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Abstract

In addition to ordinary places, called stable, zero-safe nets are equipped with zero
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as an adjunction, and the derivation of abstract P/T nets as a coreflection.
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1 Introduction

Petri nets [18,17], are unanimously considered one of the most attractive mod-
els of concurrency. As a matter of fact, this model offers a basic concurrent
framework that has often been used as a semantic foundation on which to
interpret concurrent languages (see for instance [19,10,16,5,8,2]). However
the basic net model does not offer any synchronization mechanism among
transitions, while this feature is essential to write modular, expressive pro-
grams. Thus all the above translations involve complex constructions for the
net defining the synchronized composition of two programs.

In this paper a new kind of net is presented which offers a very general
notion of transition synchronization as a built-in feature. More precisely, an
abstract P/T net and a refined zero-safe net are supposed to model the same
given system. The former offers the synchronized view and the latter speci-
fies how every transition of the former is actually achieved as a coordinated
collection of its transitions.

Zero-safe nets are based on the notion of zero places. Not all the places
are zero places, however: the non-zero places are called stable. Stable mark-
ings (which consist only of stable tokens) describe the abstract-level markings,
whilst non-stable markings define non-observable global states of the refined
model. Thus a synchronized evolution of the zero-safe net (which we call trans-
action) starts at some observable marking, evolves through non-observable
states and finally leads to a new observable state. No new interaction mech-
anism is used for building transactions, besides the ordinary token-pushing
rules of nets. However, we do not associate an abstract transition to every
transaction, but rather we take a concurrent view by identifying the transac-
tions which are equivalent with respect to the usual diamond transformation.
Thus the actual order of execution of concurrent transitions in the refined net
is invisible in the abstract net.

2 to = new
t; = send
t3 t2 = copy
t3 = recetve
b O MS ty = reset

Fig. 1. A zero-safe net representing a multicasting system.

To draw zero-safe nets, we extend the standard graphical representation
for nets* by picturing zero places with smaller circles as in Fig. 1 (place z).

4 Places and transitions are represented by circles and boxes respectively, each dot inside
a place represents a token and directed weighted arcs describe the flow relation, omitting
unitary weights by convention.
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In what follows, we will use the zero-safe net M S of Fig. 1 as our running
example. Places a and b are stable while place z is a zero place. Net M S is
intended to represent a multicasting system. As in a broadcasting system, a
process can simultaneously send the same message to an unlimited number of
receivers, but here the receivers are not necessarily all the remaining processes,
and thus several one-to-many communications can take place concurrently. We
can interpret each token in place a as a different active process. To allow for
an unlimited number of processes, the initial marking is empty, but tokens
in place a can be created by the new transition ty. A firing of transition ¢
(send) opens a one-to-many communication: the message is put in the buffer
z and the process which started the communication is suspended until the end
of the transaction. Each time the copy transition ¢, fires, a new copy of the
same message is created. To complete a transaction, as many simultaneous
occurrences of receive transition ¢3 are needed, as the number of copies of the
message created by copy, plus one. Each occurrence of receive synchronizes
an active process (i.e. a token of a) with a copy of the message (i.e. a token
of z). Transition reset (t4) makes processes active again.

Fig. 2. The abstract net for the multicasting system in Fig. 1

In Fig. 2 we see an infinite P/T net representing the abstract net corre-
sponding to the zero-sate net MS of Fig. 1. The abstract net Ajrs comes
equipped with a refinement morphism ejs to the refined net MS. In this
case the morphism maps places a and b of Ays into the homonymous stable
places of MS. Furthermore, €j;s maps each transition of Ayss into a trans-
action of MS. For instance, the transition o3 corresponds to a one-to-three
transmission and is mapped into a transaction consisting of one instance of
send, two instances of copy and three instances of receive. Actually there are
two transactions of M S made that way:

o send-copy-copy-receive-receive-receive, and
o send-copy-receive-copy-receive-receive.

They differ for the order in which, after send-copy, the transitions copy and
receive are executed. Notice that these transitions are concurrently enabled.
Thus the two transactions are equal up to a diamond transformation, and
transition o3 is more precisely mapped by ¢ps on their equivalence class.
The paper is organized as follows: after recalling the basic definitions of
P/T nets, in Section 3 we introduce zero-safe nets and the corresponding ab-
stract P/T nets. Section 4 has a more mathematical flavour. Its aim is to

3
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give evidence that the definitions and the constructions presented in the paper
are natural, employing some elementary category theory. After some informal
introduction of the categorical concepts involved, two universal constructions
- both following the Petri nets are monoids approach and the collective to-
ken philosophy - are presented: the operational semantics of zero-safe nets is
characterized as an adjunction, and the derivation of abstract P/T nets as a
coreflection.

2 Place-Transition Nets

We introduce some basic definitions on nets.

Definition 2.1 [Net] A net N is a triple N = (Sy,Tn; Fin) where Sy is the
(nonempty) set of places a,d’, ..., Ty is the set of transitions t,t',... (with?®
SyNTx =0),and Fy C (Sy x Tn)U(Tn x Sy) is called the flow relation. O

For x € N, the set *x = {y € N | yFa} is called the pre-set of z, and the
set 2* = {y € N | 2Fy} is called the post-set of . Analogously, for X C N
we define *X = cx % and X* = U,cx 2°.

Place/transition nets are the most widespread model of nets. The places
of a P/T net can hold one or more tokens and the arcs are weighted.

Definition 2.2 [P/T Net] A marked place/transition net is a 5-tuple N =
(S,T; F,W,ui) such that (5,7 F) is a net, function W : F' — IN assigns
a positive weight to each arc, and the multiset u;, : S — IN is the nitial
marking of N. a

In what follows we will sometimes refer to P/T nets simply as nets. The
domain of the weight function can be extended to the whole (S x T)U (7 x S)
by assuming W(z,y) = 0 when (z,y) ¢ F. We find it convenient to interpret
relation F' as a function F': (S xT)U(T x S)) — {0, 1} with the convention
that «Fy <= F(x,y) # 0. This allows to extend the theory to nets
with weighted arrows simply replacing {0, 1} by IN, throwing away W. Thus,
relation F' : (S x T) U (T x §) — IN becomes a multiset © relation over
(S x T)u (T x S) and moreover we can refer to the net N as the quadruple
(S, T F, tin).

A marking v : S — IN is a finite multiset of places. It can be written as
u = {nyas,...,nrar} where the natural number n; > 0 indicates the number
of occurrences (tokens) of the place a; in u, i.e. n; = u(a;). For any transition
t € T let pre(t) and post(t) be the multisets over S such that pre(t)(a) =
F(a,t) and post(t)(a) = F(t,a) Ya € S. It follows from the definition that
*t = |pre(t)] and t* = |post(t)

5 In what follows, we will denote Sy UTwx by N whenever no confusion is possible. More-
over, the index N is omitted from the terms Sy, Tn and Fy if it is obvious from the
context.

6 Given a multiset y, we will use the notation |u| to denote the set {a | p(a) > 0} of
elements included at least once in p.
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The evolution of a net (i.e. its interleaving behaviour) is usually described
in terms of firing sequences.

Definition 2.3 [Enabling] Let N be a net and uw a marking of N; then a
transition ¢ € Ty is enabled at u iff pre(t)(a) < u(a), Va € Sy. O

Definition 2.4 [Firing] Let N be a net, let © and u’ be markings of N, and
let t be a transition of N. We say that u evolves to u’ under the firing of ¢,
written u[t)u’, if and only if ¢ is enabled at u and u'(a) = u(a) — pre(t)(a) +
post(t)(a), Va € S. A firing sequence from ug to u, is a sequence of markings
and firings such that ug[t1)uy...un—1[tn)u,. Given a marking u of N the set [u)
of its reachable markings is the smallest set of markings such that u € [u), and
moreover Yu' € [u) such that u'[t)u” for some transition ¢, then v” € [u). O

Besides firings and firing sequences, steps and steps sequences are also
usually introduced. A step allows for the simultaneous execution of several
independent transitions. Another important notion is safety. A net is safe if,
for all reachable markings, a bound n can be given for the number of tokens
in each place, i.e. Yu € [uin), Va u(a) < n.

3 Zero-Safe Nets

We augment P/T nets with special places called zero places. Their role is to
coordinate the atomic execution of complex collections of transitions, which
can be considered as synchronized. However no new interaction mechanism
is needed, and the coordination of the transitions participating in a step is
handled by the ordinary token-pushing rules of nets.

Definition 3.1 [ZS net] A zero-safe " net is a 6-tuple B = (Sg, Ts; Fg, Wa,
up; Zp) where Ng = (Sg,Tg; Fs, Wg,ug) is the underlying P/T net and the
set Zp C Sp is the set of zero places (also 0-places or synchronization places).
The places in Sg \ Zp are called stable places. A stable marking is a multiset
of stable places. O

Stable markings describe observable states of the system, while the pres-
ence of one or more zero places in a given marking makes it unobservable.

A stable step of a zero-safe net B may involve the execution of several
transitions of the underlying P/T net Np (it is actually a firing sequence of
Npg). There must be enough tokens on the stable (nonzero) places to enable
all these transitions independently, while the tokens on zero places can be
reused. However no token must be left on zero places at the end of the step
(or can be found on them at the beginning of the step). Stable transactions
are stable steps where no intermediate marking is stable and which consume
all the available stable tokens. In a certain sense, each step can be thought
of as a collection of transactions plus a collection of idle resources; this means

“In the standard terminology, a n-safe net is a net whose places are all n safe. Instead,
in zero-safe nets only a subset of places (the zero places) are required to satisfy a 0-safe
condition.
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that once you know what the possible transactions are, then you are able to
construct all the correct behaviours of the system. We ask the reader to keep
in mind this observation because it constitutes the basis for our approach.
Stable step sequences are sequences of stable steps.

Definition 3.2 [Stable step, transaction and step sequence| Let B be a zero-
safe net and let s = ug[t1)uy ... up—1[tn)u, be a firing sequence of the under-
lying net Ng of B.

Sequence s is a stable step of B if:

o Vae S\ Zp, Y, pre(t;)(a) < ug(a) (enabling);
* ug and u, are stable markings of B (stable fairness).

We write uo{[s)u, and O(s) = ug, D(s) = uy,.

Stable step s is a stable transaction of B if in addition:

o markings uy, ..., u,_1 are not stable (atomicity);
o Ya€ Sg\ Zp, i, pre(t;)(a) = ug(a) (perfect enabling).

A stable step sequence is a sequence ug{[s1)us . .. Up—1{[$n)u,. We also say
that u, is reachable from ug and we write u, € {{ug). Sometimes we will refer
to the set {[ug) of reachable markings of B with {{B). 0

In a stable transaction, each transition represents a micro-step carrying
on the atomic evolution through invisible states. Stable tokens produced dur-
ing the transaction become operative in the system only at the end of the
transaction (i.e. after the firing of the commit transition ¢,).

Example 3.3 Consider the 7S net M .S of Fig. 1.

The firing sequence {a}[t1){b, z}[t4){a, z}[t3){b} is not a stable step since
the enabling condition is not satisfied.

The firing sequence {4a}[t1){3a,b, z}[t2){3a, b, 22}[t3){2a, 2b, z}[t5){a, 3b}
is a stable step but not a stable transaction since the perfect enabling condition
is not satisfied.

The firing sequence s’ = {2a,b}[t;){a,2b, z}[t5){3b}[ts){a,2b} is a stable
step but not a stable transaction since the atomicity constraint is not satisfied.

The firing sequence s" = {2a,b}[t1){a,2b, z}[ts){2a,b, z}[t5){a,2b} is a

stable transaction. O

Example 3.4 Now consider the net MS’ which is obtained from MS by
deleting the transition ¢35 and suppose that the actual marking consists of a
token into place a. Then net M S’ has no other reachable marking, because the
only enabled transition is t; and we prevent from reactivating the process via
t4 until the transaction actually leaving a token in z is closed. If we relaxed this
assumption then the system would allow communications between a process
and itself. O

The concurrent semantics of an operational model is usually defined by
considering as equivalent all the computations where the same concurrent
events are executed in different orders. In the case of P/T nets, the simplest

6
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approach is the collective token philosophy (see for instance [9]) which identi-
fies all firing sequences obtained by repeatedly permuting pairs of firings which
are concurrently (i.e. independently) enabled. An alternative approach, the
individual token philosophy, will be discussed in the concluding remarks.

Definition 3.5 [Diamond transformation, Abstract sequence] Given a P/T
net NV, let

s = uo[t1)uy - - Ui [t )us[tig1)Uig1 - Un—1[tn) Uy

be a firing sequence of N. Now suppose that ¢; and ¢4 are concurrently
enabled by u;_q, i.e. pre(t;)(a) + pre(tivi)(a) < u;—1(a) for any place a. Let
s" be the firing sequence obtained by permuting the firing ordering of ¢; and
tiy1, le.
s' = ug[tr)ur -+ wimg [t VULt ) Ui - Ut [t U

The sequence s’ is a diamond transformed of s. The reflexive and transitive
closure of the relation induced by diamond transformations gives the natural
equivalence in the collective token interpretation. Notice that all the equiva-
lent sequences have the same first and last markings ug and u,. Equivalence
classes are called abstract sequences and are denoted by o. The abstract se-
quence of s is written [s]. We also write pre([s]) = O(s) and post([s]) = D(s)
to denote the origins and the destinations of [s], respectively. a

Example 3.6 In our running example, suppose that the current marking is
{a,b}. 1If t4 fires then a new token is produced into place a. A firing of ¢;
consumes a token from place a. In the individual token approach, it makes
a difference if ¢; gets the token produced by t4 or the one already present
in a (in the former case the firing of ¢; causally depends on that of ¢4 while
in the latter case the firings of ¢; and of ¢4 are concurrent activities). In
the collective token approach the two firings are always concurrent, since the
initial marking enables both ¢; and ¢4, i.e. the execution of ¢4 does not modify
the enabling condition of ¢;. Thus ¢; and ¢4 may fire in any order always
originating equivalent computations. O

We can now apply the last definition to obtain a more satisfactory notion
of stable firing and transaction.

Definition 3.7 [Abstract stable step and transaction] Given a ZS net B, an
abstract stable step is an abstract sequence [s] of the underlying net Ng, where
s is a stable step. An abstract stable transaction is an abstract sequence of
Np which contains only stable transactions of B. We denote by ¥ the set of
all abstract stable transactions of B. O

It is easy to see that our equivalence preserves stable steps ® but not stable
transactions. Thus, it is not enough to require s to be a stable transaction to
make sure that [s] is an abstract stable transaction.

8 This property follows immediately since the diamond transformation preserves the en-
abling and stable fairness properties required by Def. 3.2.

7
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Example 3.8 As a counterexample showing that stable transactions are not
preserved by our equivalence, consider the net M .S defined in Fig. 1 and the
stable steps s and s” of Ex. 3.3. It is easy to verify that [s'] = [s"], since
s" is obtained from s’ by a diamond transformation. However s” is a stable
transaction whereas s’ is not. Thus [s”] is not a stable transaction.

Conversely the firing sequence ?

s = {4a}[t1){3a, b, z}[t2){.. }t2){- - Fta){. . . }ts){a, 3b, 2 }[ts) {40}

defines an abstract stable transaction [s]. In fact the stable transaction

5= {4a}[t1){3a, b, z}[t2){. . . }t3){. . F[t2){. . - }ts){a, 3b, z}[ts) {4b}

is the unique diamond transformed of s (and vice versa). O

Since the basic execution steps of a system modelled via ZS nets consist
of abstract stable transactions, it is natural to define a high-level description
of such a model as a net whose transitions are abstract stable transactions.

Definition 3.9 [Abstract Net] Let B = (Sg,Ts; Fs, Wg,up; Zg) be a ZS net.
The net Ag = (S \ ZB,XB; F,ug), with F(a,0) = pre(o)(a) and F(o,a) =
post(o)(a), is the abstract net of B, where we recall that pre(o) and post(o)
yield the first and last marking of any stable transaction in the equivalence
class o. O

Example 3.10 Let M S be the ZS net of our running example and let ) be
its initial marking. Consider the following firing sequences of the underlying

net Nyss of MS:
snew = {}[to){a},
sres = {b}[ta){a},
s1 = {2a}[t1){a, b, 2 }[t5) {20},

si = {( + Da}[tr){ia, b, z}[ta) - - [t2){1a, b, iz}[ts) - - [ta) {(+ + 1)b},

where s; has ¢ — 1 firings of ¢5 and ¢ firings of ¢3.

Then Xys = {t§,t),01,...,04,...} with ) = [snew], ty = [$rs] and
o; = [si], for ¢ > 1. The (infinite) abstract net of M S is (partially!) pic-
tured in Fig. 2. This abstract net consists of two places and infinitely many
transitions: one for creating a new active process, one for reactivating a process
after a synchronization, and one for each possible multicasting communication
involving ¢ receivers. O

Zero places can be used to coordinate and synchronize in a single trans-
action any number of transitions of the refined net. Thus it may well happen
that the refined net is finite while the abstract net is infinite. This is the
case, for instance, of our running example, which models a multicasting sys-
tem where a message can be delivered to an unlimited number of addresses.

9 We omit some inner marking for a matter of space; however they are univocally deter-
mined and can be easily recovered.
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Notice also that the abstract and the refined net both rely on the same basic
token-pushing mechanism to express their behaviour. This similarity is the
key of the constructions described in the next section.

4 TUniversal Constructions

This section has a more abstract and mathematical flavour. Its aim is to give
evidence that the definitions and the constructions presented in the previous
section are natural. The tool we use is some elementary category theory. In
particular, three concepts are useful here. The first notion is the category of
models itself, where the objects are models (in our case zero-safe nets) and
arrows represent some notion of simulation. The choice of arrows is very
informative, since they complement and in a sense redefine!° the meaning of
models.

The second notion is adjunction, which is useful to characterize "natural”
constructions. The typical scenario includes two categories C'y and C - where
C3 has more structure than C; - and a (usually obvious) forgetful functor
U : Cy — (1 which deletes the extra structure. It might happen that U
has a left adjoint F : C; — (5. If this is the case, F represents the ‘best’
construction for adding the extra structure. In fact the left adjoint is unique
(up to isomorphism) and satisfies a key universal property.

The third notion is coreflection, which is a special kind of adjunction. Here
the scenario includes a category C' and a subcategory C’ of it. Category C
represents the operational models, while C” defines certain ‘abstract’ models.
In addition there is a functor G : C — C’ whose left adjoint is the inclusion
functor from C’ to C. For every object u of C there is a unique arrow ¢, :
G(u) — u with the universal property that, given any abstract object a of
(', for every arrow f : a — u there is a unique arrow f': a — G(u) with
f = [ e, as the following (commuting) diagram illustrates.

u<—"-G(u)

|
a

This situation is ideal from a semantic point of view. In fact G(u) can be un-
derstood as an abstraction of model u (e.g. its behaviour), with the additional
advantage of being at the same time a model itself. The universal property
above means that if we observe models from an abstract point of view (i.e. via
morphisms originating from objects in C’), then there is an isomorphism (via
left composition with €,) between observations of u and observations of its
abstract counterpart G(u). Thus in a sense, model u seen from C’ is the same
as G(u). Again, if a coreflection exists between C' and C’ with the inclusion
as left adjoint then it is unique up to isomorphism.

In this section we describe two constructions involving zero-safe nets. The
first construction starts from a category ZPetri (where zero-safe nets are

10 F.g. isomorphic objects are often identified.

9
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considered as programs) and exhibits an adjuction from it to a category
HCatZPetri consisting of some kind of machines, equipped with operations
and transitions between states. It is proved that this adjunction corresponds
to the token-pushing semantics of zero-safe nets defined in the previous sec-
tion, in the sense that the transitions of the machine Z[B] corresponding to
a zero-safe net B are exactly the abstract stable steps of B.

The second construction starts from a different category ZSN of zero-safe
nets (which however is strictly related to HCatZPetri), having the ordinary
category Petri of P/T nets as a subcategory, and yields a coreflection corre-
sponding exactly to the construction of the abstract net in Def. 3.9.

4.1  Petri Nets are Monoids

Petri net theory can be profitably developed within category theory. Among
the existing approaches we mention [20,12,3]. We follow the approach initi-
ated in [12] (other references are [13,4,14,15]). This approach focuses on the
monoidal structure of Petri nets, where the monoidal operation means parallel
composition. The basic observation is that a Petri net is just a graph where
the set of nodes is a commutative monoid freely generated by the set of places.

Definition 4.1 [Graph] A graph is a quadruple G = (V, T, 0y, 01) where V is
the set of nodes, T is the set of arcs and 0y,0; : T — V are two functions
called source and target, respectively. We write t : © — v with the obvious
meaning, to shorten the notation. A morphism & from G to G’ is a pair (f, g)
of functions f : 17" — T" and g : V. — V' such that ¢(9;(v)) = 0":(f(u))
for ¢+ = 0,1. This, together with the obvious componentwise composition of
morphisms, defines the category Graph. a

Definition 4.2 [Petrinet] A (place/transition) Petri net is a graph where the
arcs are called transitions and where the set of nodes is the free commutative
monoid ™' S over a set of places S (thus 0y, 0y : T — S®). A Petri net
morphism is a graph morphism h = (f, g) where g is required to be a monoid
homomorphism (i.e. leaving 0 fixed and respecting the monoid operation &).
This defines a category Petri. O

In [13,4] it has been shown that it is possible to enrich the algebraic struc-
ture of transitions in order to capture some basic constructions on nets — case
graphs, firing sequences, Goltz-Reisig and Best-Devillers processes ([11,1]),
etc. In particular, in [13] a chain of adjunctions is defined, each adjunction
showing a further enrichement of the algebraic structure on transitions. We
are mainly interested in the definition of the category CMonRPetri.

Definition 4.3 [Reflexive Petri Commutative Monoid] A reflexzive Petri com-

mutative monoid M is a Petri net together with a function id : S% — T,

1 The elements of S® will be presented as formal sums nia; @ ... P nyap with the order of
summands being immaterial, a; € S and n; € IN for ¢ = 1,...,n. Moreover the addition is
defined by taking (€, nia;) ® (P, mia;) = (P, (n: + m;)a;) and 0 as the neutral element.
Obviously, a marking u = {nyay, ..., ngay } just corresponds to the element nja; ® ... Hngag

of 9.
10
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where:
o transitions form a commutative monoid (7', ®,0), and
* mappings dog, dy and id are monoid homomorphisms.

A reflexive Petri monoid morphism is a Petri net morphismh = (f,¢9): M —
M’ preserving identities (i.e., f(id,) = id;(u)) and monoidal structures. This
defines the category CMonRPetri. O

The forgetful functor from CMonRPetri to Petri has a left adjoint which
associates to each Petri net N its marking graph C[N]. The following rules
inductively define the arrows of C[N]:

ue Sy t:u—vely

idy :u — u €C[N] t:u— v €C[N]

a:u— v, B:u — v €C[N]

a@ﬂ:u@u’—wv@'v’EC[N]’
where the following equations, stating that C[/V] is a reflexive commutative
monoid, are to be satisfied (for all arrows «, 8 and 4 and for all multisets u
and v):

1dy ® a = «a,

(@2 B)06=ad (800

a®pB=0F®a, and

tdy @ 1d, = tdyg,.

Intuitively, the monoidal operator allows for the concurrent execution of tran-
sitions, and the identity function can be used to explicitely represent idle
tokens. The marking graph C[N] corresponds to the ordinary operational
semantics of N, i.e. its transitions are the step sequences of N.

4.2 Operational Semantics of Zero-Safe Nets

We now present the universal construction yielding the operational semantics
of our nets. We first define the category of zero-safe nets.

Definition 4.4 [Category ZPetri] A 7S net is a Petri net where the set of
places S = LUZ is partitioned into stable and zero places. A ZS net morphism
is a Petri net morphism (f,¢) : N — N’ where ¢ is a monoid homomorphism
which preserves partitioning of places (i.e., if @ € Z then g(a) € Z'® and if
a € S\ Z then g(a) € (5"\ Z')%®). This defines a category ZPetri. 0

Remark 4.5 Since S% is a free commutative monoid we can equivalently
represent the set of nodes of a ZS net as L? x Z% (i.e., sources and targets are
pairs whose components are elements of the free commutative monoids over
stable and zero places respectively). Thus ZS net morphisms become triples
of the form h = (f, g1, gz) where both g1, and gz are monoid homomorphisms
on the monoids of stable and zero places respectively.

11
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Example 4.6 The graph corresponding to the ZS net M S defined in Fig. 1
has the following set of arcs:

Tavs={to:(0,0) — (a,0),t1 : (a,0) — (b, 2),t2: (0,2) — (0, 2z),
ts: (a,z) — (b,0),t4: (6,0) — (a,0)}.
O

We now introduce for zero-safe nets the category HCatZPetri correspond-
ing to CMonRPetri. However the models of HCatZPetri (which we call
7S graphs) are more complex than those of CMonRPetri since they must be
equipped with an operation of composition of arrows to allow for the construc-
tion of transactions. Thus HCatZPetri is in a sense intermediate between
CMonRPetri and the category CatPetri introduced in [13].

Definition 4.7 [Category HCatZPetri] A ZS graph H = (LU 2)%, (T, ®,
0, ¢d, ;), Oy, 01) is both a ZS net and a reflexive Petri commutative monoid.
In addition, it is equipped with a partial function _; _ called horizontal com-
position:

a:(u,x) — (v,y), B:(u,y) — (v',2)
a; B (udu,z) — (vPv, z) .
Horizontal composition is associative and has identities 1dg ) : (0,2) —

(0,2) for any x € Z%. In addition, the commutative monoidal operator _® _
is functorial w.r.t. horizontal composition, i.e.

(a®B);(d @) = (a;0) @ (B; 5')
whenever the right member is defined. Given two ZS graphs H and H', a
ZS graph morphism h = (f,91,9z) : H — H' is both a ZS net morphism
and a reflexive Petri monoid morphism such that f(o;3) = f(a); f(5). ZS

graphs and horizontal morphisms (together with the obvious composition and
identities) constitute the category HCatZPetri. O

Horizontal composition is the key of our approach. It acts as a sequential
composition on zero places and as a parallel composition on stable places.
This is exactly what we need to model stable steps, because two successive
firings in a stable step are allowed iff the stable tokens which are needed are
already present in the initial marking.

Proposition 4.8 If o : (u,0) — (v,0) and o : (v/,0) — (v',0) are two
transitions of a ZS graph then o;o’ = a ® .
Proof. It can be easily verified that:
aja = (a®idpe); (idee @ a') = (a;idpe) @ (idpey; o) = a® .
Moreover, since the monoidal operator _ ® _ is commutative, it follows that
aj o = a. O
Next results show that HCatZPetri has CMonRPetri as a subcategory.

Proposition 4.9 The full subcategory of HCatZPetri whose objects are all
and only Petri nets (i.e., Z = 0) is isomorphic to CMonRPetri.

12
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Proof. Let H be a ZS graph such that Zy is empty. Then Va € Ty, there
exist u,v € LY such that o : (u,0) — (v,0). Thus Ve, 3 € H it follows that
a; 3 = a® B, i.e. the horizontal composition adds no structure. a

The following theorem defines the algebraic semantics of zero-safe nets by
means of a universal property.

Theorem 4.10 Let U : HCatZPetri — ZPetri be the functor which for-
gets about the additional structure on transitions, i.ec.
Z/{[((L U Z)EB, (T, ®, 0, ld, ; ), 30, 81)] = (LEB X ZEB7 T, 80, (91)

Functor U has a left adjoint Z : ZPetri — HCatZPetri which maps a ZS
net B into the ZS graph defined by the following inference rules and azioms:
(u,z) € LY x 7§ t:(u,z) — (v,y) € Tp
idug : (u,2) — (u,z) € Z[B]  t:(u,z) — (v,y) € Z[B]

a:(u,z) — (v,y), B:(v,2") — (V,y') € Z[B]

/
i

a@pf:(udu,zda) — (v@v,ydy') € Z[B]
a:(u,z) — (v,y), B:(v,y) — (V,z) € Z[B]
a;f:(udu,z) — (v, z) € Z[B] .

Where transitions form a commutative monoid, i.e.

a®pB=0Qa,
(a@B)Ré=a® (), and
id(oo) @ a = a,
for any «, 3,6 € Z[B]; the horizontal composition operator _; _ is associative

and has identities, i.ec.
(a;8);6 = o3 (B;6), and
a;idy) = a = idgq); @

whenever such compositions are defined; finally the monoidal operator _® _ is
functorial, this means that

id(u@) & id(wy) = ‘id(u@vw@y), and

(@@ a); (B®B) = (a;8) @ (o 5)
the latler holds whenever the rightmost member of the equation s defined).
he 1 holds wh he righ b h on s d d

Proof (Sketch) It is easy to verify that mapping Z extends to a functor
which is a right adjoint to functor . O

The following theorem shows that the algebraic semantics of zero-safe nets
is an extension of the ordinary semantics of P/T nets.

Theorem 4.11 When restricted to P/T nets, functor Z coincides with C.

Proof. Immediately follows from Prop. 4.8 since if Zg = () then V¢ : (u,z) —
(v,y) € Tgisz =y =0. O

Example 4.12 Let M S be the zero-safe net of our running example whose set
of arcs is defined in Ex. 4.6. For instance the arrow tq;t3 € Z[M S] has source

13
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(2a,0) and target (2b,0). Instead, notice that the arrow (1 ® id(a,0)); (2d(s,0) ®
t3) goes from (3a & b,0) to (a & 36,0).
As another example, the following expressions are all identified in Z[M 5],

i.e., they all denote the same arrow:

ty3t; (t2 @ id(o,z)); (T3 @ 1d(0,22)); (ts @ 1d(o,2)); L3,

ti;ta; (1, ®ed (0,2 ) (t3 @ t3 @ 13),

ty5t2; (t2 @ tdo,2)); (id(0,22) @ t3); (t3 @ t3), and

(

t1;te; (t2 @ t3); (13 ® t3).
O

Next theorem shows that the operational and algebraic semantics of zero-
safe nets coincide. We first need a definition.

Definition 4.13 [Prime Transition] A transition a : (u,0) — (v,0) of a ZS
graph H is prime iff @ cannot be expressed as the monoidal composition of

non-trivial arrows (i.e., A3,y € H,3 # idgg) # v such that a = 3 ®@7). O

Theorem 4.14 Given a ZS net B, there is a one-to-one correspondence be-
tween arrows « : (u,0) — (v,0) € Z[B] and abstract stable steps of B.
Moreover, if such an arrow is prime then the corresponding abstract stable
step is an abstract stable transaction.

Proof (Sketch) Given (the equivalence class of) a generic stable step
s=uduglty)u Suy G xqlts) - UD Up_1 B Ty [tn)u S u,

where each multiset x; contains (all) the zero tokens at the i-th stage of
the step, u is the multiset of the stable tokens which are idle in s and ¢; :

(wi,y;) — (v, 2) for i = 1,...,n. Then the corresponding arrow is
with z{ =0 and 2! ®y; = z;_1, for ¢ = 2,...,n, where y; is the multiset of zero

places in the source of ¢; (see above). The correctness of our definition follows
immediately, simply noticing that each diamond transformed s’ of s is mapped
into an arrow ay which can be proved equal to a, thanks to the functoriality
axiom. In fact, since s’ is a diamond transformed of s, then 3k such that t,
and tg41 are concurrently enabled, i.e. yry1 < x. Thus (for generic stable
markings v and v'):

(L ® tdwer)); (ter @ idur izt )) = te @ thgr @ td (g or) =
= (b @ id(wr aray,) )i (b @ (v orea,41)
where 2’ @ yr41 = x},. Then, it can be easily checked that the axioms given in
the proof of Theorem 4.10 identify equivalent steps only.
For the converse correspondence, let
(tl ® Ld(ul ,1‘1)) (tQ & Ld(uz ,1’2)) 3 (tn & Ld(un,zn))
be any (arbitrarily chosen) linearization of a given «, with ¢; : (w;,y;) —
(v;,2;). Then, the sequence
s = uglty)uy - wp g [Le)uk[tepa Yukyy - - gy [Eo)u,
14
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with uj = u is a stable step.

Now suppose that « is prime and that [s] is not a stable transaction. Then
3s’ € [s] such that s" = u[t; )p1...pp—1[ts,)v with p € L% for a certain index
k (3"7-y pre(t;)(a) = u(a) for any stable place a, because « is prime). Then
a = f;y with 8 : (¢,0) — (¢,0) and ~ : (r,0) — (+',0) for some (non-
trivial) arrows 3 and y with u = ¢®r, v = ¢ &' and ¢’ & r = pg. This is
contradictory, since a = ;v = [ ® v while « is prime by hypothesis. O

Example 4.15 In our running example the prime arrows of Z[MS] are

To = to,
T4 = t4,
ay =ty ts,

ay = ti;ta; (13 ® ido,5)); L,

Bi =12 (ta ®1d(o,z)); -3 (t2 @ 1d(0,(i-2)2))
6 = (t3 @ id(o,i-1)2)); 3 (13 @ id(o,2)); t3

a; = ty; Bi; 6;, with

The correspondence with the abstract stable transactions of MS which are
given in Ex. 3.10 is the intuitive one. As a further example, some more
compact notations to define arrows «; are either 6; = t3 @ - - - ® t3 where t3 is
repeated exactly ¢ times or «; = t1;t2; (t2 @ t3);-- -5 (t2 @ t3); (I3 @ t3) where
expression (ty ® t3) appears exactly ¢ — 2 times. O

4.3 Abstraction of Zero-Safe Nets

We now present the universal construction yielding the abstract semantics of
our nets. To this purpose we define a category ZSN of zero-safe nets where the
morphisms may map a transition into a transaction. In essence, ZSN has the
objects of ZPetri and some of the arrows of HCatZPetri. This construction
is reminiscent of the construction of ImplPetri in [13].

Definition 4.16 [Abstract Transition] An abstract transition of a given 7S
net B is either a prime arrow of Z[B] or a transition of B. O

Definition 4.17 [Refinement Morphism| Given two ZS nets B, B’ € ZPetri,
a refinement morphism h : B — B’ is a ZS net morphism (f,g1,97) :
B — Z[B'] such that function f maps transitions into abstract transitions
and morphism gz : Z5 — Z%, maps zero places of B into pairwise disjoint
(non-empty) elements!? of Z5,. O

Lemma 4.18 Given a refinement morphism h: B — B’', let T be its unique
extension in HCatZPetri. Then, morphism h preserves prime arrows.

121e.Vz,2' € Zp with 2 # 2/, if gz(2) = n1a1 ® - - - ® npay, and gz(2') = miby & - - Hmyby
then we have that a; Zb;, for¢=1,...,kand j=1,...,[

15
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Proof (Sketch) We want to show that if « is prime in Z[B], then also
7L(0z) is prime in Z[B']. Now let u[t1)uy - up_1[tn)u, be a firing sequence
corresponding to (a linearization of) a.

If n =1 then %(a) = %(tl) = h(t1) which is prime.

If n > 1 then we proceed by contradiction. Suppose that 7L(a) is not prime;
this implies that 35, 5, € Z[B'] with %(a) = (1 ® B2. Since « is prime,
then each t; involves at least a zero place. It follows, by Detf. 4.16, that each
h(t;) is a transition. This induces a corresponding linearization for i(«), given
by h(w)[h(t1))h(u1) - h(tn_1)[R(t,))R(u,). Moreover let v[sy)vy - - - ve_1[sk) vk
and w[sgp1)wy - wi—1[sp)w; (with k 4+ 1 = n) be some firing sequences cor-
responding to 3; and [, respectively. Now suppose that a diamond transfor-
mation at position 7 can be applied to 7L(oz), i.e. h(t;) and h(t;y1) are both
enabled at h(u;_1). The disjoint image property of h allows to infer that also
t; and t;;1 are both enabled at u; 1, so a diamond transformation can also
be applied to a at position :. Iteratively applying to «a the specular diamond

Lo

transformations needed to reach the sequence h(u)[sy)uf---ull_;[s,)ull start-

ing from 7L(oz), we obtain the sequence w[t; )uj---ul,_,[t;,)u), with u], = u,
and where h(u}) = uf and h(t;)) = s; for j = 1,...,n. It is easy to show
that the sequences v'[t; )vy - v _y[t;,)v} and w'[t;  )w) -+ wi_y[t;, )w; (with
v’ @ w' = u, h(v') = v, h(v)) = v; for j =1,..., k, h(w') = w and h(w!) = w;
for j = 1,...,1) define two arrows a; and a3 such that @ = a; ® ay, thus
contradicting the hypothesis that « is prime. a

Remark 4.19 The disjoint image property on zero places required for the
morphisms in Def. 4.17 is necessary for Lemma 4.18 to hold. As an example,
consider ZS nets B and B’ pictured below:

Qa bO Qa b O
1] /Eﬂ ][]
B \ ) \ A
[i5] ] E?j/ \Eﬂ
Oe e Oc 4O

with

Sgp={a,b,c,d,z,x,2" y}, Zp={zx,2" y},
Ts={t1:(a,0) — (0,2 D x),t3: (b,0) — (0,2' D y),
t3:(0,z2®2") — (¢,0),t4: (0,2 D y) — (d,0)},
Sgr={a,b,c,d,z, 2"y}, Zg ={z2" y},
T ={t1:(a,0) — (0,2 D a"),ty: (b,0) — (0,2" B y),
t3:(0,z @ 2") — (¢,0),t4: (0,2" B y) — (d,0)}.
16
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Then mapping h : B — B’, merging both zero places x and z’ into " and
leaving unchanged the rest, maps prime arrow a = ({1 ® t2); (t3 @ t4) € Z[B]
into arrow h(a) = (t; @ 1ta); (I3 ® ta) = (t1;t3) @ (t2;14) which is not prime. In
fact mapping h does not respect the disjoint image property.

Definition 4.20 [Category ZSN]| The category ZSN has ZS nets as objects
and refinement morphisms as arrows. The composition between two refine-
ment morphisms h : B — B’ and A’ : B’ — B" is defined as the ZS net
morphism ' ' o h: B — Z[B"], where R’ is the unique extension of A’ to a
morphism in HCatZPetri. O

Theorem 4.21 Category Petri is embedded into ZSN fully and faithfully as
a coreflective subcategory. Furthermore the functor A[], which is the right

adjoint of the coreflection, maps every ZS net B into its abstract net Ap (see
Def. 3.9), i.e. A[B] = Ap.

Proof (Sketch) We start by defining the functor D[] : Petri — ZSN.
Let D[(S®,T, o, 01)] = (S% x {0}, T,(0,0),(01,0)), i.e. D[N] is the ZS net
generated by N whose nodes are renamed as pairs having the second com-
ponent equal to 0. The abstract stable transactions (i.e. prime arrows, by
Theorem 4.14) of D[N] are all and only its transitions. Thus a refinement
morphism h : D[N] — D[N’] maps transitions into transitions. We extend
D[] to a functor by defining D[(f,¢)] = (f,9,0). Next we want to prove that
D[] 4 A[]: ZSN — Petri where A[] maps each ZS net B into its abstract
net Ap. Consider a refinement morphism h = (f,g1,97) : B — B’. Let 3
be the unique extension of h in HCatZPetri. Morphism % preserves prime
arrows (by Lemma 4.18). Then mapping A[_] extends to a functor by defining
A[h] = (f',g1) with f'(o) = 7L(0‘) Yo € Yg. It follows that the unit compo-
nent ny of the adjunction is the identity and the counit component eg maps
transitions of the abstract net into appropriate abstract transactions. a

5 Conclusion and Future Work

In this paper we have based our constructions on the so-called collective token
philosophy [9]. In fact we have defined abstract stable steps as the direct quo-
tient of diamond-equivalent classes of stable steps. Correspondingly, we have
based our categorical models on graphs equipped with a monoidal operation
which is commutative on both nodes and arcs. As shown in [4], an alter-
native approach to the semantics of Petri nets introduces special transitions
called symmetries to represent the permutations of tokens all present at the
same place. Correspondingly, the categorical semantics is given in terms of
(a suitable subclass of) symmetric monoidal categories (ssmc). In ssmc’s, the
monoidal operation is not commutative and a natural transformation builds
the symmetries. This alternative approach corresponds to the so-called indi-
vidual token philosophy and offers a much more informative semantics. For
instance, let us consider the net in Fig. 1 (the distinction between stable and

13 Lemma 4.18 guarantees that h' o h is a refinement morphism.
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zero places is immaterial here). If we execute several simultaneous one-to-
many communications, the equivalence classes of firing sequences implied by
the individual token approach fully distinguish which receiver has been syn-
chronized with which sender . This is not the case for the collective token
approach, which just records the total number of senders and the total number
of receivers.

In this paper we have followed the collective token philosophy for the sake
of simplicity. In fact both the operational and the algebraic semantics turn out
considerably simpler. However we believe that an individual token semantics
of zero-safe nets could be given without too much effort. We anticipate that
certain restrictions we need here (for the arrows of category ZSN) could be
possibly lifted in the individual token case.

Finally we want to mention a connection between zero-safe nets and the tile
model [6,7]. Tiles are rewrite rules, similar to SOS inference rules, equipped
with three operations of composition: horizontal, vertical and parallel. Hor-
izontal composition builds tiles corresponding to synchronized steps, vertical
composition to sequentialized steps and parallel composition to concurrent
steps. Tiles can be exactly interpreted as double cells of a monoidal dou-
ble category, and provide an expressive and clean metalanguage to define a
variety of models of computation. Zero-safe nets represent the simple case
where basic tiles are net transitions, and where the horizontal composition
of tiles corresponds to the horizontal composition of arrows in the category
HCatZPetri. The vertical composition of arrows would approximately cor-
respond to building stable step sequences, as defined in Def. 3.2.
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