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Abstract. Rule-based specifications have been very successful as a declar-
ative approach in many domains, due to the handy yet solid foundations
offered by rule-based machineries like term and graph rewriting. Realistic
problems, however, call for suitable techniques to guarantee scalability.
For instance, many domains exhibit a hierarchical structure that can
be exploited conveniently. This is particularly evident for composition
associations of models. We propose an explicit representation of such
structured models and a methodology that exploits it for the description
and analysis of model- and rule-based systems. The approach is presented
in the framework of rewriting logic and its efficient implementation in
the rewrite engine Maude and is illustrated with a case study.

1 Introduction

Rule-based specifications have been very successful as a declarative approach
in many domains. Prominent examples from the software engineering field are
architectural reconfiguration, model transformation and software refactoring.
One of the key success factors are the solid foundations offered by rule-based
machineries like term and graph rewriting. Still, the complexity of realistic
problems requires suitable techniques to guarantee the scalability of rule-based
approaches. Indeed, the high number of entities involved in realistic problems
and the inherently non-deterministic nature of rule-based specifications leads to
large state spaces, which are often intractable.

Fortunately, many domains exhibit an inherently hierarchical structure that
can be exploited conveniently. We mention among others nested components in
software architectures, nested sessions and transactions in business processes,
nested membranes in computational biology, and so on. In this paper we focus
on the structure of model-based specifications due to various motivations. First,
it is widely accepted that models enhance software comprehension [19]. Second,
many model-driven development and analysis activities demand efficient and
scalable approaches. Our approach aims at enhancing software comprehension by
making explicit some of the structure of models, and at improving rule-based
analysis techniques by exploiting such structure. For instance, the Meta-Object
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Facility (MOF) standard defines a metamodelling paradigm by providing a set
of UML-like structural modelling primitives including composition associations.
Such associations impose a hierarchical structure on models. However, models are
usually formalised as flat configurations (e.g. graphs) and their manipulation is
studied with tools and techniques based on term rewriting or graph transformation
theories [7] that do not exploit the hierarchical structure. For instance, in the
MOF, models are collections of objects that may refer to other objects through
references, corresponding to flat graphs in the traditional sense. In addition,
some of these references are typed with composition associations in a metamodel
and their semantics corresponds to structural containment. In this way, models
have an implicit nested structure since some objects may contain other objects.
To the best of our knowledge, a formalism with an explicit notion of structural
containment has not been used for specifying model-based software artefacts yet.

In this paper we propose a formal representation of models that makes
explicit the hierarchical structure of containment and a methodology that exploits
such information for the description and analysis of model- and rule-based
systems. The main class of analysis we shall address in this paper are planning
problems that arise in various engineering activities that rely on rule-based
declarations, like devising architectural reconfiguration plans, executing model
transformations or taking refactoring decisions. Such problems have particular
characteristics that make them different from traditional approaches. First,
states in traditional planning tend to be flat, i.e. they typically consist of sets
of ground predicates. Instead, our states are structured models represented
by terms, offering rich descriptions that we would like to exploit conveniently.
Second, rules in traditional planning are typically first-order and application
conditions do not include rewrites but are limited to state predicates. Instead,
our rules are conditional term rewrite rules à la Meseguer [14], i.e. variables
can be bound to subterms and conditions can be rewrite rules whose results are
used in the right-hand side. Such rules are needed to exploit structural induction
during model manipulations. Third, our rules are decorated with labels that are
used to both coordinate and guide the manipulation of models, in the spirit of
Structural Operational Semantics [16] (SOS) and its implementation in rewriting
logic [20]. We believe that the success of this discipline in the field of language
semantics can be exported to model-driven transformations. Fourth, we consider
multi-criteria optimisation where several dimensions can be used to find non-
dominated optimal or near-to-optimal solutions and our approach is independent
on the actual choice of quantitative aspects. This is achieved by using a generic
algebraic, compositional formalism for modelling quantitative criteria, namely
some variant of semirings [2], and devising plan optimisation methods that are
valid for any semiring. In that way we can measure and accordingly select the
most convenient model manipulations when various choices are possible, e.g.
architectural reconfigurations ensuring a good load-balance but involving a low
number of re-bindings, or class diagram refactorings reducing the number of
classes but not requiring too many method pull-ups.
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Fig. 1. Class diagram for the navy missions scenario

For this purpose we define some basic machinery based on rewriting logic
and we devise a methodology to use it in practice with Maude [5], the rewrite
engine tool supporting rewriting logic. In particular this paper presents 1) a
novel representation of models based on nested collections of objects described
with rewriting logic, 2) a methodology for exploiting the nesting structure in the
declaration of rules, 3) a purely declarative presentation of planning problems
with multi-criteria optimisation, i.e. we do not implement any new algorithm in
Maude, but rely on Maude’s reachability capabilities.

Synopsis. § 2 describes a running example, based on an industrial case study.
§ 3 summarises the mathematical machinery we rely on. § 4 presents the core
fundamentals of our approach. § 5 explains how problem domains and instances
are described and analysed. § 6 discusses related work. § 7 concludes the paper
and outlines future research avenues.

2 Running Example: Navy Missions Scenario

Our running example is a naval scenario taken from a case study developed
in a collaboration with the Italian company Selex Sistemi Integrati within the
national project Tocai.It.5 Basically, it consists of a decision support system to
integrated logistic during dynamic planning of navy operations. The considered
scenario consists of a naval fleet that while carrying out its current mission, is
then required to switch mode of operation because some unpredictable events
happened that impose new objectives with higher priority. For example, a patrol
activity for peacekeeping along a coast can be required to switch to a rescue
activity of civil population after a natural disaster. The re-planning requires
the modelling of the new objectives and constraints that characterize the new

5 http://www.selex-si.com; http://www.dis.uniroma1.it/∼tocai.
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mission and the subsequent evaluation of feasible and most convenient logistic
action plan to be exploited for achieving the new goal.

Figure 1 depicts a simplified excerpt6 of the class diagram for our running
example, including only ingredients that we shall use throughout the paper. In
particular, we see the classes for locations (Location) and ships (Ship). Two
particular subclasses of locations are distinguished (Base and Gulf) as well as a
particular subclass of ship (Corvette). Locations can contain ships. Ships can have
a reference to their home base (homebase). Most of the classes have attributes,
like a name for ships and locations (name), the fuel remaining in the tank of a
ship (fuelTank) or the weather conditions for a location (weather).

3 Technical background

Rewriting Logic. Our specifications are theories described by rewriting logic [14].

Definition 1 (rewrite theory). A rewrite theory R is a tuple 〈Σ,E,R〉 where
Σ is a signature, specifying the basic syntax (function symbols) and type machinery
(sorts, kinds and subsorting) for terms, e.g. model descriptions; E is a set of
(possibly conditional) equations, which induce equivalence classes of terms, and
(possibly conditional) membership predicates, which refine the typing information;
R is a set of (possibly conditional) rules, e.g. actions.

The signature Σ and the equations E of a rewrite theory form a membership
equational theory 〈Σ,E〉, whose initial algebra is TΣ/E . Indeed, TΣ/E is the state
space of a rewrite theory, i.e. states are equivalence classes of Σ-terms (denoted
by [t]E or t for short). Usually, one is not interested in considering any term to
be a state: for instance, a term can represent a part of a model like the attributes
of an object. In such cases, a designated sort State is used and the state space
of interest is then TΣ/E,State, i.e. all State-typed terms (modulo E).

Rewrite rules in rewriting logic are of the form t → t′ if c, where t, t′ are
Σ-terms, and c is an application condition (a predicate on the terms involved in
the rewrite, further rewrites whose result can be reused, memberships, etc.).

Semirings. Our specifications will be equipped with quantitative information such
as the value of attributes or non-functional properties associated to rules. For
instance, in our case study we are interested in modelling duration and risk factor
of actions. There are many heterogeneous notions of quantitative features such
as probabilistic, stochastic or time-related aspects, and for each one, specialised
formalisms capturing their essence, e.g. Markovian models. Instead of a very
specialised model, we use a generic, flexible framework for the representation
of quantitative information. More precisely, we consider semirings, algebraic
structures that have been shown to be very useful in various domains, notably in
Soft Constraint Problems [2]. The main idea is that a semiring has a domain of

6 The full scenario contains further entities, inheritance relations, and composition
associations like fleets being made of ships, ships containing crafts, and so on.
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partially ordered values and two operations: one for choosing the best between
two values (a greatest lower bound), and another one for combining values. We
focus on a particular variant of semirings, namely constraint-semirings (semirings,
for short).

Definition 2 (semiring). A semiring is a tuple 〈A,t,⊗,0,1〉 such that A is a
(partially ordered) set of values; 0 and 1 are the bottom (worst) and top (best)
values of A; t : A × A → A is an operation to choose values: it is associative,
commutative, and idempotent, has 0 as its unit element and 1 as its absorbing
element; ⊗ : A × A → A is an operation to combine values: it is associative,
commutative, distributes over t, has 1 as its unit element and 0 as its absorbing
element. The choice operation coincides with the join operation of the lattice
induced by a v b iff a t b = b.

Notable examples are the Boolean (〈{true, false},∨,∧, false, true〉), the tropical
(〈R+,min,+,+∞, 0〉), the max/min (〈R+,max,min, 0,+∞〉), the probabilistic
(〈[0, 1],max, ·, 0, 1〉), the fuzzy (〈[0, 1],max,min, 0, 1〉), and the set (〈2N ,∪,∩, ∅, N〉)
semirings. For instance, action duration is modelled in our case study with a
tropical semiring. In that way, time is modelled as a positive real value, choosing
between two actions means choosing the fastest one and combining two actions
means adding their durations (i.e. combining them sequentially). Similarly, the
risk factor is modelled with a fuzzy semiring.

Semiring based methods have a unique advantage when problems with multi-
ple QoS criteria must be tackled: Cartesian products, exponentials and power
constructions of semirings are semirings. Thus the same concepts and algorithms
can be applied again and again. For instance, given two semirings C1 and C2 their
Cartesian product C1×C2 is a semiring. This allows us to deal with multiple cri-
teria at once. Moreover, such meta-operations can be implemented using Maude’s
parameterized modules and module operations. For example, the quantitative
information regarding duration and risk of actions in our case study is modelled
by the Cartesian product of the corresponding semirings.

Transition systems. The semantics of our rewrite theories are a sort of quantitative
transition systems (inspired by [13]) based on the ordinary one-step semantics of
rewrite theories [5].

Definition 3 (transition system). A quantitative transition system is a tuple
〈S,=⇒, C〉 such that S is a set of (system) states; C is a semiring 〈A,t,⊗,0,1〉
modelling the quantitative information of the system; =⇒⊆ S × A × S is a
transition relation.

We shall denote a transition (s, q, s′) by s =⇒q s
′. We restrict our attention

to finitely branching transition systems (i.e. ∀s ∈ S.|{(s, a, s′) ∈=⇒}| is finite).
The runs of a transition system are the (possibly infinite) paths in the underlying
state transition graph, i.e. sequences s0 =⇒q0 s1 =⇒q1 . . . . A finite run s0 =⇒q0

s1 =⇒q1 . . . sn will be denoted by s0 =⇒∗⊗ qi
sn.
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Planning problems. Finally, we formalise some classic planning problems, remark-
ing that many model-driven engineering activities like reconfiguration, refactoring
or transformations can be understood as plannning problems.

Definition 4 (planning problem). Let T = 〈S,=⇒, C〉 be a transition system,
I ⊆ S be a set of initial states and G ⊆ S be a set of goal states (typically
characterised with predicates). A planning problem is given by the tuple 〈T, I,G〉.
A solution to a planning problem 〈T, I,G〉 is a run s =⇒∗q s′, such that s ∈ I
and s′ ∈ G. An optimal or non-dominated solution is a solution s =⇒∗q s′ ∈ G
such that there is no other solution s1 =⇒∗q′ s′1 ∈ G such that q v q′.

4 A formalism for structured model- and rule-based
specifications

We present the formal means for describing model- and rule-based specifications
based on the machinery of §3.

Models as nested objects. In our view, a model is a collection of possibly hierar-
chical objects, i.e. an object of the system may itself be a complex sub-system
composed by various nested objects. The description of models is done with a
signature of nested objects that extends Maude’s object-based signature [5] with
nesting features that allow for objects to contain object collections.

More precisely, our rewrite theories are based on a basic membership equa-
tional theory MN = {ΣN , EN } that provides the main signature and equations.
Signature ΣN is basically made of sorts KN and operator symbols ON .

Definition 5 (basic sorts). The set of basic sorts of KN contains Conf, i.e.
the sort of model configurations; Obj, i.e. the sort of objects; Att, i.e. the sort of
attributes; a sort Set{T} for each of the above sorts T , i.e. the sort of sets of
T -terms; Oid of object identifiers; sort Cid of object classes.

Sort Conf will be our designated State sort whenever we will be interested
in analysing the space of possible system model configurations. We define now
the symbols of the operators that build terms of the above defined sorts.

Definition 6 (basic operators). The set of basic operator symbols ON con-
tains a constructor [ · ] : Set{Obj} → Conf for configurations, given a set of
objects; a constructor < · : · | · | · > : Oid× Cid× Set{Att} × Set{Obj} → Obj

for objects, such that <o:c|a|s> is an object with identity o, class c, attribute set
a and sub-objects s; a constant none : → Set{T} for each sort Set{T}, i.e. the
empty set; a binary operator · , · : Set{T} × Set{T} → Set{T} for each sort
Set{T}, i.e. set union.

Attribute and identifier constructors are problem-dependent, i.e. they are
defined for the particular domain or instance being described. We just remark
that they typically take the form n:v, where n is the attribute name and v is
the attribute value. Usual attributes include references to object identifiers and
quantitative information (see §3).
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Fig. 2. A configuration with nested objects

Example 1. Consider the diagram of Fig. 2, which illustrates an instance of our
scenario where two corvettes are located at a gulf. More precisely, we see that the
gulf is represented by the object of class Gulf with identifier 2, various attributes
and embedding the vessels within its area, namely objects 3 and 4, both of class
Corvette. Instead, Object 1 is the Base to which the corvette named Cassiopea

refers as its home, by means of the reference attribute homebase :· : Oid→ Att.
In our notation the described scenario is denoted by term

[< 1 : Base | name : Livorno , weather : 0.2 | none > ,
< 2 : Gulf | name : Napoli , weather : 0.5 |

< 3 : Corvette | name : Galileo | none > ,
< 4 : Corvette | name : Cassiopea , homebase : 1 | none >>]

The set of equations EN of our basic membership theory essentially axioma-
tises sets, i.e. it contains equations to denote the associativity, commutativity
and idempotency of set union and the fact that the empty set is the identity
element for set union.

Definition 7 (basic equations). The set of basic operator symbols EN con-
tains equations x , none = x (identity); x , x = x (idempotency); x , y = y , x
(commutativity); x , (y , z) = (x , y) , z (associativity) for each sort Set{T},
with x, y, z : Set{T}.

Obviously, the designer might introduce new sorts, subsorting declarations or
derived operators (new symbols and appropriate equations) for its own conve-
nience, but the above presented signature is at the core of all specifications.7

Quantitative information. Semirings can be described with membership equa-
tional theories.

7 Our incremental presentation does not only facilitate the reading of the paper but is
supported by module importation in Maude which also has a mathematical meaning
in rewriting logic, e.g. Set{T} is a parametric module in Maude offering the mentioned
constructors and equations.
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Definition 8 (semiring theory). A semiring theory is a membership equa-
tional theory 〈Σ,E〉 such that Σ contains the sort Cost for carrier A, the semiring
operator symbols t,⊗,0,1, the sort of Booleans and the usual lattice operator
symbols. E contains the axioms of Def. 2 and the usual equations for lattices.

A concrete semiring theory 〈A,t,⊗,0,1〉 is membership equational theory
that can be declared as a view of the semiring theory. For instance, The Boolean
semiring theory is a view of the usual Boolean theory. This allows us to re-use
Maude’s predefined theories (e.g. Floating-point numbers as approximation of
reals).

Conditional, labelled, quantitative rules. We are interested in rules in a particular
format, namely in the style of Structural Operational Semantics [16] (SOS). SOS
rules guarantee us a firm discipline in specifying the dynamics of a model by
structural induction, i.e. by composing the transition of objects exploiting the
structure of the model. In addition, we are interested in rules carrying quantitative
information. More precisely, one of the rule formats the designer should follow is8

t1
l1−→q1 t

′
1 t2

l2−→q1 t
′
2

t1 , t2
l1�l2−→ q1⊕q2 t

′
1 , t

′
2

if c

where a transition for a configuration made of sub-parts t1 and t2 (of sort
Set{Obj}) is inferred from the transitions of each of the parts. More precisely, if
part i of the configuration is in state ti and is ready to perform an li-labelled
transition to go into state t′i with cost qi, then a model configuration with state
t1 , t2 is ready to perform a transition labelled by l1 � l2 to go into state t′1 , t

′
2

with cost q1 ⊕ q2. Eventually, some additional conditions c might be considered,
but we require them to be predicates and not additional rewrites.

Operations � and ⊕ are used to combine transition labels and costs, respec-
tively. Typically, the combination of labels will follow some classical form. For
instance, in synchronisation rules, l1 and l2 can be complementary actions, in
which case l1� l2 would be a silent action label τ . However, we will not make any
particular choice of the synchronisation algebra. It is up to the system designer to
decide which labels and label synchronisation to apply. We only remark that it is
also possible to use semirings to model classical synchronisation algebras [12]. In
the following we assume that our basic signature is enriched with a sort Lab for
action labels. As for the quantitative information, the actual choice of operation
⊕ in each rule is up to the system designer.

In addition, a designer will be allowed to denote the transition of an object,
provided that its sub-objects t are able to perform some transition:

t
l−→q t

′

<o:C|A|t> l�l′−→q⊕q′ <o:C|A′|t′>
if c

8 Note that we put the rule conclusion on the bottom, the rewrite premises on top and
additional conditions on a side to stick to the usual SOS notation.
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Such rules might affect the attributes of the container object and manipulate
the action label but of course are not allowed to change the object’s identifier or
class. More elaborated versions of the above rule are also allowed, for instance
involving more than one object or not requiring any rewrite of contained objects.
We shall see some examples in §5.

Finally, there is a rule that is common to all specifications which allow us to
derive a global step of a configuration made of a set of objects t, removing the
action label, but keeping the transition cost:

t
l−→q t

′

[t] −→q [t′]

Rewrite rules in rewriting logic are not equipped with quantitative information
and that rule labels can be used only at the meta-level. This is not a problem,
as there are standard techniques to encode transition annotations into states.
In particular, we follow the encoding of SOS semantics in rewriting logic [20]
and enrich our signature with sorts for action-prefixed states (Act{State}), a
constructor {·, ·}· : Lab×Cost×State→ Act{State} for action and cost prefixed
states and a constructor {·}· : Cost × State → Act{State} for cost prefixed
states. In addition, we enforce rule application at the top-level of terms only (via
Maude’s frozen attribute) so that sub-terms are rewritten only when required in
the premise of a rule (as required by the semantics of SOS rules). However, since
this is basically an implementation issue, in the rest of the paper we shall continue
using our notation of labelled, cost-annotated transitions, leaving implicit the

fact that a rewrite t
l−→q t

′ actually denotes a rewrite t −→ {l, q}t′. In other
words, quantitative information is conceptually associated to transitions, but the
actual rewriting logic description constrains us to associate it to states, i.e. to
use terms to represent that ”a state t′ was reached with cost q via an l-labelled
rule”.

Transition system for planning. The built-in tools of Maude allows us to explore
the state space of rewrite theories. Basically, we concentrate on Maude’s reacha-
bility analysis which allows us to find a rewrite sequence from a term t to a term
t′ satisfying some conditions. To be able to use such tools, we have to encode
the analysis problems raised in §3 as rewrite theories. First, we remark that the
one-step semantics of the kind of rewrite theories we are interested in is defined
as follows.

Definition 9 (one-step semantics). Let R be a rewrite theory equipped with
a semiring C and with a designated state sort State. The transition system
associated to R is T (R) = 〈S,=⇒, C〉 such that S = TΣ/E,State, i.e. states
are equivalence classes of terms of sort State; =⇒= {t =⇒q t′ | t −→q

t′ is a one-step rewrite proof in R and t,t’ are State-typed terms}, i.e. system
transitions are formed by one-step rewrites between states.
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Non-optimal Planning. Now, we concentrate on finding a solution to a planning
problem 〈T, I,G〉 where T is the transition system of the rewrite theory R de-
scribing our specification, I is a set of initial configurations and G is the set of goal
configurations. This can be done using Maude’s search capabilities. However, the
presence of quantitative information introduces unnecessary redundancy. Indeed,
the state space might contain duplicate states with different cost annotations.
Therefore, we can forget the quantitative information just by dropping the cost
annotation. Technically, this is achieved in an elegant way by introducing in R
the equation {q}t = {1}t . It is obvious to see that reachability in the resulting
theory is enough for finding a solution of the planning problem.

Optimal Planning. Now we explain how to find optimal solutions to a planning
problem via Maude’s reachability analysis. The main idea is to emulate Dijkstra’s
shortest path algorithm, by exploring the state space of sets of non-dominated
configurations. We enrich state annotations with information to explictly record
the path to a state: {q, p}t denotes that state t has been reached through path p
with cost q. In addition, we use path operations like path concatenation (denoted
with ·). Now, we let Set{Conf} be the designated sort State and we enrich our
rewrite theory with the following rule

t −→q′ t
′

{q, p}t , S −→ {q, p}t , {q ⊗ q′, p · t =⇒q′ t
′}t′ , S if c

where c forbids the new state t′ to be a dominated duplicate (¬∃{q′′, p′′}t′′ ∈
({q, p}t , S) | t′ = t′′∧{q⊗q′, p·t =⇒q′ t

′}t′ v {q′′, p′′}t′′), and the state t selected
for exploration to be dominated (¬∃{q′′, p′′}t′′ ∈ S | {q, p}t v {q′′, p′′}t′′). The
rule basically allows us to enrich the set of discovered configurations so far in
a monotonic way. Of course, we have to discard dominated configurations by
introducing equation {q1}t , {q2}t = {q1}t if q2 v q1.

We denote the resulting rewrite theory by RSet. This provides us with a
simple method for finding optimal solutions to the planning problem, as each
rewrite step roughly emulates an iteration of Dijkstra’s shortest-path algorithm
(which can be generalised to semirings [17]).

Proposition 1 (optimal planning correctness). Let R be a rewrite theory
describing a system, I be the set of initial states and G be the set of goal states.
Then a solution for the planning problem 〈T (RSet), I, G′〉 is an optimal solution
for the planning problem 〈T (R), I, G〉, where G′ = {S′ ⊆ S | S′ ∩G 6= ∅}.

5 Domain and instance specification

This section provides some hints for describing and analysing model- and rule-
based specifications in our methodology.
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System domain description. System descriptions must include actual object
classes and attributes. For each class C the designer must declare a sort C that
represents the class and a constructor C :→ C. Each sort C is declared as a
subsort of Cid. Additional subsorting relations might be added in the same spirit
of class inheritance. The subsorting of classes allows us to declare rules that apply
to certain classes of objects only, in a very convenient way. For instance, in our
case study we have classes for the different entities involved in the scenario, like
locations (Location, Gulf, Base) and ships (Ship, Corvette). Sorts Gulf and
Base are declared as subsorts of Location, and similarly for Corvette and Ship.

Next, attribute domains and constructors must be declared. Typically, at-
tributes take the form n:v, where n is the attribute name and v is the attribute
value. Typical attributes include references to object identifiers and quantitative
information. In our example, for instance, we use an attribute homebase with
domain Oid to allow for ships to refer to their home bases and we have an
attribute weather with a fuzzy semiring as domain to represent the risk factor
introduced by weather conditions.

Of course, the system designer might introduce additional sorts, subsorting
declarations or operators (new symbols and appropriate equations) for his own
convenience.

System domain rules. The domain description includes the declaration of the
rewrite rules that represent the actions of the system. Some of the rules regard
the actions of individual objects and are of the form:

<o:C|A|t> l−→q <o:C|A′|t>

i.e. the object o is able to perform an action with label l and cost q and the effect
is reflected in its attributes. Note that such rules have no premise, i.e. they do not
require any transition of sub-components. It is also usual to have unconditional
rules involving more than one object (possibly with some nesting structure). For
example, a basic rule of our scenario declares the ability of a ship to navigate
(label nav) with a duration of 1 and a risk factor that depends on the weather
conditions of both locations.

< o1 : Location | weather : q1 , a1 | t1 > ,
< o2 : Location | weather : q2 , a2 | t2

< o3 : Ship | a3 | t3 >>
nav−→〈1,max{q1,q2}〉 < o1 : Location | weather : q1 , a1 | t1 ,

< o3 : Ship | a3 | t3 >> ,
< o2 : Location | weather : q2 , a2 | t2 >

Such individual actions are combined together with rules in the format
discussed in § 4. Recall, that the actual choices of operations � and ⊕ to combine
action labels and quantitative information are crucial for the semantics of the
rules. For instance, assume that our quantitative criteria includes action durations
(which is the case of our case study) modelled with a tropical semiring. Several
options are possible. If we let � be the choice operation of the semiring (i.e.
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min) we model the fact that the fastest action is considered (in which case it is
meaningful to replace t′2 with t2 in the conclusion of the rule). If we let � be the
join operation of the lattice underlying the semiring (i.e. max ) we model the fact
that the system has to wait to the slowest component to evolve. If we let � be
the combination operation of the the semiring (i.e. addition) we model the fact
that system components evolve sequentially. Similar choices are possible for other
quantitative dimensions. It is up to the designer to choose which one is more
suitable in each case. As for label synchronisation, the standard approaches are
possible like Hoare (all agree on the same action label) or Milner (complementary
actions are synchronised) synchronisation. In our case study we tend to use Hoare
synchronisation. For instance, the rule to combine the navigation of ships is

t1
nav−→q1 t

′
1 t2

nav−→q2 t
′
2

t1 , t2
nav−→q1(max ,max)q2 t

′
1 , t

′
2

i.e. we let two sets of ships navigate together at the slowest pace and considering
the worst risk factor.

System problem description. With a fixed domain description, several instances
are possible. An instance can be just a term of sort Conf (see e.g. Example 1 in
§4) denoting the initial configuration of the system, but might include instance-
dependent rules as well. Usually, a problem description will include a characteri-
sation of goal configurations. For instance, in our case study, we have specified
a function isGoal that characterises goal configurations, namely those configu-
rations where all ships arrive to Stromboli (to tackle the emergency due to an
increase of the eruptive activity of the vulcan).

Planning activities. In order to solve planning problems the system description
must be imported from one of the planning theories discussed in §4. Then we
can use Maude’s search command to perform the corresponding reachability
analysis. For instance, to find a solution for the rescue problem we can execute
the command

search [1] initialConfiguration =>* reachableConfiguration:Conf

such that isGoal(reachableConfiguration:Conf)

to obtain a goal state and, subsequently, the show path command to obtain a
solution, as a sequence of system transitions, each made of the actions need to
rescue the inhabitants of Stromboli, i.e. we obtain a rescue plan.

Instead, if we want to find optimal rescue plans we have to consider the theory
of configuration sets and use the command

search [1] initialConfiguration =>* reachableConfigurations:Set{Conf}

such that hasGoal(reachableConfigurations)

in which case we might obtain an absolute optimal rescue plan (one that is fastest
and with less risk) or a non-dominated rescue plan (either one that is faster but
involves more risk, or one less risky but slower).
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6 Related work

We offer a brief discussion with related approaches that have influenced or inspired
our work. A first source of inspiration is our previous work on Architectural Design
Rewriting (ADR) [4] an approach that conciliates algebraic and graph-based tech-
niques to offer a flexible model for software systems (e.g. software architectures)
and their dynamics (e.g. architectural reconfiguration). Roughly, ADR models
are rewrite theories interpreted over a particular class of hierarchical graphs.
Another fundamental source of inspiration is the approach of [3], which provides
a rewriting logic semantics to the Meta-Object Facility (MOF) and proposes the
use of rewrite rules as a declarative description of model transformations. In a
way, the present work conciliates both approaches. First, by enriching the formal
model of [3] with explicit hierarchical features: in [3] compositions are modelled
with references, so both models are somewhat homomorphic, but our explicit
representation facilitates definitions (e.g. rules or predicates) by structural induc-
tion. Second, by devising a methodology inspired by our experience in modelling
and analysing with ADR.

Similar approaches can be found in the field of quantitative process algebras
(e.g. with applications to software architectures [1]), rewriting logic based quanti-
tive specifications (e.g. timed [15] or probabilistic systems [11]) or quantitative
model checking (see e.g. [10]). As far as we know, the focus has been on time
and probabilistic/stochastic aspects in the tradition of Markovian models. It
is possible to model some of such aspects with semiring as well but in a more
approximated fashion. On the other hand, semirings offer various advantages:
they are compositional, not limited to two aspects and enjoy algebraic properties
that are inherent to many graph exploration algorithms, starting from the well
known Floyd-Warshall’s algorithm to solve the all-pairs shortest path problem.
A particular variant of semirings has been implemented in Maude [9]. However,
the variant of semiring used is slightly different from the one we need.

Our approach is also related to AI planning and in particular action planning.
Due to space constraints we cannot offer a detailed overview of such a vast
research field. However, we mention some prominent approaches. A relevant
planning community centers around the Planning Domain Definition Language9

(PDDL), a meta-language to be used as common problem domain and problem
description language for various planning tools. The main difference with our
to describe systems with inherently hierarchical aspects and does not allow to
specify flexible (e.g. conditional) rules. However, many efforts have been invested
towards expressiveness and performance. Interesting branches we are currently
investigating are Temporal Planning [6] which copes with planning problems
with durative, concurrent actions, and Hierarchical Task Planning [18] where the
execution of a (hierarchical) task might require the execution of a plan of (sub)
tasks.

9 http://ipc.icaps-conference.org/
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7 Conclusion

We have presented an approach for the description and analysis of model- and rule-
based specifications with hierarchical structure. Our approach provides several
benefits. First, it is built over the solid foundation of algebraic approaches like
rewriting logic, structural operational semantics and semirings. Second, all the
mathematical machinery is presented in the unifying, tool-supported framework
of rewriting logic. Third, the approach fits perfectly with MOF-based technology
as the MOF structure is somewhat homomorphic with our formalism. As a
matter of fact our approach can be understood as a no-harm enhancement of the
algebraic approach to MOF of [3]: one should be able to pass from a composition-
as-relation representation to a composition-as-containment representation in a
bijective manner, to use structural induction there where convenient. Fourth,
the approach imposes a design discipline based on the hierarchical structure of
composition associations, which contributes to the scalability of model- and rule-
based approaches. Indeed, designers can benefit from the layered view introduced
by the hierarchical structure and structured rewrite rules can lead to more efficient
analysis activities.

In this regard, we are currently investigating performance comparisons between
flat and structured approaches to model manipulations. In particular, preliminary
results comparing classical examples of model transformations are very promising.
Other current efforts regard the automatisation and tool-support for system
descriptions. For instance, it should be possible to automatically derive the
equational part of the theory from an UML class diagram, along the lines of the
technique used in [3], e.g. deriving sorts from classes, subsorting from inheritance
relations, and nesting from composition relations. In such way we could benefit
from high-level front-ends.

We are also investigating more elaborated analysis problems. For instance,
Maude provides a strategy language that we could use to restrict the set of
acceptable plans we are interested in (e.g. by forbidding certain actions), and an
LTL model checker that could be used for characterising plans with Linear-time
Temporal Logic along the lines of planning as model checking approaches [8].

In future work we plan to conduct a comprehensive experimental evaluation
to evaluate the applicability and scalability of our approach, considering auto-
matically generated tests, industrial case studies, other application domains (e.g.
architectural reconfiguration, refactoring) and comparison with state-of-the-art
tools.
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