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Abstract. Service oriented applications feature interactions among sev-
eral participants over the network. Mechanisms such as correlation sets
and two-party sessions have been proposed in the literature to sepa-
rate messages sent to different instances of the same service. This paper
presents a process calculus featuring dynamically evolving multiparty
sessions to model interactions that spread over several participants. The
calculus also provides primitives for service definition/invocation and for
structured communication in order to highlight the interactions among
the different concepts. Several examples from the SOC area show the
suitability of our approach.

1 Introduction

Service Oriented Computing (SOC, for short) envisages systems as a combination
of services, possibly provided by different organizations. Typically, a service can
be concurrently requested by many invokers (e.g., users or other services) so that
many service instances can be carried on at the same time (e.g., several customers
booking flights from the same airline). Hence, it is important to guarantee that
the interactions taking place in different instances do not interfere, and messages
are routed to the intended recipients.

Emerging standards like WS-BPEL [23] and WS-CDL [25] exploit the idea
of correlation sets, which allow messages to be routed to specific instances of
services depending on a pre-defined subset of the invocation parameters (e.g.,
requests are routed according to usernames). Though correlation sets guarantee
a good expressiveness, we argue that they make analysis harder because the
emerging patterns of interaction rely on data values. Also, unrelated sessions
can interfere with each other if they know (or use by chance) the “right” values.

Some formal methods [3, 19, 2, 16, 4, 12] advocate the concept of session as an
abstraction mechanism for enclosing an arbitrarily complex interaction between
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two partners in order to guarantee e.g., that, during a conversation, messages
are routed as desired. As observed e.g. in [2], since modern distributed systems
rely on the TCP/IP stack, it is usually accepted that sessions involve only two
participants (usually according to the client/server architecture). Consider a
scenario where a customer c of a bank b wants to withdraw some money from
an ATM a; this can be modeled as c invoking the service a that in turn invokes
b, which closes the protocol by e.g., sending a text message on c’s mobile phone.
Usually, two different sessions, say s and s′, are used during the computation
(see, e.g., [2]): s is a session between c and a while s′ between a and b. Typically,
this forces the programmer to explicitly handle communication of s and s′ in
order to relate events occurring in the two sessions.

In this paper we propose µse (read “muse”, after “MUltiparty SEssion”),
a process calculus whose primitives are designed for easing the programming
of SOC systems using multiparty sessions, namely sessions to which more than
two actors can take part, as a high-level abstraction mechanism to coordinate
interactions among several participants. We also intend to highlight the relations
between sessions and the other main features of SOC: services, communication
protocols, sites, etc.

One of µse main design principles is that programmers should be relieved
from the explicit handling of session identifiers. The rationale being that, in our
opinion, SOC systems should be programmed by abstracting from the error-
prone activity of session handling. Rather, the language should support the
implicit creation and exchange of session identifiers. For instance, the previ-
ous ATM scenario can be more easily programmed in µse by merging s and s′

into a session delimiting exactly c, a and b; µse semantics then guarantees that
interactions among c, a and b are not disturbed by external processes (cf. Ex-
ample 3). Another example can be an online game where a server provides the
playing platform and users can log into different games. While logged in, users
“in the same room” can interact according to a game-specific protocol without
interference from users in other rooms. This can be naturally modeled using a
multiparty session for each room that would avoid the complication of maintain-
ing the association room/players required if two-party sessions (each containing
player and server) were used.

Another important design choice concerns µse communications, which can be
intra- or extra-session. More precisely, µse requires that participants on different
sites always use intra-session communications, namely they must be endpoints of
the same session. Instead, processes at the same site are allowed to communicate
also across sessions. Intuitively, co-located processes can exploit local resources
(e.g., databases, file systems, etc.) to interact, while remote processes must rely
on underlying middlewares (like TCP/IP, SOAP, . . . ).

To this end, µse systems consist of sites where services, sessions and processes
live. Services can be dynamically published, sessions are dynamically created,
new participants can join them at runtime and concurrent ongoing sessions can
be merged. We equip µse with a (weak) bisimilarity-based equivalence whose
appropriateness is illustrated by means of a small proxy scenario.



Structure of the paper: The µse calculus is introduced in Section 2: Section 2.1
provides an informal description of the main elements of the calculus, while
Section 2.2 and Section 2.3 formally define the language. The coding of several
interaction patterns is given in Section 3. Section 4 proposes an observational
semantics for µse based on the standard notion of weak bisimulation. Related
work and final remarks are presented in Section 5.

2 The µse calculus

This section introduces the µse calculus and its main features: (i) nested multi-
party and dynamically joinable sessions, (ii) intra-session and intra-site commu-
nications, (iii) dynamic service publication.

2.1 A µse walkthrough

µse has been designed so to keep a clear conceptual distinction, even at the
syntax level, between different concerns distilled from the SOC paradigm. This
allows for an incremental presentation of the calculus that can serve to emphasize
also the interplay between the various features considered.

Services and multiparty sessions. The kernel syntax of µse includes ordinary op-
erators such as the nil process 0, parallel composition P |Q and name restriction
(νn)P , together with primitives for service definition, for service invocation, for
enclosing a process in a session and for dynamically installing new services.

Available services are written a ⇒ P , where a is the service name and P
is its body. Notably, services are one-shot and not persistent by default: an
invocation to a consumes its service definition. New services are dynamically
deployed using the prefix install[a ⇒ P ], that, combined with recursion, permits
to program persistent services (see Example 2 in Section 3), for which we use
the syntactic sugar

∗a ⇒ P (1)

A session is a logical unit of work composed by different endpoints possibly
distributed across sites. Each endpoint is written r B Q, where r is the session
name and Q is one of the participants to session r. When the endpoint r B Q
invokes a (executing prefix invoke a), a new instance r B P of service a in (1)
is activated on the service site as a new partner of session r. In fact, r B P is a
service endpoint of session r.

Sessions can be nested at an arbitrary level of depth. Services are always
installed at the top level and can be invoked from any level of nesting; the
instance of the invoked service is opened, in the server context, as an endpoint
of the innermost session containing the invoker.

Different endpoints r BP1, ..., r BPn within the same session can interact by
means of intra-session input and output prefixes (respectively written x(y) and



xw, reminiscent of π-calculus prefixes). The shared name r is used to guarantee
that messages are exchanged only between partners of the same session. Hence,
two instances r1 B P and r2 B P of (1), invoked from two endpoints of two
different sessions r1 and r2, run separately and cannot interfere (unless r1 and
r2 are merged).

Sites. We envisage services as somehow analogous to methods of a class; there-
fore, a pool of services (and all their instances) may share some information
(e.g., the instances of an airline reservation service must query and update a
flights database). In µse this feature is realized by giving the possibility to group
processes into sites and by adding primitives for intra-site communication. We
write l :: P where l is the site name (also called location) and P is the process lo-
cated at l. Likewise sessions, sites are logical containers, not necessarily physical
(machine-related) ones.

Intra-site input and output prefix are respectively written x?(y) and x!w
and, as service invocation, they are executed regardless of the session hierarchy.
We could have also used local variables for intra-site communications, but we
preferred message passing to follow the style of intra-session communications.

Merging sessions. The most advanced feature of µse is the possibility of merging
two distinct running sessions. This is possible only when two endpoints expose
the same entry point e via prefix mergep e, requiring to merge the respective
sessions. Merge prefixes mergep e are polarized with p ∈ {+,−}, with the obvious
meaning that complementary merge actions on the same entry point e (i.e.,
merge+ e and merge− e) can synchronize.

Merging of sessions is guided by entry points e which yield a control flow
mechanism for programming when processes can join sessions; for instance, using
different entry points it is possible to let processes enter a session at different
stages of the computation.

Technically, the merging of sessions is realized by explicit fusion of session
names: after their fusion, two names can be used interchangeably wherever
needed.

2.2 µse syntax

We assume that countable pairwise disjoint sets of names are available for

– communication channels (ranged by x, y, . . . ),
– services (ranged by a, b, . . . ),
– entry points (ranged by e, f, . . . ),
– sessions (ranged by r, s, . . . ) and
– sites or locations (ranged by l, . . . ).

Channels, services and entry points are communicable values (which are ranged
over by v, w, . . . ) while sessions and locations cannot be communicated. We let
n, m, . . . range over all names but locations.



S, T ::= l :: a ⇒ P Service definition
| l :: P Located process
| S|T Composition of systems
| (νn)S New name

P, Q ::= 0 Empty process
| xw.P Intra-session output
| x(y).P Intra-session input
| x!w.P Intra-site output
| x?(y).P Intra-site input
| install[a ⇒ P ].Q Service installation
| invoke a.P Service invocation
| mergep e.P Entry point
| r B P Endpoint
| P |Q Parallel composition
| (νn)P New name
| rec X.P Recursive process
| X Recursive call

Fig. 1. Syntax of systems and processes

The syntax of µse is defined in Figure 1, where the last two productions for
processes account for recursion (X, Y, . . . stand for process variables; we assume
variables guarded by prefixes in the body of recursive definitions).

Systems (ranged over by S, T, . . .) are parallel compositions of a finite number
of locations where services are published and processes executed. A location
where a service a is defined is meant to be the domain into which all instances
of a are executed upon invocation.

A µse process can be the empty process (we will drop trailing 0s), a process
prefixed by an action (discussed in the following), a process running in a ses-
sion (endpoint), the parallel composition of processes, a process under a name
restriction, a recursive process or a recursive invocation.

Processes (ranged over by P,Q, . . . ) communicate via channels very much like
e.g., π-calculus processes, according to two featured modalities: intra-session and
intra-site communication.

As outlined before, intra-session communications are used to let different
endpoints of the same session to interact regardless their running sites. Hence,
processes located at different sites but sharing the same session can interact via
intra-session input and output. Conversely, intra-site communications allow dif-
ferent endpoints to communicate, provided that they are running in the same
site. This is used to model local communications and eases the programming of
activities that are independent of the specific session. For instance, a program
that counts the invocations to services defined at a given location can be pro-
grammed simply as a located process that increments a given variable when it
receives a service name via intra-site input on a given channel x; on invocation,
each service sends its name to the counter with an intra-site output on x.



A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(A|A′′) ≡ A|(νn)A′′, if n 6∈ fn(A)

(νn)(νm)A ≡ (νm)(νn)A (νn)A ≡ A, if n 6∈ fn(A)

l :: P |l :: Q ≡ l :: (P |Q) l :: (νn)P ≡ (νn)(l :: P )

r B (νn)P ≡ (νn)(r B P ), if n 6= r

r
·
= r ≡ 0 (νr)(r

·
= s) ≡ 0 r

·
= s|P ≡ r

·
= s|P{r/s} r

·
= s ≡ s

·
= r

r B (s
·
= t|P ) ≡ s

·
= t|r B P l :: (r

·
= s|P ) ≡ r

·
= s|l :: P

rec X.P ≡ P{rec X.P/X}

Table 1. µse structural congruence

Processes can install new service definitions in their running locations. Service
invocations enable processes to activate new endpoints on the service location.
Note that service invocation requires only the service name, not its location, thus
if many services with the same name are available one of them is chosen nonde-
terministically. Finally, a mechanism for letting processes join existing sessions
is given by the prefix mergep e.

Prefixes can be divided into two classes: session-dependent and session-
independent. Intuitively, the former are those whose execution is dependent of
and can be executed only within a session; while session independent prefixes do
not depend on sessions and can be executed also outside them. The distinction
will be clearer when the operational semantics is given, for the moment it suffices
to say that intra-session input/output, session merge and service invocation are
session-dependent, while intra-site input/output are session-independent.

Finally, usual process algebraic operators like parallel composition and name
restriction are introduced, the latter is one of the binders of µse. In fact, the
occurrences of y and n are bound in x(y).P , x?(y).P , (νn)P and (νn)S and the
typical definitions of set of free, bound and all names, respectively written as
fn( ), bn( ) and n( ), are assumed for systems and processes. As usual, bound
names can be safely alpha renamed.

2.3 µse operational semantics

The semantics of µse requires a structural congruence relation and an extended
syntax, namely explicit substitutions r

·= s of sessions. Note that explicit substi-
tutions are session-independent. Let A,B range over systems (including explicit
substitutions) and processes.



xv.P
xv−→ P x!v.P

x!v−−→ P

x(y).P
xv−→ P{v/y} x?(y).P

x?v−−→ P{v/y}

l :: a ⇒ P
r>a−−→ l :: r B P invoke a.P

⊥a−−→ P install[a ⇒ R].P
a[R]−−−→ P

mergep e.P
ep

−→ P

P
α−→ Q α ∈ {⊥a, xv, xv, ep}

r B P
r α−−→ r B Q

P
α−→ Q α /∈ {⊥a, xv, xv, ep}

r B P
α−→ r B Q

P
a[R]−−−→ Q

l :: P
τ−→ l :: Q | l :: a ⇒ R

P
α−→ Q α /∈ {a[R], x?(v), x!v}

l :: P
α−→ l :: Q

P
x!v−−→ P ′ Q

x?v−−→ Q′

P |Q τ−→ P ′|Q′
A α−→ A′ bn(α) ∩ fn(B) = ∅

A|B α−→ A′|B
A r xv−−−→ A′ B r xv−−−→ B′

A|B τ−→ A′|B′

A re+

−−→ A′ B se−−−→ B′
A|B τ−→ A′|B′|s ·

= r
S

r>a−−→ S′ T
r⊥a−−→ T ′

S|T τ−→ S′|T ′

A α−→ A′ n /∈ n(α)

(νn)A α−→ (νn)A′
A α−→ A′ α ∈ {xw, x!w, r xw, r x!w}

(νw)A (w)α−−−→ A′

Table 2. Operational semantics

Definition 1 (µse structural congruence). The structural congruence over
µse systems (and processes) is the smallest equivalence relation satisfying the
axioms in Table 1 (where fn(A) is defined as expected).

Structural congruence ≡ includes associativity, commutativity and identity
over 0 for parallel composition and rules for scope extrusion. Also, ≡ gives
the semantics of recursion and r

·= s in terms of substitutions. Notice that
any explicit substitution r

·= s is persistent and can freely “float” in the term
structure, unless a restriction on r or s forbids its movements.

The operational semantics of µse is specified through a labeled transition
system (lts). We use α to range over labels. Bound variables occurring in labels
are in round parentheses, and functions fn( ), bn( ) and n( ) are extended in the
natural way to labels.

Definition 2 (µse semantics). The µse semantics is the least lts generated by
the inference rules in Table 2, closed under structural congruence.

The rules for prefixes simply execute them, moving the information to the tran-
sition label. As usual for early semantics, input prefixes guess the actual value
and immediately substitute it for the formal variable. Sessions are transpar-
ent to most of the actions, while a session name is added to the label in case



of session-dependent actions (intra-session communications, invoke and merge).
Notice that only the name of the innermost session is added. Service definitions
can produce sessions, and the session name is guessed in the early style. Install
requests are executed when the outermost level of the site is reached. Observe
that sites are transparent to all actions but install and intra-site communica-
tions. Also, most of the synchronization rules can be applied both at the process
and at the system level. The only exceptions are (i) intra-site communication,
which is meaningful only at the process level, and (ii) service invocation, which
can be stated only at the system level since definitions are always at the top
level. Finally, restriction is dealt with by moving restrictions to the outermost
level using structural congruence, but the rule for extrusions is necessary for
interactions with the environment (and notably for bisimulation).

3 Programming in µse

This section illustrates the main features of µse by showing how it can be used to
program simple SOC applications. Example 1 introduces a trivial client-server
application, while Example 2 shows how persistent services can be programmed.
To illustrate how multiparty sessions can be easily used, more complex scenarios
are presented: Example 3 shows how a multiparty session can control interactions
among three participants; Example 4 models a multi-player game; and Example 5
gives the definition of a proxy, which is transparent to clients.

Example 1. Consider the simple system below

lc :: r B invoke inc.Pc | ls :: inc ⇒ Ps (2)

where the client running at lc in a session r invokes a service for incrementing
integers on another location; client and service adopt a request-response protocol
according to Pc = data v.ret(v′).P and Ps = data(w).ret w+1. Namely, Pc sends
the value v to the service, waits a result, and then continues executing as P ;
accordingly, Ps receives a value w and returns the successor of w (arithmetical
operators are assumed and they have precedence over other operators.)

The system (2) evolves as follows:

lc :: r B invoke inc.Pc | ls :: inc ⇒ Ps
τ−→

lc :: r B Pc | ls :: r B Ps
τ−→

lc :: r B ret(v′).P | ls :: r B ret v + 1 τ−→
lc :: r B P{v + 1/v′} | ls :: r B 0

In words, upon service invocation, Ps is executed as a new endpoint of session r
where intra-session communications let parameters to be passed around. �

Observe that neither the client nor the service of Example 1 deal with session
identifiers. Also, the definition of inc is consumed as soon as it is invoked. Nev-
ertheless, persistent service definitions can be programmed by using recursion,
as shown in the following example.



Example 2. A persistent inc service can be defined as follows

ls :: inc ⇒ rec X.(Ps | install[inc ⇒ X])

(which, by using the notation in (1), can be written as ls :: ∗inc ⇒ Ps).
We consider now the case of two clients running in separate sessions (and in

separate sites) but executing analogous protocols:

l0 :: r0 B invoke inc.Pc | l1 :: r1 B invoke inc.Pc | ls :: ∗inc ⇒ Ps

The complete system may reduce (in several steps) to

l0 :: r0 B Pc | l1 :: r1 B Pc | ls :: ∗inc ⇒ Ps | ls :: (r1 B Ps|r0 B Ps)

where two instances of the service protocol Ps run on ls, but under different
sessions r0 and r1, while two instances of the client run on different sessions at
different sites. We remark that the session mechanism of µse will distinguish the
instances of channels data and ret used by sessions r0 and r1, and will allow
synchronizations only over channels belonging to the same session. �

Example 3. The ATM scenario described in Section 1 is shown. Consider

hiw :: r B C | (ν check , abort)(hiw :: ∗atm ⇒ A | branch :: ∗bank ⇒ B) (3)

where C, A and B are respectively the customer, ATM and bank code (de-
fined below); check and abort are private channels shared between A and B.
For simplicity, we assume to have basic types (as numerals or strings), tuples
(in angle brackets), nondeterministic choice, if statement and polyadic inputs
(though channels are not typed). We enclose output tuples in angle brackets.
The definition of C, A and B is as follows:

C = invoke atm.req〈c, m〉.(cash(x)|sms(y).display!y)

A = req(x, y).invoke bank .check〈x, y〉.( checked().cash y + abort().cash 0 )

B = check(x, y).if ok(x, y) then checked .sms ok else abort .sms ko

After invoking the ATM, C requests to withdraw an amount of money m offering
some credentials c and waits for money and for an SMS confirmation. After
invoking B, A forwards the request to B and waits for B’s response either to
confirm or abort the transaction (in which case no money is dispensed).

If the customer’s credentials are valid, B confirms to A to proceed and notifies
C by sending the ok SMS, which is diplayed on C’s site. Observe that B enters
the session between A and C after the latter invokes the bank service, hence the
further interactions with C and A will not be messed up with possible concurrent
sessions of the bank service. If the customer’s credentials are invalid the bank
let the ATM abort and sends a failure notification to the customer. �

An interesting aspect to highlight in Example 3 is the fact that the interactions
between C and A or C and B are mediated by public channels and communi-
cations are hiddenly driven by sessions. More precisely, req , cash and sms can



be thought of as the known ports through which participants communicate, and
sessions avoid interferences among possible concurrent invocations of the ATM
and bank services. Also, notice that exactly the same definition of the bank ser-
vice can be installed on other locations so modeling the existence of different
branches without affecting the customer.

In the next example we illustrate how entry points can be used for modeling
a distributed game scenario where the number of participants is unbounded.

Example 4. Let s be a service that waits for the connection of at least two
players. Whenever two players connect to the service, they share a session
and a match starts. New participants may later join. For simplicity, we let
Pp = start().P be the protocol that any player follows after invoking s. When s
signals the beginning of the match on the channel start, the players run as P ,
which codes the (unspecified) logic of the game.

The service has two different states that respectively generate an instance of
the following protocols

G1 = merge− e.start.rec X.merge− e.X, G2 = merge+ e.start

Intuitively, G1 stands for the protocol followed by s for handling the first con-
nection. Note that G1 will run in a session, say r, and it will wait a player to join
r over the entry point e. After the second player arrives, it sends to the player
the message start and will repeatedly wait for new arrivals. By contrast, G2

manages all subsequent invocations. In particular, G2 joins an existing session
over the entry point e and then it sends the message start to the player.

The game service is s ⇒ G where

G = G1 | install[∗s ⇒ G2]

Notice that the changes of the state of the service are modeled by using the
primitive install[. . .] for installing a new definition of the service.

Let us consider the following system

l0 :: r0 B invoke s.Pp | l1 :: r1 B invoke s.Pp | lg :: s ⇒ G (4)

composed by two players and a game service. After several steps, system (4) may
evolve to

l0 :: r0 B Pp | l1 :: r1 B Pp | lg :: ∗s ⇒ G2 | lg :: (r0 B G1 | r1 B G2)

and G1 and G2 can finally synchronize (over the entry point e) so that, after
their sessions are coalesced, they signal to the two players that the game starts.

r0
·= r1 | l0 :: r0 B Pp | l1 :: r0 B Pp |

lg :: ∗s ⇒ G2 | lg :: (r0 B start.rec X.merge− e.X | r0 B start)

Note that new invocations of s will create service sessions of the form r B G2.
These sessions will join the first created session r0, by merging over the entry
point e. �



The gaming example serves to show a nice feature of µse: players protocol
need not to be aware of the order in which connections are established, i.e.
any player can invoke the gaming service regardless of the fact that a session
has been already started or not. Clearly, more complex game services may be
written; for instance, a service that allows only a bounded number of participants
and creates a new instance of the game when the bound is reached can be simply
implemented using freshly created entry points. Remarkably, the programming
of the counting mechanism can be straightforwardly achieved by using a local
shared counter and intra-site communications.

Our last example shows how proxies can be easily programmed and exploits
the intra-site communication of µse.

Example 5. Consider a set of different services s0, . . . , sn providing the same
functionality P , any of them running on a different site. Let us assume the
services to be persistent and defined as

Si = li :: ∗si ⇒ P

Moreover, we assume that each client wants to access the services in a transparent
way, i.e., by invoking a service s that acts as a proxy, and forwards the invocation
to one of the actual services.

As a first solution, we can model the proxy as a service that nondeterministi-
cally selects one of the available providers, as below

Ps =
∏

i

Avi | ∗ s ⇒ av?(x).invoke x

Any process Avi = rec X.av!si.X gives a persistent witness of the fact that
the service si is one of the available providers (in more complex situations,
the description of available services may take load balancing into account, ex-
ploiting e.g. a sequential list of invocations). The actual definition of the proxy
∗s ⇒ av?(x).invoke x states that once the proxy is invoked it uses intra-site
communication to select one of the available services, and then invokes it. If we
consider a client that invokes s and then continues like Q, the whole system
behaves as follows.

∏
i

Si | lp :: Ps | lc :: r B invoke s.Q
τ−→∏

i

Si | lp :: Ps | r B av?(x).invoke x | lc :: r B Q
τ−→∏

i

Si | lp :: Ps | r B invoke sk | lc :: r B Q
τ−→∏

i 6=k

Si | lk :: r B P | ∗ sk ⇒ P | lp :: Ps | r B 0 | lc :: r B Q

Note that, from this moment on, the client at site lc and the activated instance
of the selected service at site lk share the same session r. �



4 Observational semantics of µse

This section proposes an observational semantics of µse relying on the well-known
notion of bisimulation. We prefer to use weak bisimulation as it is more suitable
for reasoning on µse systems and, more generally, for giving coarser equivalence
relations amongst systems.

Let ⇒ be the reflexive and transitive closure of τ−→. Let us denote relation
composition as juxtaposition (e.g., ⇒ α−→ is the composition of relations ⇒ and
α−→). Let α⇒ be ⇒ α−→⇒ if α 6= τ and ⇒ if α = τ .

Definition 3 (Bisimilarity). A binary relation B on systems is a (weak) µse
bisimulation if it is symmetric and for any (S, T ) ∈ B

– for each S
α−→ S′ such that bn(α) ∩ fn(T ) = ∅, T

α⇒ T ′ with (S′, T ′) ∈ B.

Bisimilarity is the largest bisimulation.

Definition 3 instantiates the standard notion of weak bisimilarity for µse.
We will show here that bisimilarity can be used to analyze properties of

services, in particular to prove that an implementation of a service is compliant
(i.e., bisimilar) to a more abstract specification.

Let us consider a simple service a that computes some mathematical function
fun (such as the increment in Example 1, or even better some computationally
expensive function). We can write the specification as:

l :: ∗a ⇒ P with P = data(x).ret fun(x) (5)

The only possible transitions for this service are acceptance of invocations at a,
followed by a protocol in the created session composed by an input on data and
an output on ret.

Following the ideas in Example 5, a first implementation could ask another
service ai non-deterministically chosen from a pool a1, . . . , an to do the job:

l :: (νa1 . . . an)
(
(νav)(

n∏
i=1

rec X.av!ai.X | ∗ a ⇒ av?(u).invoke u) |
n∏

i=1

∗ai ⇒ P
)

where, instead of directly computing fun, upon invocation the service receives
(through an intra-site communication on the private channel av) the name of the
“private” local service ai that actually computes fun. Notice that these two last
transitions are just (non-observable) τ steps and such system is weak bisimilar
to system (5). Also, replacing the definitions of ai with ai ⇒ Pi still yields a
system weak bisimilar to the system (5) provided that each Pi is bisimilar to
P . On the contrary, removing e.g., the restriction on av breaks the bisimilarity,
since the implementation of a could then interact with another channel av in
the environment, while the specification does not allow this interaction.

In another possible implementation, a can merge with another session that
does the job. For simplicity, we consider just one such session (the case of a
nondeterministic choice among many equivalent sessions is analogous):

(νe)l :: a ⇒ rec Y.(merge+ e.install[a ⇒ Y ]) | rec X.(νr)r B merge− e.(P |X).



In this case, the invocation in the specification is simulated by the invocation in
the implementation plus the merge. Notice that e should be bound to avoid other
sessions to come into play instead of the wanted one, and that the merge has
to be completed before a can be made available again. Similarly, r is restricted
to avoid different recursive calls to interfere. Notice that other instances create
further nested sessions, but session nesting is immaterial since only the most
internal one matters, e.g., r B r′ B P is bisimilar to r′ B P .

5 Related work and concluding remarks

Multiparty sessions are increasingly attracting the attention of researchers in
distributed computing. We have introduced µse, a process calculus tailored to
handle multiparty sessions in service oriented scenarios. The presentation in-
cludes the full formalization of the operational semantics in the SOS style and
the definition of a bisimilarity-based abstract semantics.

µse builds on ideas emerged in recent works, but adds to them several original
elements. From a technical point of view, µse communication model is inspired
by π-calculus [22] and SOC features are based on the SCC [3, 19, 7, 4] family of
calculi developed inside the Sensoria project [24]. Multiparty sessions are the
main novelty of µse with respect to SCC and they have a strong impact also on
other features. For instance, in binary sessions the intended recipient is always
understood (the other endpoint of the session), while in multiparty sessions
many recipients are possible, and an additional coordination mechanism, such
as µse channels, is needed. Also, µse and SCC differ on many design choices. For
example, the invocation of a service always opens a new session in SCC both on
the client and on the service side. In µse instead only the server session is freshly
generated. Another difference is that SCC offers more constrained forms of local
communication: pipelining [3, 4] and data streaming [19]. In this respect µse is
more similar to [7], but its communication primitives exploit the site structure
instead of the session structure as the primitives in [7]. We think that this is an
important separation of concerns aspect.

In [2] multiparty sessions are considered, but they are required to include one
master endpoint and one or more slave endpoints, and direct communication is
allowed only between the master and any slave. Our setting is more general since
sessions have no predefined structure. The simpler setting of [2] allows a type
system based on session types to be defined [15, 16, 8, 10, 13]: developing a similar
type system for our generalized setting is more challenging, and is part of our
plans for future work. In this respect, also [17, 19, 1, 20, 6] offer a good starting
point. Also, [2] uses asynchronous communications, while we use synchronous
ones.

The global calculus [8] allows for multiparty sessions, but, roughly speaking,
session identifiers are modeled just as pi-calculus channel names (freshly created
and distributed to participants during the initialization phase of the service pro-
tocol). In µse instead sessions offer a logical context for driving communication



on top of intra-session channel names. Moreover, entry points allow to dynami-
cally merge running sessions, an operation not possible in the global calculus.

Recently, global types have been introduced in [17] in order to describe conver-
sations among several participants; provided that some conditions (e.g., linear-
ity) hold, global types can be projected on and checked against each participant.
Several results on disciplined use of global types show how processes reflect-
ing well designed multiparty choreographies enjoy progress properties (i.e., well
typed processes either terminate or can interact) and session fidelity (i.e., well
typed processes interactions mimic those specified in their global types). We con-
sider [17] a very inspiring work and we are currently trying to extend the progress
and fidelity results to the dynamic setting of µse. In fact, dynamic multiparty
sessions yield a main difference between µse and the behavioural model adopted
in [17] (where the number of participants in a multiparty session is fixed). Ac-
tually, safety and liveness properties of dynamic multiparty sessions pose many
challenging and interesting research questions. For instance, progress properties
should be revisited so that well typed processes should either terminate, interact
or eventually allow session merging that do not spoil further interactions.

The intra-session communication model of µse resembles the dyadic synchro-
nisation mechanism of the polyadic pi of [9]. Roughly, the µse process r B P
can be seen as the polyadic pi process obtained from P by substituting any oc-
curence of x(w) and yv respectively by r · x(w) and r · y〈v〉. In this respect, the
intra-session communication model of µse can be thought as a disciplined use
of dyadic synchronisations. An important difference is that µse sessions can be
merged via entry points, a feature that would require some form of name fusion
on top of [9]. We leave for future work the formal comparison of the two models.

A calculus with coordination mechanism based on event/notification, called
XSC, has been introduced in [12] and can model multiparty sessions through a
type system. In XSC, components can react to events according to their types
that provide a mechanism to associate sessions to events. Though sessions cannot
be merged in XSC, its type system permits to correlate events from different
sessions. We argue that XSC can be a valid candidate for translating µse in a
framework with mechanisms reminiscent of correlation sets.

We conclude by discussing some of the possible extensions of µse.

Closing sessions. We plan to extend µse with primitives for explicit session
closure, for which nesting of sessions plays a prominent role. In fact, sessions can
confine the effect of closure mechanisms so that the part of a running session
that must be terminated can be straightforwardly determined.

In the current version of µse, session nesting is only exploited as a mechanism
for controlling intra-session communication within the same party. For example,
P and Q can carry an intra-session interaction neither in r B (P |Q) nor in
r B (P |r B Q).

Sophisticated interactions. Communication mechanisms are somehow orthogo-
nal to sessions. In fact, while CCS-like communication [21] is the obvious choice



when only two-party sessions are considered, in the presence of multiparty ses-
sions a more natural and more sophisticated alternative would be some variant of
multicast (like broadcast [11] or CSP-like interaction [14], or even some combina-
tion of different policies [5]). We contend that multiparty sessions as introduced
in µse provide a reasonable linguistic background for easily extending the cal-
culus with several sophisticated interaction mechanisms (similarly to what has
already been done for graphical languages [18]).

Acknowledgements. Authors thank Nobuko Yoshida for her valuable com-
ments and suggestions, particularly for highlighting some relationships among
µse and other proposals.
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