighted. A first motivation for the persistence requirement is
the fact that it characterizes a whole class of grammars for which there is no need of
checking the dangling arc condition when applying any direct derivation.


Lemma 3.1. Given any (T-typed) graph G, any persistent DPO production p: (L l←
K


r→R), and any valid match g: L→G, the dangling arc condition is trivially satisfied.


Lemma 3.2. Given any (T-typed) graph G, any persistent SPO production q: L � R,
and any valid match g: L→G, no side-effect is produced on G.


The proofs of the above lemmas exploit just node persistence. A remarkable conse-
quence of the above properties is that in the unfolding construction we can completely
disregard the precedences between productions induced by the dangling arc condition.


A second motivation is that there is no resource that can be both read and consumed
during a derivation: nodes and persistent arcs can be just produced once and then read;
removable arcs can be produced (once) and removed (once) but never read. A remark-
able consequence of this property is that the event structure associated to the unfolding
does not impose inhibitor conditions between events.


Theorem 3.1. The construction of the prime event structure associated to a persistent
graph grammar is expressed by the chain of coreflections in Figure 3.


The isomorphism between node preserving SPO grammars and node preserving
DPO grammars (see end of § 2.2) makes the result independent from the approach, in
the sense that the PESEp(Up(G)) associated to a persistent SPO grammarG is isomor-
phic to the one associated with the corresponding persistent DPO grammarD(G).
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P ::= 0 | x〈y〉 | x(y).P | !x(y).P | (νx)P | P|P


(a) Syntax


P | 0≡ P P |Q≡ P |Q (P |Q) | R≡ P | (Q | R)
P≡Q if P≡α Q (νx)(νy)P≡ (νy)(νx)P (νx)P |Q≡ (νx)(P|Q) if x 6∈ f n(Q)


(b) Structural equivalence


(SYNC) x〈y〉 | x(z).P→ P{y/z} (!SYNC) x〈y〉 | !x(z).P→ P{y/z} | !x(z).P
(PAR) P→ P′⇒ P|Q→ P′|Q (RES) P→ P′⇒ (νx)P→ (νx)P′


(c) Reduction Semantics


Fig. 4.Syntax and reduction Semantics of the asynchronouspi-calculus


The proof of the main result (for SPO) is carried on along the lines of [4], but it is
omitted because of space limitation. We are confident that the case studies in Sections 4
and 5 can be understood without looking at the details of our constructions. Proofs will
be included in the full version of this work. We just remark that the unfolding func-
tor (Up) and the event structure (Ep) are just the restrictions to the domain of persistent
graph grammars of the functors already designed for (node preserving) graph grammars
(Us andEs). Moreover, asymmetric conflicts are due to ordinary mutual exclusion argu-
ments (and causality) and thus the event structure associated to the unfolding is morally
a PES (in disguise). Hence, the only adjunct that must be redefined is the one associat-
ing a (persistent) occurrence graph grammar to a PES, as otherwise the adjoint functor
Ns would generate a node preserving, but non persistent occurrence graph grammar.


4 Event Structure Semantics for theπ-calculus


In this section we show the encoding of asynchronousπ processes as persistent graph
grammars and the construction of their event structure.


Given an infinite set of namesN ranged over bya,b,x,y,z, . . ., theasynchronousπ
processes overN are defined by the grammar in Figure 4(a). The reduction semantics is
the least relation satisfying the rules in Figure 4(c) (modulo the structural congruence
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rules in Figure 4(b)). Free and bound names (writtenf n(P) andbn(P)) are defined as
usual. A processP is asequential agentif it is eitherx〈y〉, x(y).P or !x(y).P′.


For simplicity, we representπ processes ashypergraphsinstead of graphs, like
in [19]. A hyperarc can be connected to several nodes. Hence, any hyperarc has an or-
dered set of attachment points, which is represented by a sequence. As usual,|s| stands
for the length of the sequences, ands[i] for 0 < i ≤ |s| refers to theith element ofs.


Definition 4.1 (Hypergraph). A (hyper)graphis a triple H = (NH ,EH ,φH), where NH


is the set of nodes, EH is the set of edges, andφH : EH → N∗H describes the connections
of the graph. We call|φH(e)| therankof e and assume that|φH(e)|> 0 for any e.


Note that every hypergraphH can be straightforwardly encoded as a graphG, whose
nodes are the nodes and arcs of H, and whose arcs connect the nodes corresponding
to edges with the original nodes ofH. Formally, G = (NH ∪EH ,E,s, t), whereE =S


e∈EH
{e1, . . . ,e|e|}, s(ei) = eandt(ei) = φH(e)[i] for all ei ∈ E.


A processP corresponds to a hypergraphH = (NH ,EH ,φH), where nodes stand
for the names used byP, and hyperarcs denote sequential agents ofP. Givene∈ EH


denoting a sequential agentS, the definition ofφH attachese to the nodes corresponding
to the free namesf n(S) of S. In particular,|φ(e)| is equal to the number of occurrences
of free variables inS, andφ(e)[i] = nx if nx is the node associated to the variablex and
the ith occurrence of a free name inScorresponds tox (we assume free names in S to
be ordered in some fixed form, e.g., from left to right).


For simplicity, and w.l.o.g., we will consider a canonical form for processes in which
all bound variables are different from each other. The canonical form ofP iscan(P) = P′


where{[P]}1 = P′,n and{[ ]}n : P→P×N is defined s.t.{[P]}n = P′,n′ iff P′ is obtained
by renaming (from the left to the right) all bound variables ofP with consecutive natural
numbers in the range[n,n′−1]. Moreover, we assumef n(P)∩N = /0.


{[0]}n = 0,n
{[x〈y〉]}n = x〈y〉,n
{[x(y).P]}n = x(n).P′,n′ where{[P{n/y}]}n+1 = P′,n′


{[(νx)P]}n = (νn)P′,n′ where{[P{n/x}]}n+1 = P′,n′


{[P1|P2]}n = P′1 | P′2,n′ where{[P1]}n = P′1,n
′′ and{[P2]}n′′ = P′2,n


′


{[!P]}n = !P′,n′ where{[P]}n = P′,n′


We associate a typebSc to any sequential agentS, defined as follows:


bx〈y〉c= x〈•〉
bx(n).Pc= x(n).(P{•/x1, . . . ,


•/xn}) where{x1, . . . ,xn}= f n(P)\{n}
b!x(n).Pc= !x(n).(P{•/x1, . . . ,


•/xn}) where{x1, . . . ,xn}= f n(P)\{n}


The special mark• denotes an occurrence of a free variable. We sayn+1 the rank
of bSc with n the number of occurrences of• in bSc.


Example 4.1.Consider the following processP = x(z).(z〈y〉 | z〈y〉) | x〈y〉 | x〈x〉. Then
can(P) = x(1).(1〈y〉 | 1〈y〉) | x〈y〉 | x〈x〉. Moreover, the types of all sequential agents in
P arex(1).(1〈•〉 | 1〈•〉) andx〈•〉.
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Differently from the encoding of [19], sequential agents differing on their first free
name have different types. For instance, hereP1 = x〈z〉, P2 = x〈x〉 andP3 = z〈z〉 are
typed bP1c = bP2c = x〈•〉 6= bP3c = z〈•〉 (contrastingly to the original proposal that
assigns the same type•〈•〉 to all of them). Our definition generates more productions,
but it produces semi-weighted grammars in many more cases, as explained below.


Given a setA of agent types, thetype graphassociated withA is TA = 〈{x},A,φTA〉
s.t. for allt, φTA(t) = s, ands[i] = x for 0< i ≤ |s|= rank(t). The set ofTA-typed hyper-
graphs we consider is the least set built using the following constants and operations.


– 0 is the empty graph( /0, /0, /0).
– x denotes the discrete graph({x}, /0, /0) containing the nodex.
– H1⊕H2 = (NH1 ∪NH2,EH1 + EH2,φ) is the composition ofH1 andH2 , where+


stands for the disjoint union of sets andφ is defined as follows


φ(e) = φH1(e) if e∈ EH1(e) φ(e) = φH2(e) if e∈ EH2(e)


– H1{y/x} is the graph obtained by renaming the nodex of H1 by y, i.e.,H1{y/x}=
((NH1\{x})∪{y},EH1,φH), whereφH(e) = φH1(e){y/x} for all e∈ EH1.


– S s.t bSc ∈ A is the graph whose nodes are the free names ofS and its unique arc
has typebSc, i.e.,H = ( f n(S),{bSc},{bSc 7→ s}), where|s| is equal to the rank of
bSc ands[i] = x if the ith occurrence of a free name inS is x.


In all cases, the typing morphisms map nodes tox and arcs to their type.


Remark 4.1.The graphsH1 = x〈y〉 andH2 = k〈y〉{x/k} are different since they contain
the same nodes{x,y}, but H1 has a unique arc with typex〈•〉, while the arc ofH2 has
typek〈•〉. Differently,H3 = x〈y〉 andH4 = x〈k〉{x/k} are identical. In this case, we will
use the first notation as an abbreviation for the second one.


The next definition provides the mapping fromπ processes to (hyper)graphs.


Definition 4.2. Given a canonicalπ process P, its corresponding agent hypergraph is
HP = unw(P), where unw is inductively defined as follows:


unw(0) = 0 unw(x〈y〉) = x〈y〉 unw(x(y).P) = x(y).P
unw(!x(y).P) = !x(y).P unw((νx)P) = unw(P) unw(P1|P2) = unw(P1)⊕unw(P2)


Example 4.2.The agent hypergraph corresponding to the processP in Example 4.1 is
HP = x(1).(1〈y〉 | 1〈y〉) ⊕ x〈y〉 ⊕ x〈x〉.


Then, the graph grammar corresponding to a particular process is defined as follows.
We use I


C
// O to denote rule patterns that can be instantiated by providing agent


types. Any instance is a productionq : L
l←K


r→Rwith K =C⊕n(I), L = I andR= O⊕
K, with n(I) being the nodes ofI , and where the morphisms are the obvious inclusions.


Definition 4.3 (π process as a graph grammar).The graph grammar corresponding
to aπ process P isGP = 〈T,Gin,Q〉, where T contains the types of all possible subagents
of P, Gin = HP = unw(P) and productions q∈Q are obtained by instantiating the two
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patterns below (wherek1〈•〉,k2(y).P and k2(y).P are types of T and z is a fresh name)
with the types of the subagents of P.


GRAPH-SYNC : k1〈z〉{x/k1}⊕k2(y).P{x/k2} // unw(P){x/k2}{z/y}


GRAPH-!SYNC : k1〈z〉{x/k1} !k2(y).P{x/k2
}


// unw(P){x/k2}{z/y}


The rewriting rules do not specify the actual name over which the communication
takes place, but just that the output and the input action take place over the same node.


Example 4.3.ConsiderP defined in Example 4.1. The corresponding graph grammar
GP = 〈T,Gin,Q〉 is defined as follows:


– T contains a unique node, and its arcs correspond to the different types of all the
sequential agents occurring inP, i.e.,ET = {1〈•〉, x〈•〉, x(1).(1〈•〉 | 1〈•〉)}.


– Gin = HP = x(1).(1〈y〉 | 1〈y〉) ⊕ x〈y〉 ⊕ x〈x〉;
– Q = {p1, p2}, where:


p1 : x〈z〉⊕x(1).(1〈y〉 | 1〈y〉)
l1
←− x⊕y⊕z


r1
−→ 1〈y〉{z/1} ⊕ 1〈y〉{z/1}⊕x


p2 : 1〈z〉{x/1}⊕x(1).(1〈y〉 | 1〈y〉)
l2
←− x⊕y⊕z


r2
−→ 1〈y〉{z/1} ⊕ 1〈y〉{z/1}⊕x


with l1, l2, r1 andr2 being inclusion morphisms.


By applying rulep1, we can deriveGin⇒p1 1〈y〉{y/1} ⊕ 1〈y〉{y/1} ⊕ x〈x〉.


The evolution of any processP is described by a finite rewriting system (since the
set of sequential agents contained inP is finite). Moreover, graph productions are per-
sistent since all nodes are persistent and removable arcs do not appear in contexts.
Nevertheless, the grammar may not be semi-weighted. In fact, the initial graphGin in
Example 4.3 is not injective (it contains two arcs with the same typex〈•〉). Similarly,
the targets of both productions are not injective (they have two arcs with type1〈•〉). In
what follows, we restrict our analysis to semi-weighted processes, i.e., processes that
produce semi-weighted grammars. Semi-weighted processes disambiguate the produc-
tion of identical elements having the same history. Hence,P can be written as


P′ = x(1).(1〈y〉 | (ν2)(2(3).1〈y〉|2〈2〉)) | x〈y〉 | (ν4)(4(5).x〈y〉|4〈4〉)


where the production of identical elements with the same history is avoided by intro-
ducing an internal reduction. Note that the initial graph


G′in = x(1).(1〈y〉 | (ν2)(2(3).1〈y〉|2〈2〉)) ⊕ x〈y〉 ⊕ 4(5).x〈y〉 ⊕ 4〈4〉


is injective (arcs of graphsx〈y〉 and4〈4〉 have different types). Similarly, the target of as-
sociated transitions are injective, and hence, the associated grammar is semi-weighted.


Remark 4.2.PGGs do not imply a severe limitation for encoding theπ-calculus since
(i) node and arc persistency have no influence, (ii) consuming rules have no effect when
following a reduction approach, (iii) although semi-weighted rules prevent us from en-
coding processes having tokens with identical causal history, it is possible to encode
any process as a PGGs by disambiguating identical tokens (for instance, by introducing
internal reductions).
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��
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''OOOO�� ���� ��a6 = c〈c〉 �� ���� ��a7 = 2〈y〉{4/2} // e3 //�� ���� ��a8 = b〈z〉


Fig. 5.Unfolding of the grammar corresponding to theπ processP


Example 4.4 (Event Structure).Consider the following asynchronousπ process corre-
sponding to the encoding of the synchronous processx〈y〉.c〈c〉.0|x(z).b〈z〉.0.


P = (νk)(x〈k〉|k(a).(a〈y〉|c〈c〉)) | x(k).(νa)(k〈a〉|a(z).b〈z〉)


After obtaining the canonical form ofP by renaming all bound names by natural
numbers, the initial graph of the corresponding grammar is


Gin = x〈1〉⊕1(2).(2〈y〉|c〈c〉))⊕x(3).(3〈4〉|4(5).b〈5〉)


The set of productions is obtained by instantiating the pattern rule for GRAPH-SYNC


with all possible agent types:x〈•〉, 1(2).(2〈•〉|•〈•〉), 2〈•〉, c〈•〉, x(3).(3〈•〉|• (5).•〈5〉),
3〈•〉, 4(5).•〈5〉, b〈•〉}. For instance, one possible instantiation is:


p1 : x〈y〉⊕ (1(2).(2〈v〉|w〈z〉)){x/1}
l1
←− x⊕y⊕v⊕w⊕z


r1
−→ 2〈v〉{y/2}⊕w〈z〉⊕x


The corresponding unfolding is in Figure 5. We use a net-like pictorial represen-
tation, where productions are shadow-shaped boxes connected to the consumed and
produced resources by incoming and outcoming arrows respectively. For the sake of
clarity, we omit the representation of graph nodes (i.e., namesx andy) and edge attach-
ments, since nodes are preserved by productions and they do not introduce additional
dependencies to those shown in Figure 5. The minimal elements of the unfolding, i.e.,
a1, a2 anda3, are the elements ofGin. Any event stands for the application of a produc-
tion on a set of concurrent events. Note thata6 anda8 causally depend ona1,a2 anda3.
In particular, the output ina6 causally depends on the input action ina3, even though
a1 anda3 share no names.


5 Event Structure Semantics for join-calculus


As done for theπ calculus, we provide the event structure semantics of join processes
through its mapping to persistent graph grammars. For simplicity, we focus oncore
(recursive) join-calculus[13], but our approach smoothly extends to full join.
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P = x〈u〉
| P|P
| def x〈u〉|y〈v〉.P in P


(a) Syntax


P |Q ≡ P , Q
def x〈u〉|y〈v〉.P1 in P2 ≡ (x〈u〉|y〈v〉.P1)σ , P2σ


(σ renames x and y with globally fresh names)


x〈u〉|y〈v〉.P, x〈z1〉, y〈z2〉 → x〈u〉|y〈v〉.P, P{z1/x,
z2/y}


(b) Semantics


Fig. 6.Core Join


The syntax of core Join is in Figure 6(a). The occurrences ofx andu in x〈u〉 are
free, while x andy occur bound inP= def x〈u〉|y〈v〉.P1 in P2, andu andv occur bound
in x〈u〉|y〈v〉.P1. Free and bound names ofP are written respectivelyf n(P) andbn(P).


The semantics of the join calculus relies on thereflexive chemical abstract machine
model [13]. In this model a solution is a multiset of active definitions and processes
(separated by comma). New definitions may become active dynamically. Moves are
distinguished betweenstructural≡, which heat or cool processes, and reductions→,
which are the basic computational steps (disjoint reductions can be executed in parallel).
The rewriting rules are shown in Figure 6(b).


As done forπ processes, we only consider canonical processes. The canonical form
of P is can(P) = P′ for {[P]}1 = P′,n and


{[x〈u〉]}n = x〈u〉,n
{[P1|P1]}n = P′1 | P′2,n′ where{[P1]}n = P′1,n


′′ and{[P2]}n′′ = P′2,n
′


{[def x〈u〉|y〈v〉.P1 in P2]}n = def n〈n+1〉|n+2〈n+3〉.P′1 in P′2,n
′


where{[P1{n/x,
n+1/u,


n+2/y,
n+3/v}]}n+4 = P′1,n


′′


and{[P2{n/x,
n+2/y}]}n′′ = P′2,n


′


By analogy withπ, we consider subtermsx〈u〉 andx〈u〉|y〈v〉.Pas sequential agents.
Then, the typebSc of a sequential agentS is defined as follows:


bx〈y〉c= x〈•〉
bx〈u〉|y〈v〉.Pc= x〈u〉|y〈v〉. (P{•/x1, . . . ,


•/xn}) where{x1, . . . ,xn}= f n(P)\{u,v}


The mapping of processes to graph grammar is defined below.


Definition 5.1. Given a canonical join process P, its corresponding hypergraph is HP =
unw(P), where unw is inductively defined as follows:


unw(x〈u〉) = x〈u〉
unw(def x〈u〉|y〈v〉.P1 in P2) = x〈u〉|y〈v〉.P1⊕unw(P2)


unw(P1|P2) = unw(P1)⊕unw(P2)


Definition 5.2 (Join process as a graph grammar).The graph grammarGP corre-
sponding to the join process P isGP = 〈T,Gin,Q〉, where T contains the types of all the
subagents of P, Gin = HP = unw(P) and productions q∈Q are obtained by instantiating
the following pattern with the types in T .
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k1〈u〉{x/k1}⊕k2〈v〉{y/k2} (k3〈u1〉|k4〈v1〉.P){x/k3
,y/k4


}
// unw(P){x/k3,


y/k4}{u/u1,
v/v1}


Example 5.1.Consider the canonical join processP = def D in 1〈3〉 | 3〈1〉, with
D = 1〈2〉|3〈4〉.4〈3〉|3〈1〉. Then, the initial graph of the grammar is


Gin = HP = D⊕1〈3〉⊕3〈1〉


and the types{1〈2〉|3〈4〉.4〈•〉| • 〈•〉, 1〈•〉, 3〈•〉, 4〈•〉}. Hence, we have nine possible
rulespk1,k2, one for any possible combination ofk1,k2 ∈ 1,3,4, defined as follows


D{x/1,
y/3}⊕k1〈u〉{x/k1}⊕k2〈v〉{y/k2}


l1
←−D{x/1,


y/3}⊕u⊕v
r1
−→ D{x/1,


y/3}⊕4〈y〉{v/4}⊕3〈1〉{x/1,
y/3}⊕u


Then, we have the following computation


Gin ⇒p1,3 D⊕4〈3〉{1/4}⊕3〈1〉 ⇒p4,3 D⊕4〈3〉{1/4}⊕3〈1〉


The unfolding ofGP can be obtained as forπ processes. In this case, the causal
relation of the event structure is the total ordere1 ≺ e2, . . ., while the #= /0 andco= /0.


6 Related works and concluding remarks


We have introduced Persistent Graph Grammars (PGGs) as a convenient model for
equipping nominal calculi with truly concurrent semantics. Our results collect, so to
say, the best of two worlds: the event structure semantics is defined by a chain of core-
flections as in [4] and the encoding of nominal calculi is rather direct as in [19]


We improve on [4] by restricting the format of productions so as to guarantee that
there is no information loss when viewing the asymmetric event structure associated to
the grammar as a PES. The restricted format considerably simplifies the construction
w.r.t. fully general grammars. We improve on [19] by refining the type system so as to
apply the unfolding construction to a much broader class ofπ-processes that comprises
all those processes whose associated productions are semi-weighted. The generality of
our technique is also supported by the original case study of join calculus.


Being a special case of semi-weighted grammars, PGGs enjoys the nice property
of reconciling the SPO with the DPO approach. Note that two other event structure
semantics proposed in the literature for DPO [8,22] coincide with the one obtained
from the unfolding, which thus can be calledtheevent structure semantics of GTS.


We exploit a “hierarchical” encoding of sequential processes, as opposed to the
“flat” (DPO) encodings of [14,15], where finitely many productions encode all (finite)
agents and where node fusion is requested in the right-hand side of some productions.
The latter feature prevented the straightforward reuse of some techniques, although [5]
develops a non-sequential semantics also in the presence of node fusion.


Due to space limitation we leave the comparison with previous non-interleaving se-
mantics of theπ-calculus [11,6] to the full version of this paper. The linearity constraint
in [23] shares some similarities with the semi-weightedness criterion and it would be
interesting to see if their type systems can be transferred to graph grammar productions.
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