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Abstract: This paper extends the invited talk by the first author about the virtues
of structured graphs. The motivation behind the talk and this paper relies on our
experience on the development of ADR, a formal approach for the design of style-
conformant, reconfigurable software systems. ADR is based on hierarchical graphs
with interfaces and it has been conceived in the attempt of reconciling software ar-
chitectures and process calculi by means of graphical methods. We have tried to
write an ADR agnostic paper where we raise some drawbacks of flat, unstructured
graphs for the design and analysis of software systems and we argue that hierarchi-
cal, structured graphs can alleviate such drawbacks.

Keywords: Hierarchical graphs, Graph Grammars, Visual Languages

If you can find something everyone agrees on, it’s wrong — M. Udall

1 Introduction

Graph-based notations, techniques and tools play a fundamental role in the analysis of complex
systems: on the one hand they rely on a solid mathematical basis, on the other hand they make it
possible to render the formal analysis in visual notation best accessible for non graph theorists,
like business analysts.

However, the complexity of modern software systems like those emerging in global comput-
ing and in service oriented architectures is such that the “representation distance” w.r.t. ordinary
graph transformation methodologies has grown larger and larger and poses serious problems
in terms of issues such as, e.g., scalability, open endedness, dynamicity and distribution. Fur-
thermore, the same kind of complication hampers indiscriminately all phases involved in the
modeling process (specification, design, validation and verification).

We aim to show that one good way to tackle complexity and to enhance efficient formal rea-
soning is to superimpose some structure on complex graphs, a general consideration that finds
application in several different contexts where graphical notations are widely adopted and stan-
dardized (e.g., Unified Modelling Language, Petri nets, BPEL and other workflow models, ref-
erence modeling languages, process calculi encodings). In other words, we propose to consider
structured graphs instead of flat graphs.

The most prominent approach to structured graphs is probably the use of hierarchical graphs.
Indeed, many hierarchical models have already appeared in the literature that exploit some notion
of containment of a graph into a node or an edge and treat it differently from the ordinary linking
of components. Amongst the various approaches we mention bigraphs [JM03], hierarchical
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Ten virtues of structured graphs

Figure 1: Two different drawings of the same network

graphs [DHP02, DHJ+08], shaped graphs [HM04] and designs [BLMT08] (our own contribution
to this field).

We will discuss the benefits of using structured, hierarchical graphs over unstructured, flat
graphs in the context of ten key aspects that arise in the graph-based engineering of software
systems. More precisely, we shall consider design issues such as understandability (Section 2),
abstraction (Section 3.2), composition (Section 3.3) and requirements specification (Section 3.1),
dynamic aspects like behaviour (Section 5.1) and reconfiguration (Section 5.2), and analysis ac-
tivities such as model finding (Section 4.1), conformance (Section 4.2) and verification (Sec-
tion 6). Last, we survey a particular application of graphs: the visual encoding of process calculi
(Section 7). Final remarks are in Section 8.

2 Understanding graphs: Parsing and Browsing

Graphs find important applications as a convenient visual formalism in many different fields,
ranging from software engineering, database and web design to networking, systems biology,
global and grid computing, to cite a few.

Through visual interfaces, graphs give the possibility to grasp at one glance the connection
between the represented entities (think e.g. of entity-relationship diagrams, UML class diagrams,
folder trees in virtual desktops).

There are many different ways to represent graphs in textual notation, a task which is nec-
essary for graph manipulation by machines (parsing, storing, analysing, modifying). Well-
known examples are adjacency lists, adjacency matrices, XML formats such as GML [GML]
and graphml [Gra], or the DOT format used by graphviz [dot]. All such formats are usually
less amenable for user interaction, because the graph topology is less evident for human read-
ing. Similarly, some information can be rendered visually better than textually. For example,
DBLPVis [DBL] shows co-authorship relation between persons exploiting colours, node diame-
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ters and node distance to visualise different kinds of semantic information.
In the case of large monolithic graphs, visual notation begins to suffer from the same limita-

tions as the textual notation, because it can be problematic for the user to parse, find and browse
the portion of the graph more relevant to her/him. In this sense, automatic drawing techniques
are also important for visual rendering.

A first virtue of structured graphs is overcoming several limitations related to the textual and
visual representation. To see this, let us consider the representation of networks that connect
different kinds of nodes including hosts and hubs. This kind of networks will be used as a
running example over the paper.

Figure 1 shows two isomorphic flat graphs representing the same network, however it is ev-
ident that the “logical” structure of the connection topology emerges better in the rightmost
representation, which exposes the presence of three rings whose hubs are attached together to
form what informally can be called a “star of rings”.

One can also note that a ring is just a line of hosts whose ends are connected to the same hub.
This corresponds to fix a way to read the graph according to some sort of “blueprint” that explains
how it is organised: at the topmost level there is the whole graph seen as a star of subgraphs,
which in turn are all ring-shaped with a principal hub connected in line with a (possibly different)
number of other components.

Recursively, one could think of a way to allow stars as components of rings, e.g. by introducing
some adaptor components, like some special hubs. In this case, one would have to deal with
even more complex networks, like the one in Figure 2, where the blueprint is made explicit:
components are grouped by encircling them in a titled box (i.e. the type of the subnetwork)
and titled boxes can be nested. For example, Figure 2 shows a network composed of three
rings, where one of the rings contains a subnetwork with two rings. In this particular case, it is
worth noting that the underlying flat graph would be ambiguous w.r.t. the proper structure of the
network, as a different parsing could place the two leftmost rings as nested within the central
one, and the two rightmost rings at the top layer.

Our point is that having some sort of “blueprint” of the graph would help to predicate over
relevant subgraphs. For example, exposing the structure of the network can e.g. help in organis-
ing software updates or load balancing policies and also to carry inductive proofs of properties.
It also allows for posing the attention to and navigate through smaller coherent portions of the
graph. Finally, it will be argued later that the hierarchy structure makes it possible to define
textual notation that is machine-readable and human-readable at the same time.

3 Designing Graphs

3.1 Requirements and Specification

Graph-based approaches to software engineering (e.g. [BP05, BH04]) often reduce the speci-
fication of static (i.e. topological, structural) requirements to the characterisation of a set of
graphs (those that fulfil the requirements) and requirement conformance to set membership. In
our scenario, for instance, a requirement can be that networks must be ring-shaped which must
be modelled by characterising in some way the set of ring-shaped graphs.

Typically, the sets of graphs to be specified are infinite (such as all ring-shaped graphs) or at
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Figure 2: A structured network with some explicit blueprint

(a) (b) (c)

Figure 3: A type graph (a), an entity/relation diagram (b) and graph grammar production (c).

least sufficiently large (such as all ring-shaped graphs with at most n hosts) to make an enumera-
tive description cumbersome when not unfeasible. A variety of mechanisms have been developed
and are used to finitely describe sets of graphs in order to make, for instance, set membership
decidable and, possibly, efficient. This issue will be discussed in more detail in Section 4.2.

Type graphs have been traditionally used in graph transformation approaches [CMR+97] as a
convenient way to label graph items with types and to constrain the way in which items can be
interconnected. Type graphs have been used in various graph-based approaches to software engi-
neering (e.g. [BBGM08, BHTV04]), but although they offer a simple and elegant mechanism for
imposing local constraints, their main limitation is the intrinsic difficulty to express global ones.
To see this, consider line-shaped graphs. A type graph can express the fact that there is a particu-
lar type of host which has two connections (tentacles) to a connection node (see Figure 3(a)) but
it is not possible to define a type graph that imposes requirements such as connectivity (no host
is disconnected) or aciclicity (hosts do not form rings). Intuitively, such properties are global in
the sense that they regard the whole graph.

Type graphs resemble some mechanisms that are used in visual specification languages used
in the area of software engineering. For instance, one of the de-facto standards, the UML, makes
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use of entity-relationship diagrams that introduce both a vocabulary of items (entities) and the
way they can be related (relations). A difference with type graphs that makes such diagrams a bit
more flexible is the possibility to impose cardinality constraints. We can, for instance, impose
an entity of type host to be connected to at least one and at most two connection nodes and,
vice versa, we can impose each connection node to be related to at least one and at most two
hosts of type host (see Figure 3(b)). However, this is still not sufficient to characterise line-
shaped networks: there are infinitely many collections of hosts that satisfy the former cardinality
constraint while not being line-shaped.

To tackle such limitations of UML specifications, complementary mechanisms have been de-
veloped, such as the Object Constraint Language (OCL). The main idea is to impose further
logic-based constraints over admissible graphs. Such mechanisms are not new in the research
area of graphs. Indeed, Courcelle has thoroughly studied logics for graphs and their expressive-
ness. One of the examples in his works is the well-known fact that graph reachability (required to
characterise connectivity) cannot be expressed in first-order logic: second-order logic is needed.
Courcelle has developed the Monadic Second-Order ogic for graphs (MSO) and has studied its
expressiveness in comparison to graph grammars [Cou97].

Graph grammars [CMR+97, EHK+97] are another fundamental approach to characterise graph
sets by providing a grammar that inductively generates all the graphs of the set. A promi-
nent example are Hyperedge Replacement Grammars [Hab92] that can be considered as the
equivalent of traditional context-free grammars. In the context of software architectures, for
instance, this approach was first proposed in [Mét98] and subsequently followed by various au-
thors [HM04, BLMT08]. Graph grammars do also have some limitations. For instance, it is well-
known that a context-free graph grammar cannot characterise the set of all regular grids [Hab92].

The mentioned approaches can be considered as complementary and can be used together to
express complex system requirements. The most evident example is UML technology. Another
analogy in this regard can be done with Membership Equational Logic [Mes98] and type systems
for programming languages where a generative mechanism (e.g. the signature, the syntax) char-
acterise the main types (i.e. sets of elements) and deduction mechanism based on inference rules
are used to characterise more refined subtypes.

Which is the most convenient mechanism to deal with structured graphs? In [BBG+08] it is
argued that logic-based definitions are more suitable when the system under study is in a primi-
tive state where the actual requirements (and hence the structure) are not well-understood and are
refined again and again (which mainly amounts to adding, removing or modifying predicates).
Instead, when the requirements become mature and the structure of the graphs becomes clear,
then inductive definitions seem better suited.

Inductive mechanisms such as graph grammars (that also includes type graphs) provide unique
advantages. Consider the example of line-shaped graphs. An inductive definition simply says
that a line-shaped graph is a host with two ports or the concatenation of two line-shaped graphs
(see Figure 3(c)) and the derivation tree explains the structure of the graph (how it has been
generated).

On the other hand, a logical characterisation of line-shaped graphs consists on stating that: a)
they are strongly connected, b) they are acyclic, c) each host is connected to exactly two hosts
except for the hosts at the extremes of the line. As a concrete example, predicate a) is roughly in
MSO as ∀a,b.∀X .((∀y,z(y ∈ X ∧ z ∈ R(y,z)→ z ∈ X)∧∀y.(R(a,y)→ y ∈ X))→ b ∈ X) , where
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(a) (b)

(c)

Figure 4: A flat, explicitly structured graph (a), a flat, implicitly structured graph (b) a hierarchi-
cally structured graph (c).

X is a set of nodes, a, b, y and z are nodes, R abbreviates the existence of an edge between two
nodes. Predicates b) an c) can be formalized in a similar way.

While the MSO formulae are essentially (rather unstructured) logical sentences, the inductive
definition is in some sense a structured definition, amenable to inductive reasoning and enjoying
nice compositional features as we shall discuss in Section 3.3 as well as having further virtues
that we shall continue highlighting in the rest of the paper.

3.2 Abstraction and refinement

Software systems are too complex to be designed, analysed and developed monolithically. One
main remedy to master such complexity is abstraction. Prominent examples are present in the
layered approaches to computer networks (TCP/IP stack), operating systems (OS layers) and
software applications (architectural layers and tiers). Abstraction layers allow us to handle a
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complex system at different levels of granularity, abstracting away subsystems whose details are
not relevant at that point. When needed, refinement can reveal the internals of an abstract com-
ponent. Another advantage of the use of abstraction and refinement arises in presence of open
systems, where some parts of the system are not specified. In sum, abstraction is a fundamental
aspect that enables scalability, understandability, and modularity.

Unfortunately, flat graphs are not a completely satisfactory model to deal with abstraction
layers. Layers in flat graphs are typically modelled using a tree-like structure. A prominent
approach that follows this spirit are Milner’s bigraphs [JM03] where the locality structure and
the (unstructured) communication topology are represented by two overlapping graphs: a tree
for locality, called the place graph, and an arbitrary graph for communication, called the link
graph. Still superimposing some structure is different than explaining how such structure has
been obtained, an option that is found in structured hierarchical graphs and has further benefits.

As a simple example that regards our running scenario, consider a network formed by a star
of rings, where a ring is seen as a line closed in circle. Using flat graphs the logical grouping of
the hosts that form each line, for instance, must be encoded ad hoc (e.g. using the tree structure
denoted with the edges of type sub in Figure 4 (a)) to avoid confusion. The resulting structure
becomes complex, hard to understand and to manipulate.

An inductive definition of graphs (as explained in Section 3.1) by means, e.g. of context-
free graph grammars [Hab92], can mitigate the problem. The best analogy one can offer is the
functional reading of a grammar, where syntactical categories are seen as types. So, implicitly, a
graph produced by a graph grammar has a parsing and a type and so do its (proper) subgraphs.
The idea is then that such information can be recovered to understand or manipulate graphs in a
layered way (see Figure 4 (b)).

Using hierarchical graphs (e.g. [DHP02, BLM09]) we can combine the benefits of tree-like
structuring of layers with the inductive definition of graphs. In a way, the layering is encoded
within the graphs by the use of hierarchical edges, i.e. edges that contain graphs (Figure 4 (c)).
For this purpose, the notion of interface becomes crucial as it represents the relation between
an abstract component (hierarchical edge) and its internal details (graph). We will see this in
Section 4.1.

3.3 Composition

We have seen in Section 3.2 that structured graphs enable modularity and top-down development
by refinement. We will see here that they facilitate bottom-up development by composition, as
well.

Arbitrary compositions can result in ill-shaped systems. For example, Figure 5(a) shows a
broken pipeline obtained as the union of two pipelines and an incorrect attempt to repair it by
fusing two nodes. This is the main disadvantage of flat graphs, i.e. they do not have an explicit
mechanism to define the legal operations that can be used for composing larger graphs.

To avoid this and to guarantee that only well-formed compositions are possible, the notion of
a graph interface is fundamental. A flat graph can be decorated with ad-hoc items to represent
its interface but this results in cumbersome representations where the interface is usually hard
to recover. To overcome such limitations various notions of graphs with interfaces have been
proposed.
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(a) (b)

Figure 5: A free composition (a) and a functional production (b).

A graph interface is usually formed by a skin (the external aspect of the graph) and a relation
between the skin and the graph itself (usually called the body graph). A typical mechanism (used
e.g. in [DHJ+08, BLMT08]) is to use a hyperedge as the skin and to define a relation between
the surrounding nodes the edge is attached to and some nodes of the body graph. Other mecha-
nism have been proposed and are used for instance in ranked graphs [Gad03], bigraphs [JM03],
syntactic grap judgments [FHL+06] and borrowed contexts [EK06].

The notion of graph interface facilitates the development of composition mechanisms. Var-
ious such notions can be found in the literature. For instance, compositions for graphs with
name interfaces [Gad03] operate by disjointly unifying graphs and merging their common nodes
(those declared in the interfaces). Other, more complex compositions can also be found for
bigraphs [JM03].

In all such cases, a disciplined, structured way of composing graphs is given by means of
some graph algebra. Context-free graph grammar approaches to requirements such as those
mentioned in Section 3.1 provide a unique advantage in this sense: a functional reading of the
grammar provides a set of well-formed compositions. For instance, Figure 5(b) depicts the
functional reading of the productions in Figure 3(c): the left-hand side of a production is now
drawn as the enclosing box (interface), while the right-hand side is drawn as the enclosed graph.
The first operation can be seen as a constant that returns a Pipeline formed by a single host,
the second operation takes two arguments of type Pipeline, concatenates them and returns the
resulting Pipeline (the order of the arguments is usually implicit in the graphical drawing, along
occidental reading convention). Moreover, we can assign names to such operations, like those
shown in the top-bars of the corresponding boxes and then have a correspondence between the
term algebra over such operators and the flat/structured graphs that we can build. For example,
the term host;host denotes a pipeline with two hosts.

4 Analysing Graphs

It is rather common that several attempts are needed before system requirements are fully as-
sessed, i.e. the requirements need to be validated to make sure that all desired models can be
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Figure 6: Constructing a line using a grammar derivation.

accepted and that no erroneous model is allowed. In case some models are found that violate
such assumptions, then the problem has to be reported as a feedback to possibly upgrade the
specification of requirements. Thus, model construction and model conformance can play a
prominent role during (and also after) the phase of requirements assessment.

4.1 Model construction

Once we have a first version of a system’s requirements we might want to study the set of systems
that satisfy them, with the purpose of understanding better the requirements, finding inconsisten-
cies with informal descriptions, or discovering missing specifications. This analysis activity has
been coined by Daniel Jackson as model finding [Jac06].

Jackson’s approach is based on first-order logic and has been also applied to graph-based
modelling [BBG+08]. The main idea is that Boolean variables and predicates are used to denote
the presence or absence of graph items (edges, nodes, tentacles, possibly typed) and further
predicates are used to characterise the requirements. Having fixed a bound on the admissible
instances of each graph item, the set of all (bounded) graphs satisfying the requirements is given
by all the possible ways of satisfying the Boolean predicate that results from combining the
available items.

The imposed bounds restrict the approach to finite subsets of the graphs under study. Still, the
size of such sets can likely explode due to the arbitrary ways of pasting graph items. Unstructured
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(a) (b)

Figure 7: Constructing a line using a grammar derivation.

graphs are thus not easily handled. This is mitigated in Alloy [Jac06] (the tool implementing
Jackson’s approach) by introducing the predicates that represent the requirements (and thus the
structure of graphs) which implicitly discard non-conformant instances. The efficiency of such
mitigation is delegated to clever SAT solvers.

A similar situation arises when the structure of graphs is expressed inductively in terms of
graph grammars. The unstructured case amounts to a grammar that can introduce any graph item
in any possible way. Again the state space of graphs to be considered exploits combinatorially
and hampers any reasonable analysis.

However, in presence of structured graphs the situation is different. For instance, consider a
context-free grammar characterising pipeline-shaped graphs. The grammar does not only offer us
simple way to construct all such graphs, but it also emulates a design-by-refinement construction
on which we could also reason (see Section 3.2). For instance, we can reason about the number
of refinement decisions that an architect must take in order to achieve a certain network or how
many different derivations are possible to achieve it.

As an example, suppose that in the initial requirement for our networks the production for an
empty and parallel pipelines were also considered (see Figure 7(a)). Then it would have been
readily discovered that ill-shaped pipelines are possible, like the network in Figure 7(b) that can
be described by the term host;(host|empty);host: the problem is due to the presence of the
empty pipeline, whose misuse can introduce unexpected cycles since it introduces node fusions.

4.2 Model conformance

Useful analyses are concerned with checking whether a graph enjoys some characteristics like
being well-typed, conformant to a certain architectural style or fulfilling some subtle require-
ment. In all cases we refer to the problem of checking whether a graph is a model of some
property as conformance.

As mentioned in Section 3.1 a graph property can be seen as a set of graphs, which can
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(a) (b)

Figure 8: An unstructured (a) and a structured (b) graph to be analysed.

be characterised by means of some mechanism like graph grammars, various kind of diagrams
and logical predicates. Checking conformance for an unstructured graph means then applying
expensive algorithms to check if the graph can be derived from a graph grammar, satisfies the
constraints of the diagrams or fulfils the logical predicate.

Structured graphs, instead, carry the “blueprint” as an immediate witness that the underlying
graph is conformant to a certain architectural style or to certain constraints required by the origi-
nal specification. A hierarchical, structured graph can carry even more information, because part
of its blueprint might be present in the graph itself.

Suppose that we do not trust such blueprint and we want to check it for conformance. Consider
the examples on Figure 8 depicting a flat graph (a) and a structured graph, both representing a
star of rings.

Let us start with the unstructured graph. Checking conformance of a logical predicate poten-
tially leads to consider each graph item (5 nodes and 6 edges) for each quantifier present in the
predicate. Note that typical properties involve a non-trivial depth of quantifier nesting. A similar
situation arises if we want to check conformance against a graph grammar, where (sub)graph
isomorphism is a fundamental test which, again, might consider every graph item in the match.

Consider now the hierarchical graph. Observe that the hierarchical structure provides three
layers, and each item in the layers is annotated with the declared shape type. The outermost
layer is formed by a single edge declared as a star, the middle layer is the body of the star and
contains two hubs and two pipelines (for a total of 4 edges and 5 nodes). Each such pipeline
edge contains a graph of the bottom-most layer formed by 3 nodes and two host-typed edges.
Clearly, the global conformance analysis can be divided in several smaller sub-problems driven
by the declared structure of the hierarchical graph.
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(a)

(b)

Figure 9: Behaviour rules for pipelines: conditional message passing using flat graphs (a) and
hierarchical graphs (b).

5 Transforming Graphs

5.1 Behaviour

Graphs have a long tradition as a structure for representing static aspects such as data, topologies
or architectures. Another example that we have seen in Section 3.1 is the use of graphs to
represent the specification of static system requirements.

Graph are also used to represent dynamic system aspects such as the behaviour of a system.
The main idea is that graphs are used to represent the state of a system and graph rewrites
model the execution of the system. Various mechanisms for rewriting graphs have been pro-
posed, ranging from the general-purpose graph transformation approaches by pushout construc-
tion [CMR+97, EHK+97, EK06] or replacement [Hab92] to specific mechanism like those based
on relative pushouts for bigraphs [JM03] or those based on multiple synchronisation for systems
with mobility [FHL+06]. Overall, such models can account for complex graph manipulations by
exploiting negative application conditions and sophisticated synchronisation mechanisms with
the big advantage of their solid theories related to concurrency and distribution.

There are, however, some drawbacks in those cases in which flat, unstructured graphs are used.
The first, obvious one regards the mechanism of rule matching. Basically, graph matching rules
are based on subgraphs isomorphism, i.e. finding a part of the graph under consideration that
matches the left-hand-side of a graph rewrite rule. The situation is similar to the one discussed
in Section 4.2: in absence of structure the matching algorithm must consider the whole graph,
while structure in the graph limits the number of subgraphs to be considered.

Another disadvantage of the use of flat graphs arises in presence of context-dependent be-
haviours. While standard techniques exist in term rewrite approaches to operational semantics
(reactive contexts, SOS), in most graph-based approaches one has to decorate the graphs with
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Figure 10: Reconfiguration rule to migrate hosts.

graph items that act as flags enabling or disabling the applicability of the rules (see [Gad03] for
an example of graph-based pi-calculus semantics, where rewriting under prefixes is inhibited).
Hierarchical graphs can be used as a more elegant and convenient graph version of the above
mentioned term rewrite mechanisms.

Consider, for instance, that we want to model message passing in our running scenario, but
we want to make it dependent on the status (active, non-active) of the network. Using flat graphs
one can, e.g., decorate active hosts network points with go-labelled edges. One rule for message
passing would look like in Figure 9 (a). One evident disadvantage is that our graphs will be
full of active flags and that ad-hoc rules are needed to propagate the introduction or removal
of those flags to enable or disable a part of the network. Using hierarchical graphs we could
encode the network status information at the level of hierarchical frames, distinguishing between
active and non-active pipelines. For instance, the rule in Figure 9 (b) conditions message passing
for two hosts to be within an active frame.1 An additional disadvantage of using unstructured
graphs is that the rules must be shown to be conformance-preserving, i.e. one must show that
the rules cannot transform a valid graph into a graph that does not represent a valid system
configuration. Structured graphs, instead, are a convenient ground to define structure-preserving
graph transaformations. We will see an example in the next section.

5.2 Reconfiguration and Refactoring

We have seen in Section 5.1 that graph transformations can be used to model ordinary run-time
behaviour. There are, of course, other interesting applications of graph rewrite systems like the
computation of graph algorithms, model-driven refactoring or architectural reconfiguration.

In comparison to ordinary behaviour, the kind of transformations involved in the latter applica-
tions might be very subtle and impose particular constraints. For instance, when reconfiguration

1 In concrete hierarchical graph transformation approaches the rule might need additional information that we
neglect here since this paper does not marry any particular technique.
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rules are considered, like in self-repairing and self-adaptive systems, then it is important to guar-
antee the conformance of the reconfigured system and to keep the reconfiguration as local as
possible. In the case of model-driven refactoring, the transformation must be metamodel confor-
mant.

When using flat graphs and ordinary graph transformation approaches such features are often
hard to match and need to be studied case by case. For example, consider the case of a network
made of a star of rings (see e.g. Figure 8) and suppose we want to model the situation in which
the hub of a ring may fail down triggering a network reconfiguration that migrates containment
of the ring to another ring. Such reconfiguration is not easy to accomplish with ordinary graph
transformation rules.2 The main problem is that the containment of the ring might be formed by
an arbitrary number of hosts or complex subnetworks. A complex program of rewrite rules is
needed and several intermediate states must be considered, i.e. the transformation is not atomic.

This is naturally accomplished by hierarchical graph transformation systems. Indeed, all we
need is a rule like that informally depicted in Figure 10 which migrates a whole pipeline in one
shot and guarantees that the resulting network is well-formed.

More subtle reconfigurations can take place, for instance involving a change in the interface
of a system’s components or requiring synchronisation to agree on the common reaction to a
certain failure. In all such cases the use of flat graphs imposes several challenges due to the need
to directly manipulate individual graph items, to the eventual risk of having bad formed graphs
as intermediate graphs during the reconfiguration and the need to show or verify that resulting
graphs are well formed.

Hierarchical graphs can be helpful in those challenges since they allow to work on the struc-
ture of graphs, to manipulate groups of items and to have a more disciplined control over the
resulting interfaces and structure. In some cases (e.g. [BLMT08]) well formedness (e.g., style or
metamodel conformance) must not even be proven: it can be guaranteed by construction.

6 Analysing Graph Transformations

We have already argued the convenience of structured graphs for the analysis of systems. In
particular, we discussed the issue of checking whether a graph satisfies some static properties in
Section 4.2. This section, instead, regards the dynamic aspects of systems modelled via some
kind of graph rewrite system.

Verification approaches for graph transformation systems mainly consist on some mechanism
to specify properties and algorithms to check them. Various logics have been developed, for
instance extending Courcelle’s Monadic Second Order logic (see [Cou97] and Section 3.1) with
temporal modalities [BCKL07]. An alternative approach is to use some kind of ad-hoc spatial
logic, taking inspiration from Caires spatial logic for the pi-calculus [CC03]. An approach to
structured graphs based, e.g. on disciplined ways of composing graphs can inspire the derived
logical operators for decomposing graphs. This might result in ad-hoc efficient algorithms, but
also in a property specification closer to visualisation and thus easier to use.

In any case, the model-checking problem can be very complex when not unfeasible due to
the size of the state space and the expressiveness of the logics. Indeed, the presence of rules

2 A detailed example can be found in [BLMT08].
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(a) (b)

Figure 11: Two alternative encondings for pi-calculus process (νsecret) facebook(secret)
| facebook(message) | facebook(message) . (internet(message) | mailbox(message)) .

introducing new items and logical quantifiers nested with temporal modalities complicates the
verification problem.

To mitigate such problems, standard verification techniques must be applied. Some approaches
exist that apply abstract interpretation techniques for the verification of graph rewrite systems
(see [BCK08] and the references therin) we argue that structured graphs can contribute further.

Indeed, as we have seen, structured graphs already offer a notable support for abstraction
(c.f. Section 3.2) and also for compositional issues (c.f. Section 3.3). Consider for instance
an approach based on context free graph grammars. Each syntactical category can be seen (in
the functional reading) as a type. Such types can be used to define various abstractions. In our
running scenario, for instance we might want to verify a particular network where we abstract
away from all rings and we keep the full information of stars, only. Similarly, we can use the
types to support a modular verification approach. Finally, we might show that some properties
are inherent to rings or stars by structural induction.

7 Visual Encoding of Process Calculi

As exemplified by a vast literature, graphs offer a convenient ground for the specification and
analysis of modern software systems with features such as distribution, concurrency and mobil-
ity. In this section we shall discuss the convenience of structured graphs for a particular purpose:
the visual encoding of process calculi.

Various graph-based approaches have been used for this purpose. Among them, we recall
those based on traditional Graph Transformation [Gad03], Bigraphical Reactive Systems [JM03]
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and Synchronized Hyperedge Replacement [FHL+06].
Using any of such approaches to build a visual representation of an existing language involves

two major challenges: encoding states and encoding the operational semantics. A correct state
encoding should map structurally equivalent states into equivalent (typically isomorphic) graphs.
In addition, the state encoding should also facilitate the encoding of the operational semantics,
which typically means mimicking term rewrites via suitable graph rewrites.

An example of two possible encondings for pi-calculus process is depicted in Figure 11. The
first one, Figure 11(a), resembles the syntactic tree of the term. The main drawback is that a
particular parsing of the parallel composition is chosen and to get rid of the associativity and
commutativity of parallel composition graph isomorphism is not enough: a weaker graph equiv-
alence notion is needed. Unfortunately, graph transformation approaches and tools are strongly
based on graph isomorphism. Another drawback is that the graph requires additional annota-
tions for identifying the root of the process (the program control), which nodes represent free
or restricted names, and so on. Instead, the second encoding Figure 11(b) is more convenient
and elegant as it gets rid of the axioms for parallel composition by graph isomorphism, only. In
addition, a suitable interface allows to see the whole graph as a process with well-identified root
control and free names.

When the language is a process calculus, the encoding of a state is facilitated by the algebraic
structure of states (i.e. processes are terms) and it is typically defined inductively on such struc-
ture. However, the syntax of graph formalisms is often not provided with suitable features for
names, name restrictions or hierarchical aspects. Typical solutions consist in developing an ad-
hoc algebraic syntax, involving an implicit or explicit structuring of the graph formalism based,
e.g., on set-theoretic definition of graphs with interfaces (e.g. [Gad03, GM08a]), enriched type
systems (e.g. [BS06, GM08b]) or tree-based hierarchies (e.g. [JM03, GM08a]).

The less structured the underlying graphs are, the more cumbersome the encodings and their
correctness proof become. A disciplined graph algebra provides in some sense a structured view
of graphs and their legal compositions that facilitates the visual specification of processes and
simplifies the proofs of correctness: the algebraic structure of both states and graphs enables
proofs by structural induction and defines a bijection between processes and graphs.

One important advantage of graphical encodings is the intuitive visual modeling of complex
systems, where the graph itself should offer an immediate characterisation of the represented
system. This fact has been exploited with success, e.g., in the modeling of process calculi.

In the case of process calculi for modern systems like those around global computing and
service oriented paradigms, there are some notions like sessions, transactions and nested com-
pensations that require logical grouping of components or some notion of containment. For
example, when a transaction is aborted it is important that all participants counteract. Again,
when flat graphs are considered, some ad hoc encoding of containment is necessary.

The literature provides some examples that witness the convenience of structuring graphs for
encoding process calculi. For instance, the encoding of the pi-calculus of [Gad03] which is
based on a notion of graphs with interfaces for the free nodes of a graph (i.e. the free names of
a process) has been simplified in [BGL09] with a richer notion of interface distinguishing nodes
for the program control and the names. Examples also exist for Bigraphs, where restricted,
more structured subsets of the bigraphs have been used to conveniently model different process
calculi [BS06, GM08b].
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8 Conclusion

We have discussed the advantages of structured graphs in up to ten different aspects of the graph-
based engineering of software systems. Our arguments are mainly inspired by the various ap-
proaches to structured (possibly hierarchical) graphs that can be found in the literature. It is
out of the scope of this paper to overview all of them. Interested readers are referred to bi-
graphs [JM03], hierarchical graph transformation [DHP02, DHJ+08], shaped graphs [HM04]
and the references therein.

The main source of inspiration, however, is our own contribution to this field which is called
Architectural Design Rewriting (ADR) [BLMT08]. ADR is a proposal for the design of com-
plex software systems. The key features of ADR are: 1) hierarchical graphs with interfaces; 2)
algebraic presentation; 3) inductively-defined reconfigurations.

Roughly, the underlying model consists of some kind of interfaced graphs whose inner items
represent the architectural units and their interconnections and whose interface expresses the
overall type and its connection capabilities. Architectures are designed inductively by a set of
productions which enable: top-down refinement, like replacing an abstract component with a
possibly partial realisation; bottom-up typing, like inferring the type of an actual architecture;
well-formed composition, like composing some well-typed actual architectures together so to
guarantee that the result is still well-typed. In the functional reading, the set of productions de-
fines an algebra of terms, each providing a proof of style conformance. Hence, the interpretation
of a proof term is the actual architecture.

The dynamics is then expressed by term rewrite rules acting over proof terms rather than over
actual architectures. This has many advantages, like guaranteeing that all reconfigurations are
style-preserving by construction.

The flexibility of ADR has been validated over heterogeneous models such as network topolo-
gies, architectural styles and modelling languages. A prototypical implementation of ADR is
also being developed using Maude [CDE+07], a high-performance tool implementing Rewriting
Logic [MR07] and well suited for the approach as it offers native features such as conditional
rewrite rules and built-in tools such as an LTL model checker. As an example, we have de-
veloped a simple visualiser of algebraic specifications of hierarchical graphs. The web site of
ADR (http://www.albertolluch.com/research/adr) makes both tools available and provides links
to several additional resources.

There are still some open challenges in the field of graphs and graph transformation systems:
mimicking standard and advanced term rewrite techniques such as structural operational seman-
tics or symbolic semantics, representation of complex models from service oriented applications
to biological systems, and so on. We expect that in all cases, the use of structured, hierarchical
graphs will play a fundamental role.
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