
Graph-Based Design and Analysis of Dynamic

Software Architectures⋆

Roberto Bruni1, Antonio Bucchiarone2,3, Stefania Gnesi3,
Dan Hirsch4, Alberto Lluch Lafuente1

1 Department of Computer Science, University of Pisa
{bruni,lafuente}@di.unipi.it
2 IMT Alti Studi Lucca, Italy.

3 ISTI-CNR, Pisa, Italy.
{antonio.bucchiarone,stefania.gnesi}@isti.cnr.it

4 Argentina Software Development Center (Intel), Argentina
dan.hirsch@intel.com

Dedicated to Ugo Montanari in occasion of his 65th birthday

Abstract. We illustrate two ways to address the specification, mod-
elling and analysis of dynamic software architectures using: i) ordinary
typed graph transformation techniques implemented in Alloy; ii) a pro-
cess algebraic presentation of graph transformation implemented in Maude.
The two approaches are compared by showing how different aspects can
be tackled, including representation issues, modelling phases, property
specification and analysis.

1 Introduction

It is about 30 years ago when Ugo Montanari started to promote the use of graphs
and graph grammars as a multifaceted, unifying framework for the specification,
modelling and analysis of concurrent and distributed systems [12,16,17].

Since then, the way in which software artifacts are conceived and their en-
gineering practices have evolved, but Ugo Montanari has always been able to
extend the foundations of the graph-based approach along innovative ideas so
to adapt it to emergent computational paradigms and software development
techniques.

In particular, Ugo Montanari is collaborating within the EU funded project
Sensoria [38] to the development of a novel, comprehensive approach to the en-
gineering of software systems for service-oriented computing. Within Sensoria,
many efforts are devoted to the proposal and validation of sound architectural
design [14,39] principles, that focus on architectural styles governing the overall

⋆ Research partially supported by the EU within the FETPI Global Computing,
project IST-2005-016004 SENSORIA (Software Engineering for Service-Oriented
Overlay Computers) and by the Italian FIRB Project Tocai.it.

structure of software systems in terms of components, their logical interrelation-
ship and their spatial distribution. Architectural styles establish the rationale
for certain classes of architectures, e.g. patterns that should be fulfilled also in
the presence of reconfigurations and that can even trigger and drive efficient
reconfigurations.

There are many typical questions that arise during the design and analysis of
software architectures. How do we represent architectures? How do we formalise
architectural styles? How do we construct style conformant architectures? How
do we model software architecture reconfigurations? How do we ensure style
consistency? How do we express and verify architectural properties?

In this paper we compare two graph-based approaches to the specification
and modelling of architectural designs. Both approaches are aimed to validate
prototypical applications before their realisation and deployment.

The first approach is inspired by the tradition of algebraic approaches to
graph transformation [19], an area of research in which Ugo Montanari has
played a relevant role. The approach follows [5] and models dynamic software
architectures using typed graph grammars (TGG).

The second approach is a recent proposal called Architectural Design Rewrit-

ing (ADR) [6,7,8]. ADR has been conceived by combining and reconciling appar-
ently different formalisms, very much in the spirit that pervade many other Ugo
Montanari’s contributions. In particular, ADR takes inspiration of research lines
in which Ugo Montanari has been deeply involved like graph-grammar based
approaches to architectural styles [26], graphical models of process algebras [21]
and rewriting formalisms [23].

We show the feasibility and effectiveness of TGG and ADR by implementing
them using high-performant, state-of-the art formal tools. The implementation
of TGG is based on Alloy [27] a light-weight approach to the modelling and
analysis of software models that is raising the interest of leading researchers in
the area of software architectures (see e.g. [32]). The implementation of ADR is
based on Maude [13], a high-performance tool implementing Rewriting Logic [36].
We refer to the two implementations as TGGA and ADRM .

The main aspects on which we focus are concerned with:

Architectural Representation, i.e. convenient ways to represent a software archi-
tecture, to build it, to browse it;

Architectural Styles , i.e. convenient ways to constrain architectures under con-
sideration to satisfy certain requirements;

Architectural Properties , i.e. convenient logical formalisms to express relevant
architectural properties;

Architectural Analysis, i.e. efficient techniques and tools for verification.

We show how to tackle these aspects with both approaches. The outcome
of our experience suggests that TGG is better suited for an early phase of the
development, where the architectural constraints imposed by the style are defined
in an iterative process of refinement of the model and style, assisted by model-
finding techniques. Instead, ADR is more convenient for a more advanced phase,

• Hoo //

��

• Hoo //

��

• • Hoo //

��

•

◦ ◦ ◦

®

OO

®

cc

®

OO

E®E

\\

// • E®Eoo

BB

®

OO

Fig. 1. The road assistance scenario.

where the style is well established and structured, thus enabling flexible and
powerful reconfigurations and efficient analysis via model checking.

This paper is structured as follows. Section 2 presents our running example.
Section 3 offers a brief background on our design and analysis setting. Section 4
and 5 describe TGGA and ADRM , respectively. Section 6 compares both ap-
proaches with a special focus on analysis issues. Section 7 gives some pointers
to related works. Section 8 concludes the paper and suggests future research
avenues. Along with the paper we present flashes of code. For a complete vision
we refer to [6,18].

2 Running Example: Road Assistance Scenario

We use as running example a simple bike scenario (see [8]), an ecological variant
of the automotive case study of Sensoria. A road assistance service platform
is supported by a wireless network of ad hoc stations that are situated along
a road. Bikes are equipped with electronic devices that can access services as
they move along the road, e.g. to request assistance in case of breakdowns. The
graph in Figure 1 depicts a simple architecture of such a system. Each bike (®)

is connected to the service access point (◦) of a station (H) which is possibly
shared with other bikes. A station and its accessing bikes form a cell. Stations,
in addition to the service access point, use two other communication points that
we call chaining point (•). Such points are used to link cells in larger cell-chains.
Bikes can move away from the range of the station of their current cell and enter
the range of another cell. A handover protocol supports the migration of bikes to
adjacent cells as in standard cellular networks. Stations can shut down, in which
case their orphan bikes call for a repairing reconfiguration. We shall consider two
shutting down situations: one in which the adjacent stations are able to bypass
the connection and adopt all orphan bikes and another in which the bypassing
is not possible and orphan bikes switch from their normal mode of operation to
a cell mode (E®E), in which they become standalone stations.

The style of our example is the set of all architectures made of a connected
chain of stations (or bikes in station mode) to which any bike is attached. This is
a simple but very comprehensive example since it mixes features of well-known
architectural styles. Indeed, the style underlying bikes and stations is basically
a client-server architecture, while chains of cells resemble pipes-and-filters archi-
tectures.

3 Design and Analysis of Dynamic Software Architectures

The architecture of a software system basically consists of the structure of com-
ponents and the way they are interconnected. Components are high-level com-
putational and data entities that can range from a distributed application to
a single thread, from databases to a simple data container. An architecture is
dynamic if it can change during run-time. Typical changes, which are called re-

configurations, include components joining and leaving the system or changing
their connections and are usually required for load balancing, fault-recovery and
redimensioning software systems.

3.1 The Design of Software Architectures

The first aspect to consider in the design of a software architecture is the for-
malism used to describe it. Various formalisms exist ranging from the more the-
oretical graph-based approaches to implementation-oriented architectural pro-
gramming languages (APLs) such as Java/A [28], passing through architectural
description languages (ADLs) [35].

When designing an architecture, it is desirable to consider the concept of an
architectural style [39], i.e. some set of rules or patterns indicating which compo-
nents can be part of the architecture and how they can be legally interconnected.
An architectural style can also be seen as a (typically infinite) set of valid ar-
chitectures. Typical architectural styles include client-server, pipes-and-filters,
layered, multi-tier and peer-to-peer.

There are basically two approaches to the definition of an architectural style.
The first approach consists in defining a grammar that allows to produce all the
instances of the style. This is the approach first proposed in [37] and subsequently
followed in [26], a piece of work which constitutes the main inspiration of ADR.
The second approach defines a set of architectural constraints that forbid or
require some structural properties. Various approaches, for instance [32], use the
Alloy language [27] to specify such constraints.

In this paper we adopt graphs as a suitable formalism to describe software ar-
chitectures. The use of graphs as both the specification and the execution model
combines the user-friendly visual representation with the formal theory for graph
rewriting. One of the advantages in the combined use relies on the fact that archi-
tectural information can be encoded itself as part of the graphs, allowing for the
uniform modelling of dynamic aspects such as computation, discovery, binding
and reconfiguration, as graph transformations. Particularly, each architecture is
represented by a hypergraph where components (resp. connectors) are modelled
using hyperedges and their ports (resp. roles) by the outgoing tentacles. Compo-
nents and connectors are attached together connecting the respective tentacles
to the same node. Through the paper, we shall omit the prefix ‘hyper’ for sim-
plicity. Ordinary directed graphs are a particular instance of hypergraph where
each edge has two tentacles.

3.2 The Analysis of Architectural Properties

We consider mechanisms to express and verify the properties that we expect to
be satisfied by software architectures.

Structural properties. Structural properties regard the topology of the architec-
ture, i.e. the way components are interconnected. Note that the style definition
can be considered as a special structural property. In the running example, we
could consider properties regarding the number of bikes present in a cell or the
effective existence of a path from the leftmost cell to the rightmost one.

Behavioural properties. Behavioural properties regard the dynamism of the ar-
chitecture, i.e. the state space given by an initial architecture and its possible
reconfigurations. In the running example, such properties might be the absence
of deadlocks or the fact that a migration is always possible.

Among the class of properties explained above we shall focus and emphasise
those that regard architectural styles. For instance, style conformance is a struc-
tural property that requires an architecture to be an instance of a style while
style preservation requires all reconfigurations to preserve the style, i.e. that any
reconfiguration of a style-conformant architecture results in a style-conformant
architecture.

We shall consider the following analysis techniques:

Model finding. We consider the problem of analysing the state space of all pos-
sible architectures. Such analysis can serve as a computer-aided design process
or as a debugging method to find out inconsistencies in the model or in its
specification

Model checking. We consider the problem of verifying that a given architecture
satisfies some structural or behavioural property expressed in a suitable logic.

Style matching. We consider the problem of determining whether an architecture
is conformant to a certain style or whether a reconfiguration is style preserving.

4 Typed Graph Grammars with Alloy

The approach described in this section follows what discussed in [5] and it is
based on the modelling of dynamic software architectures using typed graph
grammars. The tool that supports this approach is Alloy [27]. Alloy provides
a description language to represent software models, based on signatures and
relations, which is suited for a set-theoretic presentation of graphs. Alloy also
provides a logic, based on an extension of first-order logic with relational oper-
ators, to represent properties or constraints of models. We have used this logic
to implement concepts like architectural styles, graph transformation rules and

architectural properties. The Alloy Analyzer translates the model and the logical
predicates into a (usually large) Boolean formula, uses efficient SAT solvers to de-
cide satisfiability and provides a counterexample in negative case. We will show
how to use these capabilities to ensure style-consistency, perform model-finding
and validate architectural properties.

4.1 Designing Software Architectures

Architectures. We model software architectures using typed graphs.The three
basic concepts in the implementation of graphs are nodes, labels and edges that
we represent as Alloy signatures:

abstract sig Node{}

abstract sig Label{}
abstract sig Edge

{
conn: Label->lone Node

}

According to the above definition, nodes and labels are atomic concepts, but
edges have a relation (field) conn that maps each label to nodes. The multiplicity
keyword lone in its declaration indicates that each label is mapped to at most
one node. The previous signatures are marked abstract, which means that
they have no element except those belonging to its signatures. Indeed we use
subsignatures of Node, Edge and Label to represent concrete graph elements.

The signature Graph is used to define a graph as a structure made of nodes,
edges and labels.

abstract sig Graph

{
he: set Edge,
n: set Node,

l: set Label
}

In order to forbid ill-formed graphs we have defined some constraints, requir-
ing for instance that the edges connect to nodes in the same graph. In Alloy
the constraints of a model are organised into paragraphs. Constraints that are
assumed always to hold are recorded as facts. In the following code we present
some facts that we have defined to ensure a clear and efficient presentation of
graphs, like requiring different graphs not to share items.

// two Edges must have different set of labels (ports)

all e1,e2:Edge | e1!=e2 => (first[e1.conn]&first[e2.conn]) = none

// two Graphs have different node sets
all g1,g2:Graph | g1!=g2 => #(g1.n & g2.n)=0

// two Graphs have different edge sets
all g1,g2:Graph | g1!=g2 => #(g1.he & g2.he)=0

// two Graphs have different label sets
all g1,g2:Graph | g1!=g2 => #(g1.l & g2.l)=0

®
access // ◦ H

left

��

right

@@
accessoo • E®E

left

aa

right

}}

Fig. 2. Type Graph T of the running example

Architectural Styles. We represent an architectural style as a set of basic elements
(modelled by a type graph plus a set of invariant constraints indicating how these
elements can be legally connected). We define an Alloy module called STYLE that
contains all these elements. It is subdivided in two parts, the first part defines
basic elements of the style and the second one defines useful constraints.

Below we see the definition of each basic element using singleton extensions
of Node, Label and Edge signatures. Note that some of them include facts in
their body. For instance, a Bike component must have only one connection
using an Access label to the Access Point node. These definitions are enough
to represent the type graph.

// Bike-Style basic elements

abstract sig Access_Point, Chain_Point extends Node{}

abstract sig Access extends Label{}
abstract sig Left extends Label{}

abstract sig Right extends Label{}
abstract sig Bike extends Edge{}

{
#conn=1 and
conn.univ in Access and // Projection of first column in conn

univ.conn in Access_Point // Projection of second column in conn
}

abstract sig Bikestation extends Edge{}
{

#conn=2 and
conn.univ in Left+Right and

univ.conn in Chain_Point
}

abstract sig Station extends Edge{}
{

#conn=3 and
conn.univ in Left+Right+Access and

univ.conn in Chain_Point+Access_Point
}

The graphical representation in form of a type graph is depicted in Figure 2.
Basically, a type graph offers a suitable way to type the items of a graph in a
consistent manner. The idea is that the typing of a graph G over a type graph
T is modelled by a total graph morphism from G to T .

The code below presents an excerpt of the additional facts needed to define
our architectural style.

fact Style_constraints

{
...
// if two stations are connected, they share one unique node

L
r //

m

��

R

m
′

��

G
r
′

//
G

′

Fig. 3. SPO-based graph rewriting diagram.

all disj s1,s2: Station |

attached[s1,s2]=>#(last[s1.conn]&last[s2.conn]) = 1
// each Chain_Point node has at most two and at least one edge connected

all cp: Chain_Point | #(conn.cp)>0 and #(conn.cp)<=2
...

}

In order get an instance of the style, generated from the previous code, we
use a dummy predicate instance with empty parameters and body. A predicate
in Alloy is a constraint used to characterise some models of interest. Command
run is used to find an instance of a predicate. For instance, we ask for a graph
to be generated with a scope of at most two edges, one node and two labels as
follows:

run instance for 1 Graph, 3 Station, 2 Bikestation, 4 Bike, ...

When we run the code above the Alloy Analyzer generates an instance and
we can ask for a different one. One such instance is depicted in Figure 1 with
our graphical notation.

Dynamism. The reconfiguration of a software architecture is described by a set of
rewriting productions that state the possible ways in which an architecture may
change. Each rule is defined as a partial, injective graph morphism p : L → R,
where L and R are graphs, called the left- and right-hand side. Given a graph G

and a production p, a rewriting of G using p is realised using a single-pushout
graph transformation approach [19] (see Fig. 3). Operationally, the rewrite is
applied by finding a suitable match m (i.e. an occurrence of L in G) and the
result is the graph obtained from G by removing that instance of L and releasing
a fresh instance of R. Moreover, there can be items shared by L and R that are
required to trigger the rewrite, but are just preserved by the transformation
(some sort of interface, needed to properly attach the fresh copy of R to the
existing items in G).

In order to implement what introduced above in the Alloy module called TGG

we have defined various signatures and predicates that are used to execute a
reconfiguration applying the SPO-based approach. First of all we have defined
an abstract signature called Fun that will be used to define partial and total
morphisms, matchings and productions. This signature has three fields that rep-
resent nodes, edges and labels functions mapping.

•cp3 Hs2

l2oo r2 //

a2

��

•cp4

◦ap2

֌

•cp5 Hs3

l3oo r3 //

a3

��

•cp6

◦ap3

®b1

a4

OO

Fig. 4. Reconfiguration rule that connects a bike to a station.

abstract sig Fun
{

fN: set Node -> set Node,
fE: set Edge -> set Edge,

fL: set Label -> set Label
}

This signature can be used, for example, to define a partial morphism among
two graphs. Moreover, in order to verify if a partial morphism among two graphs
exists, we have defined the isPartialMorphism predicate that takes in input
two graphs (i.e. G and H), the respective typing functions (i.e. t1 and t2) and a
mapping function (i.e. f). The predicate tries to find a partial morphism from G

to H, executing the set of constraints defined in its body.

pred isPartialMorphism [G: Graph, H: Graph, f: Fun, t1, t2: Tau]
{

...
first[f.fE] = G.he

first[f.fN] = G.n
first[f.fL] = G.l
all e1:G.he | all n1: G.n |

all l1: G.l | (l1->n1) in e1.conn =>
f.fL[l1]->f.fN[n1] in f.fE[e1].conn &&

t1.tauL[l1]=t2.tauL[f.fL[l1]]
...

}

A production is defined using the signature Production that consists of a
left- and right-hand side graphs and the morphism indicating the items being
preserved.

abstract sig Production

{
lhs: Graph,

rhs: Graph,
p: Fun

}

Using Alloy, we declare the signature of the previous production as a singleton
extension of Prod and define facts that characterise the left- and right-hand side
graphs. The rule that specifies the connection of a bike to a station is shown
in Figure 4 and it is defined by the code below (where the obvious definition of
rhs1 is omitted for simplicity).

one sig lhs1 extends Graph{}

{
he = s2

n = cp3 + cp4 + ap2
l = l2 + r2 + a2
s2.conn = l2->cp3 + r2->cp4 + a2->ap2

}

one sig rhs1 extends Graph{} { ... }

one sig p1 extends Fun{}

{
p.fN = cp3->cp5 + cp4->cp6 + ap2->ap3

p.fE = s2->S3
p.fL = l1->l3 + r2->r3 + a2->a3

}

one sig connect_bike extends Production{}

{
lhs = lhs1, rhs = rhs1, p = p1

}

A single reconfiguration step is implemented using two distinct predicates
(i.e., rwStepPre and rwStepPost. They are used to verify conditions that must
hold in the host and target graph. The predicate rwStepPre checks the well
formedness of the production Pr and the validity of matching m1 of the left-side
of the production (i.e., Pr.lhs) in the host graph G.

pred rwStepPre[G1:Graph, Pr: Production, m1: Fun, t1:Tau, t2:Tau, t3:Tau, t4: Tau]
{

// t1 defines types for G1, t2 defines typed for Pr.lhs
isProd[Pr,Pr.p, t2,t3]
// a production rule is applicable to a graph G1 if there is a matching of lhs into G1

isMatch[Pr.lhs,G1,M1,t2,t1]
}

rwStepPost is responsible to execute a single SPO-based rewriting approach
generating two morphisms m2:Pr.rhs → G2 and r2:G1 → G2 and the target
graph G2.

pred rwStepPost[G1:Graph, G2:Graph, Pr: Production, m1:Fun, m2:Fun, r1:Fun,
r2:Fun,t1:Tau, t2:Tau,t3:Tau,t4:Tau]

{

// m1 : L->G1
isMatch[Pr.lhs,G1,m1,t2,t1]

//m2: R->G2
isTotalTGM[Pr.rhs,G2,m2]

// r2: G1->G2
isPartialMorphism[G1,G2,r2]

}

4.2 Analysis in Alloy

Structural Properties. In the Alloy language, assertions are constraints that
should follow from the facts and must be checked. Using the Alloy Analyzer, it is
possible to validate assertions, by searching for possible (finite) counterexamples
for them, under the constraints imposed in the specification of the system. It is
hence possible to specify that a given property P is invariant under sequences of

applications of some operations. In our case this operation is the rewriting step
that from an initial graph G and a production P generated a new graph G’. A
technique useful for stating the invariance of a property P consists of specify-
ing that P holds in the initial graph, and that for every non initial graph and
rewriting operation, the following holds: P(G) and rwStep(G,G’) → P(G’).

For this objective we have defined a set of properties that each architecture,
after a rewriting step must satisfy. This set is memorised in an Alloy module
called PROPERTIES. Structural properties are specified in Alloy defining functions
and logical predicates. For instance, we have defined a predicate to express the
property that there exists an acyclic path formed by stations that connects the
left- and right-most stations. Functions leftmost and rightmost in the code
below identify the left- and right-most stations of an architecture. In order to
check this property we use the transitive closure of relation next.

fun leftmost[g:Graph,t:Tau]:one Edge {let e={e:g.he | t.tauE[e]=S and none= e.~next}| e }

pred Property1 [G:Graph,t:Tau]{ rightmost[G,t] in leftmost[G,t].^next }

Behavioural properties. Behavioural properties such as style preservation are
suitably specified using DynAlloy [22], an extension of the Alloy language with
syntactic sugar to define actions as a model of state changes. An action is the
means by which the Analyzer transforms the system state after its execution.
Regular expressions over actions and predicates can then be combined to express
to express complex behavioural properties [22]. This issue is ongoing work [9].

5 Architectural Design Rewriting with Maude

The approach presented in this section is based on ADR [8], a formal frame-
work for the development and reconfiguration of software architectures based on
term-rewriting. An architectural style in ADR consists of a set of architectural
elements and operations called design productions which define the well-formed
compositions of architectures. Roughly, a term built out of such ingredients con-
stitutes the proof that a design was constructed according to the style, and the
value of the term, called design, is the constructed software architecture.

The tool support for the approach is based on Maude [13]. Maude naturally
supports most of the features of ADR and also provides a powerful set of tools
in the same framework including a model checker and a theorem prover.

5.1 Designing Software Architectures with Maude

Architectures. Software architectures and their constituents are represented uni-
formly in ADR by suitable graphs that we call designs. One difference with the
TGGA approach is that designs add an interface to the graph representing the
architecture. The interface of a design is represented by an edge. The internal
structure (called body) of a design is the architecture graph.

We have implemented various modules named GRAPH-* with the necessary
machinery to construct graphs. Designs are implemented in a functional module

cell− with− station : ®®→ n bike :→ ®® bikes : ®®×®®→ ®®

n

• /o/o/o/o
• Hoo //

��

• •o/ o/ o/

◦

®®

OO

◦

�O
�O
�O

®®

◦

®

OO

◦

�O
�O
�O

®®

◦

®®

;;

®®

bb

Fig. 5. Some design productions.

called DESIGN, which includes the definition of the sort Design, a constructor
operation design and an operation to replace a hole in a design (representing an
unspecified part of the architecture) by a design whose interface is compatible
with the hole.

Below we include an excerpt of module DESIGN. First, we see the declaration
of sort Design. In a next line, the type of operation design is defined: it builds a
design from a typed graph (here implemented as graph morphisms) representing
the interface, a typed graph representing the body, a mapping relating the nodes
in the interface with those in the body, and a list of edges representing holes.
Membership equations not shown here take care of the well formedness of the
design. Last, the type of operation apply is defined: it takes two arguments of
type Design (the first intended to have a hole and the second being the design
with proper interface to be placed in the hole) and returns the Design after
the replacement. This complex operation basically implements the concept of
type-consistent hyper-edge replacement [24].

sort Design .
op design : GraphMorphism GraphMorphism Map{Node,Node} List{Edge} -> Design .
op apply : Design Design -> Design .

Architectural Styles. The principle of ADR consists in defining an architectural
style as a suitable algebra over designs. This approach can be seen as an alge-
braic recasting of context-free graph grammar-based approaches to architectural
styles [37]. So, while in TGGs a style is given by logical predicates that forbid
illegal architectures, in ADR the style is given by a generative mechanism that
allows us to construct legal architectures only.

In Maude we define an architectural style as a set of sorts (the architectural
types) which are subsorts of Design, a set of operations, called design produc-

tions, on such sorts (the legal ways of composing designs) and an interpretation
of terms as designs.

Below we show an excerpt of module BIKE-STYLE which implements the ar-
chitectural style in an abstract manner (i.e. no interpretation over designs is yet
defined). Sorts Cells and Bikes are the types of the whole system (a chain of
cells) and the type of bikes allocated in the cells, respectively. We see construc-
tors nocell and bikestation, respectively representing an empty cell and a cell

n

• /o • Hoo //

��

• Hoo //

��

• •o/

◦ ◦

x1

®®

OO

x2

®®

cc

x3

®®

OO

•

n

• /o • Hoo //

��

• Hoo //

��

• •o/

◦ ◦

x1

®®

OO

x2

®®

;;

x3

®®

OO

Fig. 6. Rule migrate− right.

formed by one bike in station mode. Operation cell-with-station allows to
construct from a collection of bikes (the inclusion of a fresh station is embed-
ded in the operation), while chain builds a chain of cells by concatenating two
chain of cells. Observe that one can annotate operations with axioms such as
the associativity of chain or the fact that it has nocell as identity. Some of
these productions are graphically represented in Fig. 5. Roughly, double boxes
correspond to the parameters, the dotted boxes enclose the result of the produc-
tions, with the corresponding codomain type in its left corner, while waved lines
indicate how internal nodes are exposed in the interface.

sort Cells . *** Chain of cells

sort Bikes . *** Collection of bikes
...

op nobike : -> Bikes .
op bike : -> Bike.
op bikes : Bikes Bikes -> Bikes [assoc comm id: nobike] .

op nocell : -> Cells .
op bikestation : -> Cells .

op cell-with-station : Bikes -> Cells .
op chain : Cells Cells -> Cells [assoc id: nocell] .

Dynamism. Contrary to TGG, reconfiguration rules in ADR are defined as
rewrite rules over design terms, instead of over plain graphs or designs. In addi-
tion, ADR rules can be conditional, labelled and inductively defined and can be
used to define complex behaviours and reconfigurations.

Below we see rule migrate-right (see Fig. 6). Note that because bikes is
associative, commutative and has nobike as identity element, the rule can be
matched to perform the migration of any number of bikes, while in TGGA we
have a rule able to migrate one bike at each step, only.

rl [migrate-right] : chain(cell-with-station(bikes(x1,x2)),cell-with-station(x3))
=> chain(cell-with-station(x1),cell-with-station(bikes(x2,x3))) .

The module also includes the more complex reconfiguration that deals with
shutdown by repairing the connection with an ad-hoc chain of bikes in station
mode. Rule bike2cell allows a bike to reconfigure itself into a bike in station
mode using label ’tocell. Rule bikes2cell allows to propagate such reconfigu-
rations inside collections of bikes. Finally, rule cell2chain allows reconfigure a
station whenever the corresponding bikes are reconfigured into a chain of cells.

rl [bike2cell] : bike => {’tocell}bikestation .

crl [bikes2cell] : bikes(x1,x2) => {’tocell}chain(y1,y2)

if x1 =/= nobike /\ x2 =/= nobike /\ x1 => {’tocell}y1 /\ x2 => {’tocell}y2 .

crl [cell2chain] : cell-with-station(x1) => y1

if x1 => {’tocell}y1 .

5.2 Analysis with Maude

The property specification mechanisms of our approach is based on the use of
suitable logics to reason about structural and dynamic aspects of software archi-
tectures.

Structural Properties. Recall that contrary to TGGA, ADRM considers two as-
pects of the structural information of a software architecture: the design term,
which can be seen as an abstraction, a proof of style conformance or an encod-
ing of the construction process, and the design itself. We use different logics to
reason about each aspect.

A natural and structured way to reason about design terms is the use of a
suitable spatial logic (e.g. [11,34]). Basically, for each design production f used
to compose designs the logic incorporates a spatial operator f-so to decompose
a design. For instance, formula chain-so(phi1,phi2) is satisfied by all those
designs of the form chain(x1,x2), where design x1 satisfies formula phi1 and
design x2 satisfies formula phi2.

As an example consider the property that states a collection of bikes has
at least n bikes. We see that this property can be inductively defined as below.
For n equal to zero the formula always holds. For n + 1 (we use the successor
constructor s below) the formula holds whenever the term is decomposable as
the composition via operation bikes of one bike (bike-so) and a term with at
least n bikes.

op at-least-k-bikes : Nat -> Prop .
vars n : Nat .
eq at-least-k-bikes(0) = True .

eq at-least-k-bikes((s n)) = bikes-so(bike-so,at-least-k-bikes(n)) .

Our implementation also includes Courcelle’s Monadic Second-Order (MSO)
logic [15]. The rough idea is that the logic allows us to quantify over sets of nodes
and edges. This allows us to reason about the complex interpreted structure of
graphs that is hidden at the level of design terms.

Behavioural Properties. The dynamic aspects are expressed using the Linear-
time Temporal Logic (LTL) for which Maude provides a module where only the
state predicates have to be defined. Roughly, one is able to reason about infinite
sequences of reconfigurations, by expressing properties on the ordering of state
observations. Such observations are state predicates given by closed structural
formulae.

As an example we state that it is always true that a collection of bikes has at
least 2 bikes by formula [] at-least-k-bikes(2), where [] denotes the always

temporal operator.

ADRM Aspect TGGA

ADR (SOS, HR) Formal Support SPO Graph Rewriting
More flexible Well-studied, resource conscious

Maude Tool Alloy
Expressive, simple, performant Light-weight, FO/SAT-based

Hierarchical, Interfaced Graphs Architectures Flat Graphs
Structured view, reusability Concrete view

Constructive (Algebra) Styles Declarative (Alloy Logic)
Style consistent Prototypical

Term rewrites Reconfigurations Graph rewrites
Inductive, conditional Item trace

Ad-hoc, VLRL, MSO Structural properties Alloy Logic
Expressive, flexible Simple, based on FO

Ad-hoc, LTL Behavioural properties Pre/Post, DynAlloy
Expressive, well-studied Regular expressions, ongoing work

Ad-hoc Style Matching Alloy Analyzer
Flexible, ongoing work Built-in, based on SAT

By construction Style Preservation Alloy Analyzer
Must not be proved Performant

Search strategies Model Finding Alloy Analyzer
Built-in, flexible Built-in

LTL Model Checker Model Checking Alloy Analyzer
Efficient, flexible Bounded

Fig. 7. Main aspects and advantages of each approach

6 Comparison

We overview a brief comparison of the presented approaches w.r.t. the issues
discussed in Section 3. Figure 7 summarises the main aspects and advantages of
each approach.

6.1 Designing Software Architectures.

Architectures. Both approaches represent architectures as suitable graphs. The
main differences are that TGG represents architectures by flat graphs while ADR
considers additional structural information. First, graphs have an interface which
supports the compositionality of architectures. Second, graphs are equipped with
a design term which serves various purposes: it is a proof of style consistency, it
is a witness of the design process, it can be used to offer a hierarchical view at
a suitable level of abstraction.

Architectural Styles. Each approach follows a different tradition. TGGA uses ex-
plicit structural constraints by means of logic predicates. This approach is more
suited to a reactive modelling process: the software architect constructs a model

and the system reacts reporting style inconsistencies. ADRM uses an implicit
generative mechanism inspired by context-free graph grammars. This approach
is more suited to a proactive modelling process: the software architect performs
a decision procedure (i.e. refinements and compositions) that is guaranteed to
be style consistent and not faulty.

Representing dynamism. Each approach defines dynamism at different levels of
abstraction. TGG defines dynamism by means of local rewriting rules on flat
graphs, while ADR defines rules on design terms. ADR rules are more abstract
and also more expressive, because conditional labelled rules are also allowed. In
addition, ADR rules guarantee style preservation by construction. On the other
hand, ADR has still no mechanism to keep trace of reconfigured items, while
this is done in TGG by the notion of trace morphism.

6.2 Specifying Architectural Properties.

Structural properties. Structural properties are expressed in TGGA by means of
the same formalism used to define architectural styles, namely the Alloy logic.
Maude does not offer a built-in structural logic but spatial logics such as the
Verification Logic for Rewriting Logic [34] arise naturally and we can adjust
the property specification mechanism at will. Indeed, we implemented property
specification mechanisms tailored for the abstract view of design terms and the
more concrete view of designs.

Behavioural properties. Alloy does not offer a standard behavioural logic and one
has to rely on ad-hoc mechanisms or recent extensions such as DynAlloy. Maude,
instead, comes with a built-in implementation of a Linear-time Temporal Logic
(LTL) module, for which the user must provide just the state predicates.

6.3 Analysing Software Architectures.

Style Matching. Checking style-consistency in TGGA is done via the same mech-
anism as the verification of structural properties, i.e. it amounts to verify whether
an architecture satisfies the predicate characterising the architectural style. In-
stead, in ADRM we need a parsing mechanism, able to determine for given graph
g, whether there is a design term d such that the design corresponding to d has
a body graph isomorphic to g. This mechanism is under implementation.

Model Finding. Model finding is the main analysis capability offered by Alloy.
The Alloy Analyzer basically explores (a bounded fragment) of the state space of
all possible models and is able to show example instances satisfying or violating
the desired properties. For instance, we can easily use the Alloy Analyzer to
construct initial architectures: we need to ask for an instance graph satisfying
the style predicates and having a certain number of bikes and stations. Model
finding can also serve to the purpose of analysis. For instance, to validate if
the style predicates really define what the software architect means. The use of

bounds is justified by Alloy’s small scope hypothesis that states that “most bugs
have small counterexamples” [27]. This means that examining small architectures
is often enough to detect possible major flaws.

Model finding is not provided by Maude directly. In order to perform model
finding with Maude we need basically two mechanisms: one to generate a state
space of models and one to explore it. We have defined a rewrite theory that
simulates a design-by-refinement process, roughly consisting of the context-free
graph grammar obtained by a left-to-right reading the design productions. An-
other generative mechanism that we can implement produces random graphs by
adding items iteratively. The resulting graph could be used as the body of a
design. In order to explore such state spaces we can use the LTL model checker,
the search command or rewriting strategies.

Model Checking. Alloy does not have traditional model checking capabilities but
its model finding features can be used instead to encode some (bounded) model
checking problems. Basically, models and predicates are translated into a first-
order formula and solved with efficient SAT solvers. Instead, model checking in
Maude is supported by an efficient built-in LTL model checker. We have also
implemented the satisfaction relation for the above mentioned MSO and spatial
logics.

An alternative to model checking is the use of manual or computer-assisted
theorem proving, which is highly facilitated in ADR by the hierarchical nature
of design productions, which allows for proof based on structural induction. This
issue is currently being investigated.

7 Related Work

An exhaustive enumeration and a deep comparison with related work is out
of the scope of this paper. We mention, however some of the works that have
inspired or share concepts with our approaches.

Many research works are focusing on the design and analysis of dynamic
software architectures, applying formal methods such as graphs [37,25,3], log-
ics [20,1] and process algebras [2,10].

As a matter of fact ADR has taken inspiration from initiatives that promote
the conciliation of software architectures and process calculi by means of graph-
ical methods [33].TGG instead, follows the tradition of graph grammars and
applied to software architectures [37] and combines them with logical approach
of Alloy.

Our approaches also shares concepts with various approaches ranging from
process calculi that deal with reconfigurable component based architectures
(e.g. [1]) to graphical representation of concurrent systems such as those based
on Synchronized Hyperedge Replacement [21] or Bigraphs [29].

Maude and Alloy have been already used for the design and analysis of soft-
ware architectures or graph transformation systems. For instance, in [30] Maude

is used to model and verify software architectures given in LfP, a system de-
scription language with hierarchical behaviour. On the other hand, the work
presented in [4] proposes a methodology to analyse transformation systems by
means of Alloy and its supporting tool. They encode graph transformation sys-
tems into Alloy and verify properties such as reachability of given configurations
through a finite sequence of steps or whether given sequences of rules can be ob-
tained on an initial graph, and show all the configurations that can be obtained
by applying a bounded sequence of rule instances on a given initial graph.

Another source of related work regard Architectural Description Languages
(ADLs) to model and analyse software architectures [35] or UML-based ap-
proaches to model dynamic architectures [31].

8 Conclusion

In our experience, TGGA and ADRM are both flexible formal methods for the
design and analysis of dynamic software architectures. Moreover, we promote
their synergic application as each of them can be focused on the development
phases where they are more effective.

In the early phase of the development, the architectural style is typically
not well understood and TGG looks more appealing since the software architect
can follow an incremental approach, adding, removing or refining architectural
constraints with the help of the inconsistencies shown by the Alloy Analyzer.

Later, when the architectural style is well understood and stable, the soft-
ware architect can define the style in a generative manner in the form of an
ADR style. The benefits of an ADR style arise then from its hierarchical and
structured nature. First, complex reconfigurations can be inductively defined on
the structure of designs. Second, properties can be defined again inductively and
at an abstract level. Last, but not least, model checking and theorem proving
can be applied to exploit the hierarchical structure.

This separation of phases also matches the choice of the tools. Indeed, TGG
could have been easily implemented in Maude, but Maude lacks of a built-in,
efficient mechanism to perform model finding. On the other hand, implementing
ADR in Alloy would have required a lot more efforts to encode all the mechanisms
that are native in Maude such as normal forms, memberships or conditional
rewrite rules, and built-in tools such as the LTL model checker.

Current work is devoted to validate our ideas by enriching our experience with
more realistic examples, taken from global computing areas like service oriented
computing and grid computing. In future work we plan to extend our compar-
ative analysis to further interesting aspects such as the ordinary behaviour of
software components, the analysis of architectural styles and run-time imple-
mentation. Another interesting perspective is to investigate other ADR suited
interpreted algebras, other than graphs. Constraints systems, for instance, seem
well suited and appealing to deal with non functional aspects like quality of
service.

References

1. N. Aguirre and T. S. E. Maibaum. Hierarchical temporal specifications of dynami-
cally reconfigurable component based systems. Electr. Notes Theor. Comput. Sci.,
108:69–81, 2004.

2. R. Allen, R. Douence, and D. Garlan. Specifying and analyzing dynamic software
architectures. In Proceedings of FASE’98, volume 1382 of LNCS. Springer, 1998.

3. L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based refinement of dynamic
software architectures. In Proceedings of WICSA’04, pages 155–166. IEEE Com-
puter Society, 2004.

4. L. Baresi and P. Spoletini. On the use of Alloy to analyze graph transformation sys-
tems. In Proceedings of ICGT’06, volume 4178 of LNCS, pages 306–320. Springer,
2006.

5. R. Bruni, A. Bucchiarone, S. Gnesi, and H. Melgratti. Modelling dynamic software
architectures using typed graph grammars. In Proceedings of GTVC’07, ENTCS.
Elsevier, 2007. To appear.

6. R. Bruni, A. Lluch Lafuente, and U. Montanari. Hierarchical design rewriting with
Maude. In Proceedings of WRLA’08, ENTCS. Elsevier, 2008. To appear.

7. R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Service oriented archi-
tectural design. In Proceedings of TGC’07, volume 4912 of LNCS, pages 186–203.
Springer, 2007.

8. R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style based reconfig-
urations of software architectures. Technical Report TR-07-17, Dipartimento di
Informatica, Università di Pisa, 2007.

9. A. Bucchiarone and J. P. Galeotti. Dynamic software architectures verification
using DynAlloy. In Proceedings of GT-VMT’08, 2008. To Appear.

10. C. Canal, E. Pimentel, and J. M. Troya. Specification and refinement of dynamic
software architectures. In Proceedings of WICSA’99, volume 140 of IFIP Confer-
ence Proceedings, pages 107–126. Kluwer, 1999.

11. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
Proceedings of ICALP’02, volume 2380 of LNCS, pages 597–610. Springer, 2002.

12. I. Castellani and U. Montanari. Graph grammars for distributed systems. In Graph-
Grammars and Their Application to Computer Science, volume 153 of LNCS, pages
20–38. Springer, 1982.

13. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. All About Maude - A High-Performance Logical Framework, volume 4350 of
LNCS. Springer, 2007.

14. P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little.
Documenting Software Architectures: Views and Beyond. Pearson Education, 2002.

15. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In Handbook of Graph Grammars and Computing by
Graph Transformation, pages 313–400. World Scientific, 1997.

16. P. Degano and U. Montanari. Concurrent histories: A basis for observing dis-
tributed systems. J. Comput. Syst. Sci., 34(2/3):422–461, 1987.

17. P. Degano and U. Montanari. A model for distributed systems based on graph
rewriting. J. ACM, 34(2):411–449, 1987.

18. Dynamic Software Architectures for Global Computing Systems.
http://fmt.isti.cnr/~antonio.

19. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation - Part II: Single pushout approach

http://fmt.isti.cnr/~antonio

and comparison with double pushout approach. In Handbook of Graph Grammars,
pages 247–312. World Scientific, 1997.

20. M. Endler. A language for implementing generic dynamic reconfigurations of dis-
tributed programs. In Proceedings of BSCN’94, pages 175–187, 1994.

21. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service oriented computing. In Proceedings
of FMCO’05, volume 4111 of LNCS, pages 22–43. Springer, 2006.

22. M. Frias, J. Galeotti, C. Lopez Pombo, and N. Aguirre. DynAlloy: Upgrading
Alloy with actions. In Proceedings of ICSE’05, pages 442–450. ACM Press, 2005.

23. F. Gadducci and U. Montanari. Comparing logics for rewriting: rewriting logic,
action calculi and tile logic. Theor. Comput. Sci., 285(2):319–358, 2002.

24. A. Habel. Hyperedge Replacement: Grammars and Languages. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1992.

25. D. Hirsch, P. Inverardi, and U. Montanari. Modeling software architecutes and
styles with graph grammars and constraint solving. In WICSA’99, volume 140 of
IFIP Conference Proceedings. Kluwer, 1999.

26. D. Hirsch and U. Montanari. Shaped hierarchical architectural design. Electronic
Notes on Theoretical Computer Science, 109:97–109, 2004.

27. D. Jackson. Software Abstractions: Logic, Language and Analysis. MIT Press,
2006.

28. Java/A. http://www.pst.ifi.lmu.de/Research/current-projects/java-a/.
29. O. H. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report 570,

Computer Laboratory, University of Cambridge, 2003.
30. C. Jerad, K. Barkaoui, and A. Grissa-Touzi. Hierarchical verification in Maude

of LfP software architectures. In Proceedings of ECSA’07, volume 4758 of LNCS,
pages 156–170. Springer, 2007.

31. M. H. Kacem, A. H. Kacem, M. Jmaiel, and K. Drira. Describing dynamic software
architectures using an extended UML model. In Proceedings of SAC’06, pages
1245–1249. ACM, 2006.

32. J. S. Kim and D. Garlan. Analyzing architectural styles with Alloy. In Proceedings
of ROSATEA’06, pages 70–80. ACM Press, 2006.

33. B. König, U. Montanari, and P. Gardner, editors. Graph Transformations and
Process Algebras for Modeling Distributed and Mobile Systems, 6.-11. June 2004,
volume 04241 of Dagstuhl Seminar Proceedings. IBFI, Schloss Dagstuhl, Germany,
2005. http://www.dagstuhl.de/04241/.

34. N. Mart́ı-Oliet, I. Pita, J. L. Fiadeiro, J. Meseguer, and T. S. E. Maibaum. A
verification logic for rewriting logic. J. Log. Comput., 15(3):317–352, 2005.

35. N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software Engi-
neering, 26(1):70–93, 2000.

36. J. Meseguer and G. Rosu. The rewriting logic semantics project. TCS, 373(3):213–
237, 2007.

37. D. L. Métayer. Describing software architecture styles using graph grammars.
IEEE Trans. Software Eng., 24(7):521–533, 1998.

38. Sensoria Project. http://sensoria.fast.de/.
39. M. Shaw and D. Garlan. Software Architectures: Perspectives on an emerging

discipline. Prentice Hall, 1996.

http://www.pst.ifi.lmu.de/Research/current-projects/java-a/
http://www.dagstuhl.de/04241/
http://sensoria.fast.de/

	Graph-Based Design and Analysis of Dynamic Software Architectures
	Roberto Bruni, Antonio Bucchiarone, Stefania Gnesi, Dan Hirsch, Alberto Lluch Lafuente

