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Abstract. Since its introduction, more than a decade ago, rewriting logic has
attracted the interest of both theorists and practitioners, who have contributed in
showing its generality as a semantic and logical framework and also as a program-
ming paradigm. The experimentation conducted in these years has suggested that
some significant extensions to the original definition of the logic would be very
useful in practice. In particular, the Maude system now supports subsorting and
conditions in the equational logic for data, and also frozen arguments to block un-
desired nested rewritings; moreover, it allows equality and membership assertions
in rule conditions. In this paper, we give a detailed presentation of the inference
rules, model theory, and completeness of such generalized rewrite theories.

Introduction

This paper develops new semantic foundations for a generalized version of rewriting
logic. Since its original formulation [10], a substantial body of research (see the more
than 300 references listed in the special TCS issue [6], and the four WRLA Proceedings
in the ENTCS series, Vols. 4, 15, 36, and 71) has shown that rewriting lag)ch@s
good properties as semantic frameworkparticularly for concurrent and distributed
computation, and also aslegical framework a meta-logic in which other logics can
be naturally represented. Indeed, the computational and logical meanings of a rewrite
t — t’ are like two sides of the same coin. Computationally t’ means that the state
component canevolveto the componertf. Logically,t — t" means that from the for-
mulat one cardeducethe formula’. RL has also been shown to have good properties as
adeclarative programming paradignas demonstrated by the mature implementations
of the ELAN [12], CafeOBJ [3], and Maude [2] languages.

The close contact with many applications in all the above areas has served as a good
stimulus for asubstantial increase in expressive powéthe rewriting logic formalism
by generalization along several dimensions:

1. Since arewrite theory is essentially a trifle= (%, E, R), with (£, E) an equational
theory, anR a set of labeled rewrite rules that are appleodulothe equationg,
it follows that rewriting logic igparameterized by the choice of an underlying equa-
tional logic; therefore, generalizations towards more expressive equational logics
yield more expressive versions of rewriting logic.

2. Another dimension along which expressiveness can be increased is by allowing
more general conditionm conditional rewrite rules.

3. Yet another dimension has to do withtbidding rewriting under certain operators
or operator positiongfrozen operators and arguments). Although this could be re-
garded as a purelyperational aspecthe need for it in many applications suggests
supporting it directly at the semantic level of rewrite theories.
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In this paper we generalize rewrite theories along these three dimensions. Along di-
mension 1, we selechembership equational log{@EL) [11] as the underlying equa-
tional logic. This is a very expressive many-kinded Horn logic whose atomic formulas
are equations=t’ and memberships: s. It contains as special cases the order-sorted,
many-sorted, and unsorted versions of equational logic. Along dimension 2, assuming
an underlyingvEeL theory(Z, E), we allow for conditional rewrite rules of the form,

(VX)r:it —t'if Aig P =0 A AjeaWj:sj A AieLti =t

wherer is the rule label, all terms afeterms, and the rule can be made conditional to
other equations, memberships, and rewrites being satisfied. Finally, along dimension 3,
we allow declaring certain operator argumentdragen thus blocking rewriting un-

der them. This leads us to defingganeralized rewrite theoryGRrT) as a four tuple,

R = (%,E,@,R), where(Z,E) is a membership equational theoRyis a set of labeled
conditional rewrite rules of the general form above, gnid a function assigning to
each operatof : k; ... ky — kin Z the subsef(f) C {1,...,n} of its frozen arguments.

As already mentioned, such a notion of generalized rewrite theory has been arrived
at through a long and extensive contact with many applications. In fact, practice has
gone somewhat ahead of theory: all the above generalizations have already been im-
plemented in the latest alpha versions of Maude 2.0. The importance of generalizing
rewrite theories along dimension 1 has to do with the greater expressiveness allowed
by having sorts, subsorts, subsort overloaded operators, and partial functions; all this is
further explained in Section 1.2. We can illustrate the importance of generalizing along
dimensions 2 and 3 with an example showing that, in essence, this Briragsdstruc-
tural operational semanticévhose strong relationship had already been emphasized
in [5,7,8]) closer than ever before. Consider for example a reactive process calculus
with a nondeterministic choice operaterspecified by SOS rules of the form,

P—P Q—-Q

—_— i ———= right choice
PiQ_P left choice PrO_ O g

The corresponding rewrite theoff will then have two conditional rules, like
left choice: P+Q — P if P—P right choice:P+Q—Q if Q—Q

Furthermore, both arguments fshould befrozen i.e., (+) = {1,2}. If we add to
this process calculus a sequential composiBp®, the fact thalQ should not be able
to evolve untilP has finished its task can be straightforwardly modeled by declaring
the second argument of,_ as frozen, plus the rule¢’;Q — Q (wherev  is the “cor-
rect termination” process), which throws away the operator, unfreezing its second
argument. Hence, (un)frozen arguments can naturally nredetive contextd.e., the
distinguished set of environments where reactions can take place. Note that frozen ar-
guments are for rewrite theories the analogous ofdnategy annotationsised for
equational theories i0BJ, CafeOBJ, and Maude to improve efficiency and/or to guar-
antee the termination of computations, replacing unrestricted equational rewriting by
so-calledcontext-sensitive rewritinfgt]. Thus, in Maude, rewriting with both equations
E and rulesk can be made context-sensitive. The usefulness of having frozen attributes
in rewrite theories has emerged gradually. Stehr, Mesegue©edzky first proposed
frozen kindg[13]. The generalization of this to a subgetC ¥ of frozen operators
emerged in a series of email exchanges between Stefani and the second author. The
subsequent generalization of freezing operator arguments selectively brings us to the
just mentioned two levels (for equations and for rules) of context-sensitive rewriting.
Given the above notion agRT, the paper addresses the following questions:
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— What are rewriting logic’sules of deductiorfor generalized rewrite theories?

— What are thenodelsof a rewrite theory? Are there initial and free models?

— Is rewriting logic completewith respect to its model theory, so that a rewrite is
provable from a rewrite theor_ if and only if it is satisfied by all models &k ?

The answers given (all in the affirmative) are in fact nontrigiaheralizationsof
the original inference rules, model theory, initial and free models, and completeness
theorem for rewriting logic over unsorted equational logic, as developed in [10]. In
summary, therefore, this paper develops rsamantic foundationfor a generalized
version of rewriting logic, along several dimensions that have been found to substan-
tially increase its expressiveness in concrete applications. At the programming language
level, this paper does also provide the needed mathematical semantics for Maude 2.0.

Synopsis. In § 1.1 we recap from [10] the original presentatiorraf, and in§ 1.2 we
overview membership equational log&2 and§ 3 present the original contributions of

the paper, introducing generalized rewrite theories, their proof theory, their model the-
ory, and the completeness results. Note that the algebras of reachability and decorated
sequents are expressed as membership equational theories themselves (a framework not
available when [10] was published). Conclusions are drawn in the last section.

1 Background

1.1 Conditional rewriting logic

Though in the rewriting community it is folklore that rewrite theories are parametric
w.r.t. the underlying equational logic of data specification, the details have been fully
spelled out only for unsorted equational logic, and rules of the form (1) below.

Since only unsorted theories were treated in [10], here, but not in the rest of the pa-
per where ordered sorts are used, an (equatisigaiatureis a family of sets ofunction
symbolgalsooperatord = = {Z, }nen indexed by arities, and atheoryis a pair(Z,E)
whereE = {(¥X) ti =t/ }1<i<m is a set of (universally quantified)-equations, with
ti,t/ € Tz(X) two Z-terms with variables inG. We lett =g t’ denote the congruence
moduloE of two termst,t’ and let[t]e or just[t] denote theE-equivalence class df
moduloE. We shall denote btjus /Xy, . .. ,Un/Xn] (@bbreviated|t/X]) the term obtained
fromt by simultaneously replacing the occurrenceg;dfy u; for 1 <i <n.

Definition 1.1 (Conditional rewrite theory). A (labeled) conditional rewrite theotg,
is atuple® = (%, E,R), where(Z,E) is an unsorted equational theory aRds a set of
(labeled) conditional rewrite rules having the form below, with. t;,t/ € Ts (X).

(WX)rit =t if tp—tp A Atp—t). (1)

The theory(Z, E) defines the static data structure for the states of the system (e.g., a
free monoid for strings, or a free commutative monoid for multisets), vihilefines the
dynamics (e.g., productions in phrase-structure grammars or transitions in Petri nets).

Given a rewrite theoryR, its rewriting logic is a sequent calculus whose sen-
tences have the forrfivX) t — t’ (with the dual, logico-computational meaning ex-
plained in the Introduction). We say th& entailsa sequen{vX) t — t’, and write
R F(¥X)t —t',if (vX)t —t’ can be obtained by means of the inference rules in Fig-
ure 1. Roughly(Reflexivity) introduces idle computation§ransitivity) expresses the
sequential composition of rewrite&E quality) means that rewrites are applied modulo



4 R. Bruni and J. Meseguer

teTs(X vX)tp —t, VX)to —t
A Reflexivity (Xt~ X)t2 > 15 Transitivity
(WX)t—t (WX)tg — t3
EF(WX)t=u, (VX)u—u, EF(WX)Uu =t _
Equality
(VX)t =t/
f ey, (vX)t; —t for i€ [1,n]
Congruence

(VX) f(ty, ..., tn) — F(t],....t)

(WX)r:it =t if Ajcioti—t R, 6,0: X — Tx(Y)
(YY) B(tj) — 6(t)) for 1<i <, (VY) B(x) — &' (x) for xe X Nested

(VY) 0(t) — &'(t) Replacement

Fig. 1. Deduction rules for conditional rewrite theories.

the equational theorf, (Congruence)says that rewrites can be nested inside larger
contexts. The most complex rule(lested Replacement)stating that given a rewrite
ruler € Rand two substitution8, & for its variables such that for eagte X we have
B(x) — 0'(x), thenr can be concurrently applied to the rewrites of its arguments, once
that the conditions of can be satisfied in the initial state defined@ySince rewrites
are applied modul&, the sequents can be equivalently writteiX) [t] — [t].

From the model-theoretic viewpoint, the sequents can be decoratepradttterms
in a suitable algebra that exactly captures concurrent computations. We remark that each
rewrite theory®_has initial and free models and that a completeness theorem reconciles
the proof theory and the model theory, stating that a sequent is provableRfribrand
only if it is satisfied in all models off_(called R -systemp

Roughly, the algebra of sequents contains the tétimsTs g for idle rewrites, with
the operators and equations(i, E) lifted to the level of sequents (e.g. df: [ti] — [t/]
fori e [1,n], thenf(aq,...,an):[f(t1,....t)] — [f(t],...,t))]), plus the concatenation
operator_ ;_ for composinga: [t1] — [tz] and ay: [to] — [ts] to ag;az: [t1] — [tz via
(Transitivity) , and finally an additional operatomwith arity |X|+ ¢ for each ruler € R
of the form (1). For example, if3i: [6(ti)] — [B(t)]} 1<i<, and{ax: [B(X)] — [0/ (X)] }xex
are used as premises (Nested Replacement)then the conclusion is decorated by
r(a,ﬁ). The axioms express: (i) that sequents form the arrows of a category with
as composition and idle rewritéd as identities; (ii) the functoriality of théX, E)-
structure, and (iii) the so-calledecompositiormndexchangdaws, saying that the ap-
plication ofr to [B(t)] is concurrent w.r.t. the rewrites of the arguments. of

1.2 Membership equational logic

In many applications, unsorted signatures are not expressive enough to reflect in a nat-
ural way the features of the system to be modeled. The expressiveness can be increased
by supporting sorts (e.Bpol, Nat, Int) via many-sortedignatures and relating them

via order-sortedsignatures (e.g§zNat < Nat < Int). Equations inE can be made

more expressive by allowingonditionsfor their applications. Such conditions can be
other equalities, or membership assertions. Conditional membership assertions are also
useful.Membership equational logigveL) [11] possesses all the above features (gen-
eralizing order-sorted equational logic) and is supported by Maude [2].
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A MEL signatureis a triple(K,Z,S) (justZ in the following), withK a set ofkinds
2 = {Z5k} (5K ek+xk @ many-kinded signature ariBl= {S}kek aK-kinded family of
disjoint sets of sorts. The kind of a saiis denoted bys]. A MEL Z-algebraA contains
a setA for each kindk € K, a functionAs: Ay, x --- x A, — A for each operator
f € 3y..k,k and a subses C A for each sors € S, with the meaning that the elements
in sorts are well-defined, while elements without a sortearers. We write T . and
Ts (X)k to denote respectively the set of groudivierms with kindk and ofZ-terms with
kind k over variables irK, whereX = {xy : ky,...,Xn : kn} is @ set of kinded variables.

Given aMEL signature>, atomic formulaehave either the forrh=t’ (Z-equation)
ort : s(Z-membership) with,t’ € Ts(X)x ands € ; andZ-sentenceare conditional
formulae of the forn(VX) ¢ if A;pi=a A Ajw;:sj, whereg is either az-equation
or aX-membership and all the variablesdn p;, g;, andw; are inX. A MEL theory is
a pair(Z,E) with ¥ a MEL signature an@ a set ofZ-sentences. We refer to [11] for
the detailed presentation O, E)-algebras, sound and complete deduction rules, initial
and free algebras, and theory morphisms.

Order-sorted notatios, < S, can be used to abbreviate the conditional membership
(Vx:K)x:sp if X:s1. Similarly, an operator declaratidns; x - - - x s, — scorresponds
to declaringf at the kind level and giving the membership axidwx; : ki,...,X, :
kn) f(X1,...,%) S if Aq<icnXi © S. We write (VX1 @ S1,...,% 1 &) t =t in place of
(VX1 Ky..., X s k) t =t" if Aq<icnXi : S. Moreover, for a list of variables of the same
sorts, we write (Vxg, ..., X, : S), and let the sentend®X) t : k meart ¢ Tsg)(X)k-

2 Generalized rewrite theories and deduction

In this section we present the foundations of rewrite theories me&er theories and
where operators can have frozen arguments.

A generalized operators a function symbolf:k; - - -k, — k together with a set
o(f) C{1,...,n} of frozen argument positions. We denoteuy ) the set{1,...,n} \
@(f) of unfrozerarguments, and say théts unfrozenf @(f) = @.

Definition 2.1 (Generalized signatures)A generalizediEL signaturgX, @) is aMEL
signatureX whose function symbols are generalized operators. The fungtibr—
O¢(N) assigns to eacli € X its set of frozen argumentS{(N) denotes the set of finite
sets of natural numbers and for arfiyk; - - - kn — kin £ we assumey(f) C {1,...,n}).

If the ith position of f is frozen, then inf(ty,...,tn) any subterm of; is frozen.
This can be made formal by considering the usual tree-like representation of terms (the
same subterm can occur in many distinct positions that are not necessarily all frozen).
Positions in a term are denoted by strings of natural numbers, indicating the sequences
of branches we must follow from the root to reach that position. For example, the term
t = f(g(a,b,c), f(h(a,b), f(b,c))) has two occurrences of the constarsdt positions
1.3 and2.2.2, respectively. We let; andt(m) denote, respectively, the subtermtof
occurring at positiont, and its topmost operator. Farthe empty position, we ldj,
denote the whole terin In the example above, we haigg = h(a,b) andt(2.1) = h.

Definition 2.2 (Frozen occurrences)The occurrencé; of the subterm dfat position
Ttis frozenif there exist two positionsy, T and a natural numben such thatrt=
T.n.Te andn € @(t(Tw)). The occurrencé is calledunfrozenif it is not frozen.

In the example above, fai( f) = ¢(g) = @ and@(h) = {1}, we have thatp 11 = ais
frozen (becausg2.1) = h), whilet; 1 = ais unfrozen (becaug¢)) = f andt(1) = g).
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te Ty (X vX)t1 —to, VX))t —t
ﬂ Reflexivity Xt~ L2 X)t2 15 Transitivity
(WX)t—t (WX)tg — t3
EF-(VX)t=u, (VX)u—u, EF(WX)U =t _
Equality
(VX)t =t/
f e kk ti,tl € Ts(X)y, for ie[1,n]
t/=t for i eqf), (VX)tj —tj for jev(f)
Congruence

() Tt tn) — F(tho o th)

(VX)rt = t'if Ajig pi=ai A AjegWj i8S A Alet =t €R
8,0 : X — Tx(Y), B(x) = 0'(x) for x € @(t,t’)

EF (VY)0(pi) =6(qi) foriel, EF (YY) B(wj):sj for jeJ
(YY) 6(t) — 8(t)) for I eL, (VY) B(x) — &'(x) for xev(t,t’) Nested
(VY) 0(t) — &'(t) Replacement

Fig. 2. Deduction rules for generalized rewrite theories.

Definition 2.3 (Frozen variables).Givent € T (X) we say that the variable € X is
frozenin t if there exists a frozen occurrenceyoif t, otherwise it is calledinfrozen

We letg(t) andv(t) denote, respectively, the set of frozen and unfrozen variables of
t. Analogously@(ts,...,tn) (resp.v(ty,...,tn)) denotes the set of variables for which a
frozen occurrence appears in at least prfesp. that are unfrozen in &j).

By combining conditional rewrite theories witheL specifications and frozen ar-
guments, we obtain a rather general notion of rewrite theory.

Definition 2.4 (Generalized rewrite theory).A generalized rewrite theoGRT) is a
tuple ® = (%, E, @ R) consisting of: (i) a generalizedhEL signature(Z, @) with say
kindsk € K, sortss € S, andK* x K-indexed set of generalized operatdr& X with
frozen arguments according tg (ii) a MEL theory(Z,E); (iii) a set R of (universally
quantified) labeled conditional rewrite ruleshaving the general form

(X)) rit =t if Aig pi =0 A AjeaWj:Sj A AjeLti =t 2)

where, for appropriate kindsandk; in K, t,t’ € Ts(X)k andt;,t/ € Ts (X)) forl € L.

2.1 Inference in generalized rewriting logic

Given aGRT R = (%, E, @ R), asequenbdf R is a pair of (universally quantified) terms
of the same kind,t’, denoted VX)t — t" with X = {x3 : ki, ...,Xn : kn} a set of kinded
variables and,t’ € Tx(X)k for somek. We say that® entailsthe sequentvX)t — t’,
and write® I (VX) t — t/, if the sequentvX)t — t’ can be obtained by means of the
inference rules in Figure 2, which are briefly described below.

(Reflexivity), (Transitivity) , and (Equality) are the usual rules for idle rewrites,
concatenation of rewrites, and rewriting modulo theL theoryE. (Congruence)al-
lows rewriting the arguments of a generalized operator, but we add the condition that
frozen arguments must stay idle (note ttjat t; is syntactic equality). Any unfrozen
argument can still be rewritten, as expressed by the prefvilsgt; — t] for j € v(f).
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(Nested Replacement}akes into account the application of a rewrite rule in its
most general form (2). It specifies that for any rewrite muke R and for any (kind-
preserving) substitutio® such that the condition afis satisfied whe® is applied to all
termsp;, o, W, 1, t/ involved, then it is possible to apply the rewritéo 6(t). Moreover,
if @ is a second (kind-preserving) substitution for the variable$ such tha® and®’
coincide on all frozen variablesc @(t,t') (second line of premises), while the rewrites
(VY) 8(x) — 0'(x) are provable for the unfrozen variables v(t,t’) (last premise),
then such nested rewrites can be applied concurrentlyrwith

Of course, any unsorted rewrite theory can be regardeds&s avhere: (i)Z has a
unique kind and no sorts; (ii) all the operators are total and unfrozengi®.= @ for
any f € %); (iii) conditions in rewrite rules contain neither equalities nor membership
predicates. In this case, deduction via rules for conditional rewrite theories (Figure 1)
coincides with deduction via rules for generalized rewrite theories (Figure 2).

Theorem 2.1. Let R be a conditional rewrite theory, and Ié{ denote its correspond-
iNngGRT. Then: R+ (¥VX)t—t & RE@X)t-t.

3 Models of generalized rewrite theories

In this section, exploiting/EL, we define the reachability and concurrent model theories
of GRTs and state completeness results.

3.1 Reachability models

Reachability models focus just evhatterms/states can be reached from a certain state
t via sequences of rewrites, ignorihgwthe rewrites can lead to them.

Definition 3.1 (Reachability relation). Given aGRT R = (Z,E, @, R), its reachability
relation —, is defined proof-theoretically, for each kirkdin X and eachlt], [t'] €
Tse(X)k, by the equivalence: [t —¢ [t'] < RF(WX)t—1t.

The above definition is sound because we have the following easy lemma.

Lemma 3.1. LetR = (Z,E, ,R) be acRT, andt € Ts(X)k. If R - (VX)t — t, then
t' € Ts(X)k. Moreover, for anyt,u,u’,t’ € Ts(X)x such thatu € [t]g, U € [t']g and
R F (VX)u— U, then® F (VX)t — t'.

The reachability relation admits a model-theoretic presentation in terms of the free
models of a suitableEL theory. We give the details below as a “warm up” for the
model-theoretic concurrent semantics given in the next section. The idea is>that
can be defined as the family of relations, indexed by the Kindsven by interpreting
the sortsAry in the free model of the followingiEL theoryReachiR ).

Definition 3.2 (The theoryReacli®)). The membership equational thed®gachR )
contains the signature and sentence$3nE) together with the following extensions:

1. For each kindk in Z we add:
(a) anew kindPair] (for k-indexed binary relations on terms of kikjiwith four
sorts AR, Ar, Ar, and Pair, and subsort inclusions: ArAr} < Ary < Pairy;
(b) the operatorg_— _) : k k— Pairy (pair constructor)s, t : Pairy — k (source
and target projections), anfl ; _) : [Pairi] [Pairy] — [Pairy] (concatenation);
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(c) the (conditional) equations and memberships

(WX, ¥ :K) s(x—y) =x
(WX y: K t(x—y) =y
(Vz: Pairg) (s(z2) — t(2)) =z
(vx:K) (x— X) : Ar?
(WY, z2:K) (Xx—2) : Arg if (X—y): ArgA (Y — 2) @ Arg
("%.¥,2:K) (x=y); (y = 2) = (x— 2).

2. Eachf :ky...ky — kin X with v(f) # @ is lifted to f : [Pairy,]- - - [Pairg,| —
[Pairy], and for eachi € v(f) we declaref : Arf ---Arg ---Arp — Arg; we then
give, for each € v(f), the equation below, whedg = {x3 : k1,..., X1 : Kn, Vi : ki}

(VX.) f((Xl ~>X1),...,(Xi Hyi),...,(xn — Xn)) = f(Xl,...,Xn) — f(xl,...,yi,...,xn).

3. Foreach rulg(vX) r:t —t" if Aig pi=aiAAjegWj:SjA ALt — t in R with,
sayt,t’ of kindk, andt,,t/ of kindk;, we give the conditional membership,

(WX) (t—=t) tArg if Api=aAAwjisia At =t Arg.

il jed leL

The sortsArE andAr& contain respectively idle rewrites and one-step rewrites of
k-kinded terms, while the soAry containsk-rewrites of arbitrary length. ThéCon-
gruence)rule is modeled so that exactly one unfrozen argument can be rewritten in
one-step (see item 2 in Definition 3.2), afiested Replacementis restricted so that
no nested rewrites can take place concurrently (item 3). Nevertheless, these two restric-
tions on how the inference rules are modeled do not alter the reachability refation
because one-step rewrites can be composed in any admissible interleaved fashion (see
the fifth axiom at point 1.(c)). Note that the concatenation operator is not really
necessary, but its introduction facilitates the proof of Theorem 3.2.

The theoryReacl{®) provides an algebraic model for the reachability relation.
For ground terms, such a model is given by the interpretation of the Agyts the
initial model Treactiz)- FOr terms with variables iX, the reachability model is the free
algebralgeaciix ) (X). This can be summarized by the following theorem:

Theorem 3.1. For R = (Z,E, @ R) aGRT andt,t’ € Tz (X)k we have the equivalences:

REWX)t—t & Reachi®) - (VX) (t —t') : Arg
& Reachi®R) = (VX) (t —t') : Arg
&

[(t - t/)] € TReacmR)(x)Ark~

3.2 Concurrent models

In general, many proofs concluding th&t+ (vX)t — t’ are possible. However: (1)
some of the proofs can be computationally equivalent, because they represent different
interleaved sequences for the same concurrent computation, but (2) not all those proofs
are necessarily equivalent, as they may, e.g., differ in the underlying set of applied
rewrite rules, or in the different causal connections between the applications of the
same rules. In this section, we show how to extend the notion of decorated sequents to
GRTS, S0 as to define an algebraic modetra& concurrencyor X ..
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As usual, decorated sequents are first defined by attachgrapéterm(i.e., an ex-
pression built from variables, operatorsiinand labels irR) to each sequent, and then
by quotienting out proof terms modulo suitable functoriality, decomposition, and ex-
change laws. We can preseRits algebra of sequents as the initial (or free) algebra of a
suitablemeL theoryProof(R ). With respect to the classical presentation via decorated
deduction rules, the1eL specification allows a standard algebraic definition of ini-
tial and loose semantics. Moreover, here we can naturally support many-sorted, order-
sorted, andiEL data theories instead of just unsorted equational theories as in [10].
The construction oProof(% ) is analogous to that dReacki® ). The kind[Pairy]
of Reacli®) is replaced here by a kindRw], whose elements include the proofs of
concurrent computations. The initial and final states are still defined by means of the
source §) and targett) operators. Moreover, since the proof of an idle rewftite- [t]
is [t] itself, we can exploit subsorting to make sort of kind[Rw]. The sortsRw and
Rw are the analogous d‘{r& andArg. The sortAr& was introduced irReacti®) to
deal with the “restricted” form ofCongruence)and(Nested Replacement)Having
decorations at hand, we can restore the full expressiveness of the two inference rules,
but the sorRV\ﬁ is still useful in axiomatizing proof-decorated sequents: we define the
(Equality) rule on R\Aﬁ, lifting the equational theorf to one-step rewrites, and then
exploit functoriality and transitivity to exten to rewrites of arbitrary length iRwy,.

Definition 3.3 (The theoryProof(R )). The membership equational theory Pro®f)
contains the signature and sentence$XE) together with the following extensions:

1. Each kindk in £ becomes a sok in Proof(R ), withs < k for anyse S in X.
2. For each kindk in < we add:
(a) anew kindRw] (for k-indexed decorated rewrites @iterms of kindk) with
sorts all sorts ink and the (new) sortk, RV\{lL and Rw, with: k Rv\{lL < Rwy;
(b) the (overloaded) operatofs ;_) : [Rw] [Rw] — [Rwg] ands,t : Rwg — Kk;
(c) the (conditional) equations and memberships

(Wx:K) s(x) =x
(Wx: k) t(x) =x

(WX, ¥ Rw) X y: Rwg if t(x) =s(y)
(V%Y1 Rw) s(xy) =s(x) if t(x) =s(y)
(VX1 Rwe, Y Rw) t(xy) =t(y) if t(x) =s(y)

(W ky:Rw) xy=y if x=s(y
(VX: Rw,y:K)xy=x if t(x)=y
(VX,¥,Z2: RW) X; (;2) = (X y); 2 i t(X) =s(y) A t(y) =s(2).
3. We lift each operatof : k;...ky — kin Zto f : [Rw]--- [Rw,] — [Rw], and
forv(f) ={is,...,im} we overloadf by f : kl---Rqu“-Rqu---kn — Rw, and
f :kl---RV\f;j -+ -kn — R for j = 1,...,m, with equations

(VX) s(f(x1,...,%)) = f(s(x1),...,5(Xn))

(VX) t(F (X1, .. %) = F(Ex0).- . t %),
whereX:{xl:kl,...,xil:R\/\kl,...,xim:RV\km,‘..,xn:kn} and the equation
(W) f(Xlw-~7(Xi1;yi1)»~--»(Xim;Yim)wu,Xn)) =

FO% - Xn)s T O/ oy Vi ey Wi -0 Xn) 1T Aqcjemt(Xi;) = s(Wi) ),
whereY = {x1 : kq,...,Xi;,Vi; : RV\kil,...,xim,yim TRW X Kn}.
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4. For each equationfVxy : k..., %y kn) t =t" if Ajgy pi = GiAAjegW; - §j in E,
we letX = {x1 : Rw,,..., % : Rw, } and add the conditional equation

(WX)t=t"if Api=aiA/\swj):siA AtW):siA A XnkaA A Xn:Rug

il jed jed XhEP(tt') Xhev(t,t))

5. ForeachrulgVX)r:t —t' if Aig pi=0i /\/\jejwj :SjANeLtl — 1 in R, with,
say,X = {x1 : Ki,...,Xn : kn}, t,t" of kindk, andt;,t/ of kindk/ withL = {1,...,¢},
we add the operatar: [Rw, | - - [RW(”][RV\((/] [qu(/] [Rw] with
(a) the conditional membership for charactenzmg basic one-step rewrites:

(912K, X K Y2 Ry RW ) T(X9) S RWE if A

whereA = (Ai¢i i = G AAjeaWj i SjAAieLs(V) =t AAeL t(W) =t) checks
that the conditions for the application of the rul@re satisfied,;
(b) the conditional equations and memberships

(YY) r(2,y) : Rwg if AAW
(W) s(r(z,y)) =t if AAW
W) t(r(2y)) =t'[t(2)/X if AAW

whereY = {Xy : Ky, ..., Xn : Kn,Z1 : RW ..., Z0 : RW,, Y1 val,...,yg : RV\4<2},
Ais as before, an® = (A cqtt) 20 = X0 A Agevtt) S(Zn) = Xn);
(c) the decomposition law

(VZ)r(z,y) =r(Xy);t'[Z/X if AAW

whereZ = {xq 1 Kq,..., %0 1 Kn, 21 : RW ..., Z0 D RW,, Y1 Rw(/l,...,yg : RV\@},
while A andW are as before;
(d) the exchange law

(VW) r(%,9);U[Z/X] =t[Z/X;r (t@),¥) if AAWANAD

WhereW:{xl:kl,...,xn:kn,zl:R\/\{}l,...,zn : RV\{z,yl:Rw(/ SVH RS

W, LY RV\%},AandqJ are as beforel' = (Aig pi[t(Z)/X] = gi[t( )/)‘(’]
NieaWilt@ /% 2 i A A sO) = 1e(@)/% A A t) = G[e(2)/X]) checks
that the conditions for the application of the rulare satisfied after applying
the rewritesZto the arguments daf and® = (A, vi:t/[t(2) /X =t [t(2)/X];y])
states the correspondence between the “side” rewfjtaady’ (via 2).

We briefly comment on the definition &roof(® ). The operators defined at point
2.(b) are the obvious source/target projections and sequential composition of rewrites,
with the axioms stating that, for eakhthe rewrites irRw are the arrows of a category
with objects ink. The operatord in X are lifted to functors over rewrites in 3, while
the equations it are extended to rewrites in 4. It is worth noting that: (i) wifea
is lifted, only unfrozen positions can have rewrites as arguments, and therefore the
functoriality is stated w.r.t. unfrozen positions only; (ii) the axiom<&imre extended
to one-step rewrites only (in unfrozen positions), hence, they hold for sequences of
rewrites if and only if they can be proved to hold for each rewrite step. Point 5.(a) defines
the basic one-step rewrites, i.e., where no rewrite occurs in the argurn@aisit 5.(b)
accounts for nested rewritébelowr, provided that the side-conditionsrmdre satisfied
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by the initial state; in particular note that the expressi@@y) is always equivalent to
r(X,¥);t'[Z/X] (see decomposition law), where firsts applied at the top of the term

and then the arguments are rewritten accordirgjundert’. Finally, the exchange law
states that, under suitable hypotheses, the argunXerds be equivalently rewritten

first, and the rewrite rule applied later. Note that, as in the equations extenéintpe
exchange law is stated for one-step nested rewrites only. Nevertheless, it can be used in
conjunction with the decomposition law to prove the exchange law for arbitrary long
sequences of rewrites (provided that it can be applied step-by-step).

An important property foProof () is the preservation of the underlying state the-
ory (,E). Otherwise, the additional axioms roof (X ) might collapse terms that are
different in (Z,E). In this regard, the fact of adding the soRe{ andRwy on top ofk
is a potential source of term collapses. However, we can prove that, f@ring , the
theoryProof(R ) is a conservative extension of the underlying the@yE).

Proposition 3.1. Let ® = (Z,E,®,R) be aGRT, and lett,t’ € Tz(X)k, ands € S for
some kinck. Then, for any formula of the formt : k ort : sor t =t’ we have that:
EF(WX)¢ < Proof(R)F (VX) ¢.

The main result is tha®roof (R ) is complete w.r.t. the inference rules in Figure 2.

Theorem 3.2 (Completeness I)For anyGRT R = (Z,E, @ R) and anyt,t’ € Ts(X)k,
we haveR® - (VX)t -t < Ja.Proof(R)F (VX)a:Rw As(a)=t At(a) =t

The relevance of theeL theoryProof(R) is far beyond the essence of reachability,
as it precisely characterizes the class of computational modés of

Definition 3.4 (Concurrent models ofR). Let R _be aGRT. A concurrent modedf X
is a Proof(R )-algebra.

SinceProof(R) is an ordinarymeL theory, it admits initial and free models [11].
Hence, the completeness result can be consolidated by stating the equivalence between
formulae provable irProof(® ) using MEL deduction rules, formulae holding for all
concurrent models aR and formulae valid in the initial and free concurrent models.

Theorem 3.3 (Completeness ll)For X a GRT and for anyMEL sentenced over
Proof(R) (and thus, forp any of the formulae : Rw, s(a) =t, t(a) =t'), we have:
Proof(R) - (¥X) ¢ & Proof(R) = (WX) ¢ < Terorx)(X) |= (VX) 9.

Theorems 3.1, 3.2 and 3.3 can be combined together to state a stronger completeness
result forProof(® ), showing the equivalence between deduction at the leveRas,
their (initial and free) reachability models, and their (initial and free) concurrent models.

By Theorem 2.1 we have that the specialized versions of all our resultsfoover
unsorted equational theories without frozen arguments and without equality / member-
ship conditions in rewrite rules coincide with the classical ones. In particul&rjsfan
ordinary rewrite theory, ang -system is a concurrent model of the correspondirg

R, because there is a forgetful functdr; from the category oProof(% )-algebras to
the category off -systems. Indeed, the functiot; preserves initial and free models.

Conclusion

We have definedeneralized rewrite theorigs substantially extend the expressiveness
of rewriting logic in many applications. We have given rules of deduction for these
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theories, defined their models &L algebras, and shown that initial and free models
exist (for both reachability and true concurrency models). We have also shown that this
generalized rewriting logic is complete with respect to its model theory, and that our
results generalize the original results for unsorted rewrite theories in [10]. Future work
will make more explicit the 2-categorical nature of our model theory, and will develop
the semantics ajeneralized rewrite theory morphispextending the ideas in [9].

When evaluating the trade-offs between the complexity of the presentation and the
expressiveness of the proposed rewrite theories, we have preferred to give the precise
foundational semantics for the most general form of rewrite theories used in practice.
Although the result suggests thakL is expressive enough to embedTs just asMEL
theories plus some syntactic sugar, we argue that the intrinsic separation of concerns in
GRTSs (i.e., equational vs operational reasoning) is fundamental in most applications.

The theoryProof(R ) has an obvious reading as theT counterpart of the classic
Curry-Howard isomorphism. Along this line of research there is a flourishing literature
that focuses on the full integration of type theory with rewriting logic. We just men-
tion the joint work of Stehr with the second author on the formalization of Pure Type
Systems irrL [14], and the work of Cirstea, Kirchner and Liquori on gixealculus [1].
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