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Abstract

Several recent research efforts have focused on the dyrespects of software architec-
tures providing suitable models and techniques for hagdii® run-time modification of
the structure of a system. A large number of heterogeneaysopals for addressing dy-
namic architectures at many different levels of abstractiave been provided, such as
programmable, ad-hoc, self-healing and self-repairingragrothers. It is then important
to have a clear picture of the relations among these propdsaformulating them into a
uniform framework and contrasting the different verificatiaspects that can be reasonably
addressed by each proposal. Our work is a contribution slthé. In particular, we map
several notions of dynamicity into the same formal framéwiarorder to distill the simi-
larities and differences among them. As a result we expldierdnt styles of architectural
dynamisms in term of graph grammars and get some bettehissin the kinds of formal
properties that can be naturally associated to such diffeggecification styles. We take a
simple automotive scenario as a running example to illtestrzain ideas.

Key words: Dynamic Software Architectures, Typed Graph Grammars
and Modelling.

1 Introduction

In the last decades, computer systems have changed froateddtatic devices
to highly interconnected machines that execute their tasks cooperative and
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coordinated manner. These modern, complex systems arenkasgtobal com-
puting systemg@GCS) ornetwork-aware computerand have to deal with frequent
changes of the network environment. In a GCS, componentasudosmomous and
dynamic, the network’s coverage is variable, and theretamentralized authority.

Software architectural models are intended to describestiueture of a sys-
tem in terms of computational components, their interagj@nd its composition
patterns 23], so to reason about systems at a more abstract level, disliag im-
plementation details. Since GCS may change at design tireesxecution time, or
run-time [20], software architecture models for GCS should be able toriesthe
changes of the system structure and to enact the modifisatioring the system
execution 9. Such models are generally referred toagmamic Software Archi-
tectures fsas), to emphasize that the system architecture evolves dunimiyme.

A variety of definitions of dynamicity for software architece have been pro-
posed in the literature. Below we list some of the most pranirdefinitions to
show the variability of connotations that the watgnamicacquires.

e Programmed Dynamism[8]. All admissible changes are defined prior to run-
time and are triggered by the system itself.

» Self-repairing [22]. Changes are initiated and assessed internally, i.eruthe
time behavior of the system is monitored to determine whrethehange is
needed. In such case, a reconfiguration is automaticalfgipeed.

e Self-adaptive[21]. Systems can adapt to their environments by enacting run-
time changes.

* Ad-hoc dynamism[8]. Changes are initiated by the user as part of a software
maintenance task, they are defined at run-time and are natrkabdesign-time.

e Constructible dynamism[2]. It is a kind of ad-hoc mechanism but all architec-
tural changes must be described in a given modification lagguwhose primi-
tives constrain the admissible changes.

The different proposals fassa are bound to particular languages and models. In
this paper we are aimed at understanding the main notioyisgabehind such pro-
posals by abstracting away from particular languages amatinoas. We want to
give a uniform formal presentation that is abstract enowgtolver most of those
features. In this sense, our work is in the line of other presiresearch efforts
[24,7]. In particular we select graph grammars as a formal framkvior map-
ping the different notions of dynamicity because (i) thepyide both a formal
basis and a graphical representation that is in line withugwal way architectures
are represented, (ii) they allows for a natural way of désieg styles and config-
urations, (iii) they have been largely used for specifyimghétectures. The use
of graph grammars is instrumental in comparing differenthanisms and better
understanding the kinds of properties that can be natuaabpciated to such spec-
ifications. We argue that the characterisation of dynamiei present is to some
extent orthogonal to the particular kind of graph grammaesuse, and therefore,
extensible to different variants of graph rewriting system
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Related Work. Several previous works have proposed alternative ways der d
scribing software architectures by using graph grammar.r€uresentation ofsa

as graph grammars is borrowed from the Le Métayer approbgh Actually the
notion of programmeadsa corresponds to that proposal. A different way of repre-
senting software architectures with graphs can be founildh yvhere hyperedges
are components and nodes are ports of communication, anmédbefiguration is
given as context-free productions together with a constreolving mechanism.
Also Baresi et al. in3,4] use graph transformation systems to model programmed
architectural styles at different levels of abstractiorelf8pairing mechanisms
have been proposed it,p,10,22]. Ad-hoc reconfiguration has been studied&h [
as a programming language that allows for the runtime madita of software ar-
chitectures. Similarly, proposals for constructible laages can be found i2().
These approaches are interested in providing executaitesfvorks for supporting
psa: The main difference w.r.t. our work is that they are aimegratviding real
specification/ programming/ languages while we are aimegivéitg an abstract
characterization of such kind of mechanisms.

As far as the different flavours of dynamicity are concerngtk work of
Wermelinger in R4] explores the ability of the Chemical Abstract Machine
(CHAM) [5] to express the dynamics of software architectures. Himé&biza-
tion proposes particular CHAM (and commands) to tackle-sejfinized, ad-hoc,
and programmed reconfiguration. Differently, we are irgézd in understanding
how each particular style of dynamism is reflected into a lgrgg@ammar.
Organization. In Section2 we describe the formal framework used in the rest
of the paper, and the way in which software architecturesepeesented by using
hypergraphs. Then we show how different forms of dynamiseoitware architec-
ture can be expressed in terms of graph grammars (SegYiand apply them to a
simple case study (Sectidi). Other orthogonal aspects of dynamism are discussed
in Section5. Some final remarks and future lines of research are in Se6tio

2 Formalization of Dynamicity

We model components and connectors as hyperedges and teeguahich they

are attached as nodes. Figdrdepicts an hypergraph containing two nogest;

and portp, the hyperedgeomponent (a component that exposes two different
ports), and the hyperedgennector (a connector that has two tentacles to the port
port; and one to the pororty). Note that component edges are drawn as square
boxes while connector edges as rounded boxes. Moreovehavetie ordering of
tentacles by labeling the corresponding arrows with naturmbers (in some cases
we shall use suitable names instead of numbers as labetsessé¢ the reading).

Definition 2.1 [Hypergraph] A(hyper)graphis a tripleH = (Ny, En, @4), where
N4 is the set of node£y is the set of (hyper)edges, apd : Ey — Ny} describes
the connections of the graph, wheXg stands for the set of non-empty strings of
elements oNy. We call|@y (e)| therankof e, with |@4(e)| > O for anye € Ep.
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Figure 1. A hypergraph describing a style.
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Figure 2. A hypergraph describing a configuration for théesiiy Figurel

The connection functiopy associates each hyperedgéo the ordered, non
empty sequence of nodess attached to. An architectural style is just a hypergraph
T that describes only the types of ports, connectors, comyerand the allowed
connections. A configuration compliant to such style is ttiescribed by the notion
of aT-typed hypergraph.

Definition 2.2 [Typed Hypergraph] Given a hypergraph(called thestyle, aT -
typed hypergraplor configurationis a pair (|G|, tg), where|G| is theunderlying
graph andg : |G| — T is a total hypergraph morphism.

The graph|G| defines the configuration of the system, white defines the
(static)typingof the resources. We recall that a total hypergraph morptis@ —
G’ is a couplef = (fy : N — N/, fg : E — E’) such that:fy(¢@c(e)) = ¢a/(fe(€))
(we overloadfy to denote also the homomorphic extensiorfipbver strings).

Consider the styl& in Figurel: there is one unique typ@mponent of compo-
nents exposing two ports of different types, and one comnettached to two ports
of type port; and one port of typgort,. Then, a possibl&-typed hypergraph (or
a configuration of the styl&) is in Figure2: it has two different components with
their corresponding ports, and one connector. The typingphism is implicitly
defined by the name of the elements in the configuration, wtocisist of the type
name plus a subindex identifying the particular instancg. (@ortport; o has type
port;). We remark that the typing morphism requires componentsat@ exactly
one port of typeport; and one of typeort,. Similarly, the only connections valid
for a connector are those that attach its first two tentadgsotts of typeport;
and the third one to a port of typert,. All such constraints are enforced by the
existence of a typing morphism.

The reconfiguration of a software architecture is descrined set of rewriting
productions. Roughly, a productignis a partial, injective morphism ofF -typed
graphs, i.e., it has the following shape:: L — R, whereL andR are T-typed
hypergraphs, called thieft-handand theright-hand sideof the production, re-
spectively. Given & -typed graphG and a productiorp, a rewriting of G using
p can be informally described as follow: (1) find a (type preseg) match of the
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Figure 3. A rewriting production.
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Figure 4. A rewriting production with negative applicatioandition.

left-hand-sidel in G, i.e., identify a subgraph d& that corresponds with; (2)
remove from the grapks all the items corresponding to the left-hand side that are
not in the right-hand-side; (3) add all the items of the righnd side that are not
in the left-hand-side; (4) the elements that are both amndR are preserved by the
rewrite.

An example of a production is shown in FiguB¢the morphism among the left
and right-hand side of the rule is represented by using theessemes for mapped
elements, i.e., itis the partial inclusion). The productaows to remove an exist-
ing connectoronnector; and to add a new connectasnnector; that is attached to
the original ports in a specular way with respect to the aagjconnector.

Finally, an architecture is described by ayped graph grammar.

Definition 2.3 [(T-typed) graph grammar] AT -typed) graph grammag is a tu-
ple (T, Gin, P), whereGy, is theinitial (T -typed) graphandP is a set ofproductions

Notation. Let G = (T,Gin,P) be a {[-typed) graph grammar, ar@ andH (T-
typed) hypergraphs. We wri6 =, H to denote thaG is rewritten in one step to
H by using the productiop € P. We abbreviate the reduction sequeli&e=-p,
G1=p, --- = pn Gn With Gg =, p,...p, Gn. We writeG =* G’ to denote that there
exists a possible empty sequersce P* of derivation steps such th@& =3 G'.

For convenience when describing the examples, we will abssider produc-
tions with negative application conditionl], i.e., productions that are equipped
with a constraint about the context in which they can be a&gpliFor instance,
such conditions can state that the production is applicatllewhen certain nodes,
edges, or subgraphs are not present in the graph. Such iomsdéire graphically
shown in the left-hand-side of a production by grouping fdden elements into a
dotted lined area. Figu#shows a production with negative conditions stating that
the new connectatonnector, can be added to the configuration if and only if no
other connector of typeonnector is already attached in a specular wayptot; a
andport;g. We refer the interested reader to the formal presentatfi@P® graph
grammars to17] and to [L1] for grammars with negative application conditions.
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3 Characterisation of Dynamism

This section characterizes different forms of dynamism daftveare architec-
ture [2,8,10,20,21,22] in terms of graph grammars. In particular we show that
for verification aspects it make sense to focus only on twen®of dynamicity:
Programmed and Repairing.

Given a grammag = (T, Gy, P), we will use the following notions:

» The set® (G) of reachable configurations.e., all configurations to which the
initial configurationGi, can evolve. FormallyR (G) = {G|Gin =" G}.

» The setDp(G) of acceptable configuratiorsf an architecture are defined as the
graphs that have typE and satisfies a auitable propeRy Formally, Dp(G) =
{G | Gis a T-typed grapm P holds in G.

3.1 Programmed dynamism

Programmed dynamism assumes that all architectural ckargadentified at de-
sign time and triggered by the program itse8].[ Many proposals in the liter-
ature [L6,13,4] that use graph grammars for specifyings present this kind of
dynamism. A programmenka 4 is associated with a grammaty = (T, Gy, P),
whereT stands for the style of the architectuf&y, is the initial configuration, and
the set of productionB gives the evolution of the architecture. The grammar fixes
the types of all elements in the architecture, and theiriptsssonnections, where
the productions state the possible ways in which a configuramay change.

Programmed dynamism enables for the formulation of sever#ication ques-
tions. Consider the set of desirable configuratidhg G ), then it should be possi-
ble (at least) to know whether:

 the specification is correct, in the sense that any reachadodiguration is
desirable. This reduces to prove th&f(G) C Dp(G), or equivalently that
VG e R(G):Pholdsin G

* the specification is complete, in the sense that any desi@bifiguration can

be reached. This corresponds to prade(G) C R(G), or equivalently that
if P holdsin G then G= R(G).

Hence, programmed dynamism provides an implicit definitibdesirable con-
figurations. That is, the sets of desirable and reachablegtoations should coin-

cide, i.e.,Dp(G) = R(G).

3.2 Repairing (or healing) dynamism

Self repairing systems are equipped with a mechanism thaitore the system be-
haviour to determine whether it behaves within prefixed peai@rs. If a deviation
exists, then the system itself is in charge of adapting tidigoration P].

We can think about a repairing architecture as an ordinaglygrammag g =
(T,Gin, P) in which the set of productions is partitioned into thredetiént sets,
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1 1
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Figure 5. A general graph of types of a software architecture

I.e., P = PpgmU PenvU Prpr.  Rules inPygm describe the normal, ideal behaviour
of the architecture, i.e.g; = (T,Gin,Ppgny is a programmeasa. Rules inPepy
model theenvironmenbr, in other words, the ways in which the behaviour of the
architecture may deviate from the expected one. Ruld%jpmay state that the
communication among components may be lost or that a nowwastk connector
become attached to a particular component. RBIgsindicate the way in which
an undesirable configuration can be repaired in order torbhecvalid one. That
is, the left-hand side of any rule iRy, identifies a composition pattern in the
system that is undesirable. In this way a repairing architecimplicitly defines
the desirable configurations of the system as those reachahfigurationss that
do not exhibit an undesirable composition pattern (i.eeftaHand-side match for a
repairing rule). Formally, the designer would expect that

Ge Q)P(g;q) iff GGK(GQ)A
=(39 € Ppr, 3G € R(Gq) : G=qC)

As for the case of programmable dynamism, repairing dyniamailows for the
formulation of the following two questions:

* the specification is complete. This reduces to prove @at Dp(G4) implies
GeR(Ga) A ~(3q € Ppr, 3G € R(Ga) : G=¢G)).

* the specification is correct. This corresponds to préve R (Gz) N —(3q €
Prpr,3G € R(Ga) : G=qG) impliesG € Dp(G4).

In addition, this kind of dynamism naturally poses the quesbf whether
reparing rules are adequate, i.e., whether the set of rgpaunies assures that for
any configuration that is reachable but not desirable thestsea sequence of re-
pairing rules that moves the configuration to a desirable Boamally,

* If Ge R(Ga) N (39 € Prpr, 3G € R(Ga) : G=q G) thenG =, G1 =¢,
e :>Qn Gn with Gn € @P(gﬂ) and{q07 e -aCIn} € Pl'pl’-

3.3 Ad-hoc dynamism

Roughly ad-hoc dynamism allows the architecture to evalgely by adding and
removing components and connectors without any restrictidne typed grammar
corresponding to ad-haga should therefore exploit a fully general type graph that
contains an infinite number of hyperakesnponent; andconnectorj (see Figuré),
one for every natural j € N. Any hyperaracomponent; (connectorj) stands for the
type of all connectors that expose exadtlyorts (respectivelyj roles). For sim-
plicity, we define all ports as having the same type (othexthg type graph should
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be extended, by adding an infinite number of nodes, to reptesery possible port
type). Similarly, the set of production is infinite as it ma#ibw for adding/ remov-
ing any kind of components and connectors. This leaves 8fihce for verification
issues, as the only guarantees given by ad-hoc dynamidhatseached graphs
are software configurations.

3.4 Constructible dynamism

Constructiblebsas are similar to ad-hoesas but here rewriting productions are not
the free combination of basic primitives: they are full-fied programs written in
some specific language. The main difference w.r.t. adekecs that a constructible
dynamic architecture is mostly characterised by the spgmiigramming language
allowed for defining the reconfiguration programs that camagg the evolution.
Generally speaking, constructible dynamism provides & werak notion of de-
sirable configurations, and hence verification aspectslarest meaningless when
assuming autonomous reconfiguration (likewise ad-hoc mhysra). However, the
situation is slightly different when considering reconfigiions controlled exter-
nally (see discussion in Secti@iy.

4 Automotive Software System

In order to illustrate the main forms of dynamism, we introduhe following sce-
nario borrowed from the European Projectisoria.

4.1 Automotive Case Study: Overview

Much of the cost of research and development in vehicle prtoluare associated
to automotive software. Today vehicles are equipped withu#titnde of sensors
and actuators that provide different services, like and vehicle stabilization sys-
tems, that assist people to drive safer. Thanks to currefilentechnology, ve-
hicles have the possibility to connect to the telephone ateinet infrastructures.
This has given birth to a variety of new services into the mdtive domain. Com-
munication in AS systems may invohmmmunicatiorthat takes place inside a
vehicle {ntra-vehicle) connection to vehicles in the vicinitynter-vehicle) or in-
teraction with the environment, for example through anrma¢ gateway\(ehicle-
environment) Our scenario will focus only the last two kinds of communicas.

4.2 Car Assistance Scenario

Consider a vehicle subscribed to an assistance servicetoumllision, the airbag

of the car is inflated, which causes the automatic generafiarmessage destined
to the accident assistant serverThe message can be transmitted through near
vehicles until reaching the server (preferred method) cedly to the server. The
message will be eventually delivered to the assistancesemich will coordinate

the assistance.
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Figure 6. Architectural Style of the AS System
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Figure 7. An instance of the AS style.

We will model the scenario by using two different kinds of qmonents:

e Vehicle (V): a component responsible for transmitting messages aelstinthe
assistant server. A vehicle component has three assogattst pi, for re-
ceiving a message from another vehigbg,: for sending messages to the next
vehicle, andps for communicating directly with the server.

e Accident Assistant Server §): a component that handles help requests. Its
unique portpjo is used for sending/receiving information to/from vehgcle

Components are connected by using the following connegpast

 Vehicle to Vehicle communication ¥/ /V): a connector used for mediating the
communication between two vehicles.

 Vehicle to Accident Assistant Server communication\{/S): a connector used
for supporting the interaction between a vehicle and a serve

Figure6 shows the architectural style of the AS system, while Figudepicts
an instance consisting of two vehicléégl(andV2) and one servels].

4.3 Programmed Dynamism

We will use a programmable architecture for specifying tta/wn which the AS
system keeps the communication structure among the comfmné/e define the
corresponding graph grammgy; = (T, Gin, P), where the architectural style is
depicted in Figuré, and the initial configuratioi, consists in thd -typed graph
containing a unique component of type seryend its associated port (i.e., a node
of typeport;,). The setP contains the productions that model the arrival/departure
of a vehicle into/from the area covered by a server, a carighgetting close/far
to/from another car, and a car that takes over another onesgaze limitations,
we describe just three productions. Fig8rstands for the case of vehicle entering
into the area covered by a server. This is modeled by creatimgyv component of
typeV and its associated ports, and a new connector between thada#ne server.

9
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Figure 8. New Vehicle connected to the Server.
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Figure 9. Vehicles approximation.
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Figure 10. One vehicle takes over another one.

Figure 9 describes the case of a car connected to the sevi®rthat gets closer
to another vehicle\(2) that is at the end of a queue (ndt@ has no connectors
attached to its input port). In this case the connectiovi3to the server is removed
and a new connector betwe®B andV?2 is created. Finally, Figur&0 depicts a
production that handles the case in which a vehicle takesan@her one. (Note
the rule assumes the vehicl$ andV2 to be in the middle of a queue, since they
are connected to other vehicles. The specification incltitteg additional rules to
handle the cases in which the take over involves cars at tthe @rthe queue.)

The set of desirable configurations for the AS system caneisll the config-
urations in which each vehicle has a unique, acyclic comopatimn path with the
unique server, and each vehicle port has attached at mosbomector.

4.4 Repairing dynamism

The following example shows the use of a repairing architecfor modelling
the fact that the communication between vehicles is noabédi and can be lost,
but in such cases the architecture should repair itself geloto provide un-
connected components with a link to a server. We defined ahggagammar
Ga = (T,Gin, P) in which the set of productions is divided into three differsets,

10
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Figure 11. (a)Lost of connectivity. (b) Repairing.

I.e., P = PpgmU PenvU Prpr. In our scenaridPygm contains the same productions
as defined in Programmed Dynamism (s&8), Pe,y cOntains the unique produc-
tion shown in Figurel1(a), which models the loss of connectivity between vehicles
(i.e., the removal of a connectdy'V;), and repairing production is in Figufie(b).
Such rule states that whenever a vehicle without outcomammections is found
(note the left-hand-side of the rule requires the absenampohections on ports
Poutl @andps1), then the vehicle should be connected directly to a server.

As for the case of programmabiegas, in desirable configurations all vehicles
have a connection to the server. Nevertheless, the regagnammar takes into
account the cases in which the configuration may not satms$ycondition (some
vehicles may not be connected to a server). However, thesss gaatch with the
left-hand-side of the repairing rule, and hence, they carepaired by the system.

5 Constrained and Self dynamism

Other aspects that are, to some extent, orthogonal to threages characterised
in Section3 are: (i) whether the application of a transformation rula take place
at any moment or not, and (ii) whether changes are fired iatigrhy the system or
activated externally. The first aspect is usually referedgconstrained vs uncon-
strained dynamisnpwhile the second is qualified aslfvs externalreconfiguration.

5.1 Unconstrained vs Constrained dynamism

Basically, constrained dynamism refers to the fact thatangke may occur only
after pre-defined constraints are satisfied. Such conttraiay be (i) the config-
uration topology, e.g., when components are not connected dpecific, or (ii)
the state of a component, e.g., when a component entershietquiescent state.
Topological constraints are naturally modelled by bothifpesand negative appli-
cation conditions of graph productions. Hence, topoldgicastrained dynamism
may be characterised by a graph grammar whose productimessoane contexts
(either positive or negative). Differently, constrainedated to particular states of

11
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components have not an immediate counterpart in our progsisae our frame-
work does not describe component states). Neverthelesgcn be encoded by
thinking about different states of components as diffetgpés of hyperedges. In
this way, the change of a component switeto s’ is represented as the rewrite that
removes the hyperarc denoting the component in stated adds a new hyperarc
of types' with attachments analogous to those of the removed arcidrcése, the
fact that the grammar describes a dynamism constrainedeostdlte of some com-
ponents is hidden by the encoding. Another possibility igge of attributed graph
grammars 18] for equipping components with attributes describing tis¢ates.

Unconstrained dynamism refers to the fact that transfaonatcan be applied
at any moment. The graph grammar counterpart is the factptioaluctions have
no associated constraints or application conditions,y@msome sense, context
free, because they either produce or consume arcs but thegtdead them.

5.2 Self dynamism

Usually, some kind of dynamisms (like programmed and répgirare also quali-
fied as “self”, meaning that the changes are initiated by yistesn itself and not by
an external agent. We map the notion of self and externalrdigma to particular
features of the rewrite system. As a starting point we dissosne alternative ways
for chosing a particular reconfiguration imaa, as proposed inf].

e External The reconfiguration rule is selected by an external sourbes option
resembles the external choice of process calculi, in whietbranch of compu-
tation to be selected is indicated by the context of prodesthis sense, we can
interpret a reduction of the for@ =, G’ as the fact that the environment selects
the application of the production

e Autonomous The system selects one of all the applicable transformatio
a non-deterministic way. This corresponds to the notiomtgrnal choices in
process calculi. Accordingly, we may represent such redostby hiding the
actual name of the applied rule. That is, a rewriting skeg-p, G’ in which p is
autonomous can be represente@as-; G/, wheret stands for a hidden change.

» Pre-defined Pre-defined selection is a special case of autonomousehioic
which the system selects in a pre-defined way the appropratsformation
to apply from the set of available ones. In this case, theaeh@ completely
deterministic (like a conditional choici - then - else - of process calculi). This
can be mapped into graph grammars as the definition of pesiit the selection
of productions to be applied. As shown ihl], application conditions can be
used as priorities for restricting the order in which rules applied.

Let G = (T, Gin, PextU Pselr) be a grammar, wheray stands for the set of all
reconfigurations that are controlled by the environmentilevBRse ¢ contains all
the autonomous productions. We sgy has (i) self dynamism iPey; = 0, (ii)
external dynamism iPsgf = 0, or (iii) mixed dynamism otherwise. Assuming that
all rewriting stepsG =, G’ are writtenG = G’ when p € Ps¢ir, we define the

12



BRUNI, BUCCHIARONE, GNESI AND MELGRATTI

Dynamicity References Correctness Completeness Adequacy
Programmed 4,8,13,16,24] + + -
Repairing [,9,10,21,22] + + +
Ad hoc [6,8,25] - - -
Constructible 2,20] -[+ -[+ -

Figure 12. Classification summary

following sets associated to the gramngat= (T, Gin, PextU Pselr):

» The set§(G) of autonomous or self reconfigurations, i.e., the set of@tifigu-
rations reachable by applying autonomous change$(ig) = {G | Gin = G}.

» The setZ:(G) of reconfigurations associated to an external sequenee
P1...pnof commandsZ(G) ={G| Gin =« G AC =T%,p1,T",..., T, pn, T}
Note Z¢(G) contains all the configurations reachable from the init@hfigu-
ration by applying the sequenceof external chosen rules interleaved with the
application of zero or more autonomous reconfigurations.

Clearly, 5(G) and‘Z:(G) are subsets ok (G). Hence, we can proceed as in
Section3, and formulate some verification problems. In particulag, @an spe-
cialise the problen® (G) C Dp(G) to eitherS(G) C Dp(G) or E:(G) C Dp(G).
The last relation is particular interesting when consiagd-hoc or constructible
dynamism. In this case, it is possible to check whether aquéetr reconfiguration
program may produce acceptable configurations.

6 Final Remarks

In this work we have characterised different aspects of dyaaeconfiguration as
particular features of graph rewriting systems. By takidgantage of this frame-
work, we have distilled whether such kinds of dynamismsvalior posing typical
guestions about the completeness and correctness of thiteataral specification.
Figure12 summarises the conclusions for the different types of dysians.

As mentioned in SectioB, given a characterization of all desirable configura-
tions of a programmable architecture, e.g., by defining a@nyP that should hold
in every configuration, then it would be possible to prove thkethe architectural
specification is correct (by showing thatholds in every reachable configuration)
and complete (by proving any configuration satisfyings reachable). Correct-
ness and completeness properties could be associatedatonrgmynamism. But,
differently from programmed dynamism, some reachable gonditions of a re-
pairing architecture may be non desirable. Instead, thoségurations should be
transformed into a desirable one by using repairing rulese main idea is that
undesirable configurations are characterized as thoséabke configurations in
which some repairing rule is applicable. Then, correcta@gscompleteness prop-

13
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erties involve those reachable configurations that arealdsi Such questions are
meaningless for ad hoc dynamicity, where every configunaggotentially reach-
able. Analogously for constructible dynamism, even if sdamel of weak analysis
could be performed in this case. For instance, to prove #uditqolar configurations
are not reachable when the reconfiguration language fodmesind of programs.

Actually, the above characterization corresponds to tise aawhich transfor-
mations are all autonomous, i.e., when we assume self dgnanWhen external
dynamism is considered, also correctness and completprissrties over ad hoc
and constructible architectures can be formulated. Fdant®, given a particular
(set of) desirable configuration(s) it can be proved whethearticular transfor-
mation or configuration program selected by a programmedyres a desirable
configuration. Even more interesting is the case in whicheahidynamism is con-
sidered. Assume an ad hoc architecture where some prodadi@ considered
external and others autonomous or self. In this case, edtgansformations ac-
count for the reconfigurations activated by a user, whil@aomous transforma-
tions model the actual program that performs the transftonda kind of script-
ing). In this case, it would be possible to check whether iqdar script produces
a correct configuration when it is applied over a specific gurfition.

In this paper we have identified classes of properties thabeanaturally asso-
ciated some kinds of dynamicities. Next work will approabk problem of veri-
fying such properties over graph grammar specificationgalmicular, we have in
mind to use Alloy [L14,15] for attempting this task and we are going to concentrate
our efforts on proving properties associated to each king of
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