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Abstract

Several recent research efforts have focused on the dynamicaspects of software architec-
tures providing suitable models and techniques for handling the run-time modification of
the structure of a system. A large number of heterogeneous proposals for addressing dy-
namic architectures at many different levels of abstraction have been provided, such as
programmable, ad-hoc, self-healing and self-repairing among others. It is then important
to have a clear picture of the relations among these proposals by formulating them into a
uniform framework and contrasting the different verification aspects that can be reasonably
addressed by each proposal. Our work is a contribution in this line. In particular, we map
several notions of dynamicity into the same formal framework in order to distill the simi-
larities and differences among them. As a result we explain different styles of architectural
dynamisms in term of graph grammars and get some better insights on the kinds of formal
properties that can be naturally associated to such different specification styles. We take a
simple automotive scenario as a running example to illustrate main ideas.

Key words: Dynamic Software Architectures, Typed Graph Grammars
and Modelling.

1 Introduction

In the last decades, computer systems have changed from isolated static devices
to highly interconnected machines that execute their tasksin a cooperative and
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coordinated manner. These modern, complex systems are known asglobal com-
puting systems(GCS) ornetwork-aware computers, and have to deal with frequent
changes of the network environment. In a GCS, components areautonomous and
dynamic, the network’s coverage is variable, and there is not a centralized authority.

Software architectural models are intended to describe thestructure of a sys-
tem in terms of computational components, their interactions, and its composition
patterns [23], so to reason about systems at a more abstract level, disregarding im-
plementation details. Since GCS may change at design time, pre-execution time, or
run-time [20], software architecture models for GCS should be able to describe the
changes of the system structure and to enact the modifications during the system
execution [19]. Such models are generally referred to asDynamic Software Archi-
tectures (dsas), to emphasize that the system architecture evolves during runtime.

A variety of definitions of dynamicity for software architecture have been pro-
posed in the literature. Below we list some of the most prominent definitions to
show the variability of connotations that the worddynamicacquires.

• Programmed Dynamism[8]. All admissible changes are defined prior to run-
time and are triggered by the system itself.

• Self-repairing [22]. Changes are initiated and assessed internally, i.e., therun-
time behavior of the system is monitored to determine whether a change is
needed. In such case, a reconfiguration is automatically performed.

• Self-adaptive [21]. Systems can adapt to their environments by enacting run-
time changes.

• Ad-hoc dynamism [8]. Changes are initiated by the user as part of a software
maintenance task, they are defined at run-time and are not known at design-time.

• Constructible dynamism [2]. It is a kind of ad-hoc mechanism but all architec-
tural changes must be described in a given modification language, whose primi-
tives constrain the admissible changes.

The different proposals fordsa are bound to particular languages and models. In
this paper we are aimed at understanding the main notions relying behind such pro-
posals by abstracting away from particular languages and notations. We want to
give a uniform formal presentation that is abstract enough to cover most of those
features. In this sense, our work is in the line of other previous research efforts
[24,7]. In particular we select graph grammars as a formal framework for map-
ping the different notions of dynamicity because (i) they provide both a formal
basis and a graphical representation that is in line with theusual way architectures
are represented, (ii) they allows for a natural way of describing styles and config-
urations, (iii) they have been largely used for specifying architectures. The use
of graph grammars is instrumental in comparing different mechanisms and better
understanding the kinds of properties that can be naturallyassociated to such spec-
ifications. We argue that the characterisation of dynamicity we present is to some
extent orthogonal to the particular kind of graph grammars we use, and therefore,
extensible to different variants of graph rewriting systems.
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Related Work. Several previous works have proposed alternative ways for de-
scribing software architectures by using graph grammar. Our representation ofdsa

as graph grammars is borrowed from the Le Métayer approach [16]. Actually the
notion of programmeddsa corresponds to that proposal. A different way of repre-
senting software architectures with graphs can be found in [12], where hyperedges
are components and nodes are ports of communication, and thereconfiguration is
given as context-free productions together with a constraint solving mechanism.
Also Baresi et al. in [3,4] use graph transformation systems to model programmed
architectural styles at different levels of abstraction. Self-repairing mechanisms
have been proposed in [1,9,10,22]. Ad-hoc reconfiguration has been studied in [8]
as a programming language that allows for the runtime modification of software ar-
chitectures. Similarly, proposals for constructible languages can be found in [20].
These approaches are interested in providing executable frameworks for supporting
dsa: The main difference w.r.t. our work is that they are aimed atproviding real
specification/ programming/ languages while we are aimed atgiving an abstract
characterization of such kind of mechanisms.

As far as the different flavours of dynamicity are concerned,the work of
Wermelinger in [24] explores the ability of the Chemical Abstract Machine
(CHAM) [5] to express the dynamics of software architectures. His formaliza-
tion proposes particular CHAM (and commands) to tackle self-organized, ad-hoc,
and programmed reconfiguration. Differently, we are interested in understanding
how each particular style of dynamism is reflected into a graph grammar.
Organization. In Section2 we describe the formal framework used in the rest
of the paper, and the way in which software architectures arerepresented by using
hypergraphs. Then we show how different forms of dynamism insoftware architec-
ture can be expressed in terms of graph grammars (Section3) and apply them to a
simple case study (Section4). Other orthogonal aspects of dynamism are discussed
in Section5. Some final remarks and future lines of research are in Section 6.

2 Formalization of Dynamicity

We model components and connectors as hyperedges and the ports to which they
are attached as nodes. Figure1 depicts an hypergraph containing two nodesport1
and port2, the hyperedgecomponent (a component that exposes two different
ports), and the hyperedgeconnector (a connector that has two tentacles to the port
port1 and one to the portport2). Note that component edges are drawn as square
boxes while connector edges as rounded boxes. Moreover, we show the ordering of
tentacles by labeling the corresponding arrows with natural numbers (in some cases
we shall use suitable names instead of numbers as labels, so to ease the reading).

Definition 2.1 [Hypergraph] A(hyper)graphis a tripleH = (NH,EH ,φH), where
NH is the set of nodes,EH is the set of (hyper)edges, andφH : EH → N+

H describes
the connections of the graph, whereN+

H stands for the set of non-empty strings of
elements ofNH . We call|φH(e)| therankof e, with |φH(e)| > 0 for anye∈ EH .
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Figure 1. A hypergraph describing a style.
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Figure 2. A hypergraph describing a configuration for the style in Figure1

The connection functionφH associates each hyperedgee to the ordered, non
empty sequence of nodese is attached to. An architectural style is just a hypergraph
T that describes only the types of ports, connectors, components and the allowed
connections. A configuration compliant to such style is thendescribed by the notion
of a T-typed hypergraph.

Definition 2.2 [Typed Hypergraph] Given a hypergraphT (called thestyle), a T-
typed hypergraphor configurationis a pair〈|G|,τG〉, where|G| is theunderlying
graph andτG : |G| → T is a total hypergraph morphism.

The graph|G| defines the configuration of the system, whileτG defines the
(static)typingof the resources. We recall that a total hypergraph morphismf : G→
G′ is a couplef = 〈 fN : N → N′, fE : E → E′〉 such that:fN(φG(e)) = φG′( fE(e))
(we overloadfN to denote also the homomorphic extension offN over strings).

Consider the styleT in Figure1: there is one unique typecomponent of compo-
nents exposing two ports of different types, and one connector attached to two ports
of typeport1 and one port of typeport2. Then, a possibleT-typed hypergraph (or
a configuration of the styleT) is in Figure2: it has two different components with
their corresponding ports, and one connector. The typing morphism is implicitly
defined by the name of the elements in the configuration, whichconsist of the type
name plus a subindex identifying the particular instance (e.g., portport1A has type
port1). We remark that the typing morphism requires components tohave exactly
one port of typeport1 and one of typeport2. Similarly, the only connections valid
for a connector are those that attach its first two tentacles to ports of typeport1
and the third one to a port of typeport2. All such constraints are enforced by the
existence of a typing morphism.

The reconfiguration of a software architecture is describedby a set of rewriting
productions. Roughly, a productionp is a partial, injective morphism ofT-typed
graphs, i.e., it has the following shape:p : L ֌ R, whereL andR are T-typed
hypergraphs, called theleft-handand theright-hand sideof the production, re-
spectively. Given aT-typed graphG and a productionp, a rewriting ofG using
p can be informally described as follow: (1) find a (type preserving) match of the
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Figure 4. A rewriting production with negative applicationcondition.

left-hand-sideL in G, i.e., identify a subgraph ofG that corresponds withL; (2)
remove from the graphG all the items corresponding to the left-hand side that are
not in the right-hand-side; (3) add all the items of the right-hand side that are not
in the left-hand-side; (4) the elements that are both inL andRare preserved by the
rewrite.

An example of a production is shown in Figure3 (the morphism among the left
and right-hand side of the rule is represented by using the same names for mapped
elements, i.e., it is the partial inclusion). The production allows to remove an exist-
ing connectorconnector1 and to add a new connectorconnector2 that is attached to
the original ports in a specular way with respect to the original connector.

Finally, an architecture is described by aT-typed graph grammar.

Definition 2.3 [(T-typed) graph grammar] A(T -typed) graph grammarG is a tu-
ple〈T,Gin,P〉, whereGin is theinitial (T -typed) graphandP is a set ofproductions.

Notation. Let G = 〈T,Gin,P〉 be a (T-typed) graph grammar, andG andH (T-
typed) hypergraphs. We writeG⇒p H to denote thatG is rewritten in one step to
H by using the productionp ∈ P. We abbreviate the reduction sequenceG0 ⇒p1

G1 ⇒p2 . . . ⇒pn Gn with G0 ⇒p1p2...pn Gn. We writeG⇒∗ G′ to denote that there
exists a possible empty sequences∈ P∗ of derivation steps such thatG⇒s G′.

For convenience when describing the examples, we will also consider produc-
tions with negative application conditions [11], i.e., productions that are equipped
with a constraint about the context in which they can be applied. For instance,
such conditions can state that the production is applicableonly when certain nodes,
edges, or subgraphs are not present in the graph. Such conditions are graphically
shown in the left-hand-side of a production by grouping forbidden elements into a
dotted lined area. Figure4 shows a production with negative conditions stating that
the new connectorconnector2 can be added to the configuration if and only if no
other connector of typeconnector is already attached in a specular way toport1A
andport1B. We refer the interested reader to the formal presentation of SPO graph
grammars to [17] and to [11] for grammars with negative application conditions.
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3 Characterisation of Dynamism

This section characterizes different forms of dynamism in software architec-
ture [2,8,10,20,21,22] in terms of graph grammars. In particular we show that
for verification aspects it make sense to focus only on two forms of dynamicity:
Programmed and Repairing.

Given a grammarG = 〈T,Gin,P〉, we will use the following notions:

• The setR (G) of reachable configurations, i.e., all configurations to which the
initial configurationGin can evolve. Formally,R (G) = {G|Gin ⇒

∗ G}.
• The setDP(G) of acceptable configurationsof an architecture are defined as the

graphs that have typeT and satisfies a auitable propertyP. Formally,DP(G) =
{G | G is a T−typed graph∧P holds in G}.

3.1 Programmed dynamism

Programmed dynamism assumes that all architectural changes are identified at de-
sign time and triggered by the program itself [8]. Many proposals in the liter-
ature [16,13,4] that use graph grammars for specifyingdsa present this kind of
dynamism. A programmeddsa A is associated with a grammarGA = 〈T,Gin,P〉,
whereT stands for the style of the architecture,Gin is the initial configuration, and
the set of productionsP gives the evolution of the architecture. The grammar fixes
the types of all elements in the architecture, and their possible connections, where
the productions state the possible ways in which a configuration may change.

Programmed dynamism enables for the formulation of severalverification ques-
tions. Consider the set of desirable configurationsDP(G), then it should be possi-
ble (at least) to know whether:

• the specification is correct, in the sense that any reachableconfiguration is
desirable. This reduces to prove thatR (G) ⊆ DP(G), or equivalently that
∀G∈ R (G) : P holds in G.

• the specification is complete, in the sense that any desirable configuration can
be reached. This corresponds to proveDP(G) ⊆ R (G), or equivalently that
if P holds in G then G∈ R (G).

Hence, programmed dynamism provides an implicit definitionof desirable con-
figurations. That is, the sets of desirable and reachable configurations should coin-
cide, i.e.,Dp(G) = R (G).

3.2 Repairing (or healing) dynamism

Self repairing systems are equipped with a mechanism that monitors the system be-
haviour to determine whether it behaves within prefixed parameters. If a deviation
exists, then the system itself is in charge of adapting the configuration [9].

We can think about a repairing architecture as an ordinary graph grammarGA =
〈T,Gin,P〉 in which the set of productions is partitioned into three different sets,
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Figure 5. A general graph of types of a software architecture

i.e., P = Ppgm∪Penv∪Prpr . Rules inPpgm describe the normal, ideal behaviour
of the architecture, i.e.,G ′

A = 〈T,Gin,Ppgm〉 is a programmeddsa. Rules inPenv

model theenvironmentor, in other words, the ways in which the behaviour of the
architecture may deviate from the expected one. Rules inPenv may state that the
communication among components may be lost or that a non authorised connector
become attached to a particular component. RulesPrpr indicate the way in which
an undesirable configuration can be repaired in order to become a valid one. That
is, the left-hand side of any rule inPrpr identifies a composition pattern in the
system that is undesirable. In this way a repairing architecture implicitly defines
the desirable configurations of the system as those reachable configurationsG that
do not exhibit an undesirable composition pattern (i.e., a left-hand-side match for a
repairing rule). Formally, the designer would expect that

G∈DP(GA) iff G ∈ R (GA) ∧

¬(∃q∈ Prpr ,∃G′ ∈ R (GA) : G⇒q G′)

As for the case of programmable dynamism, repairing dynamism allows for the
formulation of the following two questions:

• the specification is complete. This reduces to prove thatG ∈ DP(GA) implies
G∈ R (GA) ∧ ¬(∃q∈ Prpr ,∃G′ ∈ R (GA) : G⇒q G′).

• the specification is correct. This corresponds to proveG ∈ R (GA) ∧ ¬(∃q ∈
Prpr ,∃G′ ∈ R (GA) : G⇒q G′) impliesG∈DP(GA).

In addition, this kind of dynamism naturally poses the question of whether
reparing rules are adequate, i.e., whether the set of reparing rules assures that for
any configuration that is reachable but not desirable there exists a sequence of re-
pairing rules that moves the configuration to a desirable one. Formally,

• If G ∈ R (GA) ∧ (∃q ∈ Prpr ,∃G′ ∈ R (GA) : G ⇒q G′) then G ⇒q0 G1 ⇒q1

. . . ⇒qn Gn with Gn ∈DP(GA) and{q0, . . . ,qn} ∈ Prpr .

3.3 Ad-hoc dynamism

Roughly ad-hoc dynamism allows the architecture to evolve freely by adding and
removing components and connectors without any restriction. The typed grammar
corresponding to ad-hocdsa should therefore exploit a fully general type graph that
contains an infinite number of hyperarcscomponenti andconnector j (see Figure5),
one for every naturali, j ∈N. Any hyperarccomponenti (connector j ) stands for the
type of all connectors that expose exactlyi ports (respectively,j roles). For sim-
plicity, we define all ports as having the same type (otherwise the type graph should
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be extended, by adding an infinite number of nodes, to represent every possible port
type). Similarly, the set of production is infinite as it mustallow for adding/ remov-
ing any kind of components and connectors. This leaves little space for verification
issues, as the only guarantees given by ad-hoc dynamicity isthat reached graphs
are software configurations.

3.4 Constructible dynamism

Constructibledsas are similar to ad-hocdsas but here rewriting productions are not
the free combination of basic primitives: they are full-fledged programs written in
some specific language. The main difference w.r.t. ad-hocdsa is that a constructible
dynamic architecture is mostly characterised by the specific programming language
allowed for defining the reconfiguration programs that can manage the evolution.
Generally speaking, constructible dynamism provides a very weak notion of de-
sirable configurations, and hence verification aspects are almost meaningless when
assuming autonomous reconfiguration (likewise ad-hoc dynamism). However, the
situation is slightly different when considering reconfigurations controlled exter-
nally (see discussion in Section5).

4 Automotive Software System

In order to illustrate the main forms of dynamism, we introduce the following sce-
nario borrowed from the European Projectsensoria.

4.1 Automotive Case Study: Overview

Much of the cost of research and development in vehicle production are associated
to automotive software. Today vehicles are equipped with a multitude of sensors
and actuators that provide different services, likeabs and vehicle stabilization sys-
tems, that assist people to drive safer. Thanks to current mobile technology, ve-
hicles have the possibility to connect to the telephone and internet infrastructures.
This has given birth to a variety of new services into the automotive domain. Com-
munication in AS systems may involvecommunicationthat takes place inside a
vehicle (intra-vehicle), connection to vehicles in the vicinity (inter-vehicle), or in-
teraction with the environment, for example through an Internet gateway (vehicle-
environment). Our scenario will focus only the last two kinds of communications.

4.2 Car Assistance Scenario

Consider a vehicle subscribed to an assistance service. Dueto a collision, the airbag
of the car is inflated, which causes the automatic generationof a message destined
to the accident assistant server. The message can be transmitted through near
vehicles until reaching the server (preferred method) or directly to the server. The
message will be eventually delivered to the assistance server, which will coordinate
the assistance.
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We will model the scenario by using two different kinds of components:

• Vehicle (V): a component responsible for transmitting messages destined to the
assistant server. A vehicle component has three associatedports: pin for re-
ceiving a message from another vehicle,pout for sending messages to the next
vehicle, andps for communicating directly with the server.

• Accident Assistant Server (S): a component that handles help requests. Its
unique portpio is used for sending/receiving information to/from vehicles.

Components are connected by using the following connector types:

• Vehicle to Vehicle communication (V/V): a connector used for mediating the
communication between two vehicles.

• Vehicle to Accident Assistant Server communication (V/S): a connector used
for supporting the interaction between a vehicle and a server.

Figure6 shows the architectural style of the AS system, while Figure7 depicts
an instance consisting of two vehicles (V1 andV2) and one server (S).

4.3 Programmed Dynamism

We will use a programmable architecture for specifying the way in which the AS
system keeps the communication structure among the components. We define the
corresponding graph grammarGA = 〈T,Gin,P〉, where the architectural styleT is
depicted in Figure6, and the initial configurationGin consists in theT-typed graph
containing a unique component of type serverS and its associated port (i.e., a node
of typeportio). The setP contains the productions that model the arrival/departure
of a vehicle into/from the area covered by a server, a car thatis getting close/far
to/from another car, and a car that takes over another one. For space limitations,
we describe just three productions. Figure8 stands for the case of vehicle entering
into the area covered by a server. This is modeled by creatinga new component of
typeV and its associated ports, and a new connector between the carand the server.
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Figure9 describes the case of a car connected to the server (V3) that gets closer
to another vehicle (V2) that is at the end of a queue (noteV2 has no connectors
attached to its input port). In this case the connection ofV3 to the server is removed
and a new connector betweenV3 andV2 is created. Finally, Figure10 depicts a
production that handles the case in which a vehicle takes over another one. (Note
the rule assumes the vehiclesV1 andV2 to be in the middle of a queue, since they
are connected to other vehicles. The specification includesthree additional rules to
handle the cases in which the take over involves cars at the ends of the queue.)

The set of desirable configurations for the AS system consists of all the config-
urations in which each vehicle has a unique, acyclic communication path with the
unique server, and each vehicle port has attached at most oneconnector.

4.4 Repairing dynamism

The following example shows the use of a repairing architecture for modelling
the fact that the communication between vehicles is not reliable and can be lost,
but in such cases the architecture should repair itself in order to provide un-
connected components with a link to a server. We defined a graph grammar
GA = 〈T,Gin,P〉 in which the set of productions is divided into three different sets,
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i.e., P = Ppgm∪Penv∪Prpr . In our scenarioPpgm contains the same productions
as defined in Programmed Dynamism (see4.3), Penv contains the unique produc-
tion shown in Figure11(a), which models the loss of connectivity between vehicles
(i.e., the removal of a connectorV/V1), and repairing production is in Figure11(b).
Such rule states that whenever a vehicle without outcoming connections is found
(note the left-hand-side of the rule requires the absence ofconnections on ports
pout1 andps1), then the vehicle should be connected directly to a server.

As for the case of programmabledsas, in desirable configurations all vehicles
have a connection to the server. Nevertheless, the repairing grammar takes into
account the cases in which the configuration may not satisfy this condition (some
vehicles may not be connected to a server). However, these cases match with the
left-hand-side of the repairing rule, and hence, they can berepaired by the system.

5 Constrained and Self dynamism

Other aspects that are, to some extent, orthogonal to the approaches characterised
in Section3 are: (i) whether the application of a transformation rule can take place
at any moment or not, and (ii) whether changes are fired internally by the system or
activated externally. The first aspect is usually refered toasconstrained vs uncon-
strained dynamism, while the second is qualified asselfvsexternalreconfiguration.

5.1 Unconstrained vs Constrained dynamism

Basically, constrained dynamism refers to the fact that a change may occur only
after pre-defined constraints are satisfied. Such constraints may be (i) the config-
uration topology, e.g., when components are not connected in a specific, or (ii)
the state of a component, e.g., when a component enters into the quiescent state.
Topological constraints are naturally modelled by both positive and negative appli-
cation conditions of graph productions. Hence, topological constrained dynamism
may be characterised by a graph grammar whose productions have some contexts
(either positive or negative). Differently, constraints related to particular states of
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components have not an immediate counterpart in our proposal (since our frame-
work does not describe component states). Nevertheless, they can be encoded by
thinking about different states of components as differenttypes of hyperedges. In
this way, the change of a component states into s′ is represented as the rewrite that
removes the hyperarc denoting the component in states and adds a new hyperarc
of types′ with attachments analogous to those of the removed arc. In this case, the
fact that the grammar describes a dynamism constrained on the state of some com-
ponents is hidden by the encoding. Another possibility is touse of attributed graph
grammars [18] for equipping components with attributes describing their states.

Unconstrained dynamism refers to the fact that transformations can be applied
at any moment. The graph grammar counterpart is the fact thatproductions have
no associated constraints or application conditions, being, in some sense, context
free, because they either produce or consume arcs but they donot read them.

5.2 Self dynamism

Usually, some kind of dynamisms (like programmed and repairing) are also quali-
fied as “self”, meaning that the changes are initiated by the system itself and not by
an external agent. We map the notion of self and external dynamism to particular
features of the rewrite system. As a starting point we discuss some alternative ways
for chosing a particular reconfiguration in adsa, as proposed in [7].

• External: The reconfiguration rule is selected by an external source.This option
resembles the external choice of process calculi, in which the branch of compu-
tation to be selected is indicated by the context of process.In this sense, we can
interpret a reduction of the formG⇒p G′ as the fact that the environment selects
the application of the productionp.

• Autonomous: The system selects one of all the applicable transformations in
a non-deterministic way. This corresponds to the notion of internal choices in
process calculi. Accordingly, we may represent such reductions by hiding the
actual name of the applied rule. That is, a rewriting stepG⇒p G′ in which p is
autonomous can be represented asG⇒τ G′, whereτ stands for a hidden change.

• Pre-defined: Pre-defined selection is a special case of autonomous choice, in
which the system selects in a pre-defined way the appropriatetransformation
to apply from the set of available ones. In this case, the choice is completely
deterministic (like a conditional choiceif - then - else - of process calculi). This
can be mapped into graph grammars as the definition of priorities in the selection
of productions to be applied. As shown in [11], application conditions can be
used as priorities for restricting the order in which rules are applied.

Let G = 〈T,Gin,Pext∪Pself〉 be a grammar, wherePext stands for the set of all
reconfigurations that are controlled by the environment, while Psel f contains all
the autonomous productions. We sayGA has (i) self dynamism ifPext = /0, (ii)
external dynamism ifPself = /0, or (iii) mixed dynamism otherwise. Assuming that
all rewriting stepsG ⇒p G′ are writtenG ⇒τ G′ when p ∈ Pself, we define the
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Dynamicity References Correctness Completeness Adequacy

Programmed [4,8,13,16,24] + + -

Repairing [1,9,10,21,22] + + +

Ad hoc [6,8,25] - - -

Constructible [2,20] -/+ -/+ -

Figure 12. Classification summary

following sets associated to the grammarG = 〈T,Gin,Pext∪Pself〉:

• The setS(G) of autonomous or self reconfigurations, i.e., the set of all configu-
rations reachable by applying autonomous changes is:S(G) = {G | Gin ⇒τ∗ G}.

• The setEc(G) of reconfigurations associated to an external sequencec =
p1 . . . pn of commands:Ec(G) = {G | Gin ⇒c′ G ∧c′ = τ∗, p1,τ∗, . . . ,τ∗, pn,τ∗}.
NoteEc(G) contains all the configurations reachable from the initial configu-
ration by applying the sequencec of external chosen rules interleaved with the
application of zero or more autonomous reconfigurations.

Clearly,S(G) andEc(G) are subsets ofR (G). Hence, we can proceed as in
Section3, and formulate some verification problems. In particular, we can spe-
cialise the problemR (G) ⊆DP(G) to eitherS(G) ⊆DP(G) orEc(G) ⊆DP(G).
The last relation is particular interesting when considering ad-hoc or constructible
dynamism. In this case, it is possible to check whether a particular reconfiguration
program may produce acceptable configurations.

6 Final Remarks

In this work we have characterised different aspects of dynamic reconfiguration as
particular features of graph rewriting systems. By taking advantage of this frame-
work, we have distilled whether such kinds of dynamisms allow for posing typical
questions about the completeness and correctness of the architectural specification.
Figure12summarises the conclusions for the different types of dynamisms.

As mentioned in Section3, given a characterization of all desirable configura-
tions of a programmable architecture, e.g., by defining a propertyP that should hold
in every configuration, then it would be possible to prove whether the architectural
specification is correct (by showing thatP holds in every reachable configuration)
and complete (by proving any configuration satisfyingP is reachable). Correct-
ness and completeness properties could be associated to repairing dynamism. But,
differently from programmed dynamism, some reachable configurations of a re-
pairing architecture may be non desirable. Instead, those configurations should be
transformed into a desirable one by using repairing rules. The main idea is that
undesirable configurations are characterized as those reachable configurations in
which some repairing rule is applicable. Then, correctnessand completeness prop-
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erties involve those reachable configurations that are desirable. Such questions are
meaningless for ad hoc dynamicity, where every configuration is potentially reach-
able. Analogously for constructible dynamism, even if somekind of weak analysis
could be performed in this case. For instance, to prove that particular configurations
are not reachable when the reconfiguration language forbid some kind of programs.

Actually, the above characterization corresponds to the case in which transfor-
mations are all autonomous, i.e., when we assume self dynamism. When external
dynamism is considered, also correctness and completenessproperties over ad hoc
and constructible architectures can be formulated. For instance, given a particular
(set of) desirable configuration(s) it can be proved whethera particular transfor-
mation or configuration program selected by a programmer produces a desirable
configuration. Even more interesting is the case in which mixed dynamism is con-
sidered. Assume an ad hoc architecture where some productions are considered
external and others autonomous or self. In this case, external transformations ac-
count for the reconfigurations activated by a user, while autonomous transforma-
tions model the actual program that performs the transformation (a kind of script-
ing). In this case, it would be possible to check whether a particular script produces
a correct configuration when it is applied over a specific configuration.

In this paper we have identified classes of properties that can be naturally asso-
ciated some kinds of dynamicities. Next work will approach the problem of veri-
fying such properties over graph grammar specifications. Inparticular, we have in
mind to use Alloy [14,15] for attempting this task and we are going to concentrate
our efforts on proving properties associated to each kind ofdsa.
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