FOCLASA 2004 Preliminary Version

Prototype platforms for distributed
agreements 1

Alberto Baragatti, Roberto Bruni, Hernian Melgratti,
Ugo Montanari and Giorgio Spagnolo

Dipartimento di Informatica, Universita di Pisa, I-56127 Pisa, Italy,
{baragatt ,bruni,melgratt,ugo,spagnolo}@di.unipi.it

Abstract

We present a prototype application for coordinating distributed agreements in multi-
parties negotiations, where participants can dynamically join ongoing negotiations
and where participants know only those parties they have interacted with. Our
prototype is tailored to Ad-Hoc network scenarios involving the assignment of tasks
for a rescue team operating over disaster areas. Our application is based on asyn-
chronous communication and it exploits the D2PC protocol for committing or abort-
ing a negotiation. Parties have been developed both in Jocaml+Perl and Polyphonic
C!. The implementation of the commit protocol allows components of both types
to participate within the same negotiation.

Key words: Multiway transactions, Compensations, distributed
negotiations

1 Introduction

When developing distributed applications, in particular when combining inde-
pendent, heterogeneous components, the orchestration of agreements emerges
as a typical problem. Hence, patterns and frameworks to handle distributed
negotiations become essential [8]. In this paper we introduce an approach
to orchestrate agreements whose structure may change dynamically and we
present a “proof of concept” prototype application, where some parties are
written in Jocaml and Perl, and others in Polyphonic CF.

As a running case study we consider a typical scenario within the context
of Mobile Ad-hoc NETworks (MANETSs), i.e. networks where agent mobility
coexists with dynamic infrastructures and net topology. MANETS are typical of

1 Research supported by the Italian MIUR within the framework of the IS-MANET project
(Software infrastructures for mobile Ad-Hoc networks in difficult environments).
This is a preliminary version. The final version will be published in

FElectronic Notes in Theoretical Computer Science
URL: wuw.elsevier.nl/locate/entcs

BARAGATTI et al.

wireless scenarios for small mobile units and their infrastructures (emergency
teams, medical teams, security units, press and information groups, hi-tech re-
search and business meetings), where many local agents are involved (laptops,
PDAs, and last generation mobile phones). Our case study considers a rescue
unit composed by a central base and several teams, each of them having a
leader and several operators. Roughly, the idea is that after having exchanged
several messages, each member can either decide to commit her/his negoti-
ated involvement in the task, or to abort the negotiation when the assigned
activity cannot be performed. Note that team members often have a limited
knowledge about the other participants in the task, i.e., they only know those
members they have interacted with (by sending or receiving messages).

In order to implement such kind of agreements in a fully distributed way,
we rely on the distributed two phase commit protocol (D2PC) proposed in [3].
The D2PC has been specified in the Join calculus [7] by taking advantage of
its main features, namely, asynchronous communication, reflexive description
of processes, creation of fresh names, and name mobility. Consequently, the
D2PC can be straightforwardly coded in any programming language that im-
plements Join features, such as Jocaml [6] or Polyphonic C* [1]. Our prototype
implementation exploits both languages and allows agreements to be orches-
trated among Linux components running Jocaml and Perl code and .Net com-
ponents written in Polyphonic C!. As different parties communicates via TCP
sockets, components of both types can participate to the same negotiation.

Components running Jocaml and Perl code are structured on three layers.
The bottom layer hosts the distributed transaction manager, which is written
in Jocaml. The other two layers (Gul and coordinators) are written in Perl,
because of its simplicity for developing prototypes. Components written in
Polyphonic C! follow the object oriented paradigm: the instances of the class
d2pc are responsible for performing the commit protocol.

In both cases, programs at the application-level are just responsible for
keeping track of the involved parties and to initiate the agreement protocol.
The execution of the commit protocol is transparent to the application-level
(and hence to team members) and it is handled either by the two lower layers
in the Jocaml and Perl implementation or by the class d2pc in Polyphonic
C*. This abstracts away the application-level from the orchestration of the
agreement, making the negotiation mechanism reusable for developing new
applications.

Structure of the paper.

An original case study describing the assignment of activities to rescue
teams is given in § 2. The mechanism for orchestrating agreements is pre-
sented in § 3, while the D2PC is summarized in § 3.1. The architecture and
functionalities of our prototype implementations are detailed in § 4.

2

BARAGATTI et al.

)
/ \. 3 @% Gentral Base
o ﬁ Team Leader

N SN

Figure 1. Logical structure of a rescue unit.
2 Scenario

This section presents a typical scenario requiring the orchestration of dis-
tributed agreements between several parties.

The scenario is within the more general context of [9] and considers rescue
teams structured in a hierarchical way (as shown in Figure 1), where different
nodes correspond to different computation and communication capabilities.
Note that the tree in Figure 1 is not the communication graph. We shall
abstract away from routing mechanisms and we assume that any team mem-
ber can send messages to any other reachable member. The main goal of the
application is to provide a set of functionalities to support the coordination of
a rescue unit during ground operations. A rescue unit is divided into several
rescue teams and is coordinated from a Base able to communicate via satel-
lite or cellular telephony with a wired network. Additionally, the Base can
communicate with the different rescue teams operating on the area (i.e., by
using 802.11 devices). Any rescue team has a team leader who coordinates the
team, consisting, e.g., of five operators. Team leaders can also act as opera-
tors if needed, but they have different computing power: leaders have laptops
and operators are provided with PDAs. Moreover, all operators are equipped
with a device for a georeference system that provides the Base with real-time
information about their positions.

The assignment of tasks to people is organized in a top-down way. That is,
the Base assigns general activities to the different teams by sending a message
to the team leader. The leader will in turn split and distribute the task to team
operators. Clearly, there can be different situations in which the distribution
of activities may require an agreement between all involved members. Note
that agreements cannot be established unilaterally and that a commit require
the consensus of all participants.

The scenario described below considers a rescue unit consisting of four
teams that cover different contiguous zones of an area where an avalanche
occurred (as shown in Figure 2). This scenario specifies how the Base tries to
assign an activity to the team 77.

2.1 Scenario: Assignment of an Activity

Normal Flow:

(i)

BARAGATTI et al.

& T
& #
5#!)
B i Tj #
Gas danger - T;} k4 ¥ &
Tz &
¥

Figure 2. A rescue unit distributed over a disaster area.

The scenario starts when the Base sends a message to the leader [; of
the team T} signaling the need of looking for an escape of gas in an area
situated between the zones covered by teams 7T; and 75.

After receiving the request, the leader [y decides that two operators will
be needed to cover the whole area.

Consequently, the leader [; selects from 7; the three operators that are
closer to the compromised area hoping that at least two of them will
be able to carry on the tasks, and sends them a message requiring their
availability for performing a new task. After that, [; waits for operator’s
answers.

Any operator who receives the request will answer the message either by
offering her/his availability or by refusing the task. Operators commit
their participation to the negotiation when refusing a request, because
they are not interested in the result of the agreement. (Note that refusal
is not an abort).

When [; receives the answers from the three operators, one of the follow-

ing situations takes place:

(a) All operators have answered in the affirmative. In this case l; chooses
two of them and sends them detailed instructions for carrying out
the activity. Moreover, [; communicates the decision to the excluded
operator. Additionally, I; confirms the Base about the successful
assignment of the activity and commits the negotiation.

(b) Two operators have offered their help and the other refused the re-
quest. In this case the choice is the obvious one, and the leader
sends messages only to the two chosen operators and to the Base,
and he/she commits.

(c) Less than two operators are available for the required task. In this
case there are three alternatives:

* [, refuses the activity by aborting the negotiation. In this case the
Base will try to assign the activity to another team, for instance 75.
* [, asks the remaining operators of 77 about their availability. The

4

BARAGATTI et al.

scenario follows analogously from point 4.
* [y requires help from other teams (the scenario follows as described
below in § 2.2).

(vi) If I; has managed to assign the task, then the chosen operators receive
the specific instructions to perform the activity. After that, they will
commit the agreement.

(vii) Also the Base receives the notification of the successful assignment of the
activity to 77 and commits the agreement.

(viii) When all participants have committed, all of them are notified about the
successful completion of the agreement.

Exceptions: Any participant is able to withdraw its decision at any moment
before it explicitly commits. In this case the scenario ends by making all
participants aware about such decision. Typical cases are the following:

* The Base has been informed that the gas provider has safely stopped the
provision on the area, and therefore the activity is no longer useful.

* The team leader [receives a request to perform an activity with higher
priority, for instance to move people out of the area.

* The operator realizes that is unable to reach the area.

As described before, during the assignment of an activity, a particular
team may need some extra operators in order to carry out the task. Teams
may also need help while they are performing an already assigned task, i.e.
if an operator is unable to fulfill an activity that becomes harder or more
complex. In such case, the operator will ask support to its own team by
sending a message to the leader, who will manage to assign the new task to
other members of the team (similarly to the task assignment described above
as Normal Flow). It could be the case that the team is unable to provide the
required support, doing necessary the participation of operators from other
teams. The following scenario describes such situation.

2.2 Scenario: A team requires support from other teams

Normal Flow:

(i) The team leader /; asks the Base to find additional operators from other
teams, for instance n operators.

(ii) The Base selects the k closest teams and forwards the request.

(iii) When a leader receives a request, it follows a protocol similar to that
described in § 2.1 to inquire operators availability.

(iv) After receiving answers from operators, the leader informs the Base with
the number of available operators.

(v) When the Base receives enough answers to satisfy the original request
from [y, it notifies all selected teams and /;. The Base implicitly commits

5

BARAGATTI et al.

the agreement at this moment.
(vi) After receiving the confirmation, {; decides to commit the agreement.

(vii) Chosen leaders forward the received notification to their operators and
commit the agreement.

(viii) Chosen operators receive the confirmation and then they commit.

(ix) All involved parties are notified when all involved participants have com-
mitted.

Exceptions: Analogously to the scenario presented in § 2.1, any participant
can withdraw its decision and abort. In such cases, the scenario ends by
making all participants aware about the abort.

3 Coordination pattern

Agreements in our case study depend mainly on the particular dynamic inter-
actions among the different members of a rescue unit: operators and leaders
are getting involved in a negotiation when exchanging messages with other
parties involved in that agreement. Hence the global structure of negotiations
can be neither determined a priori nor statically fixed.

The most general scenario consists of distributed processes that can start
local activities to be executed in the context of a larger negotiation. When
a participant starts an activity to be part of an agreement, it creates a local
manager to handle such negotiation. Local managers follow the distributed
commit protocol of [3] described below (see § 3.1). Figure 3(a) shows a partial
view of the state of several components in a rescue team after they have
initiated their transactional processes. In particular, the participant leader;
has an active process Schedule for handling the assignment of a particular
task. Since Schedule runs as part of an agreement, it is managed by the
local coordinator C'. Similarly, any participant operator; has an active process
Schedule; managed by the corresponding coordinator (A or B).

Now suppose that the activity Schedule sends a message to the process
Schedule; for assigning a particular activity to operator;. This interaction
joins both activities Schedule and Schedule; into the same negotiation. In
our approach, this is achieved by making both participants aware about the
identities of the corresponding coordinators. Similarly, if leader; also requires
the support from operator, to perform that activity, and then leader; contacts
operator,, then the states of involved parties are updated as in Figure 3(b).

Consider that at this time all participants leader;, operator; and operator;
have all the information needed to decide independently either to commit or
to abort. In this case, every participant locally activates the commit protocol
described below and waits for the outcome decision.

6

BARAGATTI et al.

Scheduley Scheduley Scheduley Scheduley
@ 1A “B)
operator; operatorp operator; operator,
© o)

leader; leader;

(a) Initial situation. (b) After the interactions.

Figure 3. Interaction between task in an agreement.

3.1 The Distributed Two Phase Commit Protocol (D2PC)

This section provides an informal description of the D2PC proposed in [3].
Originally, it was proposed to implement zero-safe nets, a transactional exten-
sion of Petri nets. The D2PC is a variant of the decentralized 2PC protocol [2].
Roughly, it implements a distributed agreement protocol among a set of par-
ticipants (or their managers) that have a partial knowledge about the whole
set of parties. The algorithm assumes a reliable asynchronous communication
between participants. Moreover, participants can abort, but do not crash.
The D2PC has been proved to be correct in such setting, assuring that all
participants will asynchronously take the same decision (details can be found
in [3]). Although in a MANET nodes can disconnect and communication is not
highly reliable, in this work we do not deal with failures because we are aimed
at studying how a protocol like the D2PC can be used to coordinate negotia-
tions in scenarios like that described in § 2. Note that when communication
reliability cannot be guaranteed by the MANET middleware (dynamic rout-
ing and retransmission mechanisms) the correctness proof of the D2PC is no
longer valid. To deal with the more general case, we plan to develop and use a
suitable distributed version of the three phase commit protocol (non-blocking
and with less guarantees), but this is left for future work.

All participants in the D2PC act as transaction managers, all of them
having the same behavior and communicating in an asynchronous way. Any
manager maintains a list of all known parties (for that transaction), called
the synchronization set (S) and a list of committing parties (C). At the be-
ginning of the transaction both lists are empty. During the transaction, the
synchronization set is updated to include parties from which a message has
been received and also parties to which a message has been sent. Therefore,
when the D2PC is activated to conclude the transaction, the synchronization
set contains just those parties with whom a direct interaction occurred. Both
lists S and C are updated during the execution of the protocol, until either
there is an abort or the two lists become equal (meaning that all other par-
ticipants to the transaction are known, they have voted for commit, and the
commit vote has been sent to all of them). More precisely, any participant

7

BARAGATTI et al.

Initial State of the j-th participant P;.

* §; : set of all known parties (those with whom P; cooperated directly).
« Ci=10
* state; € {committing, failed}

Algorithm.

¢ Committing. While in state committing perform the following steps

(i) If S; = C; then finish with “commit”.

(ii) Otherwise, send the own synchronization set S; to every known party in S; to which
the message has not been already sent (message LOCK).

(iii) for any received message LOCK(S;) from the participant P; update the state in the
following way:
. Sj = Sj UusS;
- Cj=C;U{F}

(iv) if a message ABORT is received, send all LOCK messages and then pass to the state
failed.

(v) goto 1.

¢ Failed. When the state failed is reached, finish with “abort”.
While in state failed answer with ABORT to any received message of type LOCK.

Figure 4. D2PC algorithm.

performs the algorithm described in Figure 4. We refer the interested reader
to [3] for the formal definition of the protocol in Join. (Perhaps the meaning
of the notation LOCK for those messages including synchronization sets is not
obvious to the reader: it means that the parties in the synchronization sets
are “locked” until an agreement / abort is established.)

In Figure 5 we illustrate a run of the D2pPc with the three coordinators
A, B and C from Figure 3(b), any of them willing to commit. The initial
configuration (Figure 5(a)) shows the partial view that any participant has
about the other parties in the agreement (see the local synchronization sets
S): A and B know only that C' is part of the agreement processes, while C
knows both A and B. Moreover, every participant initializes the set of commit
confirmations C with the empty set.

When the protocol starts (Figure 5(b)) every participant sends its ready to
commit vote together with its synchronization set S to any known participant.
After this round (Figure 5(c)), all participants update their states with the
information contained in the received messages. Note that C' has received
votes from both A and B without information about other participants. In
this case both sets S and C of C coincide and thus C knows that all parties
in the negotiation are willing to commit. At this time C can commit, because
no party has decided to abort. Differently, A and B have received the commit
vote from C' containing participants not known previously, thus they update
their state and must continue the execution of the protocol. In the next step,

8

BARAGATTI et al.

={C} §={C} §={C} §={B,C} §={A,C}
c={} c={} c={} c={C} c={C}

@ @o o® @
© o (Eylm ©

S={A,B} S={A,B} S={A,B}
c={} c={} Cc={A,B}
(a) Initial situation. (b) First round. (c) After first round.
S§={B,C} S={A,C} S§={B,C} S={A,C}
c={C} 5.0y c={C} ¢={B,C} c={A,C}

4 B
{A,C}

5={A,B} 5={A,B}
c={c} C={A,B}
(d) Second round. (e) Final situation.

Figure 5. Example of commit.

A and B send their decisions to the recently known participants (Figure 5(d)).
After that, they update their state and commit (Figure 5(e)).

Consider a different scenario in which A and C' are willing to commit but
B decides to abort. The initial situation is shown in Figure 6(a). We do
not show the synchronization set of aborted components because it is useless.
When the protocol starts, every participant in committing state (i.e., A and
C) sends its vote to the known parties. Similarly to the previous case, com-
mitting participants update their states (Figure 6(c)). Note that C' cannot
commit because it has not received the confirmation from B. Neither A can
commit because it has received the identity B, discovering a new participant
to contact. In the next round (Figure 6(d)), A sends its vote to B. Instead,
B answers the message received in the previous round from C' with abt, sig-
naling the abort of the negotiation. After the second round (Figure 6(e)) C
aborts because of the message abt received from B, while A is still waiting
the corresponding vote from B. Finally, in the third round (Figure 6(f)), B
answers to the commit vote from A with abt. After this round (Figure 6(g))
all participants have aborted.

4 Implementation

We have developed a prototype application that implements a minimal set of
functionalities in the context of scenarios described in the Introduction and

9

BARAGATTI et al.

s={cC} s={c} S={B,C}
c={} c={} c={C}

D @ W @ W 0
© o ()l ©

S={A,B} S={A,B} S={A,B}
c={} c={} c={A}
(a) Initial situation. (b) First round. (c) After first round.
§={B,C} §={B,C}
c={c} 5.0 c={c}

e O
@ ®

S={A,B}
c={c}

(d) Second round. (e) After second round.

S={B,C}
c={c}

(ay

abt

© O ©o
C/ C/

(f) Third round. (g) After third round.

Figure 6. Example of abort.

§ 2. It allows users to exchange textual messages and to reach an agreement
among the parties that have interacted. In our prototype, parties can be of two
different types: (i) Linux components running Jocaml and Perl code; and (ii)
Net components written in Polyphonic Cf. Since parties communicates via TCP
sockets, components of both types can participate to the same negotiation.

In this section we describe the architecture and the principles that have
inspired the design of our implementation. In particular, the functionalities
of a component from the user point of view are detailed in § 4.1, while the
communication among parties is summarized in § 4.2. Then, § 4.3 and § 4.4
presents the architecture of Jocaml+Perl and Polyphonic C* components, re-
spectively. Finally, § 4.5 discusses the main differences among the various
coding of the D2PC in Join, Jocaml and Polyphonic C* together with some
performance aspects.

10

BARAGATTI et al.

jtest 2

‘Send Msg | commit_ | -

Figure 7. User actions.

4.1 User view

Our application allows users to exchange messages with textual content trying
to establish some agreement with other reachable users (chosen from a set of
parties fixed a priori and loadable from a configuration file). At any moment
users can decide either to commit or to abort. Figure 7 shows the fragment
of the graphical interface containing the core widgets: a text box for entering
a message, a button for sending the typed message, one button for voting
commit and another button for voting abort.

After having sent and received messages to / from other users as part of an
agreement, a user will vote commit or abort. We assume that every participant
will vote commit / abort after a finite amount of time. If the user votes abort,
then the whole agreement is aborted. For this reason the graphical interface
shows immediately the status abort. Moreover, all remaining users in that
agreement will be aware of the abort after voting.

Instead, when a user votes commit all decisions from the other parties are
waited for, and the status will be commit only when every other participant in
the negotiation has voted commit. The way in which the decision is achieved
is hidden to users, who can just press the commit button and then wait for
the outcome to be displayed.

Additionally, we assume that the structure of a rescue unit is statically
fixed and known a priori. For this reason we provide any user with a configu-
ration file that describes all members in a rescue unit. In particular, any user
is identified with a unique 1D, which is provided as command line argument
when the application is launched. In addition, the configuration file associates
IDs with 1P addresses. Parties know how to reach other nodes by reading the
configuration file. Moreover, the ports on which parties communicate depend
exclusively on the node ID. This assures that different applications running
on the same 1P address do not conflict in the use of TCP ports (useful for
experimentation). Consequently, communication at both application and co-
ordinator level requires only the 1D of the peer partner.

Note that a discovery mechanism could be needed in scenarios where the
set of participants cannot be statically defined. These cases require specific
protocols for the dynamic discovery of nodes that are out of the scope of this
work. Such protocols should be implemented at the physical media access
level in order to save as much as possible the wireless media. For instance, we
could use hwping like tools available on both Bluetooth and 802.11 technolo-
gies (12ping, etherping), which makes the implementation strongly dependent

11

BARAGATTI et al.

' Reachables ' Reachables _ Reachables
131.114.3.110:3 dottorl o
131.114.2.205:2 131.114.3.110:3 LRI e

(a) Userl. (b) User2. (c) User3.

Figure 8. Reachability information.

from the wireless physical layer adopted: any L2 media requires its own im-
plementation of the discovery mechanism.

As an additional functionality our prototype provides a small mechanism
for monitoring the reachability of nodes, which is independent from the physi-
cal media because it relies on UDP packets. It continuously polls the list of 1P
addresses by sending a dummy UDP packet to the echo port. A host is con-
sidered unreachable when the connection is not possible. This tool does not
require any special root privileges (as icmp does), and it reduces the amount
of TCP messages (SYN, ACK, PUSH, etc.) potentially flooding the wireless
media. We could get rid of the configuration file by implementing an iterated
automatic election algorithm similar to the one used by the NTP protocol to
elect the master or to solve the Designated Router election problem in OSPF
(where an automatic numbering of participants is performed on the basis of
their interface MAC address).

Example 4.1 As a running example, we consider a system formed by three
nodes. As mentioned before, the different nodes are identified by a name
(typically an 1P, but we have also used DNS resolvable names in our test
bed) and an ID, which are defined into a configuration file. In this case all
participants are using the following configuration file:

dotto : 1
131.114.2.205: 2
131.114.3.110: 3

As soon as the application starts, each user interface will show reachable
nodes. For instance, the user with 1D 1 (abbreviated as Userl) will see the
other two users, i.e. User2 and User3 (Figure 8(a)). Similarly, User2 sees
reachability information about Userl and User3 (Figure 8(b)) and User3 has
information about Userl and User2 (Figure 8(c)).

Now, suppose User3 sends the message “testl” to Userl and, at the same
time, Userl sends “test2” to User2 and User3. In this case, the interface of
Userl (Figure 9) will show in its list of Contacted nodes the addresses of both
User2 and User3. Moreover, the message “testl from User3” is displayed
on the list Received Mesg. Similarly, the interfaces of both User2 (Figure 10)
and User3 (Figure 11) will display the address of Userl in the list of Contacted
nodes and the message “test2 from Userl” in the list Received Mesg.

12

BARAGATTI et al.

ISMANET User H. 1

Reachahles Contacted Received Mesg

F31.114.3.110:3 131.114.2.205:2 test] from User3
131.114.2.205:2 | |[131.114.3.110:3

Figure 9. State of Userl after exchanging messages with User2 and User3.

ISMAMNET User M. 2

Reachahles Contacted Received Mesq

dotto:l dotto:1 teste from Userl
131 114.3.118:3

Figure 10. State of User2 after receiving a message from Userl.

ISMANET User M. 3

Reachables Contacted Received Mesqg

dotto:l | [[dotto:1 testZ from Userl
131,114.2.205:2

Figure 11. State of User3 after exchanging messages with Userl.

Note that at this point User2 and User3 have never exchanged messages
but, nevertheless, they are part of the same negotiation because both have
interacted with Userl. The information they know about each other concerns
only reachability, i.e. they can communicate. Suppose that at this moment
all users push the Commit button, which will activate the execution of the
distributed commit protocol (D2PC) in every node. Since all participants have
voted commit, the commit protocol will transparently close the agreement and
the status bar of every Gul will eventually display the value Commit (in this
case the execution of the D2PC will resemble Figure 5). Figure 12 shows the
final state for User2 (the status is updated analogously in the GUIs of the
remaining participants).

4.2 Communication between parties

The communication between parties (or nodes) occurs at two different lev-
els: (i) the application level; and (ii) the coordinators. At the application
level, parties exchange messages corresponding to the logic of agreements, as
described in § 3. Instead, messages exchanged by coordinators correspond
to the D2PC protocol. The two kinds of inter-party communication that can
occur are summarized below, together with the corresponding message format.

Application level communication.
At the application level, two parties exchange messages when a user sends a
message to another user. In this case, both the sender and the receiver update

13

BARAGATTI et al.

ISMAMET User N. 2

Reachables Contacted Received Mesg

dotio:1 dotto:1 1est2 from Userl
131.114.3.110:3

!
‘Send Msg_ | Commit. | -
Status: commit|

Figure 12. User2 after the termination of the D2pC.

their synchronization sets with the identity of the other participant, i.e., from
this moment both participants are part of the same negotiation. Messages at
the application level have the following form:

[free text] from User<ID>

A negotiation identifier should also be included. Without loss of generality,
we assume here that each GUI is involved in just one negotiation. (In general,
a local progressive numbering of negotiations would suffice.)

Communication between coordinators.

Coordinators exchange messages corresponding to the D2PC described in § 3.1
to vote commit or abort:

e LOCK-11;12;...;1n-11-al- to send a commit vote with the synchroniza-
tion set 11;12;...;1n. The logical names 11 and al denote the ports to be
used by other participants to send D2PC messages to the local coordinator.
(The corresponding TCP ports are easily derived from 11 and a1, which are
logical ids used for convenience.)

* ABORT- to notify that the sender has reached the abort.

4.8 Components coded in Jocaml and Perl

Parties have been implemented as the layered architecture shown in Figure 13.
The functionalities of any layer are summarized below.

* The Graphical Interface handles GUI events to allow a user to send mes-
sages to other parties, and to commit or abort the current agreement.

e The Coordinator is responsible for the distributed execution of the commit
protocol. It communicates with other coordinators and uses the underlying
D2PC algorithm.

* The D2PC algorithm performs the algorithm described in § 3.1.
14

BARAGATTI et al.

Graphical
Interface

@ ®

Coordinator

® @

D2PC

Figure 13. Layered architecture.

All information about the commit protocol is processed locally by the D2pC
algorithm, but messages to/from other nodes are managed (and forwarded)
by the coordinator layer. Although the communication between components
could be wired into the D2PC algorithm, the two functionalities are kept apart
to make the D2PC algorithm independent from the communication model used
by parties. For instance, components could communicate through uDP sockets
instead of TCP sockets only by changing the middle layer.

Top and middle layers have been implemented in Perl (for fast prototyping)
while the bottom layer has been written in Jocaml.

Jocaml is an extension of the Objective Caml (Ocaml), a functional lan-
guage with support of object oriented and imperative paradigms, that im-
plements the primitives of Join. Jocaml provides three main abstractions:
process, channels, join-patterns. Processes represent communication and syn-
chronization tasks. The simplest process is an asynchronous message. Com-
plex processes are obtained by combining expressions with the parallel com-
position of other processes. Channels are Jocaml abstractions corresponding
to Join names. There are two different kind of channels: synchronous and
asynchronous. The syntax for defining channels is the following

let def namel!|(args) = P(args)

This definition creates a channel (named name) and a receiver for it, which
will execute the guarded process P every time it receives a message. The chan-
nel is asynchronous when its name is suffixed with the symbol !, otherwise it is
synchronous. Synchronous names must return a value, i.e., P must explicitly
define the return value. Finally, join-patterns are used to describe synchro-
nization among different channels. A join-pattern definition creates several
channels at the same time and states a synchronization between them: the
corresponding guarded process may be executed only when messages on all
channels are present. These features are exploited in the definition of D2PC
managers. Figure 14 shows a partial view of the code corresponding to D2PC
managers in Jocaml, in particular the patterns that handle the beginning of
the protocol.

Layers communicates by exchanging messages asynchronously through Tcp
(or Unix domain) sockets, which provides modularity by allowing modules to

15

BARAGATTI et al.

let def create_thread() =

“or state! h | putl(l,a,c) = commit0 (remove lock 1,1, [lock], c,union a h)
or state! h | abt!() = release h | failed!()

in reply lock, put, state, abt ;;

Figure 14. Partial view of D2PC managers in Jocaml.

be implemented in different languages (e.g., Java instead of Perl).
The communication protocols between the different layers are summarized
below (numbers refers to Figure 13).

(1) Application — Coordinator. The application layer sends a message to a
coordinator in order to start the commit protocol, in particular it can
send one of the following two messages, depending on the button pressed
by the user:

* ABORT- to start the commit protocol voting “abort”.

e PUT-11;12;...1n- to start the commit protocol voting “commit”. The
message includes the list of contacted parties 11;12;...;1n, which
is forwarded to the D2PC layer. The list will be used to set up the
synchronization set before the start of the commit protocol. The name
PUT for this kind of messages originated from the centralized version
of the D2PC presented in [3] (based on the non reflective fragment of
Join), where the message was meant to “put back” suitable tokens in
the repository associated with that negotiation.

(2) Coordinator — D2PC. The coordinator forwards messages to the D2PC
layer when it receives the vote from the user (one of the two messages
described above) or when it receives votes coming from other parties as
part of the D2PC protocol (inter-party messages between coordinators).
More precisely, the coordinator can send the following messages to the
D2PC layer in order to start the commit protocol or to update the status
of algorithm:

* ABORT- to start the commit protocol voting “abort” (corresponds to
the abort message generated by the application layer) or to notify the
reception of an abort message from a party.

e PUT-11;12;...;1n- to start the commit protocol voting “commit”.
The synchronization set contains the coordinators 11;12;...;1n. This
message corresponds to the PUT generated by the application.

e LOCK-11;12;...;1n-11-al- to notify a commit vote from 11, with the
synchronization set 11;12;...;1n. The ports 11 and al refers to the
ports lock and abort of the sender.

(3) p2Pc — Coordinator. The D2PC algorithm generates the following mes-
sages to notify the coordinator about the actions it must take (see Fig-
ure 4):

e FWLOCK-11-11;12;...;1n- to ask the coordinator to forward the com-

16

BARAGATTI et al.

User1 User2 User3
” (Appl. GUI) 12 (Appl. GUI) 3 (Appl. GUI)
INITIALIZATION (D2PC coord.) | MW (D2PC coord.) | gDV (D2PC coord.) | g M1EW

VOTING COMMIT (put) < LOCK-IL;12;13-12-a2
& PUT-11;12—

D2PC (lock) - PUT-12;13-
LOCK-I1;12-11-al:

A

LOCK-12;13-13—-a3

COMMIT
[LOCK-I11;12;13-11-al} >
D2PC ctd. (lock) >
& - LOCK-11;12;13-13-a3+
GUI NOTIFICATION (commit) COMMIT
COMMIT = >

>

Figure 15. Sample timing diagram of an agreement.

mit vote to the coordinator 11 with the synchronization set 11;12; ... ;1n.

e FWCOMMIT-COMMIT- to ask the coordinator to inform the user that an
agreement has been reached.

e FWABT-ABORT- to notify the coordinator that current negotiation has
been aborted.

e FWABT-al- to ask the coordinator to forward the abort message to
the port al corresponding to the port abort of a coordinator in the
negotiation.

(4) Coordinator — Application. The coordinator informs the application
about the success or abortion of the negotiation:
e ABORT- to inform that the running negotiation has been aborted.
* COMMIT- to inform that the running negotiation has been committed.
When one of the two messages above is received by the application,
then the content of the status box in the user interface is updated corre-
spondingly.

The sequence diagram in Figure 15 shows a sample interaction between the
different layers and among participants. The coordinator layer is omitted for
readability. In particular, when the application layer of a participant decides
to start a new agreement, it locally creates a fresh D2PC manager for that
agreement (INITIALIZATION phase). The GUI phase corresponds to the
logic of the application. In the example, Userl sends a textual message to
User2, who sends a message to User3. (Note that textual messages have an
extra parameter for the identifier of the local D2PC manager, not reported in
the diagram). In this way applications acquire the knowledge of cooperating
managers (to whom messages are sent, or from whom messages are received).
Eventually, each application layer will decide whether to commit or abort,
starting the D2PC protocol. In this diagram we show the case in which all
applications decide to commit: first Userl press the COMMIT button, then

17

BARAGATTI et al.

public class d2pc{

//declaration of asynchronous methods

public async abt();

public async put (1lHost 1, port a, port c);

private async state (port h);

private async commitO(1lHost 1,1Host 11,1Host 12,port c,lPort a);

//a sample chord definition
when state(port h) & put (lHost 1, port a, port c){
port localHost=1.element (0);
1Host 11 = 1.Clomne();
11.remove(localHost);
1Host 12 = new lHost(localHost);
commit0(11, 1, 12, c, union(a,h));

Figure 16. The class d2pc.

User2 and finally User3 do the same (see the order of PUT messages). Note
that each application starts locally the protocol sending the PUT message to the
manager. The parameters of PUT messages correspond to the list of contacted
parties during the GUI phase. The LOCK messages are sent by the managers
according to the D2PC algorithm. When the execution of the D2PC concludes,
every manager will inform its application layer with the final decision (COMMIT,
in this case).

4.4 .Net Components

Parties have been also implemented in the object oriented language Polyphonic
C# [1]. Polyphonic C* extends C* with asynchronous methods (declared with
the keyword async and synchronization patterns, called chords (defined by
keyword when. A call to an asynchronous method is guaranteed to complete
almost immediately, i.e., the caller never blocks. A chord is defined by a header
(i.e., a set of method declarations) and a body. The body is only executed
once all the methods in the header have been called.

Consider the class d2pc in Figure 16, whose instances are responsible for
executing the commit protocol. The public asynchronous methods put, lock
and abort respectively initiates the protocol, receives a ready to commit vote
from a partner, and receives an abort. The private asynchronous methods
state and commitO represent internal states of managers. The following chord

when state(port h) & put(lHost 1,port a,port c)...
handles the activation of the commit protocol. In particular, its body is
executed when both state (coding the initial state of the manager) and put
(i.e., the commit vote from the application) are called.

The classes of Polyphonic C# components are organized as in Figure 17.
The utility classes Sender and Receiver provide methods for sending messages
to and receiving messages from other parties. The class User Interface handles

18

BARAGATTI et al.

g [
articipant |
S S

[Sender)
-7 | static sendMsg(...)

L

‘ Receiver ‘
‘ static async listen(int port, d2pc c) ‘

‘ d2pc ‘

b async put(IHost I, port a, port c)
async abt()
async lock(IHost I, port I1, port a)

Figure 17. Structure of Polyphonic C# components.

the interactions with the user and the instances of d2pc execute the commit
protocol. Note that the communication between classes inside a component
is achieved by method invocation instead of socket communication.

4.5 Discussion

The main differences between the implementations of the D2PC in Jocaml and
in Polyphonic C* are:

* Nondeterministic abort. The original Join coding allows a manager to au-
tonomously initiate at any time the commit protocol voting abort while it
has not received the PUT message that initiates the commit protocol with
vote commit (nondeterministic simulation of abort decision). This rule,
which guarantees the termination of any instance of the protocol, has the
disadvantage that can be fired as soon as the manager is created, forbid-
ding in this way the possibility to wait for a commit. Instead, in both the
Jocaml and Polyphonic C* implementation, the manager starts the commit
protocol voting for abort only when it receives the abort vote (e.g. from
the associated user). This implementation choice does not compromise the
correctness and completeness of the D2PC as far as every participant in the
agreement vote after a finite amount of time. As we are assuming that all
users will eventually vote, this modification does not affect the properties
of the protocol.

» Non-linear pattern matching. Neither Jocaml nor Polyphonic C* provide
mechanisms of non-linear pattern matching, although an extension of the
Join calculus with linear pattern matching has been proposed in [10]. In
the Join formulation of the D2PC, non-linear pattern matching is used for
convenience on port commit, which represents an internal state of a manager.
There are two cases, one in which there are managers to be notified, and
the other when all known managers have been already notified. The D2pPC
allows both sending of notification and vote receptions from other managers
to be interleaved freely. In our implementation we impose all notifications to
be sent before accepting a vote from a manager. Clearly, this is a particular
interleaving of the original specification, and therefore it satisfies all the
properties of the protocol. In our encoding this is achieved by using an

19

BARAGATTI et al.

Userl
U | 9 Userl

S(\er / \ Userb Userl User2 User3
User3 User6 User2 ‘ \ \ ‘ /

| | | User6 User4 User6
Userd Users User3 PN PN
U‘ \ / Userl User2 User3 Userb User4
serb

\ User4
User6

Figure 18. Experimentation patterns.

auxiliary port so to avoid non-linear pattern matching.

e Operations over sets. We have implemented in Jocaml| the functions union,
remove, equivalence and difference over (lists representing) sets. In Poly-
phonic C* we have implemented the class [Host that provides the operations
corresponding to a set of host addresses.

To give a taste of the overhead of the D2PC in terms of total amount
of bytes exchanged on the network and the maximum time delay needed to
inform all users about the commit, we performed some tests involving six
users over a simple MANET configuration. Users were numbered from 1 to 6
and the MANET was composed of two nodes (laptops) linked by a Bluetooth
connection. Each node was running three different users (even numbered
users and odd numbered ones running on different nodes). Users exchanged
messages according to four different patterns (see Figure 18): (i) a linear
pattern, where user number i sends textual messages to user i+ 1; (ii) a clique
(complete graph) pattern, each user sending and receiving from all the others;
(iii) an unbalanced tree-like pattern; (iv) a star-shaped pattern, with one user
exchanging messages with all the others. The different patterns influence the
initial knoweledge of each participant when the protocol starts.

In all our experimentations, the time measuring the performance of the
commit protocol was calculated as the time interval between the last push of
commit button (always from user number 6) and the first / latest flashing of
the COMMIT flag on user interfaces. Note that when the button is pressed
by the last user, the other managers have already started the protocol. The
number of bytes sent during the execution of the protocol is almost constant
across the configurations, being minimum in the linear pattern and maximum
for the clique (this is because in the clique pattern the initial synchronization
sets are larger). Differently, the execution time is minimum for the clique
pattern, and it varies up-to 5 times for the linear case and up-to 10 times for
the remaining cases. Of course, these data strongly depend on the number
of participants, on the way in which they exchanged information and on the
order in which users voted for commit. Scalability issues can be hardly inferred
from this simple experimentation.

20

BARAGATTI et al.

5 Conclusions

We have described a prototype implementation of distributed agreements in
multi-parties negotiations that takes advantage of the D2PC protocol intro-
duced in [3]. Parties have been implemented both in Polyphonic C# running
on .Net and in Jocaml + Perl running on Linux. Since the communication
among parties takes place by exchanging textual messages on TCP sockets,
components running in different platforms can interoperate.

Nevertheless, some limitations should be overcome in order to make the
described architecture fully satisfactory for scenarios like the one in § 2. In
particular, the D2PcC should be extended to handle failures, for instance by
using a suitable version of the three phase commit protocol. Moreover, taking
into account the hierarchical organization of rescue units and the way in which
decisions are taken, it would be interesting to analyze the combination of the
D2PC with some traditional commits protocols that optimize the number of
exchanged messages. Additionally, the inclusion of some mechanisms for the
dynamic discovering of participants instead of the configuration files used in
the presented implementation would be desirable.

As an additional contribution, the proposed architecture seems suitable
to implement (in an ad hoc manner) applications written in cJoin [5]. The
cJoin calculus is an extension of the Join calculus with nested, compensatable
negotiations, where processes in different transactions can interact by joining
their original negotiations into a larger one. In particular, the subcalculus of
flat negotiations has been encoded into Join by applying the p2pc [4]. Such
encoding provides the bases for coding cJoin applications over the presented
architecture.

References

[1] Benton, N., L. Cardelli and C. Fournet, Modern concurrency abstractions for ct,
in: B. Magnusson, editor, ECOOP 2002 - Object-Oriented Programming, 16th
European Conference, Lect. Notes in Comput. Sci. 2374 (2002), pp. 415-440.

[2] Bernstein, P., V. Hadzilacos and N. Goodman, “Concurrency, Control and
Recovery in Database Systems,” Addison-Wesley Longman, 1987.

[3] Bruni, R., C. Laneve and U. Montanari, Orchestrating transactions in join
calculus, in: L. Brim, P. Jancar, M. Kretinsky and A. Kucera, editors, Proceedings
of CONCUR 2002, 13th International Conference on Concurrency Theory, Lect.
Notes in Comput. Sci. 2421 (2002), pp. 321-336.

[4] Bruni, R., H. Melgratti and U. Montanari, Flat Committed Join in Join, in:
F. Honsell, M. Lenisa and M. Miculan, editors, Proceedings of CoMeta 20083,
Final Workshop of the CoMeta Project, Elect. Notes in Th. Comput. Sci, 2004,
pp- 39-54.

21

BARAGATTI et al.

[6] Bruni, R., H. Melgratti and U. Montanari, Nested commits for mobile calculi:
extending Join, in J-J. Lévy, E. W. Mayr and J. Mitchell: Proceedings of the 3rd
IFIP-TCS 2004, 2004, pp. 569-582.

[6] Conchon, S. and F. Le Fessant, Jocaml: Mobile agents for Objective-Caml, in:
1st International Symposium on Agent Systems and Applications (ASA’99)/3rd
International Symposium on Mobile Agents (MA’99), 1999, pp. 22-29.

[7] Fournet, C. and G. Gonthier, The reflexive chemical abstract machine and the
Join calculus, in: Proceedings of POPL’96, 23rd Annual ACM SIGPLAN -
SIGACT Symposium on Principles of Programming Languages (1996), pp. 372—
385.

[8] Lynch, N., “Distributed Algorithms,” Morgan Kaufmann Publishers, 1996.

[9] IS-MANET, Un possibile scenario per la piattaforma IS-MANET, On-
line documentation of the MIUR Project IS-MANET. Available at
http://zeus.elet.polimi.it/is-manet/ (2003).

[10] Ma, Q. and L. Maranget, Compiling Pattern Matching in Join-Patterns, in:
P. Gardner and N. Yoshida, editors, Proceedings of CONCUR 2004, 15th
International Conference on Concurrency Theory, Lect. Notes in Comput. Sci.
3170 (2004), pp. 417-431.

22

http://zeus.elet.polimi.it/is-manet/

	Introduction
	Scenario
	Scenario: Assignment of an Activity
	Scenario: A team requires support from other teams

	Coordination pattern
	The Distributed Two Phase Commit Protocol (D2PC)

	Implementation
	User view
	Communication between parties
	Components coded in Jocaml and Perl
	.Net Components
	Discussion

	Conclusions
	References

