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Abstract. Loosely coupled interactions permeate modern distributed
systems, where autonomous applications need to collaborate by dynami-
cal assembly. We can single out three different phases occurring in every
collaboration: 1) negotiation of some sort of contracts, mediating the
needs of prospective participants; 2) acceptance or rejection of the con-
tract; 3) contract-guarantee execution. The above scheme, called NCE
for short (Negotiation, Commit, Execution), covers a wide range of situ-
ations, ranging from sessions and transactions to proof-carrying code. In
the paper we concentrate on the notion of open transaction and on Zero-
Safe Nets, a model developed by the authors for modelling long transac-
tions. We extend the latter to cover the three-phase process above.

1 Introduction

Recent years have witnessed a progressive shifting of importance from the tra-
ditional concept of safe, overly controlled computation to open-ended, loosely
coupled interactions, which permeate modern distributed systems. In particu-
lar, features such as concurrency, dynamicity, and adaptability inevitably arise
in global computing frameworks based on wide-area networks, where separately
developed, autonomous applications need to collaborate by dynamical assembly.

An emblematic example is the service-oriented computing (SOC) paradigm,
where service abstractions are published in public repositories, which can be
queried by other services for discovering convenient partners to interact with.
Since it is desirable that interactions are carried out in a safe way for all par-
ticipants, different notions of contracts have emerged to assign responsibilities
to each participant in a non-ambiguous way and to give suitable run-time guar-
antees whenever all participants respect the contract. Formally, this involves
answers to two main question: 1) Are the service abstractions compatible with
the contract? 2) Is each participant consistent with its abstract description? Note
that here we are often concerned with the operational behaviour of services, not
just with functional aspects. Moreover, the notions of compatibility and consis-
tency should be such that whenever 1) and 2) are answered in the affirmative,
then the overall interaction is guaranteed to be sound (e.g. absence of dead-
locks, or type-safe communications, or absence of livelock under fair scheduling
assumptions). While traditionally all checks are performed statically, the chal-
lenge posed by SOC is moving them to run-time with dynamic assembly.
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We can single out three different phases occurring in every collaboration: 1)
negotiation; 2) commit; 3) execution. In (1) the prospective participants negoti-
ate some guarantees in order to define a sort of contract. In (2) each participant
can either accept or reject the contract. If they accept, the contract will bind
their behaviours in (3) to guarantee a globally correct execution. The scheme
given by the phases (1-3) is called NCE and it covers a wide range of situations
like transaction processing (phases 1-2), session-based interactions (phases 2-3),
and applications of proof-carrying code (phases 1 and 3). Necessarily we need to
allow part of the verification to be done also at run-time, on the basis of both
statically and dynamically negotiable information.

In this paper we deal with multi-party interactions, where the participants
can negotiate the interaction protocol to follow according to their abstract be-
haviour. The outcome of the negotiation is a (possibly non-deterministic and
concurrent) well-behaving, global contract that binds the admissible interactions,
thus fixing exact responsibilities in case of faulted or misbehaving execution.

Our formalisation relies on Petri nets and it builds on classical results from
concurrency theory and workflow management. In particular, it takes inspira-
tion from Zero-Safe nets [1], unfolding construction [2, 3], and workflow nets [4].
Roughly, the procedure can be outlined as follows: each participant describes its
admissible behaviour as a Zero-Safe net; the composition of all Zero-Safe nets is
unfolded as a non-deterministic process; the unfolding is suitably pruned (e.g.,
by removing faulted situations) and presented as a contract K; if accepted by all
participants, then their stable tokens are tagged according to K and the firing
of their transitions apply local consistency checks on such tags. The main result
establishes that any such execution cannot deadlock.

Synopsis. In § 2 we fix the notation and the key concepts needed in the rest of
the paper. In § 3 we outline the various formal steps of our approach, grouping
them according to the three-phases NCE classification. We deal with multi-party
interactions, but due to space limitation, only two-parties (buyer and seller) are
considered in our running example. Some concluding remarks are in § 4.

2 Preliminaries

Petri nets. Place/Transition Petri nets (PT nets) are bipartite graphs that
represent some kind of concurrent automata. Formally, a PT net is a triple
N = (S,T,F) where S is the set of places, T is the set of transitions and
F:(SxT)U(T xS) — N is the flow relation. The states of a PT net, called
markings, are multisets u : S — N of places, representing the number of tokens
in each place. We write a marking as the formal sum u = @, n;a;, i.e. as an
element of the free commutative monoid S% (monoidal composition is defined by
(P, niai) ® (P, mia;) = P, (ni + m;)a;, with 0 as the unit). Multiset inclusion
is written v C v (if u(a) < v(a) for all places a), and multiset difference v © u
(it is defined only when u C v, with (v & u)(a) = v(a) — u(a) for all places a).
For any transition t, its pre- and post-set, written pre(t) and post(t) respec-
tively, are the multisets over S such that pre(t)(a) = F(a,t) and post(t)(a) =



F(t,a), for all a € S. We write ¢ : u — v for a transition ¢ with pre(¢) = u and
post(t) = v and say that ¢ is enabled in the marking w if pre(t) Cw. If t : u — v
is enabled in w, then ¢ can be fired in w leading to v’ = wSu®v and its firing is
written w[t)w’. A firing sequence from w to w’ is a sequence of firings w1 [t1)w],
ceey Wy [tn)w), such that w = wy, W' = w), and w;41 = w} for all i € [I,n —1]. A
marking v is reachable from wu if there is a firing sequence from w to v.

Unfolding. Starting from a net N and a marking u, the reachability graph
R(N,u) is a graph whose nodes are all markings reachable from w in N and
whose arcs are all triples (u,t,u © pre(t) @ post(t)) such that pre(t) C u. While
the reachability graphs account for the interleaving description of the compu-
tational space of N, the interplay between non-determinism, causality and con-
currency available in IV is accounted for by the so-called unfolding construction
U(N,u). Formally, U(N,u) is a non-deterministic occurrence net (i.e., an acyclic
net, where transition pre- and post-markings are sets instead of multisets and
where each place has at most one entering arc, i.e., backward conflicts are not
allowed), together with a net homomorphism from U(N, u) to N that tells which
places and transitions of the unfolding are instances of the same element of V.
Roughly, the transitions of U (N, u), called events, represent all the possible fir-
ings of transitions in N in all possible runs of the net, and the places of U(N, u)
are all the possible tokens that can be generated.

For occurrence nets, the notion of causally dependent, of conflicting and of
concurrent elements can be represented by the binary relations <, # and co(_, _),
respectively. Formally, < is the transitive and reflexive closure of the immediate

precedence relation <o {(a,t) | @ € pre(t)} U{(t,a) | a € post(t)}. Letting

t1#oto oy #to A pre(t;) Npre(tz) # 0, binary conflict # is defined as the
minimal symmetric relation that contains # and that is hereditary with respect
to < (i.e., such that if 1,29,y € SUT and x1#x2 and x; <y then y#x2). The

.. def
concurrency relation is defined by co(z1,z2) & (21 < @2 V 23 <21 V T1H#29)

and it is extended to sets of elements by letting co(X) o V1,29 € X co(xy,x2).

The net U(N,u) is defined (up to iso) as the net generated by the rules in
Table 1, whose places have the form (a, H, k) and whose transitions have the form
(t,H), where a € S, t € T, H is a set of causes that encodes the history of the
element, and k is a positive natural number used to distinguish different tokens
with the same history. The top rule introduces a distinguished place (with empty
history) for each of the tokens in the initial marking u. The bottom rule adds
an event e that represents the firing of a transition that consumes the tokens in
©. The condition co(O) rules out all inapplicable firings. The event e introduces
the elements in 1", representing the tokens produced by the corresponding firing.

The elements in U (N, u) can be stratified according to the depth function
0 ¢ Synuy U Tyn,uy — N defined as follows: for places we let §((a,0,k)) =0
and 6((a, {e}, k)) = d(e), while for transitions we let 6((t, H)) = 1+ 6(H), where
0(H) = max{d(z) | x € H}. A set of elements O is a cut if co(©) and there is
no element = such that co(© U {z}); it is maximal if there is no z € © and y
not conflicting with elements in © such that x < y.



ula) =n, 1<k<n

(a,0,k) € Su(n,u)
t:@,crai — D nib; €Tn, O ={{ai, Hi ki) | i € I} C Sy(n,u), c€o(O)
e=(t,0) € Ty(n,uy, ¥ ={bj,{e}, k) |j€J, 1<k <n;} CSyw,u, pre(e) =6, post(e) =71

Table 1. The unfolding U(N, u).

We shall use the unfolding to distill a global contract binding the interaction
of participants at run-time.

Zero-safe nets. Zero-Safe nets (zs nets) [1] are a transactional variation of PT
nets, where the set of places is partitioned in two sets, of Zero-Safe places Z and
stable places L, respectively. Stable markings (i.e., multisets of stable places),
describe the observable states of the system, whereas the presence of tokens in
Zero-Safe places denotes a marking as transient, i.e., internal to a transaction
segment. The firing rule is the usual ones, except for the fact that all stable
tokens produced during the transactions are made available only at the end of
the transaction, when all zero-safe tokens have been consumed.

The corresponding firing rules can be explained as follow. Given a 7S net
B, take the PT net B obtained from B by introducing primed version a’ of all
stable places a and by renaming the flow relation so to produce tokens in primed
places instead of in the corresponding original stable places. More precisely, let
B such that S = SpU{a’ | a € Lp}, Ty = Tp and Fa(z,y) = 0 and
Fg(x,y') = Fp(x,y) if y € Lp, while Fs(z,y) = Fp(z,y) otherwise. Then a
firing sequence of B is called a transaction fragment, a transaction is any firing
sequence from a marking u € LG to v € (Sz \ Zp)®, and its commit transforms
all the primed tokens in v to ordinary tokens, i.e., leads from v to ¥ such that
O(z) = v(x) +v(z’) for all x € Ly and 9(z) = v(z)(= 0) otherwise.

We shall exploit zS nets to model the interaction protocols of participants,
where zero-safe places correspond to intermediate states and the protocol is
implicitly concluded when only stable tokens are around.

Workflow nets. Similar ideas appear in workflow nets [4], that have a distin-
guished start place astary With no incoming arc and a distinguished end place
Gend With no exiting arc, playing the role of stable places in zS nets. In fact,
a workflow net is weakly sound if any computation that starts with a token in
the start place can always terminate reaching the marking with a unique token
in @enqg. Again, all the places different from agiart and aenq are considered as
modelling internal, intermediate states. We shall generalise the notion of sound
workflow nets to the case where many start and end places are present and where
the soundness if relative to a suitable notion of execution contract.

3 Open transactions

In this section we illustrate our approach according to the NCE scheme.



(a) Seller protocol (b) Buyer protocol

Fig. 1. Two local nets

3.1 NCEL1: negotiation

The negotiation phase takes into account the available options of each participant
to distill a global interaction protocol with behavioural guarantees for all.

Local and global Zero-Safe nets. The basic idea is to model interaction protocols
as 7S nets: each participant describes its possible behaviour as a Zero-Safe net
B;, together with a stable marking u;. We call these nets local. Each local net
asserts that starting from the stable marking u; a correct interaction should be
guaranteed to lead to some other stable marking. Each local transaction is open
in the sense that it may require some exchange of tokens with other local nets
(typically, via zero-safe places only).

Given n local zs nets such that their set of transitions are pairwise disjoint,
a global zs net B = |J]_, B is then obtained as the union of all B;’s, with initial
stable marking v = @, u;. Typically, the local nets will share just certain
zero-safe places, that are used to coordinate the local choices of participants.

Alike sound workflow nets, the ideal situation would be that starting from u
any computation in B would eventually lead to a stable marking: this way we
would be guaranteed that no matter which local choice is performed, no faulted
situation can arise that leaves pending tokens in zero-safe places. Unfortunately,
this is a too strong requirement, unrealistic in most situations, because local nets
are developed according to different needs and separately from the others.

For example, consider a simple two-party situation, with a seller and a buyer
whose local nets are in Fig. 1 (circles are places, smaller if zero-safe; boxes are
transitions; arcs model the flow; bullets are tokens). Their interaction begins
with an offer from the seller. Both the buyer and the seller may accept the last
offer proposed by the other, or make a different offer, or abort the negotiation.
The global net SU B is well-behaving, according to the criteria explained above,



because each transaction can eventually lead either to the marking Sok’ @ Bok’
or to the marking Sno’ @ Bno'. On the other hand, the transaction might not
terminate if the strategy of both parties is to make offers repeatedly.

Now suppose a different seller protocol is taken, where the local decision
of abandoning the negotiation is not communicated to the buyer (i.e., the arc
(fail2, no) is removed, whence the use of a dotted line in Fig. 1). Then the global
net might present erroneous transaction segments, that cannot be completed,
like the firing sequence offer!, getl, rebate, eval, fail2 that leads to the marking
Sno’ @ b2, which is deadlock and not stable.

Contract unfolding. The unfolding of the global net B gives a complete view of
the possible interactions that can take place. In particular, the above example
illustrates two typical symptoms of problematic execution, easily generalised to:
1) unfolding is not finite, 2) the unfolding exposes non stable deadlocks. The
solution we propose is to model contracts as partial unfoldings, i.e. finite non-
deterministic processes that satisfy some additional constraints.

The first issue can be dealt with just by assuming some bound d on the
depth of elements considered in the unfolding. The bound can be enforced by
adding the condition §(©) < d to the second rule in Table 1. Another possibility
is to specify a different depth bound d; for each transition ¢, in which case the
condition to be added in Table 1 is §(©) < d;. The bound d itself can emerge,
e.g., as the conjunction of the bound required by each participant when declaring
their interest in the negotiation, which amounts to some sort of time-out for
carrying out the whole execution. We name this property depth boundedness.

The second issue can be dealt with by pruning those events that may stall
the execution. Formally, this can be characterised by requiring that any maximal
cut contains no zero-safe place. We name this property stability.

A global contract net K is a non-empty, depth-bound and stable subnet of
L{(B, u), i.e. a particular non-deterministic process of (B, u).

Contract pruning. When stability is violated, we can of course apply some prun-
ing to remove those elements that cause troubles. Let © be a maximal cut such
that = (z,{e}, k) € © for some zero-safe place z, then we remove e and all y
such that e < y (thus also z is removed) from the already partial unfolding and
then iterate the pruning on the result. Clearly, as the initially considered partial
unfolding is finite and at least two elements are removed at each step of the
pruning algorithm, then the pruning algorithm terminates. Moreover, its result
enjoys stability by definition. However, the algorithm is not always confluent.
Consider the net in Fig. 2. The only problematic cut is {z1, z3}: if we decide
to remove z; and therefore e;, then we get a global contract net and we are
done; viceversa if we decide to remove z3, then also e3, e4 and ¢ are removed
and the resulting net has two maximal cuts {z1} and {z2} that in turn require
the removal of e; and es and we are left with the idle contract.

The algorithm can be made confluent by removing at each single step all
available candidates. We call this strategy drastic pruning. In the example above,



Fig. 2. A non-stable partial unfolding

e1 and ez would have been removed at the first step (together with all their
descendants), and ez at the second step, leaving again the empty contract.

Figure 3(a) shows the depth-bound unfolding of our running example (in the
absence of arc (fail2, no)), up to depth 7. It is not a global contract net, because
it is not stable. In fact it has seven maximal cuts, but only three of them are
stable: 1) {Sokl, Bok1}, 2) {Snol,Bnol}, 3) {Sok2, Bok2}, 4) {Sno2,b21},
5) {s12, ok3, Bok3}, 6) {s12,n02,Bno2} and 7) {s12,b02,b22}. The global
contract net produced by drastic pruning algorithm is in Fig. 3(b).

3.2 NCE2: Commit

The global contract net K can then be used as some sort of typing information
that can be attached as a tag to the tokens and used in a prescriptive way during
the execution phase. Hence, if the global contract net is considered viable from
all participants, then it is attached as a decoration to each of the tokens in wu,
together with a fresh session identifier o (the same for all tokens in u) and with
the name of the token as given in K. In our running example, the two tokens
in places S and B will thus be typed as (o, K, (S,0,1)) and (o, K, (B, 0, 1)),
respectively. The typing information will be needed during the execution to
guarantee that the contract will not be violated. We remark that in general it is
not necessary to record the whole K in all tokens, but for each token x it would
suffice to store the subnet of K consisting of all elements y such that x < y.

Of course, if the global contract K is not acceptable for some participants, or
if there are not enough stable tokens available, then the negotiation is considered
aborted, and a new attempt has to be made. For example, the global contract
net in Fig. 3(b) would constrain the seller to accept the possible rebate of the
buyer, if any, which is disputable. Instead a global contract net that exclude the
rebate would likely be a more convenient option.

3.3 NCE3: Execution

The final step of our approach consists in constraining the firing rules of the
executable nets of all participants in order to inspect and respect the type in-
formation. Note that the executable net E; of the ith participant can be larger
than the local nets B; exposed in the negotiation, i.e. it may contain other
places and transitions and exhibit a higher degree of non-determinism without
compromising the correct execution of the contract.
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(a) Depth-bound (b) Global contract

Fig. 3. Building a global contract net

Tagged firing. Let E be the executable Zs net of a participant and suppose that
a transition ¢ : @), a; — EBJEJ n;b; € E (possibly involving zero-safe places)
is currently enabled and ready to consume the tagged tokens aj : 71, ..., an @ Tn,
where 7; = (04, K;, x;) is the type information attached to the ith token. Then
t can fire if: 1) for any pair of indexes i,i" € [1,n] we have that o; = o0;; 2)
each K; contains an event e = (t,0), where © = {x; | i € [1,n]}. Without loss
of generality, we denote by ¢ and K the common session identifier and global
contract net of the above tokens. The firing of ¢ will then produce the multiset
of stable, non-decorated tokens ¥’ = {n;b; | j € J,b; is stable} and the set
of tagged tokens 1" = {b; : (0, K, (b;,{e},k)) | j € J,b; is zero-safe,1 < k <
n;}. Note that stable tokens are released non atomically by E, but this is not
important, because we are guaranteed that the transaction will end in a finite
amount of time and with no zero-safe token left. In fact, conly the choices that
have been accounted for in K can be realised, and the properties of K guarantee
that the overall execution is sound, no matter which local choices are taken by
each participant. Finally, we remark that not all events in K must take place,
because in general K can be a non-deterministic net.



4 Concluding remarks

We have proposed a net-based model for multi-party open transactions devel-
oped according to the NCE scheme. Its main features are the dynamic stipu-
lation of contracts, the guaranteed execution and the original mix of session-
based interactions and transactional distributed activities. The model is based
entirely on Zero-Safe nets and the negotiated global contract is a particular non-
deterministic process that can be automatically distilled from the local protocol
specifications of participants. This is better suited than, say, a deterministic
process, because run-time choices are unavoidable in open transactions. It is
also preferable to a soundness check over the conjunction of protocols, because
the check would impose too strong compatibility requirements (deemed to fail
in most cases) and would not guarantee termination (and consequently would
require a distributed commit phase after the execution of the transaction).

A problem that remains open is to find suitable metrics for evaluating and
comparing pruning strategies different from the (confluent) drastic algorithm as-
sumed here, which can be unnecessarily restrictive in many cases. It also remains
to be investigated how our approach can be amalgamated with the recent strand
of proposals that exploit workflow nets or process calculi to model various kind
of compatibility notions and global / local contracts: due to space limitation we
give here just a few pointers to related work for the interested reader [4-11].
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