Executable Tile Specifications
for Process Calculi*

Roberto Bruni!, José Meseguer? and Ugo Montanari!

! Dipartimento di Informatica, Universita di Pisa, Italia.
2 Computer Science Laboratory, SRI International, Menlo Park, CA, U.S.A.
bruni@di.unipi.it, meseguer@csl.sri.com, ugo@di.unipi.it

Abstract. Tile logic extends rewriting logic by taking into account side-
effects and rewriting synchronization. These aspects are very important
when we model process calculi, because they allow us to express the dy-
namic interaction between processes and “the rest of the world”. Since
rewriting logic is the semantic basis of several language implementation
efforts, we can define an executable specification of tile systems by map-
ping tile logic back into rewriting logic. In particular, this implementation
requires the development of a metalayer to control rewritings, i.e., to dis-
card computations that do not correspond to any deduction in tile logic.
Our methodology is applied to term tile systems that cover and extend
a wide-class of SOS formats for the specification of process calculi. The
case study of full CCS, where the term tile format is needed to deal with
recursion (in the form of the replicator operator), is discussed in detail.

1 Introduction

This paper reports on the application of tile logic to the specification and ex-
ecution of process calculi. For the specification part, we take advantage of the
synchronization mechanism of tile logic that extends well-known SOS formats.
The execution is based on a general translation of tile logic into rewriting logic.

In rewriting logic [26], a logic theory is associated to a term rewriting sys-
tem, in such a way that each computation represents a sequent entailed by the
theory. The entailment relation is then specified by simple inference rules and
deduction in the logic is equivalent to computing in the system. Given this cor-
respondence, a sentence t = t' has two readings: computationally, it means that
when the system is in a state s, any instance of the pattern ¢ in s can evolve to
the corresponding instance of ¢, possibly in parallel with other changes; logically,
it means that we can derive the formula t' from t. Moreover, the notion of state
is entirely user-definable as an algebraic data type satisfying certain equational

* Research partially supported by MURST project Tecniche Formali per Sistemi Soft-
ware, and by Esprit WG CONFER2. Also partially supported by DARPA through
Rome Laboratories Contract F30602-97-C-0312 and NASA Contract NAS2-98073,
by Office of Naval Research Contract N00014-96-C-0114, and by National Science
Foundation Grants CCR-9505960 and CCR-9633363.



properties. Therefore, rewriting logic has good properties as a semantic frame-
work where many different languages, systems and models of computation (e.g.,
labelled transition systems, grammars, Petri nets and algebraic nets, chemical
abstract machine, concurrent objects, actors, graph rewriting, data flow, neu-
ral networks, real time systems, and many others) can be nicely expressed by
natural encodings. For example, specifications of programming languages given
in terms of rewrite theories become de facto interpreters for the languages in
question. On the other hand, rewriting logic has also very good properties as a
logical framework where many other logics can be naturally represented (several
examples can be found in [25,24]). Rewriting logic has also been used as a se-
mantic framework for software architectures, providing a formal semantics for
architecture description languages and their interoperation [31]. Further exam-
ples regards theorem provers and other formal methods tools, based on inference
systems that can be specified and prototyped in rewriting logic. Also communi-
cation protocols, including secure ones, are another promising area [13]. More-
over, there exist several languages based on rewriting logic (e.g., Maude, ELAN,
CafeODbj), developed in different countries, and this growing community has re-
cently organized two workshops to discuss all the aspects of rewriting logic [28,
23]. A progress report on the multiple activities connected to rewriting logic has
been the topic of an invited talk at CONCUR’96 [27].

The semantics of process calculi for reactive systems and protocol prototyping
are usually presented in the SOS form [35]. Such representation naturally yields
a conditional rewriting system [25], where the basic rule of the rewrite theory
can have the more general form: ¢t = t' if s; = s} A---As, = 5], .

Unfortunately, the implementation of conditional rules increases the expres-
sive power of rewrite theories as much as the complexity of the underlying rewrite
machine. Indeed, conditional rules are not supported by languages based on
rewriting logic for efficency reasons. Hence, specifications must be adapted be-
fore becoming executable. Of course, such modification can be pursued in an ad
hoc fashion for each model, but a better approach consists of having a methodol-
ogy that automatically performs the translation for an entire class of problems.

The tile model [17,19] is a formalism for modular descriptions of the dynamic
evolution of concurrent systems. Basically, a set of rules defines the behaviour of
certain open (e.g., partially specified) configurations, which may interact through
their interfaces. Then, the behaviour of a system as a whole consists of a co-
ordinated evolution of its sub-systems. The name “tile” is due to the graphical
representation of such rules, which have the form

inital input interface o __% .  initial output interface

|

final input interface © o © final output interface

b

a
also written 575’ , stating that the initial configuration s of the system evolves

to the final configuration s' producing the effect b, which can be observed by the



rest of the system. However, such a step is allowed only if the subcomponents
of s (which is in general an open configuration) evolve to the subcomponents
of ', producing the trigger a. Triggers and effects are called observations. The
vertices of each tile are called interfaces.

Tiles can be composed horizontally (synchronizing an effect with a trigger),
vertically (computational evolutions of a certain component), and in parallel
(concurrent steps) to generate larger steps. By analogy with rewriting logic, the
tile model also comes equipped with a purely logical presentation [19], where
tiles are just considered as (decorated) sequents subject to certain inference
rules. Given a tile system, the associated tile logic is obtained by adding some
“auxiliary” tiles and then freely composing in all possible ways (i.e., horizon-
tally, vertically and in parallel) both auxiliary and basic tiles. As an example,
auxiliary tiles may be necessary to represent consistent horizontal and vertical
rearrangements of interfaces.

It is clear that tile logic extends (unconditional) rewriting logic, taking into
account rewriting with side effects and rewriting synchronization, whereas, in
rewriting systems, both triggers and effects are just identities (i.e., rewriting steps
may be applied freely). This feature of tile logic has been at the basis of several
successful application as a model of computation for reactive systems: varying
the algebraic structures of configurations and observations many different aspects
can be modelled, ranging from synchronization of net transitions [7], to causal
dependencies for located calculi [16], to finitely branching approaches for name-
passing calculi [15], to actor systems [34]. Moreover, tile logic allows one to reason
about open configurations, in the style of context systems [21], whilst ordinary
SOS formats work for ground terms only (e.g., bisimulation can be generalized
to tile bisimulation that operates over contexts rather than just over terms).

A main question has concerned how to give an implementation to tile logic.
Systems based on rewriting logic are a natural choice, due to the great similar-
ity with the more general framework of tiles. This topic has been extensively
investigated in [30], and successively in [4], where the results of [30] have been
extended to the cases of process and term tile logic, where both configurations
and effects rely on common auxiliary structures (e.g., for tupling, projecting
or permuting interfaces). As a result, the mapping becomes effective provided
that “the rewriting engine is able to filter computations”. To achieve this, in [5]
we make use of the reflective capabilities [11,8] of the Maude language [9] to
define suitable internal strategies [10,12], which allow the user to control the
computation and to collect the possible results.

In this paper we give a survey of some basic internal strategies, and we
show how they can be applied to obtain executable specifications for a rich class
of process calculi. To give an example of the implementation mechanism, we
instantiate the general idea to the well-known case study of full CCS [32] whose
presentation requires the term tile format. While a process calculus (located
CCS) that needs process tile logic (rather than the simpler monoidal tile logic
of [30]) has been modelled in [6], this is the first time that term tile logic is
shown to be indispensable for certain features of process calculi.



Related Works. This work is part of our ongoing research aimed at developing
general mechanisms for a uniform implementation of several tile formats. In
recent papers, different mathematical structures have been employed to model
configurations and observations. Basically, we can distinguish two approaches.

The first approach, proposed in [19], considers models arising from internal
constructions in suitable categories with structure. Such “structure”, usually de-
termined by the algebra of configurations, is then lifted to tiles (in the horizontal
dimension only), whilst the observations just yield a monoid over the sequences
of basic actions. Within this class we recall a net model equipped with a synchro-
nization mechanism between transitions, called zero-safe nets [7]. This is prob-
ably the simplest tile model one can imagine, because its configurations and its
observations are just commutative monoids (the monoidal operation models both
parallel and sequential compositions). Other examples consist of the monoidal
tile system for finite CCS of [30], where discharged choices of nondeterministic
sums are managed with explicit garbaging, and the algebraic tile system for fi-
nite CCS [19], where configurations have a cartesian structure (corresponding to
the term algebra of processes), and free discharging of choices is allowed. Finally,
we mention the simple coordination model based on graph rewriting and syn-
chronization of [33] whose configurations, called open graphs, have an algebraic
characterization as suitable gs-graphs (a structure with explicit subterm sharing
and garbaging, offering a partial algebraic semantic for modelling graphs with
subsets of sharable nodes), used to recast the hard computational problem of
tile synchronization into a distributed version of constraint solving.

The second approach considers a richer class of models, where both configu-
rations and observations have similar algebraic structures. Rather than based on
internal constructions, such models rely on the notion of hypertransformation,
which is able to characterize the analogies between the mathematical structures
employed in the two dimensions. Within this class we recall the tile model for
located CCS, which can take into account causal relationships between the per-
formed actions, by looking at the locations where they take place. This model
requires some auxiliary tiles for consistent permutations of the elements in the
interfaces. Such tiles have been naively introduced in [16], and then character-
ized as suitable hypertransformations in [4,6]. We also want to mention the tile
models sketched in [34] to emphasize the similarities between actor systems and
calculi with mobility (e.g., w-calculus).

The tile model for full CCS we propose in this paper is based on term struc-
tures on both dimensions and clearly belongs to the second class of systems.

The idea of translating tile models based on the first approach above into
rewriting logic has been discussed for the first time by two of the authors in [30].
Then, it has been extended to the more general framework (based on hyper-
transformations) in [4]. Further directions of research have focused on control
mechanisms over rewritings that are necessary to support the theoretical results
at the implementation level of Maude. To this aim, the definition of a kernel of
internal strategies in the language Maude has been fully discussed in [5].



An extensive presentation of the translation of tiles into ordinary rewrite rules
can be found in the Technical Report [4] and in the forthcoming PhD Thesis of
one of the authors [3]. In particular, we have investigated the similarities between
rewriting logic and tile logic from the point of view of their categorical models!.

Structure of the paper. In Section 2 we give a survey of tile logic and of
its translation into rewriting logic. We also propose a brief comparison between
several specification formats. In Section 3 we describe some useful internal strate-
gies, written in a self-explanatory Maude-like notation, and in Section 4 we show
their application to the field of process calculi. The case study presented in Sec-
tion 4 consists of a full version of CCS, where the replicator is considered.

2 Mapping Tile Logic into Rewriting Logic

2.1 Tile Logic Specifications

The notions of configuration, observation and interface are the basic ingredi-
ents of tile logic, and all of them come naturally equipped with the operation
of parallel composition. Moreover, the input (output) interface of the parallel
composition of two configurations h and g is just the parallel composition of
the two input (output) interfaces of h and g. Similarly for the interfaces of the
parallel composition of two observations. To simplify the notation, in this pre-
sentation we assume that the parallel composition is associative and has the
empty interface (configuration, observation) as neutral element, i.e., we assume
that interfaces (configurations, observations) yield a strict monoid.

Informally, the interfaces represents connection points between different con-
figurations of the system, and also between consecutive observations of the same
component. Therefore, configurations (observations) also have sequential com-
position as a natural operation. In particular we can assume that configurations
and observations form two strict monoidal categories, having the same class of
objects (i.e., the interfaces). We denote the operators of parallel and of sequential
composition by - ® _ and by _; _ respectively.

Within tile logic, the basic methodology to specify the model of computa-
tion for a concrete system consists of the following steps: (1) define the set of
basic configurations of the system; (2) define what the interfaces of each basic
configuration are; (3) define the basic events that we want to observe and their
interfaces according to the previous steps (if necessary, we can repeatedly apply

1 A rewriting theory R yields a cartesian 2-category Lx, which does for R what a
Lawvere theory does for a signature. Gadducci and Montanari pointed out in [18],
that if also side-effects are introduced, then double categories (DC) [14] should be
considered as a natural model: tiles are double cells, configurations are horizontal
arrows, observations are vertical arrows, and objects model connections between the
somehow static horizontal category and the dynamic vertical evolution. Depending
on the structures under consideration, either monoidal DC [19], or symmetric DC,
or cartesian DC must be considered (the last two notions being introduced in [4]).



these three steps, until the basic structures are chosen); (4) define the set of tiles
that describe the basic behaviours of the system accordingly to the framework
chosen in the first three steps (again, it could be necessary to iterate all the four
steps to obtain a consistent definition of the tile system). The steps (1) and (3)
must take into account the fact that the mathematical structures employed to
represent configurations and observations are strict monoidal categories. Most
of the times, it is convenient to assume that configurations and observations are
just the categories freely generated from the basic configurations and from the
basic observable actions that the system can perform.

For example, an obvious choice in the definition of tile models for many pro-
cess algebras is to take the term algebra of processes as the category of configu-
rations, and the free monoid over action strings as the category of observations
(e.g., see [19]). This is correct because the tuple of terms can be seen as arrows
of a suitable strict monoidal category (namely a cartesian category), where the
parallel composition corresponds to tupling of terms and the sequential composi-
tion is term substitution. In this case, the structure employed for configurations
is richer than the one requested by the framework. Indeed it allows free duplica-
tion and projection of terms. We refer to such operators as auziliary structures,
because they do not depend on the signature, and instead belong to any term
algebra under consideration.

The tile model for full CCS introduced in Section 4 requires a term structure
for both configurations and observations. Hence, similar auxiliary structures are
necessary on both dimensions and a certain number of auxiliary tiles (for con-
sistent rearrangements of interfaces on both dimensions) must be introduced in
the model. We have investigated such kind of tile structures in [4], under the
terminology term tile systems (tTS).

2.2 Term Tile Systems

In what follows we consider one-sorted signature only. The many-sorted case can
be handled very easily in a similar way, but requires a more complex notation
that is not necessary for our case study and therefore avoided.

An algebraic theory [22] is just a cartesian category having underlined natural
numbers as objects. The free algebraic theory associated to a signature X' is called
the Lawvere theory for ¥, and is denoted by Th[X]: the arrows from m to n
are in a one-to-one correspondence with n-tuples of terms of the free X-algebra
with (at most) m variables, and composition of arrows is term substitution. As
a matter of notation, we assume a standard naming of the m input variables,
namely 1, ..., T,,. When composing two arrows s : m — k and t : £ — n,
the resulting term s;¢ is obtained by replacing each occurrence of z; in ¢ by the
i-th term of the tuple s, for i = 1,..., k. For example, constants a, b in X' are
arrows from 0 to 1, a binary operator w(z1, z2) define an arrow from 2 to 1, and
the composition (a, b); (w(z1,x2),z1); {w(x2,x1)) yields the term w(a,w(a,b)),
which is an arrow from 0 to 1, in fact:

(@, b); (w(@1, 22), 21); (W (22, 21)) = (w(a, b), a); (w(@2, 71)) = (w(a, w(a,b)))



When no confusion can arise, we avoid the use of angle brackets to denote
term vectors. When configurations and observations are terms over two distinct
signatures X'g and Xy, we can assume that each basic tile has the form:

h

n—"-m

with b € T, (Xn)™, g € Txy(Xi), v € Tx, (X,)F, and u € Tx,, (Xn), where
X; = {z1,...,x;} is a chosen set of variables, totally ordered by z;, < z;, if j1 <
Jjo2, and T'x;(X)™ denotes the n-tuples of terms over the signature X and variables
in X. Due to space limitation, we present tiles more concisely as logic sequents

nd h % g , where also the number of variables in the “upper-left” corner of the

tile is made explicit (the values m and k can be easily recovered from the lengths
of h and v). The idea is that each interface represents an ordered sequence (i.e., a
tuple) of variables; therefore each variable is completely identified by its position
in the tuple, and a standard naming 1, ..., z,, of the variables can be assumed.
For example, if the variable x; appears in the effect u of the above rule, then
this means that the effect v depends on the i-th component h; of the initial
configuration. Analogously for the remaining connections. Notice that the same
variable z;, denotes the i-th element of different interfaces when used in each of
the four border-arrows of the tile (in particular, only the occurrences of z; in h
and in v denote the same element of the initial input interface n).

The format of term tiles is very general. In particular, it extends the positive
GSOS format [1], where multiple testing of the same argument are allowed in
the premises, and tested arguments can appear in the target of the transition in
the conclusion, i.e., rules can have the more general form

{2: 25y | 1<i <k, 1<n;}

a
f(xh 7'7:/6) — C[mhylh 9 Ylng ;- Thy Yk1, "'7yknk]

where the variables are all distinct, f is a k-ary operator, n; > 0, a;; and a are
actions and C[.1,..., n] is a context that takes N = Zle(ni + 1) arguments.

The corresponding tiles have the form k< f(zy, ..., zx) ﬁ Clzy...xN] , where
a(x1

a = (z1,a11(21), ., @1ny (T1), ey Thy A1 (Th), -, Gkn,, (1)) i the vector of triggers
(for each argument of f, a contains the idle trigger plus all the actions that are
tested in the premises of the GSOS rule for that argument). We remark that
the positive GSOS format cannot be handled by tile systems defined using the
internal construction approach (see [19]). Term tile logic can also handle rules
with lookahead as the one defined in [20]:

at a”
T—Y, Yy —2 a=(at(z
- becomes 1< combine(z) (a7 (1) combine(z1) -
combine(z) — combine(z) a(w1)




Therefore, term tile format appears very expressive and this motivate us to
provide an executable framework for it. However, an extensive comparison of
existing formats is out of the scope of this paper and is left for future works.

2.3 From Tiles to Rewrite Rules

The comparison between tile logic and rewriting logic takes place by embed-
ding their categorical models in a recently developed, specification framework,
called partial membership equational logic (PMEqtl) [29]. PMEqtl is particularly
suitable for the embedding of categorical structures, first because the sequential
composition of arrows is a partial operation, and secondly because membership
predicates over a poset of sorts allow the objects to be modelled as a subset of the
arrows and arrows as a subset of cells. Moreover, the tensor product construction
illustrated in [30] can be easily formulated in PMEqtl, providing a convenient
definition of the theory of monoidal double categories as the tensor product of
the theory of categories (twice) with the theory of monoids.

The advantage of modelling process algebras in tile logic (using the trig-
ger/effect synchronization mechanism of rewritings) should be evident just con-
sidering the usual action prefix operation, denoted by u... When applied to a
certain process P it returns a process p.P which can perform an action g and
then behaves like P. The corresponding tile is represented below (horizontal ar-
rows are process contexts and vertical arrows denote computations). Notice that
the horizontal operator u._ and the vertical operator u(_) are very different: the
former represents the p prefix context, which is a syntactic operator, and the lat-
ter denotes the execution of the observable action p. Such tile can be composed
horizontally with the identity tile of any process P to model the computation
step associated to the action prefix.

18 (A N [
id w(z1) idt z'Jt/i plzy) = id‘/ ‘/u(m)
1—1 0—-1—n1 0——1

Now, let nil be the inactive process, and consider the process Q = p1.u2.nil. If
the process @) tries to execute the action us before executing p; it gets stuck,
because there is no tile having ps(_) as trigger and p;.- as initial configuration.

0 nil 1 L1 L

id z|ri p2(z1)

0——1—-1 7
nil id

In unconditional rewriting systems, this is not necessarily true, because rewriting
steps can be freely contextualized (and instantiated). This problem is well-known
in rewriting logic, and some partial solutions have been already proposed in the



literature [25, 36]. However, our methodology seems to offer a unifying view for
a wide class of related problems. The basic idea is to “stretch” tiles into ordi-
nary rewriting cells as pictured below, maintaining the capability to distinguish
between configurations and observations.

R

a

As a main result, given a tile system R, a sequent s_b)s' is entailed by R in

tile logic if and only if a sequent s;b = a; s’ is entailed by the stretched version
of R in rewriting logic and its proof satisfies some additional constraints (see [30,
4]). Indeed, the forgetful functor from the category of models of the stretched
logic (where also the distinction between configuration and observations can be
made) to the category of models of the tile logic has a left adjoint. Moreover, for
a large class of tile systems (called uniform) the additional constraints reduce
to check that the border of the sequent can be correctly partitioned into config-
urations and observations? (the source of the sequent must be a configuration
followed by an observation, and the target must be an observation followed by
a configuration).

It follows that a typical query in a tile system could be: “derive all (some
of) the tiles with initial configuration s and effect b” (this corresponds to start
with the state s; b and apply the rewritings that simulate a tile computation with
vertical source s and horizontal target b). Hence, we need to define some rewriting
strategies for exploring the tree of nondeterministic rewritings until a successful
configuration is reached. For instance, a general notion of success for uniform
tile systems consists of VH configurations (i.e., an arrow of the vertical category
followed by an arrow of the horizontal category) as we will see in Section 3.3.

3 Internal Strategies in Rewriting Logic

A rewrite theory T consists of a signature X' of operators, a set E of equations,
and a set of labelled rewrite rules. The deductions of T are rewrites modulo F
using such rules, and the meaningful sentences are rewrite sequents t = t', where
t and t' are X-terms. We call strategy any computational way of looking for cer-
tain proofs of some theorems of T. An internal strategy language is a function
S that sends each theory T to another theory S(T') in the same logic, whose
deductions simulate controlled deductions of T'. The class of finitely presentable
rewrite theories has universal theories, making rewriting logic reflective [10, 8].

2 If the tile system is not uniform, then also the actual proof term decorating the
derivation has to be taken into account. However, since at present we do not have
any meaningful example of non uniform systems we are not really interested in having
such an implementation.



This means that there exists a finitely representable rewrite theory U able to
simulate deductions in all the other rewrite theories, i.e., there is a representa-
tion function (_F _) that encodes a pair consisting of a rewrite theory T' and a
sentence t = t' in T as a sentence (T,t) = (T,t') in U, in such a way that

Ttt=>t < UFT,t) = (T,t),
where the function 6 recursively defines the representation of rules, terms, etc.
as terms in U. Hence, strategies in S(U) are particularly important, since they
represent, at the object level, strategies for computing in the universal theory.

3.1 A Strategy Kernel Language in Maude

Maude [9] is a logical language based on rewriting logic. For our present pur-
poses the key point is that the Maude implementation supports an arbitrary
number of levels of reflection and gives the user access to important reflective
capabilities, including the possibility of defining and using internal strategy lan-
guages, their implementation and proof of correctness relying on the notion of a
basic reflective kernel, that is some basic functionality provided by the universal
theory U. The Maude implementation supports metaprogramming of strategies
via a module-transforming operation which maps a module 7" to another mod-
ule META-LEVEL[T] that is a definitional extension of U [12]. For simplicity,
we adopt here a simpler version of the metalevel. In particular, the following
operations are defined: meta-reduce () and meta-apply(Z,l,n).

meta-reduce(?) takes the metarepresentation  of a term ¢ and evaluates as
follows: (a) ¢ is converted to the term it represents; (b) this term is fully reduced
using the equations in T'; (c) the resulting term ¢, is converted to a metaterm
which is returned as a result.

meta-apply (f,1,n) takes the metarepresentations of a term ¢ and of a rule
label I, and a natural number and evaluates as follows: (a) t is converted to the
term it represents; (b) this term is fully reduced using the equations in T'; (c)
the resulting term ¢, is matched against all rules with label I; (d) the first n
successful matches are discarded; (e) if there is a (n + 1)-th match, its rule is
applied using that match; otherwise {error*,empty} is returned; (f) if a rule is
applied, the resulting term ¢’ is fully reduced using the equations in T'; (g) the
reduced term ¢, is converted to a metaterm and returned as a result, paired with
the match used in the reduction (the operator {_,_} constructs the pair, and
the operator extTerm can be used to extract the metaterm from the result).

3.2 Strategies for Nondeterministic Rewritings

We need good ways of controlling the rewriting process — which in principle could
go in many undesired directions — using adequate strategies. The importance of
similar mechanisms is well-known, and other languages (e.g., ELAN [2]), have
built-in functionalities that deal with general forms of nondeterminism. However,
the approach based on the definition of suitable internal strategies in Maude is



rather general (it is parametric w.r.t. a user-definable success predicate), can be
integrated with the built-in membership predicates of Maude (very important
for the implementation of uniform tile system based on term structures, as shown
in Section 3.3), and allows the customization of the policy adopted.

In [5] we have specified a basic internal strategy language which is able to sup-
port nondeterministic specifications, extending the strategy kernel META-LEVEL.
Such layer provides several kinds of visit mechanisms for the trees of nondeter-
ministic rewritings in T' (e.g., breadth-first, depth-first, etc.). A strategy expres-
sion has either the form rewWith(#,S) where S is the rewriting strategy that we
wish to compute, or failure which means that something goes wrong. As the
computation of a given strategy proceeds, t is rewritten according to S (and S
is reduced into the remaining strategy to be computed). In case of termination,
S becomes the trivial strategy idle. In doing so, we assume the existence of a
user-definable predicate ok(_), defined over the collection of states, such that
ok(st) = true if st is successful and ok(st) = false if st is failing.

As an example, we sketch here the depth-first visit with backtracking mecha-
nism. The (meta)expression rewWith (,depthBT (I)) means that the user wants
to rewrite a term ¢ in T using rules with label [, until a solution is found. This
corresponds to the evaluation of the expression rewWithBT([(#,0)1,0,l). The
function rewWithBT takes as arguments a sequence PL of pairs of the form (¢,14),
where ¢ is a term and 4 is a natural number, a set of (metarepresentations of)
terms T'S and the metarepresentation [ of a label I. The set T'S represents the set
of visited terms. The sequence PL contains the terms that have to be “checked”.
If the first argument is the empty sequence, then the function evaluates to fail-
ure, which means that no solution is reachable. If there is at least one pair (%, 1)
in the sequence, such that ¢ € T'S and ok(t) # false, then only the first i — 1
rewritings of ¢ have been already inspected and the i-th rewriting ¢; of ¢ (if any)
should be the next. If ok(¢) = true then ¢ is a solution: the evaluation returns
rewWith(%,idle) and the computation ends. The formal definition of such eval-
uation strategy is given in the Appendix, but we refer to [5] for more details and
for the definition of other evaluation strategies.

3.3 Uniform Term Tile Systems

Let XYy and X'y be two (unsorted) disjoint signa-

tures for configurations and observations. We call / \
term tile system (tTS) over Xy and Xy any tile 1{4"><"rH
system whose configuration and observations are B v
terms over Xy and X'y respectively. Term tile sys- \ /

tems are quite close to the ordinary term rewrit-
ing framework, and the membership assertions and ) ~
subsorting mechanism of Maude can be used (to- Fig. 1. The sorts of R.

gether with the internal strategies presented in Section 3.2) to model any uniform
tTS R. The idea is to define a rewrite theory 7/?\,, that simulates R as described
in Section 2, exploiting the membership mechanism of Maude to distinguish the
correct computations. The theory R has the poset of sorts illustrated in Fig. 1.



We briefly comment on their meaning: the sort W informally contains the vari-
ables of the system as constants; the sort H contains the terms over the signature
X'y and variables in W (similarly for the sort V); the sort HV contains those terms
over the signature X'yyy and variables in W such that they are decomposable
as terms over signature Xy applied to terms over X'y (similarly for VH); and
the sort U contains terms over the signature Xgyy. As summarized above, we
introduce the following operations and membership assertions, for each h € X'y
and v € Xy (with h of arity n and v of arity m):

oph :U" ->U .opv:U"->TU.

vars &1 ... Tmaz : U .

cmb h(z1,...,2,) : H iff 2y ... 2, : H .
cmb v(Z1,...,%p,) : Viff 21 ... 2, V.
cmb h(z1,...,2,) : VH iff 21 ... z, : VH .
cmb v(z1,...,Zm) : HV iff 21 ... =, : HV .

The rewriting rules of R are the stretched versions of tiles h%g in R.
rl [tile] : u(h) => g(v)

The following result characterizes the correctness of our implementation.

Theorem 1. Given a uniform tTS R, then R + h%g = R Fuh) = g(v).
Moreover, if R+ u(h) = t and t : VH, then 3g : H, Jv : V such that t = g(v)
and R+ h—g.

4 Rewriting CCS Processes via Tiles

Milner’s Calculus for Communicating Systems (CCS) [32] is among the better
well-known and studied concurrency models. In the recent literature, several
ways in which CCS can be conservatively represented in rewriting logic have been
proposed [25, 36]. We present the executable implementation defined through the
translation into Maude of the tile system for full CCS. This work extends the
translation given in [19, 30] for a finitary version of CCS (i.e., without replicator).

4.1 CCS and its Operational Semantics

Let A (ranged over by a) be the set of basic actions, and A the set of com-
plementary actions (where (_) is an involutive function such that A = A and
AN A = 0). We denote by A (ranged over by \) the set AUA. Let 7 ¢ A be a
distinguished action, and let Act = AU{7} (ranged over by p) be the set of CCS
actions. Then, a CCS process is a term generated by the following grammar:

P:=nil | P | P\a | P+P | P|P |!P.



We let P, @), R, ...range over the set Proc of CCS processes. Assuming the
reader familiar with the notation, we give just an informal description of CCS
algebra operators: the constant nil yields the inactive process; u.P behaves like
P but only after the execution of action p; P\« is the process P with actions
a and @ inhibited by the restriction \a; P + @ is the nondeterministic sum of
processes P and @; P|Q is the parallel composition of processes P and @; finally,
IP is the replicator of process P. The dynamic behaviour of CCS processes is
usually described by a transition system, presented in the SOS style.

Remark 1. To avoid dealing with the metalevel operation of substitution, we
have chosen to use the replicator !P instead of the ordinary recursive operator
recz.P of CCS. Our choice does not affect the expressivenes of the calculus,
because it is well known that for each agent rec x.P there exists a weak equiv-
alent agent that can simulate it, namely (a,.nil|!a,.P')\a,, where o, is a new
channel name (i.e., not used by P) and P’ is the process obtained by replacing
each occurrence of the variable z in P by a,.nil.

Definition 1 (Operational Semantics). The CCS transition system is given
by the relation T C Procx Actx Proc inductively generated from the following set
of axioms and inference rules (here and in the following we will omit the obvious
symmetric rules for nondeterministic choice and asynchronous communication):

P5Q P5Q .
u u u l’l’g{a7a}
u.P— P P+R—Q P\a — Q\«
P40 P50 P20, PPN
iP5 QP PR QR PP 5 Q|Q’

where P 5 Q stands for (Pp,Q) eT.

The operational meaning is that a process P may perform an action y be-
coming () if it is possible to inductively construct a sequence of rule applications
to conclude that P -5 Q. More generally, a process Py may evolve to process
P, if there exists a computation Py P ... P 2P,

4.2 A Term Tile System for CCS

In [19] it is shown how to associate a tile system to finite CCS. We adapt their
definition to settle the following tTS for the full version of the calculus.

Definition 2 (tTS for CCS). The tTS Rccos has the signature Ep of CCS
processes as horizontal signature, the action signature X4 = {u(.) : 1 — 1|
u € Act} as vertical signature, and the following basic tiles:

P (z1),m2 p(z1)
1a P21 ——~121 2421 +2 A 1< 21\
wa) LT ey ! e ey

u(z1),z1

.W1)

—z1\a (if p & {a,a})

w(z1),z2

1< !ml p(z1) /

.’L’ll!.’L'Q 24 a:1|a:2 .’L’1|.Z'2 24 .’L’1|.’E2



The tile for the action prefix has been already discussed in Section 2. As
additional examples, we briefly comment the tile for left nondeterministic choice,
and the tile for the replicator, also depicted below.

T1+x2 lzq

2 =1 1 -

w(z1)

p(z1),z2 (1) u(w1),e1

= ==

N

2——1
1

zl\!wé

The meaning of the first tile is that the action p (i.e., the effect u(z1)) can
be executed by the sum of two subprocesses (i.e., from the initial configuration)
if the left subprocess (i.e., the variable z; in the initial input interface) can
perform the action p (i.e., the trigger u(z1)), evolving to the same subprocess
(i-e., the variable z; in the final input interface) that will be reached by the
nondeterministic sum after such rewriting (i.e., the final configuration z1 ). Notice
that we can handle the garbaging of the discarded process in the easiest way,
using a discharger to throw it away (thanks to auxiliary structure and tile that
were not present in [30]). In our notation, this corresponds to not to mention a
variable of the input interface (i.e., variable x5 of the final input interface).

The second tile can be read in a similar way. The relevant thing is that
its trigger refers to the same variable twice. This is not allowed in the model
proposed by Gadducci and Montanari, where the structure of observations is
just a freely generated strict monoidal category (i.e., it is not cartesian). Such
duplication is necessary because in the final configuration we must refer both the
process P linked to the variable of the initial input interface and the process @
reached by P after the firing of action y, which acts as trigger for the rewriting.
Hence, tTS can deal with more general format than those considered in [19], and
in particular, can embed all the expressive power of full CCS.

Analogously to [19], the following result establishes the correspondence be-
tween the ordinary SOS semantics for CCS, and the sequents entailed by Rccs-

Proposition 1. The tTS Rccs is uniform, and for any CCS agents P and @,

and action p: P 5 Q € T < Rooshk 04 P ( ): Q.
M T1

4.3 From Tiles for CCS to Rewrite Rules for CCS

By Proposition 1, it follows immediately that a suitable implementation of Rocs
can be obtained by taking the rewriting theory Rees defined in Section 3.3, and
by defining a suitable success predicate for the metastrategies of Section 3.1.
Therefore the rules of Rccs (all labelled by tile) are:

p(p-m1) = @1 wzy + @2) = (@) ple\a) = ple)\e (f p # o, @)

p(lar) = ple)|lzr pzi|ze) = pa)lze 7(z1|z2) = Mo M@2)

and the success predicate is defined by ceq ok(t) = true if ¢ : VH .



Corollary 1. For any CCS processes P and @), and action u:

PLQ@ﬁcosf—u(P)#Q.
A typical (meta)query is rewWith(u(P),depthBT(tile)), where u(P) is the
metarepresentation of the test u(P) that can be used to see if the CCS process
P can perform a transition labelled by u. Then, the system tries to rewrite u(P)
in all possible ways, until a solution of type VH is found (if it exists).

Ezample 1. Let us consider the CCS process (a.nil + B.nil)\a. If the rules
are applied without any metacontrol, then a possible computation for the test
B((a.nil + B.nil)\a) is: B((a.nil + B.nil)\a) = B(a.nil+ B.nil)\a = B(a.nil)\a.
Such computation ends in a state that is not a solution (in fact it is the composi-
tion of the horizontal arrow a.nil, followed by the vertical arrow 3(z1), followed
by the horizontal arrow z1\«) and that cannot be further rewritten. Therefore,
it is discarded in the meta-controlled computation, and the only possible result
rewWith(Q,idle), where Q is the metarepresentation of nil\a, is returned.

5 Concluding Remarks

This work presents a general methodology for the specification and execution of
process calculi via term tile systems, which is part of our ongoing research on the
relations between tile logic and rewriting logic. We have defined some general
metastrategies for simulating tile system specifications on a rewriting machinery
equipped with reflective capabilities. We have implemented such strategies in
Maude, and have experimented their application to the case study of full CCS
(but more complex systems can be represented as well in our format).

Our general methodology for modelling process calculi (and more generally,
reactive systems), can be summarized by the following steps: (1) define a tile
model of computation of the given system, employing adequate mathematical
structures to represent configurations and observations in such a way that the
intrinsic modularity and synchronization mechanism of tiles are fully exploited;
(2) translate the tiles into rewrite rules; (3) define, if necessary, a notion of suc-
cessful computation (if the system is uniform, this can be done by just looking
at the actual term reached); (4) compute at the metalevel, using the internal
strategies that discard wrong computations, until a successful answer is reached.
This procedure has been fully illustrated for process tile logic in [6] by the exam-
ple of located CCS, and for term tile logic in the present paper by the example of
full CCS. For each model, we have tested the computations of simple processes.
Our experiments are encouraging, because Maude seems to offer a good trade-off
between rewriting kernel efficiency and layer-swapping management (from terms
to their metarepresentations and viceversa).

Acknowledgements We would like to thank Paolo Baldan and the anonymous
referees for useful comments.



References

1.

2.

3.

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

B. Bloom, S. Istrail, and A.R. Meyer, Bisimulation can’t be Traced, Journal of
the ACM 42(1), 232-268 (1995).

P. Borovansky, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek, ELAN: A
logical framework based on computational systems, in [28].

R. Bruni, Tile Logic for Synchronized Rewriting of Concurrent Systems, PhD
Thesis, Department of Computer Science, University of Pisa, forthcoming.

R. Bruni, J. Meseguer, and U. Montanari, Process and Term Tile Logic, Technical
Report SRI-CSL-98-06, SRI International (1998).

R. Bruni, J. Meseguer, and U. Montanari, Internal Strategies in a Rewriting
Implementation of Tile Systems, in [23].

R. Bruni, J. Meseguer, and U. Montanari, Implementing Tile Systems: some Ex-
amples from Process Calculi, in Proc. ICTCS’98, World Scientific, 168-179 (1998).
R. Bruni and U. Montanari, Zero-Safe Nets: Comparing the Collective and the
Individual Token Approaches, Information and Computation, to appear.

M. Clavel, Reflection in General Logics and in Rewriting Logic with Applications
to the Maude Language, PhD Thesis, Universidad de Navarra (1998).

M.G. Clavel, F. Duran, S. Eker, P. Lincoln, and J. Meseguer, An Introduction to
Maude (Beta Version), SRI International (1998).

M. Clavel and J. Meseguer, Reflection and Strategies in Rewriting Logic, in [28].
M. Clavel and J. Meseguer, Axiomatizing Reflective Logics and Languages, in
Proceedings Reflection’96, San Francisco, USA, 263-288 (1996).

M. Clavel and J. Meseguer, Internal Strategies in a Reflective Logic, in Proc. of
the CADE-14 Workshop on Strategies in Automated Deduction, 1-12 (1997).

G. Denker, J. Meseguer, and C. Talcott, Protocol Specification and Analysis in
Maude, in Proc. Workshop on Formal Methods and Security Protocols (1998).

C. Ehresmann, Catégories Structurées: 1 and II, Ann. Ec. Norm. Sup. 80, Paris
(1963), 349-426; III, Topo. et Géo. diff. V, Paris (1963).

G.L. Ferrari and U. Montanari, A Tile-Based Coordination View of Asynchronous
Pi-Calculus, in Proc. MFCS’97, Springer LNCS 1295, 52-70 (1997),

G.L. Ferrari and U. Montanari, Tiles for Concurrent and Located Calculi, in
Proceedings of EXPRESS’97, ENTCS 7 (1997).

F. Gadducci, On the Algebraic Approach to Concurrent Term Rewriting, PhD
Thesis TD-96-02, Department of Computer Science, University of Pisa (1996).

F. Gadducci and U. Montanari, Enriched Categories as Models of Computations,
in Proc. ITCS’95, World Scientific, 1-24 (1996).

F. Gadducci and U. Montanari, The Tile Model, in Proof, Language and Interac-
tion: Essays in Honour of Robin Milner, MIT Press, to appear.

J.F. Groote, and F. Vaandrager, Structured Operational Semantics and Bisimula-
tion as a Congruence, Information and Computation 100, 202-260 (1992).

K.G. Larsen, and L. Xinxin, Compositionality Through an Operational Semantics
of Contexts, in Proc. ICALP’90, LNCS 443, 526-539 (1990).

F.W. Lawvere, Functorial Semantics of Algebraic Theories, in Proc. National
Academy of Science 50, 869-872 (1963).

C. Kirchner, H. Kirchner, Ed., Proc. 2nd WRLA’98, ENTCS 15 (1998).

N. Marti-Oliet and J. Meseguer, General Logics and Logical Frameworks, in:
D. Gabbay, Ed., What is a logical system?, Oxford University Press (1994).

N. Marti-Oliet and J. Meseguer, Rewriting Logic as a Logical and Semantic Frame-
work, SRI Technical Report, CSL-93-05 (1993). To appear in D. Gabbay, Ed.,
Handbook of Philosophical Logic, Kluwer Academic Publishers.



26. J. Meseguer, Conditional Rewriting Logic as a Unified Model of Concurrency, T'CS
96, 73-155 (1992).

27. J. Meseguer, Rewriting Logic as a Semantic Framework for Concurrency: A
Progress Report, in Proc. CONCUR’96, Springer LNCS 1119, 331-372 (1996).

28. J. Meseguer, Ed., Proc. 1st International Workshop on Rewriting Logic and Ap-
plications, ENTCS 4 (1996).

29. J. Meseguer, Membership Equational Logic as a Logical Framework for Equational
Specification, in Proc. 12th WADT’97. Springer LNCS 1376, 18-61 (1998).

30. J. Meseguer and U. Montanari, Mapping Tile Logic into Rewriting Logic, in Proc.
12th WADT’97, Springer LNCS 1376, 62-91 (1998).

31. J. Meseguer and C. Talcott, Using Rewriting Logic to Interoperate Architectural
Description Languages (I and II), Lectures at the Santa Fe and Seattle DARPA-
EDCS Workshops (1997).

32. R. Milner, Communication and Concurrency, Prentice-Hall (1989).

33. U. Montanari and F. Rossi, Graph Rewriting, Constraint Solving and Tiles for
Coordinating Distributed Systems, Applied Categorical Structures, to appear.

34. U. Montanari and C. Talcott, Can Actors and pi-Agents Live Together?, in
Proceedings HOOTS’97, ENTCS 10 (1998).

35. G. Plotkin, A Structural Approach to Operational Semantics, Technical Report
DAIMI FN-19, Computer Science Department, Aarhus University (1981).

36. P. Viry, Rewriting Modulo a Rewrite System, Technical Report TR-95-20, Depart-
ment of Computer Science, University of Pisa (1995).

Appendix. Depth-First Visit with Backtracking

The depth-first strategy with backtracking is defined below in a self-explanatory
notation: the Maude-like syntax has been extended by using some ordinary sym-
bols (e.g., [1, {}, U, €, 0, succ) to deal with lists, sets, natural numbers, etc.

var { : Term . var [ : Label . var n : Nat .

var TS : TermSet . var PL : TermList .

eq rewWith(%,depthBT(l)) = rewWithBT([(%,0)1,0,])
eq rewWithBT([],7S,l) = failure .

eq rewWithBT([(¢,n)] ,TS,]) = if IeTS then failure

else if meta-reduce(’ok[t]) == ’true then rewWith(%,idle)
else if meta-reduce(’ok[f]) == ’false then failure
else if meta-apply(%#,l/,n) == error* then failure

else rewWithBT([(extTerm(meta-apply(%,/,n)),0),
(t,succ(n))]1,{t}uTS,) £fi fi fi fi .
eq rewWithBT([(t,n),PL],TS,) = if t€TS then rewWithBT(T'L,TS,I)
else if meta-reduce(’ok[t]) == ’true then rewWith(%,idle)
else if meta-reduce(’ok[#]) == ’false
then rewWithBT(PL,{f}UTS,l)
else if meta-apply(#,/,n) == errorx
then rewWithBT(PL,{t}UTS,D)
else rewWithBT([(extTerm(meta-apply(%,i,n)),0),
(t,succ(n)),PL],{t}UTS,) fi fi fi fi .



