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Abstract. This paper is an informal summary of different encoding techniques
from process calculi and distributed formalisms to graphic frameworks. The sur-
vey includes the use of solo diagrams, term graphs, synchronized hyperedge re-
placement systems, bigraphs, tile models and interactive systems, all presented at
the Dagstuhl Seminar 04241. The common theme of all techniques recalled here
is having a graphic presentation that, at the same time, gives both an intuitive vi-
sual rendering (of processes, states, etc.) and a rigorous mathematical framework.

1 Introduction

Process calculi have been devised as a useful paradigm for the specification and analysis
of concurrent, distributed and mobile systems, where processes running on a network
are represented as terms of a suitable algebraic theory. Typical ingredients are pro-
cess signatures and axiomatic structural congruences for the syntax; reduction rules or
labeled transitions for the operational semantics, plus a number of observational equiv-
alences and congruences for the abstract semantics; modal and spatial logics for the
specification, analysis and verification of processes.

Roughly, process calculi situate in between the realm of mere mathematical ab-
stractions and that of running programming languages, in the attempt to exploit the
advantages coming from both worlds: on the one hand, they facilitate rigorous system
analysis by focusing on the aspects of interest (e.g. security, distribution, mobility),
and on the other hand they may offer the basis for prototypical implementations and
for verification tools. For example, on the more theoretical side, process calculi fa-
vor the application of standard algebraic and coalgebraic techniques like definition of
initial and final models, universal constructions and observational congruences, while
on the more practical side, there are now many running implementations of languages
based on calculi that were originally proposed to study and to experiment with basic
primitives, like name passing (π-calculus [43]), process passing (HOπ-calculus [50]),
cryptographic messaging (spi-calculus [1]), distributed dataspaces (KLAIM [13]), mo-
bile environments (ambient calculus [9]), just to cite a few. Furthermore, process calculi
allow to evaluate the expressiveness and usability of different mechanisms and appli-
cations before implementing them, hence reducing costs and efforts in the (re)design
phase and increasing the robustness of the final product.

The need of graphic representations for processes emerged at the very beginning of
process algebra developments (take as a prominent example the CCS agent diagrams
in [40]). The point was that many important aspects like network topology, connectivity,
distribution and many others are not so evident when looking at the terms associated



2 R. Bruni and I. Lanese

to processes, because these aspects are often encoded by means of ad-hoc name disci-
plines with all related issues (name sharing, binders, scoping, α-conversion, renaming,
substitutions). The situation is even worst when the above aspects can change dynami-
cally upon communication (dynamic reconfiguration, name extrusion, isolated names).
All these aspects are more amenable to visual descriptions than to syntax-driven encod-
ings and therefore they can be conveyed and analyzed in a more intuitive way by giving
suitable graphic representations to processes and delegating the dynamics to (different
flavors of) graph transformation systems (GTSs).

Likewise process calculi, also GTSs come equipped with a rigorous theory that can
be used to complement, to some extent, that of process calculi, so that the advantages
of one approach can be transferred to the other and that certain deficiencies can be
overcome by the combined use of both approaches. For example, we have mentioned
above that process terms are easy to manipulate but too syntax-dependent for express-
ing topology, distribution and connectivity in a natural, intuitive way. On the other hand,
graph representations make evident the way in which entities are distributed and con-
nected over the network, but can complicate the reading of the computation flow and the
behavioral equivalence proofs. An example of the synergic use of process calculi and
graphs is the definition of concurrent abstract semantics for process calculi by means of
GTS encodings.

GTSs exploit only one “graphic dimension” for drawing graphs that model system
configurations (the dynamics consists of silent reductions that replace subgraphs). In
some cases, it can be convenient to draw graphs in more than one dimension. For exam-
ple, different graph structures can be used for separating different structures coexisting
in the same system, like the physical structure of locations (spatial distribution) and
the logic structure of known channels (communication network). As another example,
one may consider an enhancement of GTSs where graph transformations are labeled
with located actions or causality links to past events: in this case the actions observed
during computations form themselves graphs that span across time and therefore they
are orthogonal w.r.t. the graphs that model system configurations (which span across
space).

Several interesting presentations on graphic encodings of process calculi and dis-
tributed systems were held at the Dagstuhl Seminar 04241. The talks often concerned
different models and techniques, exploited with different aims in mind. In the next sec-
tions we try to account for the distinguishing features of each approach and to place
them in the right context with respect to the related literature. Although each approach
would deserve a whole section (and several pages) by itself, we have preferred a more
concise exposition, where some approaches are collected together and discussed infor-
mally on the basis of their key features.

For the sake of presentation, we partition all techniques into two classes, depend-
ing on the number of “graphic dimensions” in which graphs are drawn (in the sense
sketched above). Although this grouping discipline may appear rather arbitrary, it has
been devised to expose in a structured manner the main analogies and divergences be-
tween different approaches.
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2 One-dimensional graphic encodings

Our survey starts by focusing on three proposals that exploit graph rewriting techniques
for simulating reductions in process calculi. Roughly, they fall in a wider research thread
also inspired by the so-called optimal implementation of λ-calculus [38,31] (see [2] for
a survey) , and as such they follow the same pattern:

1. first a mobile process calculus is selected and its processes are mapped to graphs of
a suitable kind;

2. second, the mapping is proved sound and complete w.r.t. the structural congruence
on processes (in the sense that two processes are structurally equivalent if and only
if they correspond to the same graph);

3. finally, graph rewriting techniques are used to simulate process reductions.

When the whole procedure can be carried out, there are two main achievements. The
first is that the graph encoding allows one to get rid of all the issues related to naming
(like α-conversion of bound names) and to other syntactic issues (like associativity,
commutativity and unit of parallel composition). The second is that not only graph
rewrites can simulate the interleaving reductions of the original operational semantics,
but they define a straightforward concurrent semantics by making explicit the places
where such reductions occur in the process-as-graph (for example, it is immediate that
non-overlapping rewrites can be executed concurrently).

In the following we contextualize and compare the approaches presented in the talks
by Björn Victor, by Fabio Gadducci, and by the second author. As it will be immediately
noticed, all talks focused on different process calculi and exploit different encoding
techniques, yet they share many similarities.

2.1 On solo diagrams

The remarkable success and diffusion of the π-calculus led to the definition of many
variants with the combined aim of retaining as much as the expressiveness of the π-
calculus while favoring practical implementation in distributed platforms.

The fusion calculus [46] is at the same time a simplification and an extension of
π-calculus: the fusion calculus has only one binding operator (the restriction, but not
the input prefix), because input and output prefixes are completely symmetric (unlike
π-calculus), yet the effects of synchronization are not just local to the receiver and they
consist of name fusions rather than substitutions. The combination of these features
makes it possible to encode the π-calculus as a proper subcalculus of the fusion calculus
(roughly, the ν binder becomes restriction, input prefixes x(y).P of the π-calculus are
translated as (y)xy.JPK, where the object name y is bound by restriction, and all the
remaining operators are translated trivially). On the other hand, the binding mechanism
of the fusion calculus ignores the issue of unicity of newly generated names, so that,
conceptually speaking, the ν operator of the π-calculus and the restriction operator of
the fusion calculus are very different in spirit.

The solos calculus [35] takes inspiration from both the fusion calculus and the
asynchronous π-calculus [27] (an easier-to-implement simplification of the π-calculus
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where continuations are banned from output prefixes, so that only output particles are
allowed): it is obtained from the fusion calculus by removing continuations after all
action prefixes, hence only input / output particles are allowed (the so-called solos).
The solos calculus maintains the same expressive power of the whole fusion calculus,
whereas this is not the case for the asynchronous π-calculus versus the π-calculus. (Ac-
tually, the polyadic solos calculus can be encoded into the dyadic one, where solos carry
at most two names.) In the solos calculus, recursion is coded by means of replication
!P and unguarded unfolding is dealt with additional reduction rules that induce a be-
havioral flattening law, according to which nested replications can be safely removed.
(This is necessary because the absence of action prefixes prevents the use of guarded
variants of replication.)

Solo diagrams were introduced in [34] to define an efficient implementation of the
solos calculus, adapting ideas from interaction diagrams [45] and pi-nets [41]. Solo
diagrams are essentially boxed hypergraphs over an infinite set U of nodes with two
kinds of hyperedges: input edges 〈a,a1, . . . ,ak〉i and output edges 〈a,a1, . . . ,ak〉o, where
in both cases a is the subject node and a1, . . . ,ak are the object nodes. A box is just a pair
consisting of a finite multiset of edges G and a distinguished subset S of internal nodes
of G, which are local to that box. Multisets of edges and boxes form solo diagrams.

The graphic representation of agents can be sketched by picking one node for each
different name, then drawing output solos ux̃ as output edges 〈u,x1, . . . ,xk〉o from the
nodes labeled x̃ to the node with label u and, respectively, input solos ux̃ as input edges
〈u,x1, . . . ,xk〉i from the node labeled u to the nodes labeled x̃. Parallel composition be-
comes graph union (where nodes labeled with the same name are identified and thus
shared). Scope restriction (x) erases the label from node x, so that it becomes anony-
mous and cannot be further shared when composing in parallel. Replication is modeled
by boxing the graph to be replicated.

As the reader can expect, diagram isomorphism coincides with the usual struc-
tural congruence of solos (namely, the abelian monoid laws for parallel composition,
α-renaming of bound names, and the usual laws for scoping).

Solo diagrams are given four rewrite schemes in set-theoretical style, to take into
account reductions inside, outside or across boxes. The basic reductions involve an
output edge and an input edge with the same subject. As a result the two edges disappear
and the object nodes are fused pairwise (unless they have different labels, in which case
the reduction cannot take place). If boxes are involved, first a fresh copy of the content
of the box is created and then the reduction takes place.

The talk by Björn Victor illustrated how solo diagrams can be extended so to encode
a fully asynchronous flavor of the D-Fusion calculus [4]. The D-Fusion calculus is itself
a variant of the fusion calculus where the π-calculus binder ν for fresh name generation
is (re)introduced to prevent unification of newly generated names, which in fact should
always kept distinct according to the discipline of the π-calculus. The D-Fusion calculus
contains both the fusion calculus and the π-calculus as proper subcalculi. Moreover,
the combined use of the two binders in the D-Fusion calculus allows to express an
interesting form of pattern matching (that can be expressed neither in the π-calculus,
nor in the fusion calculus) and to encode mixed guarded choice.
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In the same way as the solos calculus is derived from the fusion calculus, the D-solos
calculus is straightforwardly obtained from the D-Fusion calculus by removing contin-
uations after action prefixes. The encoding of D-solos processes in D-solo diagrams is
defined along the same line of the encoding of solos processes. However, in this case,
solo diagrams must first be extended with a coloring of nodes (to take into account
the different binders) and by slightly modifying the graph rewrite rule schemes. Then,
the resulting D-solo diagrams are shown to encode the processes of D-solos calculus
in such a way that diagram isomorphism captures the structural equivalence on pro-
cesses and that reductions on diagrams are in bijective correspondence with reductions
on processes.

2.2 On term graph rewriting

The solo diagram approach was mainly motivated by the search for efficient implemen-
tations (of the fusion calculus). To this aim, the applied graph rewrite techniques were
designed ad hoc and tailored to the case study. In particular, concurrency issues were
not addressed by the set-theoretical reduction schemes that defined the (interleaving) se-
mantics of solo diagrams. Other graphic approaches address concurrency as a primary
issue and exploit the standard theory of graph transformation systems to derive concur-
rent semantics. Concurrent semantics can serve both to fix an upper limit to the amount
of parallelism in the system and to establish causal dependencies between reduction
steps, two aspects that have important consequences at the level of specification, design
and implementation of distributed applications.

The talk by Fabio Gadducci illustrated a methodology for encoding calculi with
name passing in a flavor of hypergraph rewriting. In this case, the encoding is designed
so to exploit well-consolidated techniques and results. In particular, the encoding is
based on term graph rewriting systems [48] for which a well-developed concurrent se-
mantics is available [3]. The cuncurrent semantics for GTSs generalizes the standard
concurrent (and causal) semantics of Petri nets equipping graph transformation systems
with the appropriate notions of graph processes, event structures and prime algebraic
domains. The full generality of the methodology is sustained by its application to two of
the most popular nominal calculi, namely the π-calculus and the (communication-free
fragment of the) ambient calculus [9]. We do not discuss the details of the two imple-
mentations (that can be found in [18,20]), but rather we try to compare the methodology
against analogous approaches in the literature, privileging solo diagrams in the discus-
sion.

Informally, term graphs are labeled dags representing terms where the same occur-
rence of a subterm can be shared explicitly in many positions. The algebraic structure
of (ranked) term graphs is explained in [11] and it includes parallel and sequential com-
positions. Nodes in the graphs can have different sorts. Typically they can represent
names, or connection points for sequential processes, or connection points for paral-
lel processes. Unlike solo diagrams, the (typed) hyperarcs needed in the encodings are
strongly influenced by the signature of the process calculus under consideration. Typi-
cally an additional unary arc with a special label is introduced, whose instances are then
attached to any active process node to enable reductions (it is especially useful when
modeling calculi with non-reactive contexts, like action prefixes of π-calculus). Like
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solo diagrams, the encodings based on term graphs can be designed in such a way that
two processes are mapped to isomorphic term graphs if and only if they are structurally
equivalent. However, unlike solo diagrams, it is often the case that the encoding is not
surjective, i.e., there can exist term graphs that are not images of any process. More-
over, the usual axiom νx.0 = 0 should not be part of the structural congruence, because
it would complicate the encoding too much with additional rules for garbage collecting
unused names. Fortunately this is not a big issue, because then the two processes are
trivially behavioral equivalent anyway. Another difference is that encodings are given to
nominal calculi that have prefixes (and therefore non-reactive contexts) and that contain
recursive process definitions (instead of replication).

The dynamics of the term graph encodings is then expressed by few graph pro-
ductions in the double-pushout (DPO) style. Roughly they are (labeled) spans of graph

morphisms (dL
l
←− dK

r
−→ dR). Operationally, productions are applied to a larger graph

G by first finding a match mL : dL→ G that fixes an occurrence mL(dL) of dL in G, then
removing all objects of G that are matched by dL \ l(dK), and finally adding fresh oc-
currences of the objects in dR \ r(dK). Note that the rewrite preserves as-they-are all the
objects of G matching the middle interface subgraph dK , which are also used to connect
the fresh elements in a proper way to the remainder of G. These are the elements read
but not consumed by the derivation. Their role is particularly relevant from the point
of view of concurrency, because they can be read simultaneously by many concurrent
rewrites. A slight generalization of graph processes from [3] can then be used to charac-
terize exactly concurrent computations, identifying those derivations that differ only for
the scheduling of independent steps. With respect to solo diagrams, the DPO semantics
offer a standard concurrent semantics instead of an ad hoc interleaving semantics.

Finally, it is worth remarking that unlike other graphic encodings of nominal calculi
(e.g., [41,45,24,22,44,30]), both the term graph approach and the solo diagram approach
exploit non-hierarchical graphs (another exception is [54]).

2.3 On synchronized hyperdge replacement

The talk by the second author considered a mapping from fusion calculus into synchro-
nized hyperedge replacement (SHR), a modular approach to (flat) hypergraph rewriting.
A detailed presentation of the mapping can be found in [32]. The term graph approach
coded the structure of the process term in the graph, while the SHR approach maps in
the graph the structure determined by the sharing of names among concurrent fusion
calculus processes, as it is done in the solo diagram approach. However fusion pro-
cesses can be arbitrarily complex (not just solos), and the additional structure is stored
inside hyperedge labels.

SHR [14,25,16] has been developed to model dynamic reconfigurations of dis-
tributed systems. In particular processes or system components are modeled as hyper-
edges, and communication channels between them as shared nodes. Graph rewrite rules
are derived by combining productions, i.e., basic rules that replace a single hyperedge
h with a generic graph, preserving all the nodes attached to h (but some of them may be
merged), which act as interface. Moreover observable effects are produced on the nodes
of the interface: for each node the corresponding effect contains an action and a tuple
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of references to nodes. Having a single hyperedge in the left-hand side guarantees that
rewrites are local (and thus easier to implement also in a distributed environment [14]).

A set of productions can be applied in one step only if the multiset of actions per-
formed on shared nodes is compatible. What exactly compatible means is defined by a
suitable synchronization algebra [33] that defines the composition of actions (the result
is undefined if the actions are not compatible). Furthermore, when actions are com-
bined, the referenced nodes can be merged and communicated via the resulting action,
according to a mobility pattern, which is part of the synchronization algebra. Finally
nodes can be both free (i.e. part of the interface) or restricted, and in that case some
actions may be forbidden on them.

SHR is traditionally equipped with a representation of graphs as syntactic judge-
ments [26], where nodes are names, restricted nodes are bound names (and thus are
α-convertible) and an edge with label L attached to nodes x1, . . . ,xn becomes a term
L(x1, . . . ,xn). Thus the semantics can be expressed as in usual process calculi via an
LTS. The resulting abstract semantics is a congruence w.r.t. the operators of an underly-
ing algebra of graphs.

The instance of SHR employed for encoding fusion calculus exploits the so called
Milner synchronization [16] as synchronization mechanism and a set of mobility pat-
terns that models message passing. The aim of the work was to show that SHR can
be considered as a generalization of fusion calculus and that SHR is a good execution
framework for fusion processes. The first part is proved by the fact that the mapping
is very simple (both parallel composition and restriction are mapped omomorphically).
The main point of the translation is the use of labels of hyperedges to describe schemas
of sequential processes (i.e. sequential processes that have distinct standardized names).
Thus the labels of the hyperedges, which take into account the set of topmost action pre-
fixes, define which productions are available and thus which are the allowed behaviours
(we have a production for each enabled prefix), while the name handling part is done
by the corresponding mechanisms of SHR, which thus prove to be a generalization of
the fusion calculus ones. As usual graphs up to isomorphisms correspond to processes
up to structural congruence.

Leaving aside that SHR provides a graphical representation of the topological struc-
ture of processes, a main advantage of the encoding is that a concurrent semantics is
naturally defined (with the meaning that many independent transitions can be executed
in one step). Furthermore alternative semantics for fusion processes can be easily de-
fined by changing the synchronization algebra, thus allowing to model systems based
on different communication primitives, such as broadcast, and all these semantics are
compositional w.r.t. the operations of parallel composition, name restriction and name
fusion.

3 Two-dimensional graphic encodings

Sometimes drawing graphs in “one dimension” is not enough to convey the conceptual
separation between certain aspects that are consequently mixed together during the en-
coding. When this happens, there is a price to pay in terms of increased complexity in
the specification, analysis and verification over the graphic encoding, even if the en-
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coding itself may become easier to define. The fact is that the separation of concerns
removed during the encoding must then be recovered or at least approximated at the
level of the analysis techniques.

As we have mentioned in the introduction, examples range from orthogonal graph
structures that describe different aspects of a configuration (like spatial distribution and
communication infrastructure) to graphs that model both configurations and some ob-
servable effects of computations (i.e., both static and dynamic aspects).

A possible option is to preserve the separation of concerns by developing models
and techniques that exploit additional graphic dimensions. Approaches of this kind are
feasible as long as they are applicable without complicating the encoding too much.

In the following we survey the talks by Robin Milner, by the first author and by
Gheroghr Stefanescu that exploit two graphic dimensions for the visual rendering of
the encoding graphs (as well as for their mathematical understanding).

3.1 On bigraphs

Bigraphs [42,28,29] are a general model aimed at describing systems by considering at
the same time two orthogonal issues, namely their spatial distribution and their commu-
nication infrastructure. In fact, the slogan of bigraphs is “Where you are does not deter-
mines whom you can talk to.” Thus bigraphs integrate two graph structures, a tree called
place graph that describes the nesting of locations and a link graph that shows how lo-
cated agents are connected. Notably the two structures are defined over the same set of
nodes. The visual representation shows both structures at once, with nodes represented
by ovals which are nested according to the spatial containment relation and which are
connected by edges according to the link structure. On the contrary, the mathematical
treatment of bigraphs is eased by considering the two structures separately. More pre-
cisely, bigraphs are arrows in a precategory whose objects are interfaces (for both the
place and the link structures) that can be used to compose small bigraphs to build larger
ones. An extension of bigraphs allows also to model restriction, specifying that some
links are local to a place.

The dynamics of bigraphs is defined by silent rewrite rules, which can be instanti-
ated and applied to the starting bigraph. An important aim for bigraphs is to develop
an LTS from the reduction rules [51], using as labels the minimal contexts that enable
a reduction. General results prove that the resulting abstract semantics is a congruence.
Suitable categorical constructions are provided both for applying rewrite rules and for
selecting a minimal set of labels (through the so-called IPO construction [37]) from
which all others can be derived.

An encoding is provided from a fragment of asynchronous π-calculus [27] with-
out summation and recursion (similar encodings exist also for ambient calculus [9]
and λ-calculus) into bigraphs in order to show that the separation of the distribution
structure from the communication structure allows to easily model the kind of systems
arising in the global computing setting. The place graph is used to model the structure
of the term while the link graph is used for name handling. An interesting point is that
places can be either active or passive. The difference is that passive places forbid any
inside reduction, and thus they allow, e.g., to forbid reductions under action prefix in
π-calculus (while in other approaches, such as the term graph one, one has to manage
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special edges representing the capability to perform reductions). The isomorphism rela-
tion on graphs corresponds to standard structural congruence (extended with the axiom
νz.x(y).P = x(y).νz.P iff z /∈ {x,y}, which is correct w.r.t. the standard semantics).

The general theory of bigraphs allows to derive an LTS from the encoding in a
standard way. In the case of asynchronous π-calculus the bisimulation equivalence over
the derived LTS coincides with standard barbed congruence [29].

3.2 On tile systems

Both graphic dimensions exploited by bigraphs address configuration features. The
SHR approach already evidenced that local graph rewrites can produce complex effects
on the interface nodes, including names and links to other nodes. The tile approach [21]
builds on this aspect by offering a framework where graphs are not just used for describ-
ing configurations, but also for observations. The orthogonality between the two di-
mensions is emphasized by drawing configuration graphs horizontally and observation
graphs vertically. Since in general components have two interfaces (the input one and
the output one), each configuration has two corresponding distinguished sets of nodes
where actions can be observed. Tile rewrite rules can be depicted as “squares” (whence
the word tile) whose sides are labeled by graphs: the top graph is the initial configura-
tion to be rewritten; the left graph is the observable projection of the rewrite on the input
interface and similarly for the right graph w.r.t. the output interface; the bottom graph is
the final configuration, which replaces the initial one after the rewrite. Adjacent graphs
have a common interface (one vertex), but are otherwise disjoint. Noticeably, config-
uration graphs (respectively observation graphs) can be composed sequentially and in
parallel. In fact the two kinds of graphs form the arrows of two monoidal categories over
the same set of objects (the interfaces). By varying the algebraic structure of configu-
rations and observations, tiles can model many different aspects of dynamic systems,
ranging, e.g., from concurrency and causalilty aspects for located and name-passing
calculi [15], to elegant handling mechanisms for names abstraction, name generation
and higher order structures [8,7].

The tile model [19] takes inspiration from and bears many analogies with various
other formalisms, including SOS [47], context systems [36], conditional transition sys-
tems [49], structured transition systems [12], and rewriting logic [39]. In general, tile
configurations and observations are not necessarily graphs, as they can have complex
algebraic structures. For example, term graphs can be used, in which case both the al-
gebraic and the graph view are reconciled thanks to [11]. Tile logic [5] extends rewrit-
ing logic with a built-in mechanism, based on observable effects, for coordinating local
rewrites. Likewise SHR, the dynamics of a system is a coordinated evolution of its local
subconfigurations. In fact, tiles can be composed horizontally, vertically, and in parallel
to generate larger steps. Horizontal composition yields rewrite synchronization. Vertical
composition models the sequential composition of computations. Parallel composition
corresponds to building concurrent steps. Thus, tile systems allow to define models that
are compositional both in “space” (i.e., according to the structure of the system) and
in “time” (i.e., according to the computation flow). Operationally, tiles can be seen as
transitions labeled with the (pairs of) observations on input / output interfaces produced
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during the rewrites. This interpretation gives rise to abstract semantics that generalize
those based on ordinary LTSs, like tile trace equivalence and tile bisimilarity.

The talk by the first author presented the tile encoding of CommUnity [17]. Com-
mUnity is not exactly a process calculus, but rather a (parallel) program design language
in the style of Unity [10]. Unlike Unity, CommUnity is based on action sharing and it
was initially proposed to show how programs fit into Goguen’s categorical approach to
General Systems Theory [23]. Since then, it has evolved into an architectural descrip-
tion language, capitalizing on the fact that CommUnity provides a conceptual distinc-
tion between between “computation” and “coordination” concerns in communicating
distributed system. The individual components (called designs) of a CommUnity sys-
tem can be defined in terms of (input / output) channels and actions. Input channels are
read-only and are controlled by the environment while output channels are controlled
locally by the component. Actions represent possible interactions between the compo-
nent and the environment and consist of multiple assignments guarded by an enabling
condition. The interaction between designs is based on action synchronization and in-
terconnection of input and output channels. Design composition is specified by giving
diagrams in a suitable category whose objects are designs. The colimit construction on
such diagrams returns a monolithic, unstructured design representing the system as a
whole.

The tile encoding exploits a novel decomposition of CommUnity diagrams in terms
of elementary designs. The resulting tile system gives both an operational semantics and
an abstract semantics which is correct w.r.t. the colimit construction, in the sense that
the translation of a diagram is tile bisimilar to the translation of its colimit [6]. The tile
encoding introduces ad hoc connectors for synchronization, hiding and mutual exclu-
sion, which are used to coordinate elementary components. Roughly, such connectors
are special arcs of configuration graphs to which are delegated coordination activities
(but they perform no computational activity). A stronger relation between the colimit
construction and the abstract semantics is established by showing that the encoding of
a CommUnity diagram is equal to the encoding of its colimit up to a suitable axiom-
atization of the connectors. The results provide a nice integration of graph encodings
(configuration graphs modeling CommUnity diagrams) with algebraic techniques (the
axiomatization of connectors) and co-algebraic techniques (tile bisimilarity).

3.3 A word on interactive systems

We conclude our excursus around graphic approaches by mentioning the talk by Ghe-
orghe Stefanescu on interactive systems. Although interactive systems are not really
graph-based, they offer a graphic formalism that exploits space and time dimensions in
a way which is very similar to tile systems.

Interactive systems come in a number of flavors. The simpler case of finite interac-
tive systems (FISs) [52] consists of two-dimensional automata expressing at the same
time state-transformations and process interactions. Roughly, FISs correspond to a spe-
cial kind of tile systems where both configurations and observation are strings. Their
main applications are as both specification and operational framework for concurrent
object-oriented agents and as recognition devices for planar words (i.e., grids of sym-
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bols on a given alphabet) in connection with two dimensional regular expressions (that
offer an algebraic view of FISs).

The more general case of interactive systems with registers and voices (RV-FISs) ac-
comodates for a large class of open, interactive computing systems with object-oriented
features. RV-FISs include register machines and full space-time duality, introducing the
concept of voices (the time dual of a register). FISs define space-invariant models which
are highly compositional and offer the basis for a programming language that uses novel
techniques for syntax and semantics. We refer the interested reader to [53] for a detailed
survey.

4 Conclusion

It is a common understanding that in the same way as the λ-calculus is the foundational
calculus for functional and sequential programming, the π-calculus is the foundational
calculus for distributed and mobile programming. We think that the most evident proof
of the importance of graphic encodings for process calculi is the fact that passing from
standard interleaving semantics for the π-calculus to concurrent and distributed ones is
really cumbersome unless graphic encodings are exploited. More generally, an impor-
tant aspect of graphic encodings is their use as meta-framework for which results are
proved once and then applied to many instances. For example, concurrent semantics
are obtained by applying the general theory of GTS to the particular encoding under
consideration. Other examples are congruence results for observational equivalences in
the context of tile systems, SHR and bigraphs, or the derivation of LTS from reduction
systems in the context of bigraphs.

Table 1 collects in an ordered manner the characteristics of each graphic encoding
with respect to certain features. Interactive systems have been left out of the table be-
cause they have a different flavor with respect to all other approaches (graphic but not
graph-based). The first column tells whether the graphic formalisms allow or not con-
figurations which are not the image of any process. The second and third columns deal
with syntactic features of the calculi that can be encoded. They tell which kind of re-
cursion can be more easily encoded (either the replication operator or recursive process
definitions) and if non-reactive contexts can be modeled or not. The fourth and fifth
columns have semantic flavors. They tell if the resulting operational semantics exploit
silent transitions or labeled ones and if concurrent abstract semantics can be easily de-
rived or not. (In the case of bigraphs, we put “silent” in the cell associated to the kind
of transitions, because dynamics is usually expressed by reduction, even if suitable LTS

can then be derived exploiting the IPO approach.)

To conclude we remind that although the integration of different techniques from
the various calculi and their encodings can lead to undoubtful advancements both in
theory and in practice, there is still plenty of work to do, because such integration has
just started and it has proved to constitute a fertile and challenging field of research for
the upcoming years.
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surjective enc. recursion non reactive ctxs transitions semantics

solo diagrams yes replication avoided silent interleaving
term graphs no recursive defs allowed silent concurrent

SHR systems no recursive defs allowed labeled concurrent
bigraphs no - allowed silent interleaving

tile systems no recursive defs allowed labeled concurrent

Table 1. Schematic comparison of encodings on specific features.
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