Zero-Safe Nets: Composing Nets
via Transition Synchronization*

Roberto Bruni and Ugo Montanari
Dipartimento di Informatica, Universita di Pisa, Italy
{bruni,ugo}@di.unipi.it

Abstract

Zero-safe nets have been introduced to extend classical Petri nets
with a primitive notion of transition synchronization. To this aim,
besides ordinary places, called stable, zero-safe nets are equipped with
zero places, which cannot contain any token in a stable marking . An
evolution between two stable markings is called transaction and can
be a complex computation that involves zero places, with the restric-
tion that no stable token generated in a transaction can be reused
in the same transaction. The abstract counterpart of a generic zero-
safe net B consists of an ordinary PT net whose places are the stable
places of B, and whose transitions are the transactions of B. The
two nets offer the refined and the abstract model of the same system,
where the former can be much smaller than the latter, because of the
transition synchronization mechanism. Depending on the chosen ap-
proach — collective vs individual token philosophy — two notions of
transaction may be defined, each leading to different operational and
abstract models. We survey the two approaches, discussing their main
properties and showing several applications.

Introduction

Place/transition Petri nets [26] (also PT nets) are unanimously regarded
as one of the most evocative models of concurrency. As a matter of fact,

*Research supported by CNR Integrated Project Metodi e Strumenti per la Proget-
tazione e la Verifica di Sistemi Eterogenei Connessi mediante Reti di Comunicazione; by
Esprit Working Groups CONFER2 and COORDINA; and by MURST project Tecniche
Formali per Sistemi Software.

this model offers a basic concurrent framework that has often been used
as a semantic foundation for system analysis and for the interpretation of
many concurrent languages [30, 14, 24, 11, 16, 3]. However, though net
transitions allow for token synchronization, the basic net model does not
offer any synchronization mechanism among transitions, while this feature is
essential to write modular and expressive programs, and to model systems
equipped with synchronization primitives. In fact, complex constructions are
required in all the above translations for defining the net associated to the
synchronous composition of two programs.

Zero-safe nets (also zs nets) extend PT nets along this direction exploiting
a simple but very general notion of transition synchronization as a built-in
feature. Zs nets are based on the notion of zero places. The leading idea is
that tokens in a zero place (called zero tokens) denote internal states of the
system, which are “invisible” at an abstract level. In addition to zero places,
a distinguished set of stable places is also present. Stable markings (consist-
ing only of stable tokens, i.e., tokens in stable places) define the “observable”
states of the system. All the other markings (i.e., those involving zero to-
kens) are called non-stable. Any evolution of a zS net must start at some
observable marking, then can evolve through hidden states and eventually
terminates into a new observable state. It follows that all the zero tokens
that are produced during the evolution must be consumed, thus enforcing
the firing of some transitions able to consume them. On the contrary, our
basic assumption on stable tokens is that if they are produced in some hidden
state, then they cannot be used until an observable marking is reached. This
means that fresh stable tokens are “frozen” along the evolution, and finally
are released by some commit that concludes the step.

We can associate to each Zs net a PT net that represents the same system
but at a different level of abstraction: The Zs net specifies how every transi-
tion of its abstract counterpart is actually refined as a different coordinated
computation (called transaction). The places of the “abstract” PT net are
the stable places of the “refined” zs net. The transitions of the PT net are the
(basic) transactions of the zs net; hence the PT net offers the synchronized
view, which corresponds to the abstraction from the hidden mechanism that
controls the token flow in zero places. We remark that in our setting the
term “transaction” denotes a certain activity of the system that might be
composed by many, possibly concurrent, coordinated sub-activities. More-
over, we require that at the right level of abstraction, where transactions are
considered as atomic activities, all the intermediate states (except the initial
and the final states) must be unobservable.

A toy example that illustrates the basic concepts of our model is given by
the zs net in Figure 1. First, notice that we extend the standard graphical

toPg tl‘ tollts
e O

Figure 1: A zs net and its abstract counterpart.

representation for nets — boxes stand for transitions, circles for places, dots
for tokens, and oriented arcs describe the flow relation — by using smaller
circles to represent zero places. In the refined model (Figure 1, on the left),
the initial marking is stable and enables the transition ¢, whose firing pro-
duces a (frozen) stable token in ¢ and a zero token in z. Hence, after the
firing of t; we reach a non-stable marking. But now ¢; is enabled and it
can consume both the stable token in b and the zero token in z, producing
a token in d. Then, the reached marking is stable and the transaction is
closed. At the abstract level, we are not interested in observing the hidden
state consisting of the stable token in b, the frozen stable token in ¢ and the
zero token in z. In fact we just consider stable places plus the atomic activity
that takes one token from a and one token from b and produces one token in
¢ and one token in d (Figure 1, on the right).

PT net semantics

The study of Zs net semantics is of course strictly related to PT net semantics.
Most of the semantics for PT nets that have been presented in the literature
can be classified as either process-oriented semantics or algebraic semantics
or unfolding semantics.

The process-oriented view describes the deterministic computations a PT
net can perform, together with some information about the causal depen-
dencies among the executed events. To this aim several different notions
of processes have been proposed and classified accordingly to the concrete
information provided/needed by their underlying structure [2, 15, 12, 21].

The algebraic semantics for PT nets focus instead both on the algebraic
structure of the computation space of a single net, and on the global struc-
ture of the class of all nets, providing useful operations that can be used to
combine nets (e.g., parallel and nondeterministic compositions). Algebraic
semantics are often carried out by means of category theory techniques, which

Figure 2: From safe nets to coherent finitary prime algebraic domains.

allow for an abstract formal framework where many notions can be straight-
forwardly formulated and many constructions find an adequate (universal)
characterization [4, 32, 18, 12, 21, 20]. Categories can be used “in the large,”
when referring to the category of nets and morphisms between them to char-
acterize their global properties (e.g., composition as universal construction),
or “in the small,” by noticing that the space of computation of each PT net
possesses a category structure itself. The latter idea has been exploited, e.g.,
in [18, 12, 21] to characterize several notion of processes as arrows of suit-
able (symmetric) monoidal categories, all relying on the main observation
that the distributivity of tensor product and arrow composition in monoidal
categories expresses the equivalence between concurrent computations.

The unfolding semantics is more oriented to a denotational interpretation
for nets, where the interplay between concurrency and nondeterminism plays
the central role. As for the algebraic semantics, category theory (in the large)
is widely employed in ulfonding semantics to justify the adequacy of the
selected assignment of denotations. In particular, the notion of adjunction
between the category of nets and the category of denotations ensures that
the assignment given by the adjoint functor is the best “possible.” This
approach has been first developed by Glynn Winskel in [31] for the subclass
of safe nets — building on previous work [23] — and then extended to PT
nets by José Meseguer, Ugo Montanari and Vladimiro Sassone [19].

In particular, in [31] it is shown the existence of the chain of coreflections
(a particularly nice form of adjunction) in Figure 2 that connects the category
Dom of coherent finitary prime algebraic domains [28] and the category Safe
of safe nets. We recall that PES is the category of prime event structures
(with binary conflict relation), which is equivalent to Dom, and Occ is the
category of (nondeterministic) occurrence nets.

In [19], the chain in Figure 2 has been extended from Occ to the general
category PTNets of PT nets via an intermediate category DecOcc of deco-
rated occurrence nets — a special kind of occurrence nets, where the places
belonging to the post-set of the same transition are partitioned into famsi-
lies, and partitions are respected by morphisms — and the two adjunctions
in Figure 3. Therefore, the adjunction between Dom and PTNets can be

Figure 3: From (marked) PT nets to occurrence nets.

obtained by merging the two chains.

We remark that the unfolding applies only to marked nets, i.e., it is always
built with respect to an initial marking, whereas both process and algebraic
semantics are usually developed for unmarked nets (but they can be easily
extended to marked nets). We refer to [20] for a more detailed description
of the relationship between the three views. We also mention that on top of
each of them, various notions of bisimulation can be defined (by assuming a
labeling of net transitions).

In this paper, apart from the classical “token game,” we will mainly rely
on the (deterministic) process approach. For the algebraic account of the
operational and abstract semantics of Zs nets, here summarized in Section 4,
we refer to [10]. Some proposal for the unfolding semantics will be discussed
in Section 5.

Collective and individual token philosophies

Since the concurrent semantics of an operational model considers as equiva-
lent all the computations where the same concurrent events are executed in
different orders, it is likely to identify those transactions which are equivalent
from a concurrent viewpoint, in such a way that the actual order of execution
of concurrent transitions in the refined net is invisible in the abstract net.
Doing this, a real dichotomy runs on the distinction between collective and
individual token philosophies (noticed e.g., in [13], but see also [6, 7] where
it is explained how the two approaches can influence the categorical, logical
and behavioral semantics of ordinary PT nets).

The simplest approach relies on the collective token philosophy (CTph),
where net semantics should not distinguish among different instances (i.e.,
tokens) of the idealized resources (i.e., places) that rule the basics of net
behaviour. Of course, this is true only if any such instance is operationally
equivalent to all the others. According to this school of thought, all those
firing sequences obtained by repeatedly permuting pairs of (adjacent) con-
currently enabled firings are identified. We call abstract stable transactions
the resulting equivalence classes of Zs net behaviours. As a major drawback,
this approach disregards that operationally equivalent resources may have

c a 5 2
() Jto ; _OC@ to = new
t, = send
2 131 ‘ I3 ‘ & i copy
. t3 = receive
) / ty = reset
b MS

Figure 4: The zs net MS representing a multicasting system.

different origins and histories, and may, therefore, carry different causality
information (e.g., selecting one instance of a resource rather than another,
may be as different as being or not causally dependent on some previous
event). Therefore, causal dependencies on zero tokens are lost and the class
of computations captured by abstract nets may be too abstract for many
applications.

An alternative approach is the individual token philosophy (ITph). Ac-
cording to the ITph, causal dependencies are a central aspect in the dynamic
evolution of a net. As a consequence, only the transactions which refer to
isomorphic Goltz-Reisig processes [15] are identified, and we call connected
transactions the induced equivalence classes. In this case, the actual order
of execution of concurrent transitions in the refined net is invisible in the
abstract net, but all the causal dependencies are preserved.

The multicasting system example

To better illustrate the concepts so far discussed, we describe a simple but
enlightening example, taken from [10]. We start by considering the zs net
MS vpictured in Figure 4. The net MS is designed to model a multicasting
system: As in a broadcasting system, an agent can simultaneously send the
same message to an unlimited number of receivers, but here the receivers
are not necessarily all the remaining agents, and thus, several one-to-many
communications can take place concurrently.

Each token in place a represents a different active agent (i.e., an agent
which is ready to communicate), while the tokens in place b are inactive
agents. The zero place z models a buffer with tokens as messages.

The transition new permits to create an unlimited number of agents.
Each firing of send opens a one-to-many communication: a message is put
in the buffer z and the agent which started the communication is suspended

3 i+1
aQaajiE=o
' 3 i1
b Aus

Figure 5: The abstract net for the multicasting system under the CTph.

until the end of the current transaction. Each time the transition copy fires,
a new copy of the same message is created. To complete a transaction, as
many firings of receive are needed as the number of copies created by copy
plus one. Each firing of receive synchronizes an active agent with a copy of
the message and then suspends the agent. At the end of a session, all the
suspended agents are moved into place b. The transition reset activates an
inactive agent.

We call copy policy any strategy for making copies of the messages in
the buffer z. For instance, the sequential one-to-n copy policy acts as fol-
lows: Once the message is produced, a firing of copy creates two copies of
the message in the buffer, one of them is retrieved by the firing of receive,
the remaining message is duplicated again by a second firing of copy, one of
the two messages is retrieved by a second agent via a second firing of receive,
and so on, until the n-th agent consumes the last copy of the message, i.e.,
the firing sequence starts with send, then repeats n — 1 times copy followed
by receive, and is concluded by the n-th receive. Another copy policy, is the
parallel one-to-n copy policy, which begins with send, then creates all the
needed copies of the message by firing copy with the maximal parallelism
allowed (e.g., for n = 8, first copy fires, then two instances of copy fire con-
currently, producing four copies of the message, then four instances of copy
fire concurrently), and at last, the n agents retrieve the n copies concurrently
(by firing n instances of receive).

According to the CTph, transactions are distinguished only if they differ
for the number of involved agents, whereas if the /Tph is adopted, then differ-
ent copy policies involving the same number of agents can be distinguished.
In Figure 5 we see the infinite abstract PT net Ayyg for the refined zs net
MS, according to the CTph (see Definition 2.6). As it will be explained
later, the abstract net Ay comes equipped with a refinement morphism €5
to the refined net MS. The refinement morphism maps each place of Ay

into the homonymous stable place of MS and defines a bijection between
the transitions of Ays and (the equivalence classes under the CTph of) the
transactions of MS. The transition o, of Apys represents a one-to-n trans-
mission, i.e., it represents any transaction which corresponds to a one-to-n
transmission. For example, provided that we have reached a marking with

at least five active agents, the sequential copy one-to-four transmission sc
defined as

scy = send-copy-receive-copy-receive-copy-receive-receive

and the parallel copy one-to-four transmission bc, informally written as

bcy, = send-copy-{ copy,copy}-{receive,receive,receive, receive}

are in the same equivalence class. In fact, it is possible to repeatedly swap
concurrently enabled consecutive transitions in scy to derive the transaction

send-copy-copy-copy-receive-receive-receive-receive,

as well as any other linearization of bcy.

On the contrary, if we take the /Tph, then different copy policies may
be distinguished. The infinite causal abstract PT net Ipg corresponding to
the refined zs net MS under the /Tph (see Definition 2.12) is displayed in
Figure 6. Also the net I} comes equipped with a causal refinement mor-
phism €}, to the refined net MS. Such morphism maps each place of Iy
into the homonymous stable place of MS, and defines a bijection between
the transitions of Iys and (the equivalence classes under the /Tph of) the
transactions of MS. We assume that the generic transition o corresponds
to the one-to-n transmission that follows the k-th codified copy policy (we
denote by ¢, the number of different copy policies associated to the one-to-n
transmission). As an example transitions o} and o? denote the equivalence
classes of sc, and bey (the two are no longer equivalent).

Zero places can be used to coordinate and synchronize in a single trans-
action any number of transitions of the refined net. Thus it may well happen
that the refined net is finite while the abstract net is infinite. This is the case
for our example, where a message can be delivered to an unlimited number
of receivers.

On process algebra encodings

The synchronization mechanism of zS net can favor a uniform approach to
concurrent languages translation. For instance, in the case of process algebras

Figure 6: The causal abstract net for the multicasting system under the /Tph.

as CCs [22], the parallel composition of two nets modeling communicating
processes involves the combinatorial analysis of all the admissible synchro-
nizations, whereas if zero places were used to model communication chan-
nels, then the parallel composition of two nets would just merge the common
channels. We will present in Section 3 a compositional representation of a
simple process algebra equipped with action prefix, parallel composition and
restriction operators. In particular, each agent will be mapped in a Zs net
(with interface) whose abstract net is able to (bi)simulate the behaviour of
the agent. Moreover, the hiding of local names to the external world is han-
dled very well, because agents that are equivalent up to a-conversion yield
isomorphic nets.

Our results are also supported by a present research by Philippe Daron-
deau and David Harlet concerning a zs net model for (the boolean component
of) the synchronous language SIGNAL [1]. This fact could be almost surpris-
ing, since nets are well suited for modeling asynchronous systems rather than
synchronous. However the basic mechanism of zs nets seems powerful enough
to capture the expressiveness of (boolean) SIGNAL primitives.

Structure of the paper

After recalling in Section 1 some basic definitions of net theory, we present
Zs nets and their operational and abstract semantics throughout Section 2,
where the simpler CTph approach is analyzed first. The operational seman-
tics for zs nets in the CTph is defined in Section 2.1.1, while Section 2.1.2
concerns the related abstract semantics. In this context, the basic evolutions
of zs nets are equivalence classes of ordinary firing sequences induced by
diamond transformation, and are called abstract stable transactions. To il-
lustrate the /Tph versions, in Section 2.2.1 we introduce the notion of causal
firing sequence, which allows for a concise representation of concatenable
processes, and has a suggestive implementation on a machine whose states

are collections of token stacks. Then, we define the evolution of a Zs net in
terms of the equivalence classes of causal firing sequences induced by isomor-
phic underlying processes. As for the CTph based approach, in Section 2.2.2,
ordinary PT nets are defined as the abstract counterparts of zs nets.

In Section 3, we show a simple application of zs nets in the modeling of
ccs-like process algebras. In Section 4 we summarize the universal properties
of abstract nets and give an account of how the operational and abstract
semantics can be recovered using the algebraic/categorical approach.

In Section 5 we sketch some preliminary ideas concerning the unfolding
of zs nets, which could suggest a deep insight in the implementation of dis-
tributed transactions.

Related work. zs nets have been introduced in [8], where their semantics
is discussed under the CTph. The ITph approach has been developed in [9]. A
comparison between the two approaches and several applications have been
discussed in [10] and in the PhD Thesis of first author [5]. A discussion on
related approaches to net refinement/abstraction can be found in [10, 5].

1 PT nets

DEFINITION 1.1 (NET)

A net N is a triple N = (Sn, Ty, Fy), where Sy is the (nonempty) set of
places a,d', ..., T is the set of transitions t,t,... (with Sy N Ty = (), and
Fn C(Sy xTn)U(Ty x Sy) is called the flow relation. The elements of the
flow relation Fy are called arcs and we write xFyy for (z,y) € Fy.

We will denote SyUTy by N whenever no confusion arises, and subscripts
will be omitted if they are obvious from the context. For x € N, the set
v = {y € N | yFz} is called the pre-set of z, and the set z* = {y € N | zFy}
is called the post-set of z. We only consider nets such that any transition
t has non-empty pre-set. Moreover, let °N = {z € N | * = 0} and
N° ={z € N | z* = 0} denote the sets of initial and final elements of N
respectively. A place a is said to be isolated if *aUa® = 0.

DEFINITION 1.2 (PT NET)
A marked place/transition Petri net (also PT net) is a 5-tuple

N:(SaTaFamuin)

such that (S,T,F) is a net, the function W : F — IN assigns a positive
weight to each arc in F, and the finite multiset uy, : S — IN is the initial
marking of N.

It is convenient to interpret the relation F' as a function
F:((SxT)u(T xS8))—{0,1},

assuming zFy <= F(z,y) # 0. In fact, for nets with weighted arrows
we may safely replace {0,1} by IN and abandon W. Thus, the relation F
becomes a multiset relation

F:(SxT)U(T xS)—N.

A marking u : S — IN is a finite multiset of places. It can be written either
as u = {nias,...,ngax} where each n; dictates the number of occurrences
(tokens) of the place a; in u, ie., n; = u(a;) (if n; = 0 then the n;q; is
omitted), or as a formal sum u = @, ¢ n:a; denoting an element of the free
commutative monoid S% on the set of places S (the order of summands is
immaterial and the monoidal composition is defined by taking (€, n;a;) @
(P; mia;) = (B;(n; + m;)a;) and 0 as the neutral element).

For any transition t € T, let pre(t) and post(t) be the multisets over S
such that pre(t)(a) = F(a,t) and post(t)(a) = F(t,a), for alla € S.

DEFINITION 1.3 (ENABLING, FIRING AND FIRING SEQUENCE)
Given a PT net N, let u and u' be markings of N. Then a transition t € Ty
is enabled at u if pre(t)(a) < u(a), for all a € Sy.

Moreover, we say that u evolves to u' under the firing of t, written u[t)u',
if and only if t is enabled at u and u'(a) = u(a) — pre(t)(a) + post(t)(a), for
alla € S.

A firing sequence from ug to u,, is a sequence of markings and firings such
that ug[t1)uy...un 1[tn) Uy

Given a marking u of N the set [u) of its reachable markings is the smallest
set of markings such that u € [u), and moreover, for any v’ € [u) such that
u'[t)u” for some transition ¢, then u” € [u) (i.e., it is closed w.r.t. firings).

DEFINITION 1.4 (REACHABLE MARKINGS OF N)
The reachable markings of the net N = (S, T, F, u;,) are the elements of the
set [uy,), 1.e., the markings that are reachable from the initial marking of N.

Besides firings and firing sequences, steps and step sequences are usually
introduced. A step allows for the simultaneous execution of several concur-
rently enabled transitions, i.e., the execution of a multiset of transitions.

A multiset X : T"— IN is enabled at w if for all ¢ € Sy

Z X(t) - pre(t)(a) < u(a).

teT

We say that u evolves to v’ under the step X, written u[X)/, if and only
if X is enabled at v and for all a € S

u'(a) = u(a) + > X(t) - (post(t)(a) — pre(t)(a)).

teT

The notion of process has been introduced by Ursula Goltz and Wolfgang
Reisig [15] to deal with a more informative semantic account of the causal
relationships between firings and instances of resources.

DEFINITION 1.5 (OCCURRENCE NET AND PROCESS)
A net K is a (deterministic) occurrence net if for alla € Sk, |%a| < 1A|a®| < 1
and F}; is acyclic,! (i.e., for all z,y € K, xFiy ANyFrr = x =y).

A (Goltz-Reisig) process for a PT net N is a mapping P : K — N, from
an occurrence net K to N, such that P(Sk) C Sy, P(Tx) C Ty, °K C Sk,
and for allt € Tk, a € Sy,

Fy(a, P(t)) = |P " (@) *

A Fy(P(t),a) = [P (o) N1°

Two processes P and P’ of N are isomorphic and thus identified if there
exists an isomorphism 1 : Kp — Kp such that ¢; P’ = P. As usual we
denote the set of origins (i.e., minimal or initial places) and destinations (i.e.,
final or maximal places) by O(K) = °K and D(K) = K° N Sk, respectively.

Concatenable processes [12] are obtained from processes by imposing a to-
tal ordering on the origins that are instances of the same place and, similarly,
on the destinations.

DEFINITION 1.6 (CONCATENABLE PROCESS)
Given a set S with a labeling function [: S — S’, a label-indexed ordering
function for [is a family 3 = {(3,}ascs of bijections, where

)]}

A concatenable process for a PT net N is a triple C = (P, %, (°) where
P: K — N isaprocess for N, and %, {° are label-indexed ordering functions
for the labeling function P restricted to O(K) and D(K) respectively.

Bo:17Ha) = {1,...,

Two concatenable processes C and C' are isomorphic if Po and P are
isomorphic via a morphism that preserves all the orderings.

A partial binary operation _;_ (associative up to isomorphism and with
identities) of concatenation of concatenable processes (whence their names)
can be easily defined: we take as source (target) the image through P of the

LEF* denotes the reflexive and transitive closure of relation F.

initial (maximal) places of Kp; then the composition of C' = (P, %, £°) and
C' = (P', %', 0°) is realized by merging, when it is possible, the maximal
places of Kp with the initial places of Kp: according to their labeling and or-
dering functions so to match these places one-to-one. Concatenable processes
admit also a monoidal parallel composition - ® _, which can be represented
by putting two processes side by side. We refer the interested reader to [12]
for the formal definitions of C; C’ and C ® C’, which make the concatenable
processes of a PT net NV the arrows of a symmetric monoidal category P(N).
We conclude this introductory section by recalling the notion of safety.

DEFINITION 1.7 (n-SAFE NETS)

A place is n-safe if it contains at most n tokens in any reachable marking. A
net is n-safe if all its places are n-safe. A net is safe if a bound can be given
for the number of tokens in each place (for all reachable markings), i.e., if
there exists n € IN such that for all u € [ui,), and for all a € S, we have
u(a) < n.

2 Zero-safe nets

We augment PT nets with special places called zero places. Their role is
to coordinate the atomic execution of several transitions, which, from an
abstract viewpoint, will appear as synchronized. However no new interaction
mechanism is needed, and the coordination of the transitions participating
in a step is handled by the ordinary token-pushing rules of nets. Notice that,
whereas in the standard terminology a n-safe net is a net whose places are all
n-safe, in the case of zero-safe nets only a subset of places (the zero places)
are required to satisfy a O-safe condition w.r.t. observable markings.

DEFINITION 2.1 (ZS NET)

A zero-safe net (also zs net) is a 5-tuple B = (Sg, Tg, Fg, up, Zg) where
Np = (Sg, Tg, Fp, ug) is the underlying PT net and the set Zg C Spg is the
set of zero places. The places in S\ Zp are called stable places. A stable
marking is a multiset of stable places, and the initial marking of B must be
stable.

Stable markings describe observable states of the system, whereas the
presence of one or more zero tokens in a given marking marks it as unob-
servable. We call stable tokens and zero tokens the tokens that respectively
belong to stable places and to zero places.

2.1 Collective token approach
2.1.1 Operational semantics

A stable step of a zs net B may involve the execution of several transitions
of the underlying PT net Ny (it is actually a firing sequence of Ng). At
the beginning, the state must contain enough stable tokens to enable the
stable pre-sets of all these transitions at the same time. As the computation
progresses, the firings can only consume the stable tokens that were also
available at the beginning of the computation and the zero tokens that have
been produced by some fired transition. However, no zero token can be left
at the end of the computation (nor can belong to the starting configuration).

A stable step whose intermediate markings are all not stable and which
consumes all the available stable tokens is called stable transaction. Stable
step sequences are sequences of stable steps. In a certain sense, each stable
step can be thought of as a collection of stable transactions plus a collection of
idle resources; hence from stable transactions we can derive all the activities
of the system.

DEFINITION 2.2 (STABLE STEP, TRANSACTION AND STEP SEQUENCE)
Let B be a zs net. A firing sequence s = ug[t1)u; ... Up—1[tn)u, of the
underlying net Npg is a stable step of B if:

o Vo € Sg\ Zp, X7 pre(ti)(a) < up(a) (concurrent enabling);

e uy and u, are stable markings of B (stable fairness).

We write uy{s)u,, to denote the stable step s, and O(s) and D(s) to denote
the markings uy and u, respectively.
A stable step s is a stable transaction of B if in addition:

e markings uq, ..., u,_1 are not stable (atomicity);
e Vae S\ Zg, Y pre(t;)(a) = ug(a) (perfect enabling).

A stable step sequence is a sequence uo{[s1)uy ... u, 1{Sn)u,. We also say
that u,, is reachable from uy and we write u, € {ug). Sometimes we will
denote the set {fug) of reachable (stable) markings of B by {{B).

We recall the main assumption that stable tokens produced during the
transaction become operative in the system only at the end of the transaction
(i.e., after the firing of the commit transition ¢,).

ExAMPLE 2.1 Consider the zs net MS of Figure 4.

The firing sequence {2a}[t1){a, b, z}[ts){2a, z}[ts){a, b} is not a stable step
since the concurrent enabling condition is not satisfied, in fact pre(t,)(b) +
pre(ts)(b) + pre(ts)(b) =1 £ 0).

The sequence {4a}[t1){3a,b, z}[t2){3a, b, 22}[t3){2q, 2b, z}[ts){a, 3b} is a
stable step but not a stable transaction since the perfect enabling condition s
not satisfied (pre(t1)(a) + pre(ta)(a) + 2pre(ts)(a) =3 < 4).

The firing sequence s' = {2a, b}[t1){a, 2b, z}[t3){3b}[ts){a, 2b} is a stable
step but not a stable transaction since the atomicity constraint is not satisfied
(the inner marking {3b} is stable).

The firing sequence s" = {2a,b}[t;){a, 20, 2}[ts){2a, b, z}[t3){a, 20} is a
stable transaction (as opposed to the first sequence of this example that starts
from the marking 2a mimicking s").

The concurrent semantics of an operational model is usually defined by
considering as equivalent all the computations where the same concurrent
events are executed in different orders. In the case of PT nets, the simplest
approach relies on the CTph, which identifies all the firing sequences obtained
by repeatedly permuting pairs of consecutive firings which are concurrently
(i.e., independently) enabled [17]. Thus, Definition 2.3 allows for a more
satisfactory notion of stable step (transaction) in a concurrent setting.

DEFINITION 2.3 (DIAMOND TRANSFORMATION)

Given a PT net N, let s = uglti)uy - - Ui 1[ti)ui[tiz1)Uiv1 - - - Up_1[tn)un be
a firing sequence of N, where t; and t;11 are concurrently enabled by u;_1,
ie., pre(t;)(a) + pre(tiv1)(a) < u;—1(a) for any place a. Let s' be the firing
sequence obtained by permuting the firing ordering of t; and t;,1, i.e.,

s' = wolti)uy -+ - ui [t)uilt) iy - - Un 1 [t)Un-
The sequence s' is a diamond transformation of s.

Diamond transformations define a symmetric relation whose reflexive and
transitive closure gives the right equivalence w.r.t. the CTph interpretation.
Note that equivalent sequences have the same origin (1) and the same des-
tination (uy,).

DEFINITION 2.4 (ABSTRACT SEQUENCE)

Equivalence classes of sequences (w.r.t. diamond transformations) are called
abstract sequences and are ranged over by o. The abstract sequence of s is
written [s]. We also write pre([s]) = O(s) and post([s]) = D(s) to denote
respectively the origins and the destinations of [s].

DEFINITION 2.5 (ABSTRACT STABLE STEP AND TRANSACTION)
Given a 7S net B, an abstract stable step is an abstract sequence [s] of the
underlying net Ng, where s is a stable step. An abstract stable transaction
is an abstract sequence of N that contains only stable transactions of B.
We denote by Y the set of all abstract stable transactions of B.

The equivalence induced by diamond transformations preserves stable
steps (because the diamond transformation preserves the properties of con-
current enabling and of stable fairness required by Definition 2.2) but not
stable transactions. Generally speaking, the problem is that two stable trans-
actions that are concurrently enabled could be interleaved in such a way that
the resulting sequence is a stable transaction. Of course, such transaction
cannot be considered as a representative of an atomic activity of the system,
because it can be expressed in terms of two concurrent sub-activities. Thus,
it is not enough to require s to be a stable transaction to make sure that [s]
is an abstract stable transaction, and we need a stronger constraint, namely
that all the sequences in the equivalence class are stable transactions.

EXAMPLE 2.2 As a counterexample showing that stable transactions are not
preserved, consider the stable steps s' and s" defined in Example 2.1. It is
easy to verify that [s'] = [s"], since " is obtained from s' by a diamond
transformation. However s" is a stable transaction whereas s' is not. Thus
[s"] is not an abstract stable transaction.

Conversely, the firing sequence

s = {4a}[t1){3a,b, z}[t2){3a, b, 22}[t2){3a, b, 32}[t3){2a, 2b, 22}[t5){a, 3b, z }[t3){4b}

defines an abstract stable transaction [s]. In fact the stable transaction

5 = {4a}[t1){3a, b, z}[t2){3a, b, 22}[ts){2a, 2b, 2 }[t2){2a, 2b, 22 }[t3){a, 3D, 2 }[t3){4b}

is the unique diamond transformation of s (and vice versa).

2.1.2 Abstract semantics

According to the CTph, since the basic execution steps of a system modeled
via ZS nets consist of abstract stable transactions, it is natural to define a
high-level description of such a model as a net whose transitions are abstract
stable transactions.

DEFINITION 2.6 (ABSTRACT NET)
The abstract net of a zs net B = (Sg,Ts, Fg,up, Zp) is the net Ap =
(S \ ZB, Y, F,up), with F(a,0) = pre(c)(a) and F(o,a) = post(c)(a)

for all a € Sp\ Zp and o € Yp, is the abstract net of B (we recall that
pre(o) and post(o) yield the first and last marking of any stable transaction
in the equivalence class of o, and that Y g is the set of all the abstract stable
transactions of B).

EXAMPLE 2.3 Let MS be the zs net of our running ezample and let {c} be

its initial marking. Consider the following firing sequences of the underlying
net Nys of MS:

Snew = {C}[t()){a,, C}a
= {b}ta){a},
s1 = {2a}[ti){a,b, z}[t3){2b},

ST‘@S

si = {4+ 1)a}[ti){ia,b, z}[ts) - - - [t2){ia, b, iz}[ts) - - - [t3){ (i + 1)b},

where s; hast — 1 firings of ta and © firings of ts.

Thus Yys = {t4,th, 01, 04 ...} with ty = [Snew], th = [Sres] and
o; = [si], for i > 1. The (infinite) abstract net Ays of MS is (partially!)
depicted in Figure 5. It consists of three places and infinitely many transi-
tions: One transition for creating a new active process, one for reactivating a
process after a synchronization, and one for each possible multicasting com-
munication involving a different number of receivers.

2.2 Individual token approach

In this section, the basic activities of zS nets are defined accordingly to
the ITph. As we will see, this choice has a great impact on the resulting
notion of transaction. To better understand the difference between the two
philosophies, we propose the following example.

EXAMPLE 2.4 Let MS be the net in Figure 4, and suppose that the current
marking is {a,b}. If ty fires then a new token is produced into place a. A
firtng of t1 consumes a token from place a.

e In the individual token approach, it makes a difference if t1 gets the
token produced by ty or the one already present in a (in the former case
the firing of t1 causally depends on that of ty while in the latter case
the firings of t; and of t4 are concurrent activities).

e In the collective token approach the two firings are always concurrent,
since the initial marking enables both t1 and ty, i.e., the execution of t4
does not modify the enabling condition of t1. Thus t; and ty, may fire
. any order always originating equivalent computations.

2.2.1 Operational semantics

In the /Tph, a marking can be thought of as an indexed (over the places of
the net) collection of ordered sequences of tokens. Moreover, the firing of
a transition specifies which tokens (of each ordered sequence) are consumed
and also the correspondence between each token in the reached marking with
either some produced token or an idle token of the original marking. Using
multisets instead of ordered sequences would make it impossible to recognize
which token was produced by which firing, as it happens for the CTph.

The stack based approach. The approach we propose is very similar
to the one adopted in [27]: We choose a canonical interpretation of the
tokens that have to be consumed and produced in a firing and we introduce
permutation firings with the task of rearranging the orderings of the indexed
sequences of tokens. A marking is represented as a collection of stacks, one
for each place. Therefore, the extraction and the insertion of tokens follow
the LIFO policy. However, permutation firings are introduced to modify
the token positions in the stacks. Informally, permutation firings permit
to choose which tokens to consume next. We will denote the token stack
associated to a place a by the term a-stack.

DEFINITION 2.7 (CAUSAL FIRING)

Let N be a PT net, and s = u[t)u’ be a firing of N for some marking u and
transition t. We interpret the firing s as a causal firing by assuming that s
consumes the first pre(t)(a) tokens of the a-stack of u and produces the first
post(t)(a) tokens of the a-stack of u', for each place a.

DEFINITION 2.8 (PERMUTATION FIRING)

Let N be a PT net. Given a marking u = {nq,a}.cs, of N, a symmetry p on
u is a vector of permutations p = (7,)acsy With m, € II(n,), for all a € Sy,
i.e., each 7, is a permutation of n, elements. We denote by I1(u) the set of
all symmetries on u. Fach symmetry p on u induces a permutation firing
s = u[p)u on the net.

DEFINITION 2.9 (CAUSAL FIRING SEQUENCE)
Given a PT net N, a causal firing sequence is a finite sequence w = sy - -- 8,
of causal and permutation firings such that s; = u;_1[x;)u; with z; € T U

M(u;_1) fori=1,...,n. We say that w starts at ug (written O(w) = ug) and
ends in u, (written D(w) = u,).

EXAMPLE 2.5 Let Nys be the underlying net of the zs net MS defined in
Figure 4 (i.e., in Nys we do not distinguish between stable and zero places).
A causal firing sequence for Nyg is

w = {b, c}[to){a, b, c}[ts){2a, c}[t1){a,b, c, z}[t3){2b, c}.

At the beginning of w both the a-stack and the z-stack are empty whilst
the b-stack and the c-stack contain one token each. After the firing of ty, the
token in the c-stack is replaced by a new one and a token is also inserted in
the a-stack. The firing of t, consumes the token in the b-stack and puts a
new token on top of the a-stack. The firing of t; consumes the token on top
of the a-stack (the one produced by the firing of t4) and produces a token in
the b-stack and a token in the z-stack. The firing of t3 consumes the token
in the z-stack and also the token produced by the firing of to in the a-stack;
then, it inserts a token on top of the b-stack.

To represent the sequence in which t1 depends on ty and t3 depends on
ty, we have two possibilities. The first one is to execute ty after ty (they are
concurrently enabled), thus obtaining the sequence

W' = {b, c}ts){a, c}to){2a, c}[t1){a,b,c, 2}[t3){2b, c}.

The second possibility is to reorganize the a-stack just before executing ti.
This can be done via the symmetry p = (7q, Tp, T, T,), where m, and 7, are
the empty permutations in I11(0), 7, = {1 — 2,2 — 1} € [1(2), and 7. is the
unique identity permutation in I1(1). We obtain the sequence

" ={b, c}to){a, b, c}[ts){2a, c}[p){2a, c}[t1){a, b, c, 2}[t3){2b, c}.

Causal firing sequences precisely characterize the token flow. This is due
to the implicit orders which are imposed on the markings and is strictly
related to a process view of computations, and in particular to concatenable
processes (see Definition 1.6).

It may be easily noticed that each causal firing sequence uniquely de-
termines a concatenable process. Informally the construction associates an
elementary (concatenable) process to each causal and permutation firing.

From causal firings to processes. Let N be a PT net and s = u[t)u’ be a

causal firing, with u = {nsa}ecsy, pre(t) = {hea}acsy, Post(t) = {kaa}acsy -
The concatenable process pr(s) = (P : K — N, %, £°) is defined as follows:

o Tx ={t}, P(t) =t;
o Sk ={a;|a €Sy, 1<i<n,+ke}, with P(a;) =

o t={a|a€ Sy, 1<i<hy},t*=1a|a€ Sy, hat1l <i < ho+k,}.
Therefore

- OK)={a, € Sk |i<hyVi>h,+ks+1} and
— D(K):{dZGSK|ZZha+1},

? itl1<i<h,

QV&iEO(K),Oﬁa(ai)Z{ i—ky ifhe+1+ky <i<ng+ ke

e Va, € D(K), ZZ(&l) =1— hg.

A brief explanation is necessary: the occurrence net K contains a unique
transition ¢ (which is mapped in the transition ¢ of N), and a place for each
consumed, produced, and idle token of s. For each place a € Sy we need
exactly n, + k, different places in Sx. We denote the generic i-th place
associated to place a by @;. The set {a; | a € Sy, 1 < i < h,} represents
the tokens which are consumed by the causal firing of ¢, i.e., the first h,
tokens of each a-stack in the starting state. The set {a; | a € Sy, he +1 <
i < hg + k,} represents the tokens which are produced by the causal firing
of ¢, i.e., the first k, tokens of each a-stack in the ending state. The set
{@;| a € Sy, ha + ko +1 <i<n,+k,} contains the remaining idle tokens,
i.e., the last n, — h, tokens of each a-stack of both u and u'. Functions %
and ¢° are defined accordingly to these assumptions.

From permutation firings to processes. Let N be a PT net and s =
u[p)u’ be a permutation firing, with u = {nsa}eesy and p = (m)4esy- The
concatenable process pr(s) = (P : K — N, %, ¢°) is defined as follows:

o T =0 (it follows that O(K) = D(K) = Sk);

o Sk ={a|a€ Sy, 1<i<n,}, with P(&) = a;
o Vi; € O(K), % (a;) =i

o Vi, € D(K), £2(a;) = ma(0).

In this case the set of transitions is empty and all the tokens remain idle.
The generic place a; of £ denotes the instance of place a which corresponds
to the i-th token (from the top) of the a-stack of the starting state. The re-
organization induced by the permutation firing is realized by differentiating
the functions % and ¢°.

From causal firing sequences to processes. The concatenable process
associated to a (finite) causal firing sequence is given by the sequential com-
position of the concatenable processes associated to each step of the given
sequence. In what follows we denote by pr(w) the concatenable process as-
sociated to the causal firing sequence w (up to isomorphism).

EXAMPLE 2.6 The concatenable processes derived from the sequences w, w'
and w" of Example 2.5 are presented in Figure 7. We use the standard
notation that labels the places and transitions of the occurrence net K with
their images in N. A superscript for any initial place and a subscript for
any final place denote respectively the value of °¢ and £°. The construction
of pr(w") is explained in detail by making explicit the concatenable processes
associated to each firing component of w".

Terminology. A process is active if it includes at least one transition,
inactive otherwise. An active process is decomposable into parallel activities
if it is the parallel composition of two (or more) active processes. If such
a decomposition does not exist, then the process is called connected. A
connected process may involve idle places, but it does not admit disjoint
activities. The resources which are first produced and then consumed (i.e.,
the inner places) are called evolution places.

More formally, a concatenable process C = (P : K — N, %, {°) is con-
nected if and only if the set of transitions of K is non-empty and moreover, for
each pair (t,t') of transitions of K there exists an undirected path (through
the arcs of the flow relation) connecting ¢ and #'. Process C is full if it does
not contain idle (i.e., isolated) places. Finally, the set of evolution places of
process C is the set E¢c = {P(a) |a € K, |%| = |a®| = 1}.

Connected transactions. A causal firing sequence is essentially a “lin-
earization” of a (concatenable) process and more than one sequence may
correspond to the same (up to isomorphism) concatenable process. In fact,
sequences differing in the order in which concurrent firings are executed or in
the way equivalent symmetries are performed are equivalent. For example,
repeatedly swapping two tokens (of the same place) for an odd number of
times is equivalent to apply the swap just once.

We will consider the equivalence over sequences induced by isomorphic
processes. Moreover, for the kind of sequences under consideration, the label-
indexed ordering functions of origins and destinations are no longer impor-
tant, so we define the equivalence on the underlying Goltz-Reisig processes,
rather than on the concatenable processes.

Ob

Figure 7: The concatenable processes for w”, w', and w of Example 2.5.

DEFINITION 2.10 (EQUIVALENT CAUSAL FIRINGS)

Let N be a net and w,w' be two causal firing sequences. We say that w and
w' are causally equivalent, written w ~ ' iff pr(w) = (P : K — N, %, (°)
and pr(w') = (P' : K' — N, %', ¢"°) with process P isomorphic to P'. The
equivalence class of w is denoted by [w]~. We use £ to range over equivalence
classes. Since relation ~ respects the initial and final marking, we extend
the notation letting O(§) = O(w) and D(§) = D(w), for £ = [w]~.

In the ITph, state changes are given in terms of connected steps, which may
involve the concurrent execution and synchronization of several transitions.

DEFINITION 2.11 (CONNECTED STEP AND TRANSACTION)
Given a 7s net B, let w = sy - - - s, be a causal firing sequence of the under-
lying PT net Np. The equivalence class £ = |w]y is a connected step of B,

written O(&)[€)D(€), if:

e O(w) and D(w) are stable markings (stable fairness);

e By € Zp (atomicity).

A connected step sequence is a sequence ug[&1)uy ... Uy_1[En) Uy of con-
nected steps, and we say that u,, is reachable from uy.
Furthermore, the connected step & is a connected transaction of B if:

e pr(w) is connected;
e pr(w) is full.

We denote by Ep (ranged by) the set of connected transactions of B.

As for the CTph approach, a connected step may be applied if the start-
ing state contains enough stable tokens to enable all the transitions indepen-
dently, and no token may be left on zero places at the end of the step (nor
may be found on them at the beginning of the step). This means that all
the zero tokens which are produced are also consumed in the same step, and
defines the synchronization mechanism. A connected transaction is a con-
nected step such that no intermediate marking is stable, and which consumes
all the available stable tokens of the starting state. Connected steps differ
from stable steps in that they allow for a finer causal relationship among
firings. Let us point out that all conditions in Definition 2.11 impose con-
straints only over the Goltz-Reisig process associated with pr(w), thus the
proof of the following proposition is straightforward.

tl O 4
A a2 Oa® Oaj
O |
, t
14 B
a’ |-
by

,) b
t O,
T

Figure 8: The concatenable processes pr(w;) (left) and pr(w,) (right).

ProrosiTION 2.1
Conditions “stable fairness,” “atomicity,” “connectedness,” and “fullness”
(see Definition 2.11) are preserved by the equivalence =s.

The fact that connected transactions denote basic computations follows
immediately from the connectedness of the associated processes (e.g., a trans-
action cannot be decomposed in two disjoint activities, because they must
interact by definition of connectedness). Fullness ensures the absence of idle
resources.

EXAMPLE 2.7 Let us consider the 7zs net MS of Figure 4.
The equivalence class of the causal firing sequence

wy = {a}[t){b, 2}[t){a, 2}[t3) {b}

is not a connected step since the “atomicity” requirement is not fulfilled.
More precisely, this sequence defines a communication between an agent and
itself, which is forbidden (see Figure 8, the net on the left).

The equivalence class of the causal firing sequence

wy = {4a}[t1){3a, b, z}[t2){3a, b, 22}[t5){2a, 2b, 2}[t3){a, 3b}

18 a connected step but not a connected transaction since the associated pro-
cess is not full (see Figure 8, the net on the right).
The equivalence class of the causal firing sequence

ws = {2a, c}t1){a, b, c, z}[t3){2b, c}[to){a, 2b, c}

Qo Q= Q¢
Ho: i
ébz

> O —

ts | K
ébl é“lf"@ 1
Figure 9: The concatenable process pr(ws).

18 a connected step but not a connected transaction since the associated pro-
cess is not connected (see Figure 9).
The equivalence class of the causal firing sequence

{5a}tn){- - -}t2){- - -He2){- - -} {- - - HEa){- - - HEa){- - - HEa) - - -}Es) {50}

(where the obvious intermediate markings have been omitted), is a connected
transaction.

2.2.2 Abstract semantics

Also in the ITph based approach it is possible to define an abstract view of
the systems modeled via zero-safe nets. As for the CTph, since transactions
rewrite multisets of stable tokens, it is natural to choose a net as a candidate
for the abstraction. Furthermore, since the ordering of tokens in the pre-set
(post-set) of a transition is useless we should abstract from it. This is already
achieved because we consider equivalence classes of causal firing sequences
which denote different Goltz-Reisig processes.

When restricted to connected steps, this equivalence intuitively corre-
sponds to limiting the symmetries of permutation firings to be vectors of
permutations over zero places only, with the assumption that the stable to-
kens which are produced in a transaction are not reused during the same
transaction. The last statement was also the basis for the CTph approach.

ExAMPLE 2.8 Consider the zs net MS in Figure 4, and let s denote the
permutation firing {2a}[p){2a}, where p € 1I(2a) is the symmetry which
swaps the two tokens in the place a, let s' = {2b}[p'){2b}, where p' € I1(2b)
18 the symmetry which swaps the two tokens in the place b, and let w =
{2a}[t1){a, b, z}[ts){2b}. Clearly the causal sequences w, sw, and ws' define
the same connected transaction & = [w]x, but pr(sw) # pr(w) # pr(ws’). If
we represent the connected transaction & as a transition t of a net, then its
pre-set (as well as its post-set) is an unordered multiset. This means that

when t fires it 1s impossible to distinguish among the tokens in a and in b
that it produces and consumes. It follows that it makes no sense to have
many different transitions to represent behaviours that we cannot reproduce
at the abstract level. Thus we are forced to identify pr(sw), pr(w), pr(ws’),
and also pr(sws').

DEFINITION 2.12 (CAUSAL ABSTRACT NET)

Let B = (SB,TB,FB,UB,ZB) be a zs net. The net Ig = (SB\ZB,EB,F, UB),
with F(a,0) = pre(d)(a) and F(§,a) = post(d)(a), is the causal abstract net
of B (we recall that pre(d) and post(d) denote respectively the multisets O(0)
and D(0), and that =g is the set of all the connected transactions of B).

We conclude this section by examining the causal abstract net of our
multicasting system.

EXAMPLE 2.9 Let MS be the zero-safe net defined in Figure 4. Its causal
abstract net Iys is (partially!) depicted in Figure 6. We now comment on
the possible connected transactions. Transition tj is the basic activity which
creates a new communicating process and it corresponds to [{c}[to){a, c}]~-
Similarly t, is the equivalence class of the firing {b}[ts){a}. Each ¥ describes
a different one-to-i communication. The index k identifies the copy policy
under consideration. For each 1, we denote by c; the number of different
copy policy for the communication one-to-i.

Essentially, a generic one-to-i communication can be described as follows:
a firing of t1 initiates the communication, then the system executes as many
firings of ty as the number of copies of the message that are needed (i.e., i—1
since a message is already present in the buffer), and finally i firings of ts
synchronize the remaining v messages with v active processes. The individual
token philosophy distinguishes among tokens created by different firings in
the same place. In this way we have a one-to-one correspondence among
copy policies and the complete binary trees® with ezactly i leaves. For any
i € IN (i #0), the total number of copy policies ¢; can be defined recursively
as below (see [10]):

1 if i=1
=1 Xhicici if 3heN,i=2h+1
alatd y yhle ¢, ; if 3heN,i=2h

2We recall that a binary tree is complete if any internal node has exactly two children
and we do not distinguish between left and right children.

SYNg out,

Mg

Figure 10: The zS net Z,.

3 Concurrent language translation

In this section we give some general hints for modeling ccs-like communica-
tion mechanism by Zs nets. The idea is to represent each channel by a pair
of zero places, one for input and one for output, and to model each input
(output) action on a channel with a transition that produces a token on the
input (output) zero place associated to that channel. A special transition,
also associated to the channel, is enabled by a token in the input and a to-
ken in the output zero place. If the channel is restricted, this is the only
transition that can consume those tokens, thus synchronizing the input and
output actions that produced the tokens. If the channel is not restricted, two
additional transitions can consume the tokens separately.

More precisely, for every channel name a we define a zS net Z, consisting
of two zero places a! and a?, and three transitions in,, syn,, and out, as
depicted in Figure 10. We denote by Z({ai, ..., a,}) the zs net obtained as
the disjoint union of Z,,,...,Z, , where {ai,...,a,} is any set of channel
names.

DEFINITION 3.1 (INTERFACED NET)

A {ay, ..., a, }-interfaced net is a triple (B,{a1,...,a,}, P), where B is a 7S
net — in our translation the initial marking will always be a set — and P is
an injective mapping from Z({as,...,a,}) to B, which preserves the ZS net
structure. The set of names {ay, ..., a,} is also called the interface of the net.

We consider a simple process algebra (SPA) equipped with the operations
of inaction nil, input and output action prefix a._ and a._, parallel compo-
sition _|_, and restriction _\a, i.e., the agents of the process algebra SPA are
defined by the grammar

pu=mnil | ap [ap [p\a | plp.

Other operations, such as nondeterministic sum and recursion, could also
be added, with limitations similar to those described in the literature for the
existing approaches. The operational semantics for SPA agents is given in

p—q

= p & {a,a}
ap —=p ap —p e - ¢\a
p g P g p Ny p =g
plr 5 q|r plp’ = qld’ rlp -5 rlq

Table 1: sos rules for the simple process algebra SPA.

Table 1 using the SOs style [25]. We let y range over input (a), output (a)
and silent (7) actions and let A range over input/output actions.

Each agent p is modeled by an fv(p)-interfaced net [p],s, where the set
fu(p) is the set of the free (i.e., non-restricted) channel names in p. The
definition of [p],s is given by initiality (i.e., it is the unique SPA-algebra
homomorphism from the term algebra), and thus it is enough to define the
corresponding operations on interfaced nets.

Inaction. The inactive net nil is a (-interfaced net (B,),), where B con-
sists of a single place that contains one token in the initial marking.

Action prefix. The interfaced net a.(B, AU {a}, P) is given by adding a
new stable place b and a new transition ¢ to B. The initial marking consists
of a token in b. Transition ¢ takes a token in b, and produces the initial
marking of B plus a token in the zero place P(a?). If the name a is not
contained in the interface of the given net, then also a copy of Z, has to
be added, and the injective mapping P is extended in the obvious way. A
similar construction is defined for an output action prefix a.p (we substitute
a! for a? in the post-set of the new transition ¢).

Parallel composition. We let (By, A1, P1)|[(By, As, Py) = (B, AU Ay, P),
with B given by the union of B; and By where only P;(Z(A4; N Ay)) and
Py(Z(A; N Ay)) are identified, and with the mapping P given by the union
of P, and P,. The initial marking of B is the union of the initial markings
of By and Bs.

Restriction. We define (B, AU {a}, P)\a = (B', A, P'), with B’ = B\
{P(in,), P(out,)} and P'is P restricted to Z(A). If a does not appear in
the interface, then (B, A, P)\a = (B, A, P)

The image of Z(fv(p)) in B (via P) plays the role of the interface, since it
is the only part of the net [p],s that is modified by the construction defined
above: It can be increased (as in the case of action prefix), it can be merged
with another interface (as in the case of parallel composition) and it can also
be restricted (as in the case of the restriction operator).

Since each transition of the interfaced nets associated to the agents con-
sumes and produces at most one token in each zero place and there is no
transitions from zero places to zero places, it follows that the corresponding
abstract nets obtained under the CTph and the ITph coincide.

ProposITION 3.1
For each agent p, with [p],s = (B, A, P), we have Ag = Ip.

For the proofs of the previous and the following propositions we refer to
the PhD Thesis of first author [5].

The relation between SPA agents and their associated interfaced nets can
be formalized by adding a labeling function ¢ from the transitions of abstract
nets to the set of actions. We first need the following proposition.

PROPOSITION 3.2
Let p be an agent, then each (connected) transaction & of [p],s contains at
most one firing of transitions in P(Z(fv(p))).

DEFINITION 3.2 (LABELS OF TRANSACTIONS)
Let p be an agent. For each (connected) transaction & of [p],s, we define

a; ifa; € fu(p) and P(in,,) is fired in &
#(€) =4 a; ifa; € fu(p) and P(out,,) is fired in &

7 otherwise

EXAMPLE 3.1 The interfaced net for the agent (ay.a9.nil|Gg.nil)\ay is pre-
sented in Figure 11, together with its (labeled) abstract net.

It is out of the scope of this presentation to investigate the relationships
between the net semantics we propose for SPA agents and those already known
in the literature for ccs-like algebras. We just remark that our translation
is very linear, and that it provides a reasonable concurrent semantics for the
simple class of agents considered here. This last assertion is supported by
Propositions 3.3 and 3.4.

DEFINITION 3.3 (BISIMILARITY BETWEEN AGENTS AND MARKINGS)
Let p be an agent, let N be a net whose transitions are labeled by ¢ over the
set of actions, and let u be a marking of N. We say that p is bisimilar to

5 v o o

Figure 11: An interfaced net (left) and its abstract net (right).

u in N if there exists a relation ~ between agents and markings of N such
that p ~ u, and:

1. for each transition p — p' there exists a firing u[t)u' of N such that
é(t) =a and p' ~ u';

2. for each firing u[t)u' of N with ¢(t) = a there exists a transition p — p'
such that p’ ~ u'.

PropOSITION 3.3
Let p be an agent, and [p],s = (B, A, P), then p is bisimilar to the initial
marking of the abstract net Ap.

The restriction operator allows hiding local names w.r.t. some external
observer. Therefore, a restricted name has only a local scope, and agents
that differ only for the local names (i.e., agents that can be obtained one
from the other by a-conversion) are usually considered equivalent. We use
the symbol _ =, _ to denote such equivalence. For example, we have

(a1.a9.mil|Gy.nil)\ay =, (a1.a3.nil|as.nil)\as

for any a3 # a;. Proposition 3.4 shows that our translation deals very well
with a-conversion.

DEFINITION 3.4

Two A-interfaced nets (B, A, P) and (B', A, P') are isomorphic if there exists
a 7S net isomorphism 1) from B to B’ that respects interfaces, i.e., such that
Y(P(z)) = P'(x) for each element x € Z(A) (either place or transition).

PrROPOSITION 3.4
If p and q are agents such that p =, q, then [p],s and [q],s are isomorphic.

4 Universal constructions

In [10] we have presented both the CTph and ITph categorical semantics
for zs nets. For the CTph approach, our categorical models are based on
monoidal graphs equipped with an operation of horizontal composition, and
for the I'Tph approach, we have introduced an additional collection of special
transitions, called swappings, to represent the permutations of tokens which
are all present at the same time into the same place, following the style
of [12]. The categorical semantics (summarized by the four adjunctions in
Figure 12) recover the operational and abstract semantics presented in this
paper, introducing an algebraic characterization of the whole framework.

The first construction starts from a category dZPetri (where zero-safe
nets are considered as programs) and exhibits an adjunction to a category
HCatZPetri consisting of some kind of machines equipped with suitable
operations defined over states and transitions (e.g., parallel composition and
a special kind of sequential composition, called horizontal). This adjunction
corresponds to the token-pushing semantics of zs nets defined in Section 2.1,
in the sense that the transitions of the machine Z[B] associated to a zero-safe
net B are exactly the abstract stable steps of B. Moreover, the notion of
abstract stable transaction exactly corresponds to the algebraic characteri-
zation of special transitions of Z[B], called prime arrows.

The second construction starts from a different category ZSN of zs nets
(strictly related to HCatZPetri), having the ordinary category Petri of PT
nets as a subcategory, and yields a coreflection that recovers the abstract net
construction in Definition 2.6. We remark that ZSN allows one to map tran-
sitions of a machine into prime arrows of another machine (i.e., transactions),
yielding a very general notion of “implementation morphism.” It is worth
noticing that the counit component €§ of the coreflection maps transitions
of the abstract net Ag into appropriate abstract transactions of B.

The third construction is an adjunction from dZPetri to a category
ZSCGraph of more structured models, equipped not only with parallel and
horizontal compositions as in HCatZPetri, but also with a family of swap-
pings playing the role of zero token permutations. This adjunction is strictly
related to the operational semantics of ZS nets as defined in Section 2.2 (again,
the connected transactions are characterized as prime arrows).

Our fourth construction starts from a category ZSC of zs nets and more
complex morphisms, having the ordinary category Petri of PT nets as a
subcategory, and yields a coreflection that recovers exactly the construction
of the causal abstract net in Definition 2.12 and whose counit component
€L maps transitions of the causal abstract net Iz into appropriate connected
transactions of B.

Z cg

HCatZPetri__ L dZPetri__ L ~ZSCGraph
Uo U

ZSN__ L Petri_ L ZSC

A z

Figure 12: Operational and abstract semantics of zero-safe nets.

The universal property of coreflection confirms that the abstract coun-
terparts Ap and Ip of a ZS net B are the PT nets that better approximate
the behaviour of B according to the CTph and the /Tph interpretation re-
spectively. Moreover, since left (right) adjoints preserve colimits (limits), it
follows that several constructions on the refined model are preserved by the
operational and abstract semantics. For instance, the algebraic model of the
pushout of two nets — which is often useful for combining two nets merging
some of their places — is the pushout of their semantics.

5 Some ideas on ZS nets unfolding

The unfolding gives a constructive way to generate all the possible compu-
tations of a net. The construction is, by its nature, closer to the /ITph rather
than to the CTph, but it is not straightforward as there are many difficulties
for systems where transactions are distributed. For example, in concurrent
constraint programming, concurrent agents can add constraints to their lo-
cal stores, but the consistency of the global store (i.e., the validation of local
computations) is checked only at given instants and acts as a global commit.
In our framework this would mean to perform many disjoint computations
without any restriction on zero tokens, and then check if their composition
can define a transaction, which is clearly a too optimistic approach.

At a very abstract level, an implementation can be described as follows.
A transaction can be started independently by the components that want to
interact, i.e., the various components may initiate mutually disjoint transac-
tion pieces. For example we can think that every time a transaction starts, a
fresh “color” (i.e., a unique key) is assigned to it. We assume the color white
to denote non-frozen stable tokens. The firing of a transition that consumes
white tokens starts a transaction, e.g. colored in col, and all the produced
resources (zero and frozen stable) carry the same color col. If no zero token

(B,{a:}, P) Ap

Pla?) P(ay)) @ @\ | /@

| - (lw— é gg/Tkal

P(ing,)| |P(syng,)| |P(outs,)

Figure 13: The interfaced net [a;.nil|a,.nil],s and its abstract net.

5T 5 4 35

Figure 14:

is produced, then the transition defines a transaction itself and therefore the
produced stable tokens can be released and colored in white. When a transi-
tion synchronizes (consumes) zero tokens of different colors, say coly,...,col,,
(we remind that only white stable tokens can be consumed), then some global
mechanism must take control and paint in the same color every element col-
ored in coly,...,col, (it can be either a fresh color or a unique combination of
the different colors or a certain color col; chosen according to a suitable or-
dering on colors). If a transition consumes all the zero tokens of coly,...,col,,
and produces only stable tokens, it acts as a commit action and produces
white stable tokens. In this case also the stable tokens colored by coly,...,col,
must become white. This emphasizes the fact that the same instance of a
resource can be possibly released by many different commit actions, which
is counterintuitive for an approach based on events. One possibility would
be to look at resources of the same color as an atomic entity, but this would
disregard their distributed nature and would reduce the concurrency degree
of the model (after the synchronization, locally concurrent actions can only
be interleaved).

The problem is that one wants to keep the control of computation flow as
much distributed as possible, but in this way a local “commit” that closes the
transaction must be able to act as a global action. This is reflected in zs nets
by assuming that the stable tokens produced by the transitions are frozen
until the transaction ends and then are released all together. This means

m(@\ PON
O 0O

Figure 15:

that, in the ordinary unfolding, stable resources can also depend on some side
action able to synchronize via zero places with the transition that produced
the resources. For example, let us consider the interfaced net [a;.nil|a@;.nil]
in Figure 13 (see Section 3). It coincides with its ordinary unfolding, whereas
one might expect that different instances of stable places are reached when
different synchronizations are performed (see Figure 14, where, in some sense,
conflicts on zero places are moved to the level of stable places), as it is the
case in the unfolding of the associated abstract net (see Figure 15, which also
represents the abstract net of the unfolding in Figure 14).

When considering the unfolding of the underlying net Np of a 7S net
B, a first problem that might arise is that stable tokens must not be used
before the transaction is closed, so to avoid situations as the one illustrated in
Figure 8 (where the token in b is used to close the transaction that produced
it). This situation is very hard to handle, but notice that if we consider the
abstraction of such unfolding, then situations of that kind are discharged,
although forward conflicts may arise in the resulting net.

The unfolding of abstract nets is of course a good candidate for building
the unfolding of zs nets, but when refining the events to Zs net transactions it
might happen that different instances of the same resource consumed by the
same event are confused, because a transition is refined by a process (origins
and destinations are not ordered, see Example 2.8) and not by a (decorated)
concatenable process, which would preserve the causal relationships.

One possibility to solve this problem could be to consider pre-nets rather
than nets. The difference is that the states of pre-nets are strings (i.e.,
elements of the free monoid over places) rather than multisets (i.e., elements
of the free commutative monoid over places). Pre-nets have been introduced
by José Meseguer, Vladimiro Sassone, and the authors in [7], where it is
shown that they fit well in the ITph, better than PT nets. In particular,
pre-nets can be equipped with a satisfactory functorial semantics. Moreover,
the semantics of the PT net associated to a pre-net by abstracting strings
to multisets can be recovered from the semantics of the pre-net (i.e., any
two pre-nets associated to the same PT net have exactly the same semantic

model). We conjecture that in the framework of pre-nets the refinement of
the unfolding could be correctly defined, but we leave this as future work.

Conclusion

In this paper we have presented zero-safe nets as a refined model of ordinary
place/transition Petri nets. zs nets include an additional simple mechanism
for the synchronization of transition firings. We have given concurrent oper-
ational and abstract semantics for zero-safe nets under both the CTph and
the ITph. The differences between the two approaches have been discussed
on the basis of a multicasting system representation. We have shown that,
independently from the chosen philosophy, the zs net MS modeling the mul-
ticasting system yields abstract PT nets with infinitely many transitions. The
distinction between the two abstract nets has been characterized in terms of
the feasible one-to-many communications: The /Tph approach can faithfully
model different copy policies, whereas the CTph approach can only record
the number of agents involved in a communication. We have also shown that
ccs-like process algebras can be easily interpreted by representing the com-
munication channels as zero places, in the style of the multicasting example.

Our results mainly concern process semantics, algebraic semantics and
their connections. A satisfactory unfolding semantics seems far from being
trivial, and deserves a deeper investigation. Some hinted solutions have been
proposed in Section 5.

Acknowledgements

We want to thank Paolo Baldan and Daniela Giorgetti for the careful reading
of the paper and precious comments.

References

[1] A. Benveniste, P. Le Guernic, and C. Jacquemot, Synchronous pro-
gramming with events and relations: The Signal language and its se-
mantics, Science of Computer Programming 16, 103—149 (1991).

[2] E. Best and R. Devillers, Sequential and concurrent behaviour in Petri
net theory, Theoretical Computer Science 55(1), 87-136 (1987).

[3] E. Best, R. Devillers, and J. Hall, The box calculus: A new causal alge-
bra with multi-label communication, in: G. Rozenberg, Ed., Advances
in Petri Nets 1992, LNCS 609, 21-69, Springer-Verlag (1992).

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

C. Brown and D. Gurr, A categorical linear framework for Petri nets,
in Proceedings 5th LICS Symposium, 208-218, IEEE Computer Society
Press (1990).

R. Bruni, Tile Logic for Synchronized Rewriting of Concurrent Sys-
tems, PhD Thesis TD-99-01, Department of Computer Science, Uni-
versity of Pisa (1999).

R. Bruni, J. Meseguer, U. Montanari, and V. Sassone, A comparison of
Petri net semantics under the collective token philosophy, in: J. Hsiang
and A. Ohori, Eds., Proceedings 4th ASIAN’98, LNCS 1538, 225-244,
Springer-Verlag (1998).

R. Bruni, J. Meseguer, U. Montanari, and V. Sassone, Functorial
semantics for Petri nets under the individual token philosophy, in:
M. Hofmann, Ed., Proceedings 8th CTCS’99, ENTCS, Elsevier, to ap-

pear.

R. Bruni and U. Montanari, Zero-safe nets, or transition synchroniza-
tion made simple, in: C. Palamidessi and J. Parrow, Eds., Proceedings
EXPRESS’97, ENTCS 7, 19 pages, Elsevier (1997).

R. Bruni and U. Montanari, Zero-safe nets: The individual token
approach, in: F. Parisi-Presicce, Ed., Proceedings 12th WADT 97,
LNCS 1376, 122-140, Springer-Verlag (1998).

R. Bruni and U. Montanari, Zero-safe nets: Comparing the collective
and the individual token approaches, Information and Computation,
to appear.

P. Degano, R. De Nicola, and U. Montanari, A distributed operational
semantics for CCS based on condition/event systems, Acta Informatica
26(1-2), 59-91 (1988).

P. Degano, J. Meseguer, and U. Montanari, Axiomatizing the algebra
of net computations and processes, Acta Informatica 33(7), 641-667
(1996).

R.J. van Glabbeek and G.D. Plotkin, Configuration structures, in:
Proceedings 10th LICS Symposium, 199-209, IEEE Computer Society
Press (1995).

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

R.J. van Glabbeek and F. Vaandrager, Petri net models for algebraic
theories of concurrency, in: J.W. de Bakker, A.J. Nijman, and P.C. Tre-
leaven, Eds., Proceedings of PARLE, LNCS 259, 224-242 Springer-
Verlag (1987).

U. Goltz and W. Reisig, The non-sequential behaviour of Petri nets,
Information and Computation 57, 125-147 (1983).

R. Gorrieri and U. Montanari, On the implementation of concurrent
calculi into net calculi: Two case studies, Theoretical Computer Science
141(1-2), 195-252 (1995).

A. Mazurkiewicz, Trace theory, in: W. Brauer, W. Reisig, and
G. Rozenberg, Eds., Petri Nets: Applications and Relationships to
Other Models of Concurrency, Advances in Petri Nets 1986, LNCS
255, 279-324, Springer-Verlag (1987).

J. Meseguer and U. Montanari, Petri nets are monoids, Information
and Computation 88, 105-154 (1990).

J. Meseguer, U. Montanari, and V. Sassone, On the semantics of Petri
nets, in: W.R. Cleaveland, Ed., Proceedings CONCUR’92, LNCS 630,
286-301, Springer-Verlag (1992).

J. Meseguer, U. Montanari, and V. Sassone, On the Semantics of
Place/Transition Petri Nets, Mathematical Structures in Computer

Science 7(4), 359-397 (1997).

J. Meseguer, U. Montanari, and V. Sassone, Representation theorems
for Petri nets, in: W. Brauer, C. Freksa, M. Jantzen, and R. Valk, Eds.,
Foundations of Computer Science, LNCS 1337, 239-249, Springer-
Verlag (1997).

R. Milner, Communication and Concurrency, Prentice-Hall (1989).

M. Nielsen, G. Plotkin, and G. Winskel, Petri nets, event structures
and domains, part I, Theoretical Computer Science 13, 85-108 (1981).

E.R. Olderog, Operational Petri net semantics for CCSP, in: G. Rozen-
berg, Ed., Advances in Petri Nets 1987, LNCS 266, 196-223, Springer-
Verlag (1987).

G. Plotkin, A structural approach to operational semantics, Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus
University (1981).

[26]
[27]

28]

[29]

[30]

[31]

[32]

W. Reisig, Petri Nets, Springer-Verlag (1985).

G. Ristori, Modelling Systems with Shared Resources via Petri Nets,
PhD thesis TD-94-05, Department of Computer Science, University of
Pisa (1994).

D. Scott, Outline of a mathematical theory of computation, in: Pro-
ceedings 4th Annual Princeton Conference on Information Science and
Systems, 169-176 (1970).

V. Sassone, An axiomatization of the algebra of Petri net concatenable
processes, Theoretical Computer Science 170(1-2), 277-296 (1996).

G. Winskel, Event structure semantics of CCS and related languages,
in: M. Nielsen and E. Meineche Schmidt, Eds., Proceedings ICALP’82,
LNCS 140, 561-567, Springer-Verlag (1982).

G. Winskel, Event structures, in: W. Brauer, Ed., Proceedings Ad-
vanced Course on Petri Nets, LNCS 255, 325-392, Springer-Verlag
(1987).

G. Winskel, Petri nets, algebras, morphisms and compositionality,
Information and Computation 72, 197-238 (1987).

