
Sessions and Pipelines
for Structured Service Programming ?

Michele Boreale1, Roberto Bruni2, Rocco De Nicola1, and Michele Loreti1

1 Dipartimento di Sistemi e Informatica, Università di Firenze
{boreale,denicola,loreti}@dsi.unifi.it

2 Dipartimento di Informatica, Università di Pisa
bruni@di.unipi.it

Abstract. Service-oriented computing is calling for novel computational mod-
els and languages with primitives for client-server interaction, orchestration and
unexpected events handling. We present CaSPiS, a process calculus where the no-
tions of session and pipelining play a central role. Sessions are two-sided and can
be equipped with protocols executed by each side. Pipelining permits orchestrat-
ing the flow of data produced by different sessions. The calculus is also equipped
with operators for handling (unexpected) termination of the partner’s side of a
session. Several examples are presented to provide evidence for the flexibility of
the chosen set of primitives. Our main result shows that in CaSPiS it is possible
to program a “graceful termination” of nested sessions, which guarantees that no
session is forced to hang forever after the loss of its partner.

1 Introduction

The explosive growth of the Web has led to the widespread use of de facto standards
for naming schemes (URI, URL), communication protocols (SOAP, HTTP, TCP/IP)
and message format (XML). These three components have been used as the basis for
building communication centered applications distributed over the web, often referred
to as web services, and have put many expectations of the IT community on the growth
of a new computational paradigm known as Service-Oriented Computing (SOC).

In SOC a main issue is the scalability of the proposed languages, models and tech-
niques. Our belief is that the amount of complexity originated in the so-called global
computing applications can be handled by considering well-structured and tightly dis-
ciplined approaches to the modeling of interaction. Well studied process algebras, like
for instance π-calculus [21], have been used as a foundational model for SOC. However,
we see two main problems along this way. The first is separation of concerns: SOC has
different first-class aspects that would be mixed up and obfuscated when encoded via
π-calculus channels. The second is that π-calculus communication primitives seem too
liberal: the lack of structure in the communication topology increases the complexity of
the analysis.

Here, we try to center the design of a new process calculus around a few promi-
nent aspects of SOC applications, possibly reusing elegant patterns appeared in different
? Research supported by the Project FET-GC II IST-2005-16004 SENSORIA and by the Italian

FIRB Project TOCAI.IT.

proposals. The three aspects that motivated our design choices are service autonomy,
client-service interaction, and orchestration. Each aspect is briefly discussed below.

Services are heterogeneous computational entities, that are developed separately
and often are scarcely reliable. Each service has full autonomy in denying a request
or abandoning a pending interaction. A language for SOC should fix some standard
mechanism for programming such decisions and to handle their consequences.

A language for SOC should support programming of complex and safe client-service
interactions. By interaction, we mean the main unit of activity in a service-oriented
application, which is essentially a conversation between a client and an instance of a
service. The interaction may be complex as it will in general comprise both the exchange
of several messages and the invocation of subsidiary services. As an example, consider
a travel agent service that offers packages for organized trips. We expect that a dialogue
takes place between the customer and the service, to let the service learn the customer
preferences, let the customer select one among available packages, confirm or cancel
the choice, and so on. In the course of this interaction, the service may need to invoke
third party services to get, say, up-to-date flight or hotel information. By safe, we mean
that, in principle, the involved parties should always be able either to complete the
interaction or to recover from errors that prevent its completion, like, in the scenario
above, one of the third-party services unexpectedly abandoning the conversation.

Orchestration is the process of assembling different services to build a new one or
simply to perform a specific task. A central aspect of orchestration is the organization
of the data flow among different activities. This flow also determines synchronization of
activities. For instance, in the scenario outlined above, upon client’s request, the travel
agent service can start two new concurrent activities to get hotel and flight information
(by invoking two subsidiary services), wait for their results and finally pass them on to
the customer.

Motivated by these considerations, we introduce a language where sessions and
pipelines are viewed as natural tools for monitoring the communication graph by struc-
turing client-service interaction and orchestration, respectively. Autonomy is reflected
as the ability to leave sessions. We name the new calculus CaSPiS (Calculus of Sessions
and Pipelines).

The use of session is a more abstract, alternative solution w.r.t. the W3C proposal
of correlation sets. Here we use a name-scoping mechanism à la π-calculus to handle
sessions. Pipelines have been inspired by Cook and Misra’s Orc [22], a basic and ele-
gant programming model for structured orchestration of services. In this light, they are
seen as a convenient mechanism for modeling the flow of data between local processes:
it is more general than sequential composition, better suited w.r.t. concurrency and does
not require the explicit and improper use of channels for orchestration tasks. CaSPiS
evolved from SCC (Serviced Centered Calculus) [3], a calculus that arose from a co-
ordinated effort within the EU funded project SENSORIA [23]. The improvements and
relationship of our work w.r.t. other proposals is discussed in the concluding section.
In the rest of this section, we incrementally describe and motivate the main features of
CaSPiS and discuss our results.

CaSPiS in a nutshell. In CaSPiS, service definitions and invocations are written like
input and output prefixes in CCS. Thus sign.P defines a service sign that can be

invoked by sign.Q. There is an important difference, though, as the bodies P and Q are
not quite continuations, but rather protocols that, within a session, govern interaction
between (instances of) the client and the server. As an example:

!sign.(?x)(νt)〈{x, t}k〉 and sign.〈plan〉(?y)〈y〉↑

are respectively: a (replicated and thus persistent) service whose instance waits for a
digital document x, generates a fresh nonce t and then sends back both the document
and the nonce signed with a key k; and a client that passes the argument plan to the
service, then waits for the signed response from the server and returns this value outside
the session as a result.

Synchronization of s.P and s.Q leads to the creation of a new session, identified
by a fresh name r that can be viewed as a private, synchronous channel binding caller
and callee. Since client and service may be far apart, a session naturally comes with
two sides, written r B P and r B Q, with r bound somewhere above them by (νr). Val-
ues produced by P can be consumed by Q, and vice-versa: this permits description of
interaction patterns more complex than the usual one-way and request-response. Rules
governing creation and scoping of sessions are based on those of the restriction operator
in the π-calculus. Note that multiple invocations to the same persistent service will yield
separate sessions and that hierarchies of nested sessions, like r1 B (r2 B P2|r3 B P3) can
arise if services are invoked within a running session. In the above case of service sign
the triggered session is

!sign.(?x)(νt)〈{x, t}k〉 | (νr)
(

r B (?x)(νt)〈{x, t}k〉 | r B 〈plan〉(?y)〈y〉↑
)
.

Here, after one reduction step where the value 〈plan〉 available on the client-side is
transmitted to the pending request (?x) on the service-side (with x substituted by plan
in the continuation), we get:

!sign.(?x)(νt)〈{x, t}k〉 | (νr, t)
(

r B 〈{plan, t}k〉 | r B (?y)〈y〉↑
)
.

Then, the digitally signed value {plan, t}k is computed at the service-side (for some
fresh nonce t) and sent back to the client-side:

!sign.(?x)(νt)〈{x, t}k〉 | (νr, t)
(

r B 0 | r B 〈{plan, t}k〉↑
)
.

The remaining activity will be then performed by the client protocol: rB 〈{plan, t}k〉↑
will emit {plan, t}k outside the (client-side of the) session, becoming the inert process
r B 0 (as already happened to the service side). In fact, values can be returned outside a
session to the enclosing environment using the return operator, 〈 · 〉↑.

Return values can be consumed by other sessions, or used to invoke other services,
to start new activities. This is achieved using the pipeline operator P > Q . Here, a
new instance of process Q is activated each time P emits a value that Q can consume.
Notably, the new instance will run within the same session as P, not in a fresh one. For
instance, what follows is a client that invokes the service sign twice and then stores the
obtained signed documents by invoking a suitable service store:(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

> (?z)store.〈z〉 .

The above description collects the main features of what we call the close -free
fragment of CaSPiS that also includes guarded sums and input prefixes with pattern
matching.

The distinguishing feature of our calculus is the presence of novel primitives to
explicitly program session termination, to handle (unexpected or programmed) session
termination and to garbage-collect terminated sessions. As explained before, session
units must be able to autonomously decide to abandon the session they are running
in. But since sessions units model client-server interactions, their termination must be
programmed carefully, especially in the presence of nesting. The command close is
used to terminate the enclosing session side. A terminated session enters the special
state I P that recursively terminates any other session side nested in P. Note that the
execution of a close can depend on some local choice as well as be guarded by the input
of some data from the opposite session side.

The idea is that upon termination of a session side, the opposite session side will be
informed and take some proper counteraction if needed. To achieve this, upon creation
of a session, one associates with the fresh session r a pair of names (k1,k2), identifying
a pair of termination handlers, one for each side. Then, right after execution of close a
signal †(ki) is sent to the termination-handler service ki listening at the opposite side of
the session. This handler will manage the appropriate actions. Since the name ki must be
known to the current side of the session, the more general syntax for sessions is r Bk P
where the subscript k refers to the termination handler of the opposite side. To sum up
the above discussion:

r Bk
(
close |P

)
may evolve to †(k)|I P .

Information about which termination handlers must be used is established at invoca-
tion time. To this purpose, the more general syntax for invocation is sk1 .Q. It mentions a
name k1 at which the termination handler of the client-side is listening. Symmetrically,
the more general syntax for service definition is sk2 .P, which mentions a name k2 at
which the termination handler of the service-side is listening. Then

sk1 .Q|sk2 .P can evolve to (νr)(r Bk2 Q|r Bk1 P).

This way, if Q terminates with close , the termination handler k2 of the callee will
be activated, and vice versa, if P terminates then k1 will be activated.

The mechanism of termination handlers is very expressive and flexible. Even if
it may look overcomplicated to use, we emphasize that, up to our knowledge, this is
the only proposal able to guarantee a disciplined termination of nested sessions. We
conjecture that any mechanism of this kind would be very complicated to handle in say
π-calculus.

Structure of the paper. For the sake of presentation, we introduce CaSPiS in two steps.
First, we present the fragment without session-closing primitives, along with its labelled
transition system semantics and well-formedness criteria (Section 2), with several nice
examples in Section 3. Then we consider the full version of the calculus with session-
closing primitives (Section 4). Our main result shows that, with the given primitives,
it is possible to program what we call “graceful termination” of sessions (Section 5).

Specifically, we define a notion of balanced process (where all session-sides are pair-
wise balanced) and prove that any unbalanced state reachable from a balanced one can
still become balanced in a finite number of steps. Final remarks, related work and future
research avenues are exposed in Section 6.

2 The close -free fragment of CaSPiS

In this section, we introduce the fragment of CaSPiS without the constructs for handling
session termination. The full calculus will be formalized only after the reader has gained
some familiarity with the base constructs.

2.1 Syntax

Let Nsrv and Nsess be two disjoint countable sets, respectively of service names s,s′, ...
and of session names r,r′ We assume a countable set of names N ranged over
by n,n′, ... that contains Nsrv ∪Nsess and such that N \ (Nsrv ∪Nsess) is infinite, and
let x,y, ...,u,v... range over N \Nsess. We also assume a signature Σ of constructors
f , f ′, ..., each coming with a fixed arity, such that Σ is disjoint from N . We shall use ·̃
to denote sequences of items. The syntax of the basic fragment of CaSPiS is reported
in Figure 1, where operators are listed in decreasing order of precedence.

To improve usability, structured values V can be built via Σ, and selection patterns F
can be used to guard choices (via pattern matching). For simplicity, we consider as basic
values only value expressions V built out of constructors in Σ and names x,y, ...,u,v, ...,
the latter playing the role of variables or basic values depending on the context. We
leave the signature Σ unspecified, but in several examples we shall assume Σ contains
tuple constructors 〈·, ..., ·〉 of arbitrary arity. Richer languages of expressions, compris-
ing specific data values and evaluation mechanisms, are easy to accommodate. Finally,
it is worth to note that session names r,r′, ... do not appear in values or patterns: this
implies that they cannot be passed around, as it will be evident from the operational
semantics (see Section 2.2).

As expected, in (νn)P, the restriction (νn) binds free occurrences of n in P, while
in (F)P an ?x in the pattern F binds the free occurrences of name x in P. We denote
by bn(F) the set of names x such that ?x occurs in F . Processes are identified up to
alpha-equivalence. The guarded sum with I = /0 will also be denoted by 0. Trailing 0’s
will often be omitted.

We will let σ,σ′,σ1, ... range over substitutions, that is, finite partial functions from
N to N . In particular, we let [u/x] denote the substitution that maps x to u. For any
term T , we let T σ denote the result of the capture-avoiding substitution of the free
occurrences of x by σ(x), for each x ∈ dom(σ).

Let us anticipate that the process grammar defined in Figure 1 should be pragmat-
ically considered as a run-time syntax. In particular, sessions r B P can be generated
at run-time, upon service invocation, but a programmer is not expected to explicitly
use them. These considerations will lead us to impose some constraints on the some-
what too liberal syntax of Figure 1 and to introduce a notion of well-formedness (see
Section 2.3).

P,Q ::= ∑i∈I πiPi Guarded Sum π ::= (F) Abstraction
| s.P Service Definition | 〈V 〉 Concretion
| s.P Service Invocation | 〈V 〉↑ Return
| r B P Session
| P > Q Pipeline V ::= u | f (Ṽ) Value (f ∈ Σ)
| P|Q Parallel Composition
| (νn)P Restriction F ::= u | ?x | f (F̃) Pattern (f ∈ Σ)
| !P Replication

Fig. 1. Syntax of processes.

(P|Q)|R ≡ P|(Q|R) (νn)(νm)P ≡ (νm)(νn)P P|(νn)Q ≡ (νn)(P|Q) if n /∈ fn(P)
P|Q ≡ Q|P (νn)0 ≡ 0 ((νn)Q) > P ≡ (νn)(Q > P) if n /∈ fn(P)
P|0 ≡ P !P ≡ P|!P r B (νn)P ≡ (νn)(r B P) if r 6= n

Fig. 2. Structural congruence.

Structural congruence. Structural congruence ≡ is defined as the least congruence re-
lation induced by the laws in Figure 2. This set of laws comprises the structural rules
for parallel composition and restriction from the π-calculus, plus the obvious extension
of restriction’s scope extrusion law to pipelines and sessions.

2.2 Operational semantics

We let λ−→ be the labelled transition relation induced by the rules in Figure 4. Labels λ

have the syntax and informal meaning defined in Figure 3, where τ is the silent action.
We call a reduction any silent transitions P τ−→ Q. Note that we shall often abbrevi-
ate (νn1) · · ·(νnl)λ as (νñ)λ where ñ = n1, ...,nl . We define n(λ), fn(λ) and bn(λ) as
expected; in particular bn(s(r)) = bn(s(r)) = {r}.

Service Definition and Invocation. Rule (DEF) describes the behaviour of a service
definition: it says that a service s.P is ready to establish a new session named r. Rule
(CALL) describes the complementary behaviour of a service invocation s.Q. Rule (SYNC)
describes session creation as the result of s.P and s.Q synchronizing and, in doing so,
agreeing on a fresh session name r. The new session has two ends, one client’s side
where protocol Q is running and one at service’s side where protocol P is running. A
value produced by a concretion at one side can be consumed by an abstraction at the
other side.

Communication prefixes. Rule (OUT) models the behaviour of concretion 〈V 〉P that
can evolve to P with a label 〈V 〉, denoting emission of value V . Rule (IN) models the
behaviour of an abstraction (F)P that can be seen as a form of guarded command that
relies on pattern-matching: (F)P can evolve to Pσ with (V), indicating consumption of
a value, only provided the pattern F matches up the value V . This leads to a substitution

λ ::= τ λi ::= s(r) (service definition) λo ::= s(r) (service invocation)
| λi | (V) (value consumption) | (νñ)〈V 〉 (value production)
| λo | r : (V) (consumption within r) | (νñ)r : 〈V 〉 (production within r)

| (νñ) ↑V (value return)

Fig. 3. Transition labels.

σ such that match(F,V) = σ. Here, the pattern-matching function match is defined as
expected: match(F,V) = σ, if σ is the (only) substitution such that dom(σ) = bn(F)
and Fσ = V . Rule (RET) models the behaviour of the return primitive 〈V 〉↑P that can
be used to return a value outside the current session if the enclosing environment is
capable of consuming it. Guarded choice has the expected meaning: ∑i∈I πiPi evolves
with λ to P′ if there is an i ∈ I such that πiPi evolves with λ to P′ (see rule (SUM)).

Communication inside sessions. Rules (S-IN) and (S-OUT) add the name of the inner-
most enclosing session to the labels for intra-session communication. Rule (S-SYNC)
finalizes communication inside session r for complementary action labels.

Communication outside sessions. Rule (S-RET) transforms a return performed inside
a session r into the output of a value for the enclosing environment. Rule (S-PASS)
propagates all session-transparent activities, namely s(r′), s(r′), r′ : (V), (νñ)r′ : 〈V 〉
and τ. In fact, services can be accessed and invoked independently from the hierarchy of
sessions, and intra-session communication is always bound to the innermost enclosing
session.

Pipelining. Rule (P-SYNC) expresses that in a pipeline P > Q all the values V produced
by P and that can be consumed by Q will trigger a new instance Q′ of Q. (Note that,
after this reduction, Q is again ready to consume the next value produced by P, if any.)
Rule (P-PASS) indicates that the pipeline is transparent to all the other transitions of P,
which are thus propagated to the enclosing context. Also note that Q is idle until a value
produced by P activates one instance of it.

Restriction, parallel and structural congruence. Rules (OPEN), (R-PASS) and (PAR)
are the standard ones for restriction and parallel. However, thanks to the rule for struc-
tural congruence (STRUCT), we need not a close rule for names extruded via rule
(OPEN), because all steps can be performed in normalized processes, with all restric-
tions moved to the top.

Additional Comments. Sessions, service definitions and service invocations can of
course be nested at arbitrary depth. Note that no activity can take place under the scope
of a dynamic operator (see Definition 1 below). On the contrary, when considering static
contexts (see Definition 2 below), concurrent activities can take place at any level of the
session hierarchy. Also note that sessions are completely transparent with respect to
actions different from value production/consumption/return, that is, service invocation
and silent steps.

(DEF) r /∈ fn(P)

s.P
s(r)−−−→ r B P

(CALL) r /∈ fn(P)

s.P
s(r)−−−→ r B P

(SYNC) P
s(r)−−−→ P′ Q

s(r)−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)

(OUT) 〈V 〉P 〈V 〉−−−→ P (RET) 〈V 〉↑P
↑V−−→ P (IN) match(F,V) = σ

(F)P
(V)−−−→ Pσ

(SUM) πiPi
λ−→ P′

∑
i∈I

πiPi
λ−→ P′

(S-IN) P
(V)−−−→ P′

r B P
r:(V)−−−→ r B P′

(S-OUT) P
〈V 〉−−−→ P′

r B P
r:〈V 〉−−−→ r B P′

(S-SYNC) P
r:〈V 〉−−−→ P′ Q

r:(V)−−−→ Q′

P|Q τ−→ P′|Q′ (S-RET) P
↑V−−→ P′

r B P
〈V 〉−−−→ r B P′

(S-PASS) P λ−→ P′

r B P λ−→ r B P′
λ ::= s(r′) |s(r′) |τ |r′ : (V) |r′ : 〈V 〉
r′ 6= r

(P-SYNC) P
〈V 〉−−−→ P′ Q

(V)−−−→ Q′

P > Q τ−→ (P′ > Q) | Q′ (P-PASS) P λ−→ P′

P > Q λ−→ P′ > Q
λ 6= 〈V 〉

(OPEN) P λ−→ P′ n /∈ bn(λ)

(νn)P
(νn)λ−−−−→ P′

λ ::= (νñ′)〈V 〉 |(νñ′) ↑V |(νñ′)r : 〈V 〉
n ∈ n(V) (R-PASS) P λ−→ P′ n 6∈ n(λ)

(νn)P λ−→ (νn)P′

(PAR) P λ−→ P′

P|Q λ−→ P′|Q
fn(Q)∩bn(λ) = /0 (STRUCT) P ≡ Q Q λ−→ Q′ Q′ ≡ P′

P λ−→ P′

Fig. 4. Labelled Operational Semantics.

Remark 1 (About reduction semantics.). It has become common to present the opera-
tional semantics of newly proposed calculi by means of reductions instead of labelled
transitions, with the advantage of a simpler and compact presentation. However, in the
case of CaSPiS, the nesting and interplay of sessions and pipelines introduces some
contextual dependencies on the reductions rules that makes the labelled transitions more
appealing. The interested reader may check Lemma 3 to see all the different kinds of
reductions that must be taken into account (the lemma is given for the full CaSPiS).

2.3 Well-formedness

As anticipated, we introduce a well-formedness criterion to impose some discipline on
the way CaSPiS primitives can be used and rule out many pathologically wrong process
designs. To this aim, we first introduce some terminology and technical constraints. We
say P has no top bound sessions if P ≡ (νr)P′ implies r /∈ fn(P′), for each P′,r.

A context is a process term with one occurrence of a distinct process variable, say X
(representing the “hole”). In what follows, we shall indicate by C[·] a generic context,
and by C[P] the process obtained when textually replacing X by P in C[·]. The term Q

occurs in (or is a subterm of) P if there is a context C[·] such that P = C[Q]. The notion
of context can be generalized to n-holes contexts as expected. In particular, generic
2-holes contexts will be denoted by C[·, ·], with C[P,Q] defined as obvious.

Definition 1. Dynamic operators are service definition s.[·] and invocation s.[·], any
prefix πi[·], right-hand side term of a pipeline P > [·] and replication ![·]. The remain-
ing operators are static.

Definition 2. A context C[·] is static if its hole does not occur in the scope of a dynamic
operator. Moreover, we say that C[·] is session-immune if its hole does not occur in the
scope of a session operator.

We introduce the final ingredient needed for our definition of well-formed process.

Definition 3. Given P and two session names r,r′ ∈ fn(P), we write r ≺P r′ if and only
if P ≡C[r BC′[r′B P′]] for some static C[·], session-immune C′[·] and P′.

In other words, r ≺P r′ if, in P, up to structural congruence, an occurrence of r′ is
immediately within the scope of some session side rB [·]. Well-formedness is formally
defined below:

Definition 4 (well-formedness). Assume P ≡ (νr̃)Q, where Q has no top bound ses-
sions and r̃ ⊆ fn(Q). Then, process P is well-formed if: (a) relation ≺Q is acyclic (that
is, ≺+

Q is irreflexive), (b) modulo alpha conversion, for each r, rB occurs at most twice
in P and never in the scope of a dynamic operator, (c) in any summation ∑i πi, all pre-
fixes πi are of one and the same kind (either all abstractions, or all concretions or all
returns).

The acyclicity of ≺Q rules out vicious situations like r B (P1|r B P2). For the rest,
distinct service invocations, even of the same service, should give rise to distinct and
fresh session names, and, of course, each session should normally have no more than
two sides (one-sided sessions make sense once we allow one side to autonomously
close, a scenario that we shall consider in Section 4). Also, for technical reasons, it is
desirable to forbid mixed sums, that is sums where prefixes of different kinds occur.

In the remainder of this paper, all processes are assumed to be well-formed. By
inspection, it is straightforward to check the validity of the following result.

Lemma 1. Well-formedness is preserved by structural congruence and reductions.

3 CaSPiS at work

In this section we present some simple examples that aim at showing how CaSPiS can
be used for specifying behaviours of structured services. The examples expose some
important patterns for service composition, for which we find it convenient to introduce
a set of derived operators.

In the following we will assume the following services are available. Service emailMe
when invoked with argument msg has the effect of sending a message msg to one’s
email address. Services ANSA, BBC and CNN, upon invocation, return a possibly infinite
sequence of values representing pieces of news (disregarding the identity of these news,
these services resemble !ANSA.!(νn)〈n〉, etc.).

s〈V 〉 4
= s.〈V 〉 (One Way)

s(V)
4
= s.〈V 〉(?x)〈x〉↑ (Request Response)

P >> s
4
= P > (?x)s(x) (Simple Pipe)

s(!)
4
= s.!(?x)〈x〉↑ (Get All Responses)

Fig. 5. CaSPiS derivable constructs

Invocation patterns. Recurrent service invocation patterns are reported in Figure 5:

– s〈V 〉 invokes the service s and then sends the value V over the established session;
– s(V) invokes s, then sends value V over the established session, then waits for a

value from the service (the result of the service invocation) and publishes it locally
(outside the established session);

– P >> s is a pipeline based composition to invoke service s on all values produced
by P;

– s(!) invokes s, then keeps retrieving and publishing all responses from s.

Using the request-response and one-way patterns we can rewrite the example in
the Introduction as: sign(plan) > (?z)store〈z〉. Simple pipe can be used to write the
signing of a document by two different authorities as 〈plan〉>> sign1 >> sign2. Usage
examples of the get-all-responses pattern are reported below for invoking news services.

Selection. Command select permits collecting the first n values emitted by a set of
processes running in parallel and satisfying a given sequence of patterns.
Formally, we define select F1, . . . ,Fn from P as follows:

select F1, . . . ,Fn from P
4
= (νs)

(
s.(F1). . . .(Fn)〈F̂1, . . . , F̂n〉↑ | s.P

)
where for each pattern Fi, F̂i denotes the value Vi obtained from Fi by replacing each
?x with x. A useful variation of the above command is select F1, . . . ,Fn from P in Q,
defined as follows:

select F1, . . . ,Fn from P in Q
4
= select F1, . . . ,Fn from P > (F1, . . . ,Fn)Q

As an example the process

select ?x,?y from
(
ANSA(!) |BBC(!) |CNN(!)

)
in emailMe〈x,y〉

will send to the specified email address a pair of the first two pieces of news among
those arriving from ANSA, BBC and CNN, no matter who has actually produced them.

Waiting. When waiting for values produced by a set of concurrent activities, it may be
useful not only to constrain the patterns of the expected values, but also to fix the exact
binding between patterns and activities, that is, to specify which activity is expected to
produce what. For instance, in the previous example, one might want to receive a mail
with three pieces of news, the first coming from ANSA, the second from BBC and the
third from CNN. This also implies that a mail will be sent only when a piece of news

has been received from each of these services. We let wait F1, . . . ,Fn from P1, . . . ,Pn
be a process that emits tuple 〈V1, . . . ,Vn〉, where Vi is the first value emitted by Pi and
matching Fi, for i = 1, ...,n. We have that:

wait F1, . . . ,Fn from P1, . . . ,Pn
4
= (νs)

(
s.(t1(F1)). . . .(tn(Fn))〈F̂1, . . . , F̂n〉↑

| s.(select F1 from P1 in 〈t1(F̂1)〉| · · ·
| select Fn from Pn in 〈tn(F̂n)〉)

)
We can also consider the following variation:

wait F1, . . . ,Fn from P1, . . . ,Pn in Q
4
= wait F1, . . . ,Fn from P1, . . . ,Pn > (F1, . . . ,Fn)Q

Then, wait ?x,?y,?z from ANSA(!) , BBC(!) , CNN(!) in emailMe〈x,y,z〉will send an email
containing the first pieces of news distributed by each of ANSA, BBC and CNN.

Travel Agent Service. We put at work macros select and wait defined above for de-
scribing a classical example of service composition: a Travel Agent Service. A travel
agent offers its customers the ability to book packages consisting of services offered
by various providers. For instance: Flight and Hotel Booking. Three kinds of booking
are available: Flight only, Hotel only, or both. A customer contacts the service and then
provides it with appropriate information about the planned travel (origin and destina-
tion, departing and returning dates,. . .). When a request is received, the service contacts
appropriate services (for instance Lufth and Alit for flights, and HInn and BWest for
hotels) and then compares their offers to select the most convenient (this is actually
done by invoking a sub-service compare), which is returned to the customer.

This service can be specified in CaSPiS as follows:

!ta. (fly(?x)).wait ?y,?z from Lufth〈x〉,Alit〈x〉 in compare(y,z)
+ (hotel(?x)).wait ?y,?z from BWest〈x〉,HInn〈x〉 in compare(y,z)
+ (fly&hotel(?x)).wait ?y,?z from ta(f ly(x)),ta(hotel(x)) in 〈y,z〉

After invocation, one message among three possible kinds of requests is expected:
fly(V), hotel(V) and fly&hotel(V), where value V contains trip information. For exam-
ple, the first case, two values, each containing an offer for a flight, are obtained from
Lufth and Alit. The pair of these values is passed to service compare that selects
the most convenient, and then immediately returned on to the client. Note that, upon
receiving a fly&hotel request, service TA recursively invokes itself for determining the
best offers for flight and hotel. These values are then returned to the client.

π-calculus channels. By analogy with SCC [3], it can be easily inferred that the close -
free fragment of CaSPiS is expressive enough to model (lazy) λ-calculus and that, in
the absence of pattern matching, it can be encoded in π-calculus.

The close -free fragment of CaSPiS is also expressive enough to encode π-calculus.
Indeed, input and output over a channel a can be encoded in CaSPiS as follows:

a(x).P
4
= a.(?x)〈x〉↑ > (?x)P av.P

4
= a.〈v〉〈•〉↑ > (•)P

A proxy service. We conclude this section by considering the description of a simple
proxy service that, once received a service name s and a value x, invokes s with param-
eter x and sends back to the caller all the values emitted by s:

!proxy.(?s,?x)s.〈x〉!(?y)〈y〉↑

4 The full calculus

The calculus we have presented in the preceding sections offers no primitives for han-
dling session closing. These primitives might be useful to garbage-collect terminated
sessions. Most important, one might want to explicitly program session termination, in
order to implement cancellation workflow patterns [24], or to manage abnormal events,
or timeouts.

Sessions are units of client-server cooperation and as such their termination must be
programmed carefully. At least, one should avoid situations where one side of the ses-
sion is removed abruptly and leaves the other side dangling forever. Also, subsessions
should be informed and, e.g., close in turn. The full CaSPiS we are going to introduce
comprises mechanisms for programming disciplined closing sessions. The mechanism
of session termination we shall adopt has been informally described in the Introduction.
Before introducing this extension formally, we discuss a couple of additional issues be-
low.

An important aspect of our modelling is that, when shutting down a side, the emit-
ted signal †(k) is (realistically) asynchronous. In other words, we have no guarantee
as to when the termination handler at the opposite side will be reached by †(k). So,
for example, by the time †(k) reaches its destination, the other side might in turn have
entered a closing state I Q on its own, or be closed right away, as a result of the clos-
ing of a parent session. These aspects must be taken into account when defining what
“well-programmed” closing means (see Section 5). In general, dangling †(k) cannot be
avoided, but we will be able to avoid sessions dangling forever.

It is worth mentioning that there are at least two obvious alternatives to the mecha-
nism we have chosen. One would be to use close as a primitive for terminating instan-
taneously both the client-side and service-side sessions. But, as discussed above, this
strategy conflicts with the two parties being in charge for the closing of their own ses-
sion sides. A second alternative would be to use close as a synchronization primitive,
so that the client-side and service-side sessions are terminated when close is encoun-
tered on one side and close on the other side. This strategy conflicts with parties being
able to decide autonomously when to end their own sessions. The use of termination
handlers looks a reasonable compromise: each party can exit a session autonomously
but it is obliged to inform the other party.

4.1 Syntax and operational semantics of the full calculus

Syntax. In what follows, we assume a new countable set K of signal names k,k′, ...,
disjoint from session and service names. The syntax of full CaSPiS is reported in Fig-
ure 6. In addition to the extended primitives sk.P, sk.P and r Bk P and to the new primi-

P,Q ::= ∑i∈I πiPi Guarded Sum
| sk.P Service Definition
| sk.P Service Invocation
| P > Q Pipeline
| close Close
| k ·P Listener

| †(k) Signal
| r Bk P Session
| I P Terminated Session
| P|Q Parallel Composition
| (νn)P Restriction
| !P Replication

Fig. 6. Syntax of full CaSPiS.

tives close , †(k) and I P discussed in the Introduction, note the presence of termination
listeners k ·P that are used to handle termination signals †(k).

In what follows, we say that a name n occurs free in P underneath a context C[·] if
there is a term Q such that n ∈ fn(Q) and P = C[Q]. For instance, k occurs free in !k ·0
underneath ![·], while it does not occur free in !(νk)(k ·0) underneath ![·].

Well-formedness. Beside those reported in Section 2, we assume the following addi-
tional well-formedness conditions on the syntax presented in Figure 6:

– for any signal name k and term P, modulo alpha-equivalence there is at most one
subterm of P of the form r Bk Q; moreover, k does not occur in concretion prefixes
or return prefixes, and does not occur free in P underneath any dynamic context;

– Terminated sessions operators I do not occur within the scope of a dynamic oper-
ator.

The above conditions are easily seen to be preserved by the structural rules and by the
SOS rules presented below. Note that the second condition above implies that passing
of signal names is forbidden. In what follows, we assume all terms are well-formed.

Structural congruence. Nesting of sessions may give rise to subtle race conditions on
the order of closings. As an example, consider a situation with two sessions r1 and r2,
both ready to close and with r2 nested in r1:

r1 Bk1

(
close | P | r2 Bk2 (close |Q)

)
.

Suppose the innermost session r2 closes up first; then, before the signal †(k2) reaches its
listener, also session r1 closes up. This leads to the situation †(k1) | I (P |†(k2) | I Q),
where one still wants to activate the listener on k2, despite the fact that †(k2) lies within
a terminated session. This example shows that terminated session operator, I, should
stop any activity but invocation of listeners, that is signals †(k).

The structural rules listed in Figure 7 enrich the set of rules already introduced for
the basic calculus. The law I †(k) ≡ †(k) has been motivated above. The remaining
rules serve the purpose of letting signals †(k) freely move within a term to reach the
corresponding listeners, and distributing the terminated session I over static operators.

Note that, by structural congruence, in any term it is possible to move all restrictions
not in the scope of a dynamic operator to top level.

r Bk′ (†(k)|P) ≡ †(k)|r Bk′ P (†(k)|P) > Q ≡ †(k)|(P > Q) I †(k) ≡ †(k)
I r Bk P ≡ I rBk I P I (P > Q) ≡ (I P) > Q II P ≡ I P

I P|Q ≡ I P|I Q I (νx)P ≡ (νx) I P I 0 ≡ 0

Fig. 7. Structural congruence rules for †(k) and I .

(DEF) sk1 .P
s(r)k2

k1−−−−→ r Bk2 P (CALL) sk2 .P
s(r)k1

k2−−−−→ r Bk1 P (SYNC) P
s(r)k2

k1−−−−→ P′ Q
s(r)k1

k2−−−−→ Q′

P|Q τ−→ (νr)(P′|Q′)

(LIS) k ·P k−→ P (SIG) †(k) k−→ 0 (T-SYNC) P k−→ P′ Q k−→ Q′

P|Q τ−→ P′|Q′

(END) close
close−−−−→ 0 (S-END) P close−−−−→ P′

r Bk P τ−→I P′|†(k)
(T-END) I r Bk P τ−→I P|†(k)

Fig. 8. Labelled Operational Semantics of full CaSPiS.

Operational semantics. The SOS rules for the new operators are reported in Figure 8,
the rules for the remaining operators are the same as those introduced for the basic
calculus (Section 2). Roughly: (1) rules (DEF), (CALL) and (SYNC) have been updated
to take into account the exchange of termination handler names, (2) new rules (LIS),
(SIG) and (T-SYNC) are used to synchronize a listener with a pending signal for it,
(3) new rules (END) and (S-END) are used to close a session from inside and generate
a signal towards the handler of the partner, and (4) a new rule (T-END) is used to
recursively close session that were nested in a closed session (in a top-down fashion).
Garbage collecting rules for guarded sums, service definitions and service invocations,
like I sk.P

τ−→ 0, are omitted for simplicity, but they can be added without any relevant
consequence on the results in Section 5.

Example 1. Let us consider process News defined as follows:

News
4
= !(νk)collectk.

(
k · close | (νk1)ANSAk1 .(!(?x)〈x〉↑ | k1 · (close |†(k)))

| (νk2)BBCk2 .(!(?x)〈x〉↑ | k2 · (close |†(k)))
| (νk3)CNNk3 .(!(?x)〈x〉↑ | k3 · (close |†(k)))

)
News specifies a news collector exposing service collect. After invocation of this
service, a client receives all the news produced by ANSA, BBC and CNN. The established
session can be closed: either (i) by the client-side, when an action close on the client’s
side is performed, as this will yield a signal †(k) able to activate the corresponding
service-side listener k · close ; or, (ii) when any of the three nested sessions used for
interacting with the news services is closed by peer, yielding the signal †(ki) and hence
†(k). The termination of the topmost session will in turn cause the termination of all
(not yet terminated) nested news clients.

Figure 9 shows a possible propagation of termination. Initially all services have been
invoked and the corresponding sessions have been triggered (Figure 9(a)). Suppose the

(a) All sides are active. (b) ANSA-side terminates.

(c) News-side terminates. (d) Client-side terminates. (e) BBC/CNN-side terminate.

Fig. 9. Propagation of side-termination via listeners.

session running on ANSA-side shuts down (Figure 9(b)), then its partner session-side
running as a child of the main session of the news collector is informed and termi-
nated. Moreover, the listener causes the termination of the parent session (Figure 9(c)).
Termination of the main session causes the termination of the remaining two children
sections and of the main client-side session (Figure 9(d)). Finally, the sessions running
on BBC-side and CNN-side are also terminated (Figure 9(e)).

5 Programming graceful termination

The session closing primitives introduced in the preceding section do not guarantee per
se that forever-dangling, one-sided sessions never arise, in the same way as deadlock
can arise in untyped π-calculus processes or termination cannot be guaranteed for all
sequential programs. In this section, we show that this undesirable situation can be
avoided if one makes sure that termination handlers of the form k ·C[close], for suitable
static contexts C[·] and signals k, are installed in the bodies of client invocations and
service definitions. We will be rather liberal with the choice of C[·], that may contain
extra actions the termination handler may wish to take upon invocation, e.g., further
signaling to other listeners (a sort of compensation, in the language of long-running

transactions). For example, we anticipate that the process News from Example 1 fits
our requirements.

The key to the proof is a concept of balanced term, roughly, a term with only pairs
of session-sides that balance with each other. We shall prove that these terms enjoy
what we call a “graceful” termination property: informally, any possibly unbalanced
term reachable from a balanced term can get balanced in a finite number of reductions.
Technically, this result will be achieved in two steps. First, we shall introduce a no-
tion of quasi-balanced term, that generalizes that of balanced term. The key property
here is that, differently from balanced-ness, quasi-balanced-ness is preserved through
reductions. Next, we prove that any quasi-balanced term can reduce to a balanced one
in a finite number of reductions. In order to define these concepts, we need to introduce
some terminology about contexts.

Updated vocabulary. We revisit the terminology presented in Section 2.3 to deal with
the extended syntax of full CaSPiS. A context is static if the hole does not occur in the
scope of a dynamic operator, and quasi-static if the hole does not occur in the scope
of a dynamic operator, except possibly the dead-session operator I. In what follows,
D[·],D′[·], ... will be used to denote generic quasi-static contexts. Note that reductions
and execution of close actions are permitted underneath static context but, in general,
not underneath quasi-static ones. We say that C[·] is session-immune if its hole is not in
the scope of a session operator.

Main definitions. In order to ensure that graceful session closing at runtime, well-
formedness does not suffice, and we have to restrict our syntax in certain ways. The
first step is to ensure that session termination is properly programmed inside all service
definitions and invocations. That is, both on client- and service-side, proper listeners
are in place.

Definition 5 (graceful property). We say P is graceful if, whenever P ≡ Q, Q satisfies
the following conditions for each s and k: (a) sk. and sk. may only occur in Q in subterms
of the form sk.(C[k ·C′[close]]) or sk.(C[k ·C′[close]]), with C[·],C′[·] static and session
immune; (b) in Q there is at most one occurrence of the listener k· and one occurrence
of Bk.

For example, obvious “graceful” usages for service invocation and service definition
are (νk1)sk1 .(P1|k1 · close) and (νk2)sk2 .(P2|k2 · close), respectively.

Lemma 2. Let P be graceful and suppose P τ−→ Q. Then Q is graceful.

The proof of Lemma 2 involves some case analysis based on the following gen-
eral lemma that allows us to identify active and passive components of any reduction
P τ−→ Q. (Note that, by definition, the graceful property is preserved by structural con-
gruence.)

Lemma 3 (context lemma for reductions). Suppose P τ−→ Q. Then there is a 1- or 2-
hole static context, C[·] or C[·, ·], such that one of the following cases is true (for some
r,k,k′,k′′,s,Vi’s, Fj’s, Pi’s, R j’s, R,P′,σ, static and session-immune C0[·],C1[·],C2[·]
such that match(Vl ,Fh) = σ).

1. (Sync)
P ≡ C[sk.P, sk′ .R]
Q ≡ (νr)C[r Bk′ P, r Bk R] r fresh for P,C[·],R

2. (S-Sync)
P ≡ C[r Bk (P′|∑i〈Vi〉Pi), r Bk′ C0[∑ j(Fj)R j]]
Q ≡ C[r Bk (P′|Pl), r Bk′ C0[Rhσ]]

3. (S-Sync-Ret)
P ≡ C[r′Bk

(
r Bk′′ C1[∑i〈Vi〉↑Pi]|P′), r Bk′ C2[∑ j(Fj)R j]]

Q ≡ C[r′Bk
(
r Bk′′ C1[Pl]|P′), r Bk′ C2[Rhσ]]

4. (P-Sync)
P ≡ C[(∑i〈Vi〉Pi|P′) > C1[∑ j(Fj)R j]]
Q ≡ C[Rhσ |

(
(Pl |P′) > C1[∑ j(Fj)R j]

)
]

5. (P-Sync-Ret)
P ≡ C[

(
(r Bk C0[∑i〈Vi〉↑Pi]) |P′) > C1[∑ j(Fj)R j]]

Q ≡ C[Rhσ |
(
(r Bk C0[Pl]|P′) > C1[∑ j(Fj)R j]

)
]

6. (T-Sync) P ≡C[†(k)|k ·R] and Q ≡C[R]
7. (S-End) P ≡C[r Bk C0[close]] and Q ≡C[I C0[0]|†(k)]
8. (T-End) P ≡C[I (r Bk R)] and Q ≡C[I R|†(k)]

The graceful property is not sufficient to guarantee the main result about we are
after, because it says nothing about balancing of existing sessions. In order to define
balancing at the level of sessions, we need to introduce some more terminology.

Definition 6 (r-balancing). Let P be a process. We say P is

– r-balanced if either r /∈ fn(P) or, for some static C[·] not mentioning r, k and k′

(with k 6= k′), P ≡ C[r Bk A,r Bk′ B] where one of the following holds for some
static, session-immune C′[·] and C′′[·]
(a) A ≡C′[close]
(b) A ≡C′[†(k′)|k′ ·C′′[close]]
(c) A ≡C′[k′ ·C′′[close]]
and either (a) or (b) or (c) holds for B, with k in place of k′.

– quasi r-balanced if either P is r-balanced or, for some static C[·] not mentioning r,
P≡C[rBk A] with either of (a) or (b) above holding for A, or P≡C[I rBk A] with
either of (a) or (b) or (c) above holding for A.

We are now ready to give the definition of (quasi-)balancing for processes.

Definition 7 ((quasi-)balanced processes). Assume P ≡ (νr̃)Q, where Q has no top
bound sessions and r̃ ⊆ fn(Q). We say P is balanced (resp. quasi-balanced) if:

(a) P is graceful, and
(b) for each r ∈ fn(Q), Q is r-balanced (resp. quasi r-balanced).

Clearly balancing implies quasi-balancing.

Theorem 1 (graceful termination). Let P be balanced. Whenever P τ−→∗ P′ there exists
a balanced process Q such that P′ τ−→∗ Q.

Proof (Sketch). The proof involves two main steps:

– First, we show that for any quasi-balanced process R, if R τ−→ R′, then R′ is also
quasi-balanced.

– Second, we prove that for any quasi-balanced process R there is a balanced process
R′′ such that R τ−→∗R′′.

Since P is balanced by hypothesis, then it is also quasi-balanced. Therefore P′ is quasi-
balanced (by straightforward induction, using the first fact above) and we can apply the
second fact above to deduce the existence of a suitable Q reachable from P′.

Example 2. It is easy to observe that process News defined in Example 1 is balanced.
This guarantees that whenever a client closes the session established for interacting
with service collect, eventually all the nested sessions will be closed. Moreover, if the
sessions that interact with the news servers are closed, the main session will be closed
and the client will be notified. In fact, the example shows a “graceful” usage pattern for
closing the parent session after the unexpected termination of a child session.

6 Conclusion, related work and future work

We have presented CaSPiS, a core calculus for service-oriented applications. One of
the key notions of CaSPiS is that of a session, which allows for the definition of arbi-
trarily structured interaction modalities between clients and services. The presentation
of CaSPiS have included the full formalization of the operational semantics in the SOS
style and a simple discipline to program graceful session termination. A number of ex-
amples witness the expressiveness of our proposal. A recent prototype implementation
is also available [2].

The design of CaSPiS has been influenced by the π-calculus [21] and by Orc [22].
Indeed, one could say that CaSPiS combines the dataflow flavour of Orc (pipelines)
with the name-scoping mechanisms of the π-calculus (sessions). There are important
differences with these two languages, though, that in our opinion make CaSPiS worth
studying on its own. There is no notion of a session in Orc: client-service interaction is
strictly request-response. Complex interaction patterns can possibly be programmed in
Orc by correlating sequences of independent service invocations via some ad-hoc mech-
anism (e.g. state variables). Asymmetric parallel in Orc offers a way for implementing,
e.g., simple cancellation patterns. However, in Orc each site invocation can return at
most one value, so that cancellation has a purely local effect. Our graceful termina-
tion improves on that mechanism by dealing with nested sessions and informing any
side about the termination of its opposite side. Sessions and pipelines can possibly be
encoded into π-calculus, but this would certainly cost the use of several levels of “con-
tinuation channels” to specify where the results produced by a session should be sent
(i.e., whether to a father session, to a pipeline or to the surrounding environment). This
would make the resulting code pretty awkward (see also [3]). As our examples show,
sessions and pipelines are handy constructs that is worth having as first-class objects.
This fact becomes even more evident when dealing with session termination, which has
no (obvious) counterpart in the π-calculus.

CaSPiS evolved from SCC [3], because the original proposal turned out to be unsat-
isfactory in some important respects. In particular, SCC had no dedicated mechanism

for orchestrating values arising from different activities, and only had a rudimentary
mechanism for handling session termination, that would immediately kill the process
(and its subprocess) executing the closing action, without activating any compensation
action. The first problem motivated the proposal of a few evolutions of SCC. The one
proposed in [16] is stream-oriented, in that values produced by sessions are stored into
dedicated queues, accessible by their names. The one proposed in [10] has instead ded-
icated message passing primitives to model communication in all directions (within a
session, from inside to outside and vice-versa). As seen, CaSPiS relies solely on the
concept of pipeline, but introduces pattern matching. More recently, a location-aware
extension of SCC has also been proposed [6] that allows for the dynamic joining of
multiparty sessions, but session termination policies are not addressed there.

A number of other proposals have been put forward, in the last couple of years,
aiming, like us, at providing process calculi to support specification and analysis of
services, see e.g. [17, 9, 19, 11, 25]. We do not enter into a detailed description of these
proposals, which are based on rather different concepts and primitives, like correlation
sets.

Developing safe client-service interactions requires some notion of compliance be-
tween conversation protocols. In this respect, the presence of pipelines and nested ses-
sions makes the dynamics of a CaSPiS session quite complex and substantially dif-
ferent from simple type-regulated interactions as found in the π-like languages of, e.g.
[14, 15], or in the finite-state contract languages of [4, 12, 13]. Two recent contributions
exploring the problem of compliance in the setting of CaSPiS are [1, 8], whose type
systems make evident the benefits of the concept of session. A type inference algorithm
is proposed in [20].

Regarding future work, the impact of adding a mechanism of delegation deserves
further investigation. In fact, delegation could be simply achieved by enabling session-
name passing that is forbidden in the present version. However, the consequences of this
choice on the semantics are at the moment not clear at all. We also plan to investigate
the use of the session-closing mechanism for programming long-running transactions
and related compensation policies in the context of web applications, in the vein e.g.
of [7, 18], and its relationship with the cCSP and the sagas-calculi discussed in [5].

Acknowledgments. We thank the members of the SENSORIA project involved in Work-
package 2, Core Calculi for Service Oriented Computing, for stimulating discussions on
Services and Calculi. Lucia Acciai and Leonardo Gaetano Mezzina read the manuscript
providing us with suggestions for improvements.

References

1. L. Acciai and M. Boreale. A type system for client progress in a service-oriented calculus.
In Festschrift in Honour of Ugo Montanari, on the Occasion of His 65th Birthday, volume
5065 of Lect. Notes in Comput. Sci. Springer, 2008. To appear.

2. L. Bettini, R. De Nicola, and M. Loreti. Implementing session-centered calculi with IMC.
In Proc. of COORDINATION’08, Lect. Notes in Comput. Sci. Springer, 2008. To appear.

3. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M. Loreti, F. Martins, U. Monta-
nari, A. Ravara, D. Sangiorgi, V.T. Vasconcelos, and G. Zavattaro. SCC: a service centered

calculus. In Proc. of WS-FM’06, volume 4184 of Lect. Notes in Comput. Sci., pages 38–57.
Springer, 2006.

4. M. Bravetti and G. Zavattaro. A theory for strong service compliance. In Proc. of COORDI-
NATION’07, volume 4467 of Lect. Notes in Comput. Sci., pages 96–112. Springer, 2007.

5. R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari. Comparing two
approaches to compensable flow composition. In Proc. of CONCUR’05, volume 3653 of
Lect. Notes in Comput. Sci., pages 383–397. Springer, 2005.

6. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in SOC. In Proc. of
COORDINATION’08, Lect. Notes in Comput. Sci. Springer, 2008. To appear.

7. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending
join. In Proc. of IFIP TCS’04, pages 367–379. Kluwer Academics, 2004.

8. R. Bruni and L.G. Mezzina. Types and deadlock freedom in a calculus of services, sessions
and pipelines, 2008. Submitted.

9. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. SOCK: a calculus for service
oriented computing. In Proc. of ICSOC’06, volume 4294 of Lect. Notes in Comput. Sci.,
pages 327–338. Springer, 2006.

10. L. Caires, H.T. Viera, and J.C. Seco. The conversation calculus: a model of service oriented
computation. Technical Report TR DIFCTUNL 6/07, Univ. Lisbon, 2007.

11. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. In Proc. of ESOP’07, volume 4421 of Lect. Notes in Comput. Sci., pages
2–17. Springer, 2007.

12. S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of contracts for
web services. In Proc. of WS-FM’06, volume 4184 of Lect. Notes in Comput. Sci., pages
148–162. Springer, 2006.

13. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. In Proc.
of POPL’08, pages 261–272. ACM, 2008.

14. S. J. Gay and M. J. Hole. Types and subtypes for client-server interactions. In Proc. of
ESOP’99, volume 1576 of Lect. Notes in Comput. Sci., pages 74–90. Springer, 1999.

15. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. In Proc. of ESOP’98, volume 1381 of Lect.
Notes in Comput. Sci., pages 122–138. Springer, 1998.

16. I. Lanese, F. Martins, A. Ravara, and V.T. Vasconcelos. Disciplining orchestration and con-
versation in service-oriented computing. In Proc. of SEFM’07, pages 305–314. IEEE Com-
puter Society Press, 2007.

17. C. Laneve and L. Padovani. Smooth orchestrators. In PRoc. of FoSSaCS’06, volume 3921
of Lect. Notes in Comput. Sci., pages 32–46. Springer, 2006.

18. C. Laneve and G. Zavattaro. Foundations of web transactions. In Proc. of FOSSACS’05,
volume 3441 of Lect. Notes in Comput. Sci., pages 282–298. Springer, 2005.

19. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In Proc.
of ESOP’07, volume 4421 of Lect. Notes in Comput. Sci., pages 33–47. Springer, 2007.

20. L.G. Mezzina. How to infer finite session types in a calculus of services and sessions. In
Proc. of COORDINATION’08, Lect. Notes in Comput. Sci. Springer, 2008. To appear.

21. R. Milner, J. Parrow, and J. Walker. A Calculus of Mobile Processes, I and II. Information
and Computation, 100(1):1–40, 41–77, 1992.

22. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, 6(1):83–110, 2007.

23. Sensoria Project. Public web site. http://sensoria.fast.de/.
24. W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow

patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.
25. World Wide Web Consortium. Web Services Choreography Description Language Version

1.0. http://www.w3.org/TR/2005/CR-ws-cdl-10/.

