URL: http://www.elsevier.nl/loca{:e/entcs/volumeég.htlml 18 pages

Functorial Semantics for Petri Nets under
the Individual Token Philosophy !

R. Bruni?, J. Meseguer?, U. Montanari® and V. Sassone®

& Dipartimento di Informatica, Universita di Pisa, I-56125 Pisa, Italia,
{bruni,ugo}@di.unipi.it
b Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA,
meseguer@csl.sri.com

C

Dipartimento di Matematica, Universita di Catania, 1-95125 Catania, Italia,
vs@cs.unict.it

Abstract

Although the algebraic semantics of place/transition Petri nets under the collective
token philosophy has been fully explained in terms of (strictly) symmetric (strict)
monoidal categories, the analogous construction under the individual token philoso-
phy is not completely satisfactory because it lacks universality and also functoriality.
We introduce the notion of pre-net to recover these aspects, obtaining a fully satis-
factory categorical treatment centered on the notion of adjunction. This allows us
to present a purely logical description of net behaviours under the individual token
philosophy in terms of theories and theory morphisms in partial membership equa-
tional logic, yielding a complete match with the theory developed by the authors
for the collective token view of nets.

Key words: Petri Nets, Pre-Nets, Individual Token Philosophy,
Monoidal Categories, Partial Membreship Equational Logic

L The first three authors have been partly supported by Office of Naval Research Contracts
N00014-95-C-0225 and N00014-96-C-0114, by National Science Foundation Grant CCR-
9633363, and by the Information Technology Promotion Agency, Japan, as part of the In-
dustrial Science and Technology Frontier Program ‘New Models for Software Architecture’
sponsored by NEDO (New Energy and Industrial Technology Development Organization).
Also research supported in part by US Army contract DABT63-96-C-0096 (DARPA); CNR
Integrated Project Metodi e Strumenti per la Progettazione e la Verifica di Sistemi Etero-
genei Connessi mediante Reti di Comunicazione; by Esprit Working Groups CONFER2
and COORDINA; and by MURST project Tecniche Formali per Sistemi Software. The
fourth author thanks the support by BRICS — Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

(©1999 Published by Elsevier Science B. V.

AT AVUVINL

Introduction

Petri nets, introduced by Petri in [15] (see also [17]), are one of the most
widely used and evocative models for concurrency, because of the simple for-
mal description of the net model, and of its natural characterisation of con-
current and distributed systems. The extensive use of Petri nets has given
rise to different schools of thought concerning their semantical interpretation.
In particular, we have the main distinction between collective and individual
token philosophies (e.g., see [6]).

According to the collective token philosophy (CTph), net semantics should
not distinguish among different instances of the idealised resources (the so-
called ‘tokens’) that are at the basis of net behaviour, because any such in-
stance is operationally equivalent to all the others. This view disregards that
operationally equivalent resources may have different origins and histories,
carrying different causality information. Selecting one instance of a resource
rather than another, may be as different as being or not causally dependent on
some previous event. And this may well be an information one is not ready to
discard, which is the point of view of the individual token philosophy (/Tph).

The net theory developed under the CTph is very well consolidated. The
relationships between its computational, algebraic and logical interpretations
has been precisely stated (see, e.g., [10,3]). In particular, the concurrent
operational behaviour of a net is characterized by commutative processes [2],
whose construction exactly corresponds: (1) at the semantic level, to the
universal construction 7 (_) of a strictly symmetric (strict) monoidal category
(the arrows of T (V) represent the commutative processes of the net N), and
(2) at the logical level, to a suitable morphism between theories in partial
membership equational logic (PMEqtl), a logical framework introduced in [9].

Under the ITph, the relationships between these different interpretations
are more complicated. Building on the notion of process presented in [7],
several authors have shown that the semantics of a net can still be understood
in terms of symmetric monoidal categories, but their constructions do not work
properly ‘in the large,” i.e., they fail to preserve at the semantic level some
ordinary simulation morphisms between nets given at the level of theories
(cf. [5,19], see [13] for an overview).

More precisely, a simple variation of processes called concatenable processes
is introduced in [5], which admits sequential composition and yields a sym-
metric strict monoidal category P(N) for each net N, but such construction
is not functorial. Indeed, for N and N’ two nets such that the structure of
N can be embedded in that of N’, it might be the case that the concurrent
behaviour of N cannot be recovered by N’, because equivalent computations
in N must now be distinguished as simulated computations in N’ (see Exam-
ple 1.9). In [19] the situation is improved by introducing the notion of strongly
concatenable processes as a slight refinement of concatenable processes, where
a linear ordering is given to minimal and maximal places (whereas in con-

2

AT AVUVINL

catenable processes, only instances of the same resource are ordered). The
construction of strongly concatenable processes can be expressed via a pseudo-
functor Q(-), mapping net morphisms to symmetric strict monoidal functors
in a way that preserves identities strictly, but composition of net morphisms
only up to a natural isomorphism. The construction provided by Q(_) is al-
most satisfactory, and indeed it extends to a functor from Petri, the category
of Petri nets introduced in [10], to a quotient category of a suitable full sub-
category of SSMC, the category of symmetric strict monoidal categories, and
defines a left adjoint to a subcategory of such a quotient category. However
the characterisation of such a subcategory is rather involved and ad hoc.

The main difficulty in extending the nice algebraic framework to the /Tph
is related to the fact that net morphisms in Petri allow replacing two different
resources ¢ and b by two not necessarily disjoint multisets v and v in the target
net, in such a way that instances in their union v + v can be partitioned only
up to a certain degree of ambiguity, whereas the /Tph would require a precise
correspondence between the instances of such resources. In [19] such ambiguity
is solved by carrying information about the mappings of all the possible linear
implementations of a multiset, that is, for each transition t:u — v, a basic
arrow tgz;: @ — U is introduced (and suitably axiomatized) in the semantic
model, for any linearizations @ and v (i.e., strings of places) of u and v.

We present an analogous construction based on the notion of pre-net. A
pre-net can be thought of as a precise implementation of a net, where the ab-
stract data structure of multisets is refined into a more concrete string struc-
ture, and where each transition ¢: 4 — v is simulated by one arbitrarily chosen
(instead of all) linear implementation ¢; 5: & — v for some linearizations « and
v of u and v. Note that pre-nets have a different computational interpretation
than phrase-structure grammars, since we do not distinguish between termi-
nal and non-terminal symbols and strings can be permuted before performing
any step, i.e., ordinary grammars would generate just monoidal categories,
without symmetries.

Although abandoning multisets might appear at first unnatural to net
enthusiasts, our formal approach to the /Tph enjoys several good properties.

> All the pre-net implementations of the same net share the same semantic
model, i.e., the semantics is independent of the choice of linearizations.

> Algebraic models of pre-nets are freely generated and, therefore, preserve
colimit constructions on nets, adding compositionality to the framework.

> The semantic model of a pre-net implementation coincides with the semantic
model given by Q(_) for the implemented net.

> The algebraic semantics of pre-nets can be rephrased also in the logical
framework of PMEqtl.

This means that the investigation of the behavioural, algebraic and logical
aspects of PT nets presented in [3]|, where the computational interpretation
was driven by the CTph, is successfully extended to the individual token ap-

3

AT AVUVINL

proach, using pre-nets to accomplish a better categorical construction of the
algebraic view. Moreover, we are able to formalize the construction using
PMEqtl techniques, as a straightforward theory morphism from the theory
PRE-NET of pre-nets to the theory SMONCAT of symmetric strict monoidal cat-
egories. Such a characterisation can also have practical applications, as there
are tools available that support executability of specification in partial alge-
bras.

Structure of the Paper

In Section 1.1 we recall the basic definitions about P'T' nets, making clear
the distinction between their two computational interpretations (individual
vs collective), and summarizing the process-based approaches presented in
the literature to accommodate the /Tph. The corresponding categorical con-
structions are presented in Section 1.2, explaining their weaknesses.

Section 2 introduces pre-nets, defining their categorical semantics and the
relationship with ordinary PT nets. In Section 3 we employ PMEqtl to
formalize the logical aspects of our approach. A short Appendix recalls the
basics of partial membership equational logic and the definition of the theory
MONCAT of strict monoidal categories.

1 Background

1.1 Process View of PT Petri Nets

Place/transition Petri nets, the most widespread type of Petri nets, are graphs
with distributed states described by (finite) distributions of resources (called
‘tokens’) in ‘places.” These are usually called markings and are represented as
multisets u: S — N, where u(a) is the number of tokens that place a carries
in u.

As a matter of notation, we shall use u(S) = {u: S — N} to indicate the
set of finite multisets on S, i.e., multisets with multiplicity zero on all but
finitely many a € S. Multiset union makes p(S) a free commutative monoid
on S (unit is @).

Definition 1.1 A place/transition Petri net N (PT net for short) is a 4-
tuple (0o, 01, S,T), where S is a set of places, T is a set of transitions, and
the functions Oy, 01: T — 1u(S) assign, respectively, source and target to each
transition. A marked PT net is a PT net together with an initial marking
Ug € /L(S)

Informally, 0y(t) prescribes the minimum amount of resources needed to
enable the transition ¢, whilst 0, (¢) describes the resources that the occurrence
of t contributes to the global state. This is made explicit in the following
definition, where we shall indicate multiset inclusion, union, and difference
by, respectively, C, +, and —.

AT AVUVINL

a Cc

Fig. 1.

Definition 1.2 Let u and v be markings and X:T — N a finite multiset of
transitions of a net N. We say that u evolves to v under the step X, in
symbols u [X) v, if the transitions in X are concurrently enabled at u, i.e.,

> iery X (1) - 0o(t) € u, and
V=ut Y e, X(8) - (01(t) — 0o(t))-
A step sequence from ug to u, 1S a sequence ug [Xl) Ut Up—1 [Xn> Up,-

In order to equip PT nets with a natural notion of morphism, we consider
maps of transition systems that preserve the monoidal structure of states.

Definition 1.3 A morphism of nets from (0o, 01,S,T) to (0),0,S",T') is a
pair f = (fi, fp) where fi:T — T is a function, and fy: p(S) — wu(S’) is a
monoid homomorphism such that 0, o f, = f, 0 0;, for i = 0,1. A morphism
of marked nets is a morphism of nets such that f,(ug) = uy.

We shall use Petri to indicate the category of PT nets and their morphisms
with the obvious componentwise composition of arrows.

To compare the effects of the collective and the individual token philoso-
phies on observing causal relations between fired transitions, let us consider
the example in Figure 1 that we adapt from [6]. (As usual, boxes stand for
transitions, circles for places, dots for tokens, and oriented arcs represent the
functions dp and 0;.)

Both transitions ¢ and ¢ are enabled in the initial marking {a, b, ¢}, but
observe that the firing of ¢ produces a second token in place b. According to
the ITph, it makes a difference whether ¢’ consumes the token in b originated
from the firing of ¢, or the one coming from the initial marking. In the first
case the occurrence of ¢’ causally depends on that of ¢, whilst in the second
the two firings are independent. In the CTph, instead, the two firings are
always considered to be concurrent, because the firing of ¢ does not affect the
enabling condition of t'.

Since the ITph makes a distinction between resources in the same class that
have different origins and histories, it is well supported by the process-based
approach. Ideally, (deterministic) processes are computations carrying some
explicit causal information between transition firings (events). This originates
in an abstract view of processes as posets whose elements are labelled by
transitions of the net [14,20,21].

Concretely, such computations are represented by suitable, structure pre-
serving maps from a special class of nets into the net under inspection. The
role of such maps is to disambiguate different firings of the same transition,
and, at the same time, to give a precise account of the causal and distributed
nature of the computations they represent.

5

AT AVUVINL

R Oo—}|—0 o—}—=
o}t

N

Fig. 2.
Definition 1.4 A process net is a finite, acyclic net P = (0, 01, S,T) such
that for all t € T, 0(t) and 01(t) are sets (as opposed to multisets), and for
allty #t, €T, 8,(t0) N 8Z(t1) =g, fori=0,1.

A process of N € Petri is a morphism m: P — N, where P is a process net
and T is a net morphism which maps places to places (as opposed to more
general morphisms which map places to markings).

Processes m: P — N and ©': P' — N are isomorphic, and thus identified, if
there exists a net isomorphism : P — P’ such that m = ; 7'.

We shall use O(P) and D(P) to denote the minimal (i.e., with empty
pre-set) and mazimal (i.e., with empty post-set) places of a process net P.
(O stands for ‘origins,” D for ‘destinations.”) For a process m: P — N, the
multiset 7(O(P)) (with 7(O(P))(a) = |7 '(a) N O(P)|, for each place a € N)
represents the resources available to NV before the ezecution of 7, and 7(D(P))
those available in N when the execution of 7 is completed.

Two processes for the (marked) net of Figure 1 are represented by the
mappings my and 7 from the process nets P, and P; in Figure 2, where
dotted arrows show the images of places and transitions (for readability, we
have omitted the naming of the elements of P, and P;).

Since processes represent computations, it is natural to seek a notion of
sequential composition of those processes 7 and 7’ with 7(D(P)) = #'(O(P")),
that is 7’ starts from the marking 7 terminates in. In general, there are several
ways to do this, each corresponding to a different assignment of instances
of the same place between D(P) and O(P’'). To overcome this ambiguity,
concatenable processes were introduced in [5] by imposing a total ordering on
origins and destinations that are instances of the same place.

Definition 1.5 Given a labelling function l: X — Y, a label-indexed ordering
function for | is a family 8 = {8y }yey of bijections indexed by the elements of
Y, where B,: 17 (y) = {1, ..., [I7*(y)|}-

The idea is that Y is the set of places of a given net N, whilst X is (a
subset of) the set of places of a process m for N such that [coincides with 7
on X. Then, for each place ¥y in Y, we consider its inverse image through [,
given by the set [7'(y) = {z € X | I(z) = y}. Basically, each (3, yields a total
order over the elements in [~!(y), by stating a (bijective) correspondence with
their positions in the ordering.

AT AVUVINL

Definition 1.6 A concatenable process 6 for a PT net N is a triple (7,40, {p),
where m: P — N 1s a process for N, and Lo, £p are label-indexed ordering
functions for the labelling function m restricted to O(P) and D(P) respectively.

A partial operation _; _ (associative and with identities) of concatenation
can be defined for concatenable processes. They also admit a monoidal par-
allel composition _® _, yielding a symmetric strict monoidal category, whose
symmetries are given by concatenable processes consisting only of places.

Due to space limitation, we refer the interested reader to [5] for the formal
definitions of such operations. However, concatenable processes are still not
completely satisfactory, because several net morphisms cannot be lifted to the
level of behaviours (see Example 1.9 in Section 1.2).

To improve such a situation, the notion of strongly concatenable process
has been introduced in [19], where a total order is imposed over origins and
destinations, and not only on the instances of the same place. Strongly con-
catenable processes also admit sequential and parallel composition, yielding a
symmetric strict monoidal category.

Definition 1.7 A strongly concatenable process for a PT net N 1is a triple
(m,£0,Lp), where m: P — N is a process for N, and Lo, £p are bijections
Lo: O(P) — |O(P)| and £p: D(P) — |D(P)| respectively.

1.2 Categorical Semantics

Several aspects of Petri net theory can be profitably developed within category
theory, see e.g. [20,10]. Here we focus on the approach initiated in [10] (other
relevant references are [5,12,18,13,19]) which exposes the monoidal structure
of Petri nets under the operation of parallel composition. In [10,5] it is shown
that the sets of transitions can be endowed with appropriate algebraic struc-
tures in order to capture some basic constructions on nets.

For example, the commutative processes of [2], which represent the nat-
ural behavioural model for PT nets under the CTph, can be characterised
adding a functorial sequential composition on the monoid of steps, thus yield-
ing a strictly symmetric strict monoidal category 7 (V). Using CMonCat to
denote the category of strictly symmetric strict monoidal categories (as ob-
jects) and strict monoidal functors (as arrows), 7(-) is a functor from Petri
to CMonCat, and 7 (N) is the strictly symmetric strict monoidal category
freely generated by N (seen as a graph whose nodes have a free monoidal
structure).

The intuition here is that arrows of 7 () represent step sequences and
arrow composition is their concatenation, whereas the monoidal operator &
allows for parallel composition. It is shown in [5] that this algebraic struc-
ture describes precisely the processes a la Best and Devillers [2]. Indeed, the
category T (N) can be inductively defined by simple inference rules and ax-
ioms, providing a complete and sound axiomatization of the algebra of the
commutative processes of .

AT AVUVINL

Under the /Tph, one might expect analogous results to hold, relating sym-
metric strict monoidal categories and (strongly) concatenable processes, in-
troducing symmetries to model the possible reorganizations of minimal and
maximal places of a process. Let us consider concatenable processes first,
where the ordering on minimal and maximal places is imposed on instances
of the same place only. We recall here the definition of the category P (V)
introduced in [5] and finitely axiomatized in [18].

Definition 1.8 Let N be a PT net. The category P(N) is the monoidal
quotient of the free symmetric strict monoidal category F(N) generated by N,
modulo the arioms

Vap = 1dg @ idp ifa,b € Sy, anda # b
sit;s' =t ift € Ty and s,s are symmetries
where 7, id, _® _, and _; _ are, respectively, the symmetry isomorphism, the

identities, the tensor product, and the composition of F(N).

Though the construction P(N) axiomatizes exactly the concatenable pro-
cesses of IV, it lacks functoriality, as shown by the following example.

Example 1.9 Consider the nets N and N' shown in Figure 3 and the net
morphism f:N — N' such that fi(t;) = ti, fp(ai) = o', and f,(b;)) = b;
for v = 0,1. The morphism f cannot be extended to a monoidal functor
P(f):P(N) — P(N'). In fact, if such an extension F existed, then

F(to®t1)=F(t)) @ F(t1) =1, ®1}
Fti®t) =F(t1) ® F(to) =, @1t

by the monotidality of F', but since Yog,0, = ey @ tdq, and Ypyp, = 1dp, @ tdp,
in P(N) (by the first aziom in Definition 1.8), then

to ® 11 = (to @ t1); Voo.br = Yag,ar; ((1 ® o) =11 ® o

in P(N) (by the naturality of v). Thus, it would follow that ty @ t| =t} ® t;,
in P(N'), which is absurd because Yo o # idy @ idy .

The problem is of course due to the fact that when two different places
ap and a; are mapped into the same place ¢’ via a net morphism, then it
should be the case that v,, = id, ® id, be mapped into v, o # idy ® idy
via a monoidal functor, which is not possible. The valuable pseudo functorial
construction Q(_): Petri — SSMC of [19], recovering strongly concatenable
processes, improves the situation, in the sense that it preserves composition
only up to a monoidal natural isomorphism (details in [19]).

Definition 1.10 Let N be a PT net. The category Q(N) is obtained from
the symmetric strict monoidal category freely generated from the places of N
and, for each transition t:u — v of N, an arrow tg3:4 — v for each pair of
linearizations (as strings) of the pre- and post-sets of t, by quotienting modulo
the axiom

! _ _ _ _ .
(1) s;tup; s =twy fors:d' — @ and s':0 — 0" symmetries.

8

N o] OO

O Ob

Fig. 3.

Our point in this paper is that functoriality is missing in these construc-
tions because PT nets rely on a ‘state as multiset’ paradigm, whereas the /Tph
imposes a distinction on different instances of the same resource. Hence, as a
solution to this problem, we propose a refined view of nets, one such that the
associated notion of morphism behaves better w.r.t. the construction of the
category of processes.

2 Pre-Nets

Pre-nets are nets whose states are strings of tokens (as opposed to multisets).
Such states, called records, can be seen as totally ordered markings, and also
as a more concrete representation of multisets. The idea is that each transition
of a pre-net must specify the precise order in which the required resources are
consumed and the results are produced, as if it were an elementary strongly
concatenable process.

We shall use A\(S) to indicate the set of finite strings on S. String concate-
nation (denoted by juztaposition) makes A(S) a free monoid on S, the unit
being the empty string e. Moreover, for w € A(S), we write |w| to denote
the length of w, w; to denote the i-th element of w, and p(w) to denote the
underlying multiset of w.

Definition 2.1 A pre-net is a tuple R = ({o,(1,5,T), where S is a set of
places, T is a set of transitions, and (o, (1: T — A(S) are functions assigning,
respectively, source and target to each transition.

The idea is that, given a PT net NV, we can arbitrarily choose a pre-net

representation of N. This corresponds to fixing a total order for the pre- and
post-set of each transition. This differs from the approach proposed in [19],
where, in order to avoid a choice, all the possible linearizations of the pre-
and post-sets are considered in the alternative presentation of the net. We
will show that to recover the process semantics of NV it suffices to choose one
representative for each transition.
Definition 2.2 A morphism of pre-nets from ((o, C1,S,T) to (¢, C1,S',T") is
a pair (gi, gp) where g2 T — T" is function, and g,: A\(S) — A(S') is a monoid
homomorphism such that ¢} o g: = g, 0 (;, fori=0,1. We denote by PreNet
the category of pre-nets and their morphism with the obvious composition.

9

AT AVUVINL

Table 1

w e /\(SR) t € Tk, Co(t) = 1u, él(t) =7
idy:w — w € Z(R) t:au— v € Z(R)
w,w' € A(Sg)
Cwu: W' — w'w € Z(R)
a:t— v, f:4 =0 € Z(R) at— v, f:0 -7 € Z(R)
a® p:uu’ — vv' € Z(R) a; f:u— v € Z(R)

The notion of morphism for pre-nets is therefore tighter than that for PT
nets, because mappings must preserve the ordering in which the tokens are
produced and consumed by each transition. Within this view, there is a trivial
forgetful functor from PreNet to Petri that forgets about such orderings.

Proposition 2.3 The map A, from pre-nets to PT nets, sending each pre-net
R = (o, (1,5, T) to the net A(R) = (0o, 01, S, T) with 0;(t) = pu((t)) for each
teT andi=0,1, extends to a functor from PreNet to Petri.

The functor A(_): PreNet — Petri is neither full, nor faithful. However,
if we consider a category Net whose objects are either PT nets or pre-nets
and whose morphisms are graph morphisms with monoid homomorphism for
node components, then Petri and PreNet are full subcategories of Net and
the inclusion of Petri into Net has a left adjoint A: Net — Petri (with
.,Zl\|prel\18‘G = A and A\|Petri = lpetri), yielding a coreflection, i.e., Petri is the
quotient of Net modulo commutativity of the monoidal structure of nodes.
This establishes a strong relationship between PT nets and pre-nets, which
supports and further motivates our proposed approach to the ITph.

Under the ITph, the natural algebraic models for representing concurrent
computations on pre-nets live in the category SSMC. More precisely, we are
only interested in the full subcategory consisting of categories whose monoid of
objects is freely generated. This is of course the most natural choice supporting
the notion of distributed state as a collection of atomic entities, viz., tokens in
places, which net theory is based on. We denote such category by FSSMC.

Proposition 2.4 The obvious forgetful functor from the category FSSMC to
the category PreNet admits a left adjoint Z.

Proof. The category Z(R) has as objects the elements in \(Sg), and as
arrows those generated by the rules in Table 1 modulo the axrioms of strict
monoidal categories (associativity, functoriality, identities, unit), including
the coherence axioms that make of ¢,y the symmetry natural isomorphisms.

The above construction is of course well-known; it can be traced back to
work on coherence by MacLane and others, and even more closely to Pfender’s
construction of a free S-monoidal category [16]. In computer science similar

10

AT AVUVINL

constructions were given by Hotz’s X-categories [8] and by Benson [1], with
grammars as the primary area of application, and therefore for categories that
were not necessarily symmetric.

In our case the symmetric structure is essential; in fact it means that
the construction is independent of the choice of linearization (Theorem 2.5).
Furthermore, what we really want is a quotient of the free construction, as ex-
plained in Theorem 2.6. The main result is that any two pre-nets representing
isomorphic PT nets yield the same algebraic net semantics.

Theorem 2.5 Let R, R' € PreNet with A(R) ~ A(R), then Z(R) ~ Z(R').

Proof. Let ¢ be a net isomorphism between A(R) and A(R') (e.g., ¢ = idy
if A(R) = A(R') = N). Thus, & maps places into places. Then, for each
transition t of R and i = 0,1, ¢((t)) = G(o(t)) up to a permutation, say
v(i,t): (G(t)) = Ci(p(t)). Therefore, the monoidal functor ® from Z(R) to
Z(R') defined as

> ®(a) = ¢(a) for each place a of R,

> D(Cw,u) = Cow),pw) for any strings w, w" in A(S),

> ®(t) = v(0,1); ¢(t); v(1,£)~* for each transition t in R,
s an isomorphism of symmetric strict monoidal categories.

Theorem 2.6 Let R be a pre-net. The category Z(R) quotiented by the aziom
t=50;1; 51,

for any transition t:u — v and symmetries sy: U — U and S1: U — U 1S equiv-
alent to the category Q(A(R)) of strongly concatenable processes.

Proof. Easy by the following argument. In Q(A(R)) we add a transition t; ;
for each transition of N and each pair of linearizations 4 and v of its pre-
and post-set, and we quotient by the axiom (1). On the other hand, in Z(R)
we arbitrarily fix only one linearization of t, say tg 5, but we get all the others
for free by composing tz; with symmetries (as s and s' in the aziom (1) of
Definition 1.10).

This result stresses an important point: any pre-net representation of the
net A(R) is as good as R. More importantly, since left adjoints preserves
colimits, it follows that the semantics of the (colimit) composition of pre-nets
(e.g., seen as ‘programs’) can be studied just mimicking such a composition
on their semantic interpretations.

An interesting question concerns relating morphisms of PT nets, rather
than pre-nets, to the algebraic models obtained by pre-nets. To this purpose,
for f: N — N’ a morphism in Petri, consider the PT net Ny that has the
same transitions as N and the same places as N’ with a ¢: f(u) — f(v) in Ny
corresponding to t: u — v in V. It can be easily verified that it is decomposable
as f = g; h with g = (idp,, fp): N = Nyand h = (f;, idys,.)): Ny — N'. Now,
for any pre-net R such that A(R) = N and for any linearization g, of g, = fp,

11

AT AVUVINL

we can find a pre-net R; such that A(R;) = Ny and g = (ids, g,): R — Ry.
Analogously, for any pre-net R’ such that A(R') = N' we can find a pre-net
R} such that A(R}) = Ny with h = (ft,idxsyn): By — R'. It so happens
that, in general, there might be no morphism in PreNet between R; and R,
for simulating f. However, resorting to the semantics models for pre-nets, the
proof of Theorem 2.5 points us to a constructive way to relate Z(R;) and
Z(RY), thus yielding a lifting of f to a monoidal functor F' = Z(g); ®; Z(h)
between Z(R) and Z(R').

3 Recovering the Algebraic Semantics of Nets via The-
ory Morphisms

The algebraic semantics of PT Petri nets can be expressed very compactly by
means of a morphism between theories in partial membership equational logic
(PMEqt]) [9], a logic of partial algebras with subsorts and subsort polymor-
phism whose sentences are Horn clauses on equations ¢ = ¢’ and membership
assertions ¢ : s, and whose features (partiality, poset of sorts, membership
assertions) offer a natural framework for the specification of categorical struc-
tures. The Appendix provides an informal introduction to the main ideas of
PMEqtl. We refer to [9,11] for self-contained presentations. The following
proposition (cf. [9]) states an important result, relating the models of two
theories that are themselves related by a theory morphism.

Proposition 3.1 The forgetful functor Uy: PAlg, — PAlg, associated to
a theory morphism H:T — T' has a left adjoint Fy: PAlg, — PAlg,.

The logical account of the CTph is discussed in [3], where, using a self-
explanatory Maude-like notation,? we defined the theories PETRI of PT nets
and CMONCAT of strictly symmetric strict monoidal categories together with an
intermediate theory CMON-AUT of automata whose states form a commutative
monoid. Then, the composition of the obvious inclusion functor from Petri
into PAlgoyoy_aur and the free functor Fy from PAIlg.yoy_avr t0 PAlgcyoncat
associated to the theory morphism V from CMON-AUT to CMONCAT corresponds
exactly to the functor 7(): Petri - CMonCat.

Analogously, we define here the theories of pre-nets, of symmetric strict
monoidal categories, and of suitable intermediate models, so as to deal with the
ITph. The main difference is that the monoidal theory we are interested in is
not commutative, and that symmetries must be explicitly added to rearrange
the object components in the symmetric category (in the CTph, symmetries
are collapsed into identities).

In order to define a theory in PMEqtl that represents pre-nets and their
morphisms, we first introduce a theory whose models are automata whose
states form a monoid.

2 Maude [4] is a language recently developed at SRI International; it is based on rewriting
logic and supports execution of membership equational logic specifications.

12

AT AVUVINL

fth MON-AUT is

sorts State Transition.

op 1 : -> State.

op _®_ : State State -> State [assoc id: 1].

ops origin(_) destination(_) : Transition -> State.
endfth

Note that the attributes assoc and id: 1 state the monoidality of the
operator _ ® _ on states of automata.

Exploiting the modularity features of Maude, we can characterise the cat-
egory PreNet of pre-nets as a subcategory of PAlgyo_,r- We import a
functional module LIST[E :: TRIV] of records, parametrised on a functional
theory of TRIV of elements, whose models are sets corresponding to the places
of the net.

fth TRIV is
sort Element.
endfth

fmod LIST[E :: TRIV] is

sort List.

subsort Element < List.

op € : —> List.

op _:_ : List List -> List [assoc id: €].
endfm

fth PRE-NET[S :: TRIV] is
protecting LIST[S]
renamed by (sort List to Record.).
sort Transition.
ops pre(_) post(_) : Tramsition -> Record.
endfth

The inclusion functor from PreNet to PAlgy.y_,yr is induced as the for-
getful functor of a theory morphism J specified as a view in Maude as follows.

view J from MON-AUT to PRE-NET[S :: TRIV] is
sort State to Record.

op origin(_) to pre().

op destination(_) to post(_).

op 1 to e.
op _®_ to _:_.
endview

Proposition 3.2 The category PreNet is a full subcategory of PAlgyon_aur-

In order to define the theory SMONCAT of symmetric strict monoidal cate-
gories, we exploit the definition of the theory MONCAT of monoidal categories
from [11], which for the reader’s convenience is reported in the Appendix.

13

AT AVUVINL

fth SMONCAT is including MONCAT.

op 7(_,_) : Object Object -> Arrow.

vars a,a’,b,b',c : Object.

vars f,f' : Arrow.

eq d(v(a,b)) = a®b.

eq c(v(a,b)) = b®a.

eq v(a,1) = a.

eq v(1,a) = a.

eq 7(a®b,c) = (a®y(b,c)); (y(a,c)®b) .

eq v(a,b);v(b,a) = a®b.

ceq (f®fD;v(b,b) = y(a,a); (f'®f)
if d(f) == a and d(f’') == o' and c(f) == b and c(f') == V.

endfth

Finally, the algebraic semantics of pre-nets, i.e., the construction Z(_), can
be easily recovered via the theory morphism W defined as follows.

view W from MON-AUT to SMONCAT is
sort State to Object.
sort Transition to Arrow.
op origin(_) to d(_).
op destination(_) to c(_).
endview

Proposition 3.3 The functor Z(_): PreNet — SSMC is the composition
PreNet —— PAlgygy 41 e PAlgsyoncar-

Concluding Remarks

We have investigated the issue of a satisfactory categorical semantics of PT
nets under the /Tph. In particular, we have introduced pre-nets — a refined
version of PT nets, where each transition is assigned an ordering for consuming
(producing) resources — and have shown that they can provide a faithful
description of net behaviours.

The conceptual framework of this paper is summarised in Table 2, which
shows our research programme and results on the behavioural, algebraic and
logical aspects of the two computational interpretations of PT nets, that is
the CTph and the ITph, from the viewpoints of the structures suited to each
of them and their mutual relationships.

The first row of Table 2 has been treated in [3]. As for the individual
token interpretation, we have proposed here the categorical construction Z(R),
based on pre-nets, as a suitable algebraic framework for nets. It offers some
advantages w.r.t. previous constructions because it is functorial (P (V) is not),
and very simple (Q(N) is not). Moreover, for the preservation properties of
adjoints, the semantic models of nets obtained as colimit constructions is found

14

AT AVUVINL

Table 2

Structures

Computation Behavioural Algebraic Logical
Model
Nets and Collective | Conf. structures, T(N) CAT ® CMON
Token Philosophy CTS, Commutative

processes
Nets and Individual | Processes, P(N), Q(N), | CAT ® MON
Token Philosophy Concatenable Procs, Z(R) + SYM

Strongly Conc. Procs

by applying the same constructions on models. For instance, the algebraic
model of the pushout of two nets — which is often useful for combining two
nets merging some of their places — is the pushout of their semantics.

From the logical viewpoint, it is not difficult to formulate a theory SYM of
permutations and symmetries (cf. [18]) bridging the gap from strictly sym-
metric monoidal categories to categories symmetric only up to coherent iso-
morphism.

References

[1] D.B. BENSON (1975), The Basic Algebraic Structures in Categories of
Derivations. Information and Control 28(1), 1-29.

[2] E. BEsT AND R. DEVILLERS (1987), Sequential and Concurrent Behaviour in
Petri Net Theory. Theoretical Computer Science 55, 87—136, Elsevier.

[3] R. BRUNI, J. MESEGUER, U. MONTANARI, AND V. SASSONE (1998), A Comparison
of Petri Net Semantics under the Collective Token Philosophy, in Proceedings
of the 4th Asian Computing Science Conference, ASIAN 98, J. Hsiang and
A. Ohori (Eds.), LNCS 1538, 225244, Springer-Verlag.

[4] M. CraveL, F. DURAN, S. EKER, P. LiNncoLN, N. MAaRrT{-OLIET, J.
MESEGUER, AND J. QUESADA (1999), Maude: Specification and programming
in rewriting logic, SRI International, revised version. Available at
http://maude.csl.sri.com/manual.

[5] P. DEGANO, J. MESEGUER, AND U. MONTANARI (1996), Axiomatizing the
Algebra of Net Computations and Processes. Acta Informatica 33(7), 641667,
Springer-Verlag.

[6] R.J. VAN GLABBEEK AND G.D. PLOTKIN (1995), Configuration Structures, in

Proceedings of the 10th Symposium on Logics in Computer Science, 199—209,
IEEE Press.

15

AT AVUVINL

[7] U. Gortz aND W. RESIG (1983), The Non-Sequential Behaviour of Petri Nets.
Information and Computation 57, 125-147, Academic Press.

[8] G. Hotz (1965), Eine Algebraisierung des Syntheseproblemen von
Schaltkreisen, I and II. EIK 1, 185—200, 209—231.

[9] J. MESEGUER (1998), Membership Equational Logic as a Logical Framework
for Equational Specification, in Proceedings of the 12th WADT Workshop on
Algebraic Development Techniques, F. Parisi-Presicce (Ed.), Lecture Notes in
Computer Science 1376, 1861, Springer-Verlag.

[10] J. MESEGUER AND U. MONTANARI (1990), Petri Nets are Monoids. Information
and Computation 88(2), 105-155, Academic Press.

[11] J. MESEGUER AND U. MONTANARI (1998), Mapping Tile Logic into Rewriting
Logic. in Proceedings of the 12th WADT Workshop on Algebraic Development
Techniques, F. Parisi-Presicce (Ed.), LNCS 1876, 62-91, Springer-Verlag.

[12] J. MESEGUER, U. MONTANARI, AND V. SASSONE (1996), Process versus Unfolding
Semantics for Place/Transition Petri Nets. Theoretical Computer Science
153(1-2), 171210, Elsevier.

[13] J. MESEGUER, U. MONTANARI, AND V. SASSONE (1997), Representation
Theorems for Petri Nets, in Foundations of Computer Science, C. Freksa et
al. (Eds.), Lecture Notes in Computer Science 1337, 239—249, Springer-Verlag.

[14] M. NIELSEN, G. PLOTKIN, AND G. WINSKEL (1981), Petri Nets, Event Structures
and Domains, Part 1. Theoretical Computer Science 13, 85-108, Elsevier.

[15] C.A. PETRI (1962), Kommunikation mit Automaten. PhD thesis, Institut fir
Instrumentelle Mathematik, Bonn.

[16] M. PFENDER (1974), Universal Algebra in S-Monoidal Categories, Algebra-
berichte 20, Department of Mathematics, University of Munich.

[17) W. REisic (1985), Petri Nets (an Introduction). EATCS Monographs on
Theoretical Computer Science 4, Springer-Verlag.

[18] V. SassoNE (1996), An Axiomatization of the Algebra of Petri Net
Concatenable Processes. Theoretical Computer Science 170, 277296, Elsevier.

[19] V. SassoNE (1998), An Axiomatization of the Category of Petri Net
Computations. Mathematical Structures in Computer Science 8, 117-151,
Cambridge University Press.

[20] G. WiNskEL (1987), Petri Nets, Algebras, Morphisms and Compositionality.
Information and Computation 72, 197- 238, Academic Press.

[21] G. WINSKEL (1988), An Introduction to Event Structures, in Linear time,
branching time, and partial order in logics and models for concurrency, J.W. de
Bakker et al. (Eds.), LNCS 354, 365397, Springer-Verlag.

16

AT AVUVINL

Table A.1

fth CAT is

sorts Object Arrow.

subsort 0Object < Arrow.

ops d(_) c(_) : Arrow -> Object.
op _;_.

var a : Object.

vars f g h : Arrow.

eq d(a) = a.

eq c(a) = a.

ceq a;f = f if d(f) == a.

ceq f;a = f if c(f) == a.

cmb f;g : Arrow iff c(f) == d(g).
ceq d(f;g) = d(f) if c(f) == d(g).
ceq c(f;9) = c(g) if c(f) == d(g).
ceq (f;9);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).
endfth

fth MON is

sort Monoid.

op 1 : -> Monoid.

op _®_ : Monoid Monoid -> Monoid [assoc id: 1].
endfth

fth MONCAT is MON ® CAT
renamed by (
sort (Monoid,Object) to Object.
sort (Monoid,Arrow) to Arrow.
op 1 left to 1.
op _Q_ left to _®_.
op _;_ right to _;_
op d(_) right to d(_).
op c(_) right to c().

endfth

A Partial Membership Equational Logic

A theory in PMEqtl is a pair T = (2, '), where Q is a signature over a
poset of sorts and T" is a set of Horn sentences in the language of 2. We
denote by PAlg, the category of partial (2-algebras, and by PAlg, the full
subcategory consisting of T-algebras, i.e., those partial (2-algebras that satisfy
all the sentences in I'.

For example, the poset of sorts of the PMEqtl-theory CAT of categories

17

AT AVUVINL

(see Table A.1) is Object < Arrow. There are two unary operations d(_)
and c(_), for domain and codomain, and a binary composition operation
; defined if and only if the codomain of the first argument is equal to
the domain of the second argument. Functions with explicitly given domain
and codomain are always total. The definition of the theory MONCAT of strict
monoidal categories used in Section 3 is almost effortless thanks to the tensor
product construction of theories, which is informally defined as follows.

Let T = (,T') and 7" = (', I") be theories in partial membership equa-
tional logic, with Q = (5,<,X) and Q' = (5',<',¥'). Their tensor product
TQ®T' is the theory with signature Q®¢2’ having: poset of sorts (5, <) x (5, <'),
and signature ¥ @ X', with operators f; € (X ® ¥'),, and ¢, € (X ® ¥'),, for
each f € ¥, and g € ¥/ (indices [and r stand respectively for left and
right and witness whether the operator is inherited from the left or from the
right component). The axioms of 7' ® 7" are the determined from those of T
and T" as explained in [11].

The essential property of the tensor product of theories is expressed by
the following theorem, where PAlg,(C) indicates the category of T-algebras
taken over the base category C rather than over Set.

Theorem A.1 Let T, T’ be theories in PMEqtl. Then, we have the follow-
ing isomorphisms of categories:
PAlg, (PAlg,) ~ PAlg,y ~ PAlg (PAlg;).
Hence, the theory MONCAT is defined in Table A.1 by applying the tensor
product construction to CAT and to the theory MON of (strict) monoids. Notice

the use of left and right corresponding to the indices | and r discussed
above.

18

