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Abstract. Since its introduction, more than a decade ago, rewriting logic has
attracted the interest of both theorists and practitioners, who have contributed in
showing its generality as a semantic and logical framework and also as a program-
ming paradigm. The experimentation conducted in these years has suggested that
some significant extensions to the original definition of the logic would be very
useful in practice. In particular, the Maude system now supports subsorting and
conditions in the equational logic for data, and also frozen arguments to block un-
desired nested rewritings; moreover, it allows equality and membership assertions
in rule conditions. In this paper, we give a detailed presentation of the inference
rules, model theory, and completeness of such generalized rewrite theories.

Introduction

This paper develops new semantic foundations for a generalized version of rewriting
logic. Since its original formulation [10], a substantial body of research (see the more
than 300 references listed in the special TCS issue [6], and the four WRLA Proceedings
in the ENTCS series, Vols. 4, 15, 36, and 71) has shown that rewriting logic (RL) has
good properties as asemantic framework, particularly for concurrent and distributed
computation, and also as alogical framework, a meta-logic in which other logics can
be naturally represented. Indeed, the computational and logical meanings of a rewrite
t → t ′ are like two sides of the same coin. Computationally,t → t ′ means that the state
componentt canevolveto the componentt ′. Logically, t → t ′ means that from the for-
mulat one candeducethe formulat ′. RL has also been shown to have good properties as
a declarative programming paradigm, as demonstrated by the mature implementations
of the ELAN [12], CafeOBJ [3], and Maude [2] languages.

The close contact with many applications in all the above areas has served as a good
stimulus for asubstantial increase in expressive powerof the rewriting logic formalism
by generalization along several dimensions:

1. Since a rewrite theory is essentially a tripleR = (Σ,E,R), with (Σ,E) an equational
theory, andRa set of labeled rewrite rules that are appliedmodulothe equationsE,
it follows that rewriting logic isparameterized by the choice of an underlying equa-
tional logic; therefore, generalizations towards more expressive equational logics
yield more expressive versions of rewriting logic.

2. Another dimension along which expressiveness can be increased is by allowing
more general conditionsin conditional rewrite rules.

3. Yet another dimension has to do withforbidding rewriting under certain operators
or operator positions(frozen operators and arguments). Although this could be re-
garded as a purelyoperational aspect, the need for it in many applications suggests
supporting it directly at the semantic level of rewrite theories.

? Research supported by the MIUR Project COFIN 2001013518COMETA, by the FET-GC
Project IST-2001-32747AGILE, and by ONR Grant N00014-02-1-0715. The first author is
also supported by a CNR fellowship for research on Information Sciences and Technologies.



2 R. Bruni and J. Meseguer

In this paper we generalize rewrite theories along these three dimensions. Along di-
mension 1, we selectmembership equational logic(MEL) [11] as the underlying equa-
tional logic. This is a very expressive many-kinded Horn logic whose atomic formulas
are equationst = t ′ and membershipst : s. It contains as special cases the order-sorted,
many-sorted, and unsorted versions of equational logic. Along dimension 2, assuming
an underlyingMEL theory(Σ,E), we allow for conditional rewrite rules of the form,

(∀X) r: t → t ′ if
V

i∈I pi = qi ∧
V

j∈J w j : sj ∧
V

l∈L tl → t ′l
wherer is the rule label, all terms areΣ-terms, and the rule can be made conditional to
other equations, memberships, and rewrites being satisfied. Finally, along dimension 3,
we allow declaring certain operator arguments asfrozen, thus blocking rewriting un-
der them. This leads us to define ageneralized rewrite theory(GRT) as a four tuple,
R = (Σ,E,φ,R), where(Σ,E) is a membership equational theory,R is a set of labeled
conditional rewrite rules of the general form above, andφ is a function assigning to
each operatorf : k1 . . .kn→ k in Σ the subsetφ( f )⊆ {1, . . . ,n} of its frozen arguments.

As already mentioned, such a notion of generalized rewrite theory has been arrived
at through a long and extensive contact with many applications. In fact, practice has
gone somewhat ahead of theory: all the above generalizations have already been im-
plemented in the latest alpha versions of Maude 2.0. The importance of generalizing
rewrite theories along dimension 1 has to do with the greater expressiveness allowed
by having sorts, subsorts, subsort overloaded operators, and partial functions; all this is
further explained in Section 1.2. We can illustrate the importance of generalizing along
dimensions 2 and 3 with an example showing that, in essence, this bringsRL andstruc-
tural operational semantics(whose strong relationship had already been emphasized
in [5,7,8]) closer than ever before. Consider for example a reactive process calculus
with a nondeterministic choice operator+ specified by SOS rules of the form,

P→ P′
P+Q→ P′

left choice
Q→Q′

P+Q→Q′ right choice

The corresponding rewrite theoryR will then have two conditional rules, like

left choice: P+Q→ P′ if P→ P′ right choice : P+Q→Q′ if Q→Q′

Furthermore, both arguments of+ should befrozen, i.e., φ(+) = {1,2}. If we add to
this process calculus a sequential compositionP;Q, the fact thatQ should not be able
to evolve untilP has finished its task can be straightforwardly modeled by declaring
the second argument of; as frozen, plus the ruleX;Q→ Q (whereX is the “cor-
rect termination” process), which throws away the operator; , unfreezing its second
argument. Hence, (un)frozen arguments can naturally modelreactive contexts, i.e., the
distinguished set of environments where reactions can take place. Note that frozen ar-
guments are for rewrite theories the analogous of thestrategy annotationsused for
equational theories inOBJ, CafeOBJ, and Maude to improve efficiency and/or to guar-
antee the termination of computations, replacing unrestricted equational rewriting by
so-calledcontext-sensitive rewriting[4]. Thus, in Maude, rewriting with both equations
E and rulesRcan be made context-sensitive. The usefulness of having frozen attributes
in rewrite theories has emerged gradually. Stehr, Meseguer, andÖlveczky first proposed
frozen kinds[13]. The generalization of this to a subsetΩ ⊆ Σ of frozen operators
emerged in a series of email exchanges between Stefani and the second author. The
subsequent generalization of freezing operator arguments selectively brings us to the
just mentioned two levels (for equations and for rules) of context-sensitive rewriting.

Given the above notion ofGRT, the paper addresses the following questions:
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– What are rewriting logic’srules of deductionfor generalized rewrite theories?
– What are themodelsof a rewrite theory? Are there initial and free models?
– Is rewriting logic completewith respect to its model theory, so that a rewrite is

provable from a rewrite theoryR if and only if it is satisfied by all models ofR ?

The answers given (all in the affirmative) are in fact nontrivialgeneralizationsof
the original inference rules, model theory, initial and free models, and completeness
theorem for rewriting logic over unsorted equational logic, as developed in [10]. In
summary, therefore, this paper develops newsemantic foundationsfor a generalized
version of rewriting logic, along several dimensions that have been found to substan-
tially increase its expressiveness in concrete applications. At the programming language
level, this paper does also provide the needed mathematical semantics for Maude 2.0.

Synopsis. In § 1.1 we recap from [10] the original presentation ofRL, and in§ 1.2 we
overview membership equational logic.§ 2 and§ 3 present the original contributions of
the paper, introducing generalized rewrite theories, their proof theory, their model the-
ory, and the completeness results. Note that the algebras of reachability and decorated
sequents are expressed as membership equational theories themselves (a framework not
available when [10] was published). Conclusions are drawn in the last section.

1 Background

1.1 Conditional rewriting logic

Though in the rewriting community it is folklore that rewrite theories are parametric
w.r.t. the underlying equational logic of data specification, the details have been fully
spelled out only for unsorted equational logic, and rules of the form (1) below.

Since only unsorted theories were treated in [10], here, but not in the rest of the pa-
per where ordered sorts are used, an (equational)signatureis a family of sets offunction
symbols(alsooperators) Σ = {Σn}n∈N indexed by aritiesn, and atheoryis a pair(Σ,E)
whereE = {(∀Xi) ti = t ′i }1≤i≤m is a set of (universally quantified)Σ-equations, with
ti , t ′i ∈ TΣ(Xi) two Σ-terms with variables inXi . We let t =E t ′ denote the congruence
moduloE of two termst, t ′ and let[t]E or just [t] denote theE-equivalence class oft
moduloE. We shall denote byt[u1/x1, . . . ,un/xn] (abbreviatedt[~u/~x]) the term obtained
from t by simultaneously replacing the occurrences ofxi by ui for 1≤ i ≤ n.

Definition 1.1 (Conditional rewrite theory). A (labeled) conditional rewrite theoryR
is a tupleR = (Σ,E,R), where(Σ,E) is an unsorted equational theory andRis a set of
(labeled) conditional rewrite rules having the form below, witht, t ′, ti , t ′i ∈ TΣ(X).

(∀X) r: t → t ′ if t1 → t ′1 ∧ ·· · ∧ t` → t ′`. (1)

The theory(Σ,E) defines the static data structure for the states of the system (e.g., a
free monoid for strings, or a free commutative monoid for multisets), whileRdefines the
dynamics (e.g., productions in phrase-structure grammars or transitions in Petri nets).

Given a rewrite theoryR , its rewriting logic is a sequent calculus whose sen-
tences have the form(∀X) t → t ′ (with the dual, logico-computational meaning ex-
plained in the Introduction). We say thatR entailsa sequent(∀X) t → t ′, and write
R ` (∀X) t → t ′, if (∀X) t → t ′ can be obtained by means of the inference rules in Fig-
ure 1. Roughly,(Reflexivity) introduces idle computations,(Transitivity) expresses the
sequential composition of rewrites,(Equality) means that rewrites are applied modulo
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t ∈ TΣ(X)
(∀X) t → t

Reflexivity
(∀X) t1 → t2, (∀X) t2 → t3

(∀X) t1 → t3
Transitivity

E ` (∀X) t = u, (∀X) u→ u′, E ` (∀X) u′ = t ′

(∀X) t → t ′
Equality

f ∈ Σn, (∀X) ti → t ′i for i ∈ [1,n]

(∀X) f (t1, . . . , tn)→ f (t ′1, . . . , t
′
n)

Congruence

(∀X) r: t → t ′ if
V

1≤i≤` ti → t ′i ∈ R, θ,θ′:X → TΣ(Y)
(∀Y) θ(ti)→ θ(t ′i ) for 1≤ i ≤ `, (∀Y) θ(x)→ θ′(x) for x∈ X

(∀Y) θ(t)→ θ′(t ′)
Nested
Replacement

Fig. 1. Deduction rules for conditional rewrite theories.

the equational theoryE, (Congruence)says that rewrites can be nested inside larger
contexts. The most complex rule is(Nested Replacement), stating that given a rewrite
rule r ∈ R and two substitutionsθ,θ′ for its variables such that for eachx∈ X we have
θ(x)→ θ′(x), thenr can be concurrently applied to the rewrites of its arguments, once
that the conditions ofr can be satisfied in the initial state defined byθ. Since rewrites
are applied moduloE, the sequents can be equivalently written(∀X) [t]→ [t ′].

From the model-theoretic viewpoint, the sequents can be decorated withproof terms
in a suitable algebra that exactly captures concurrent computations. We remark that each
rewrite theoryR has initial and free models and that a completeness theorem reconciles
the proof theory and the model theory, stating that a sequent is provable fromR if and
only if it is satisfied in all models ofR (calledR -systems).

Roughly, the algebra of sequents contains the terms[t] in TΣ,E for idle rewrites, with
the operators and equations in(Σ,E) lifted to the level of sequents (e.g., ifαi : [ti ]→ [t ′i ]
for i ∈ [1,n], then f (α1, . . . ,αn): [ f (t1, . . . , tn)]→ [ f (t ′1, . . . , t

′
n)]), plus the concatenation

operator ; for composingα1: [t1] → [t2] andα2: [t2] → [t3] to α1;α2: [t1] → [t3] via
(Transitivity) , and finally an additional operatorr with arity |X|+ ` for each ruler ∈R
of the form (1). For example, if{βi : [θ(ti)]→ [θ(t ′i )]}1≤i≤` and{αx: [θ(x)]→ [θ′(x)]}x∈X

are used as premises in(Nested Replacement), then the conclusion is decorated by
r(~α,~β). The axioms express: (i) that sequents form the arrows of a category with;
as composition and idle rewrites[t] as identities; (ii) the functoriality of the(Σ,E)-
structure, and (iii) the so-calleddecompositionandexchangelaws, saying that the ap-
plication ofr to [θ(t)] is concurrent w.r.t. the rewrites of the arguments oft.

1.2 Membership equational logic

In many applications, unsorted signatures are not expressive enough to reflect in a nat-
ural way the features of the system to be modeled. The expressiveness can be increased
by supporting sorts (e.g.,Bool, Nat, Int) via many-sortedsignatures and relating them
via order-sortedsignatures (e.g.,NzNat < Nat < Int). Equations inE can be made
more expressive by allowingconditionsfor their applications. Such conditions can be
other equalities, or membership assertions. Conditional membership assertions are also
useful.Membership equational logic(MEL) [11] possesses all the above features (gen-
eralizing order-sorted equational logic) and is supported by Maude [2].
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A MEL signatureis a triple(K,Σ,S) (just Σ in the following), withK a set ofkinds,
Σ = {Σδ,k}(δ,k)∈K∗×K a many-kinded signature andS= {Sk}k∈K a K-kinded family of
disjoint sets of sorts. The kind of a sorts is denoted by[s]. A MEL Σ-algebraA contains
a setAk for each kindk ∈ K, a functionAf :Ak1 × ·· · ×Akn → Ak for each operator
f ∈Σk1···kn,k and a subsetAs⊆Ak for each sorts∈Sk, with the meaning that the elements
in sorts are well-defined, while elements without a sort areerrors. We writeTΣ,k and
TΣ(X)k to denote respectively the set of groundΣ-terms with kindk and ofΣ-terms with
kind k over variables inX, whereX = {x1 : k1, . . . ,xn : kn} is a set of kinded variables.

Given aMEL signatureΣ, atomic formulaehave either the formt = t ′ (Σ-equation)
or t : s (Σ-membership) witht, t ′ ∈ TΣ(X)k ands∈ Sk; andΣ-sentencesare conditional
formulae of the form(∀X) ϕ if

V
i pi = qi ∧

V
j w j : sj , whereϕ is either aΣ-equation

or aΣ-membership and all the variables inϕ, pi , qi , andw j are inX. A MEL theory is
a pair(Σ,E) with Σ a MEL signature andE a set ofΣ-sentences. We refer to [11] for
the detailed presentation of(Σ,E)-algebras, sound and complete deduction rules, initial
and free algebras, and theory morphisms.

Order-sorted notations1 < s2 can be used to abbreviate the conditional membership
(∀x : k) x : s2 if x : s1. Similarly, an operator declarationf :s1×·· ·×sn→ scorresponds
to declaring f at the kind level and giving the membership axiom(∀x1 : k1, . . . ,xn :
kn) f (x1, . . . ,xn) : s if

V
1≤i≤nxi : si . We write (∀x1 : s1, . . . ,xn : sn) t = t ′ in place of

(∀x1 : k1, . . . ,xn : kn) t = t ′ if
V

1≤i≤nxi : si . Moreover, for a list of variables of the same
sorts, we write(∀x1, . . . ,xn : s), and let the sentence(∀X) t : k meant ∈ T(Σ,E)(X)k.

2 Generalized rewrite theories and deduction

In this section we present the foundations of rewrite theories overMEL theories and
where operators can have frozen arguments.

A generalized operatoris a function symbolf :k1 · · ·kn → k together with a set
φ( f )⊆ {1, . . . ,n} of frozen argument positions. We denote byν( f ) the set{1, . . . ,n}r
φ( f ) of unfrozenarguments, and say thatf is unfrozenif φ( f ) =∅.

Definition 2.1 (Generalized signatures).A generalizedMEL signature(Σ,φ) is a MEL

signatureΣ whose function symbols are generalized operators. The functionφ:Σ →
℘f(N) assigns to eachf ∈ Σ its set of frozen arguments (℘f(N) denotes the set of finite
sets of natural numbers and for anyf :k1 · · ·kn → k in Σ we assumeφ( f )⊆ {1, . . . ,n}).

If the ith position of f is frozen, then inf (t1, ..., tn) any subterm ofti is frozen.
This can be made formal by considering the usual tree-like representation of terms (the
same subterm can occur in many distinct positions that are not necessarily all frozen).
Positions in a term are denoted by strings of natural numbers, indicating the sequences
of branches we must follow from the root to reach that position. For example, the term
t = f (g(a,b,c), f (h(a,b), f (b,c))) has two occurrences of the constantc at positions
1.3 and 2.2.2, respectively. We lettπ and t(π) denote, respectively, the subterm oft
occurring at positionπ, and its topmost operator. Forλ the empty position, we lettλ
denote the whole termt. In the example above, we havet2.1 = h(a,b) andt(2.1) = h.

Definition 2.2 (Frozen occurrences).The occurrencetπ of the subterm oft at position
π is frozen if there exist two positionsπ1, π2 and a natural numbern such thatπ =
π1.n.π2 andn∈ φ(t(π1)). The occurrencetπ is calledunfrozenif it is not frozen.

In the example above, forφ( f ) = φ(g) =∅ andφ(h) = {1}, we have thatt2.1.1 = a is
frozen (becauset(2.1) = h), while t1.1 = a is unfrozen (becauset(λ) = f andt(1) = g).
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t ∈ TΣ(X)k

(∀X) t → t
Reflexivity

(∀X) t1 → t2, (∀X) t2 → t3
(∀X) t1 → t3

Transitivity

E ` (∀X) t = u, (∀X) u→ u′, E ` (∀X) u′ = t ′

(∀X) t → t ′
Equality

f ∈ Σk1···kn,k, ti , t ′i ∈ TΣ(X)ki for i ∈ [1,n]
t ′i = ti for i ∈ φ( f ), (∀X) t j → t ′j for j ∈ ν( f )

(∀X) f (t1, . . . , tn)→ f (t ′1, . . . , t
′
n)

Congruence

(∀X) r: t → t ′ if
V

i∈I pi = qi ∧
V

j∈J w j : sj ∧
V

l∈L tl → t ′l ∈ R

θ,θ′:X → TΣ(Y), θ(x) = θ′(x) for x∈ φ(t, t ′)
E ` (∀Y) θ(pi) = θ(qi) for i ∈ I , E ` (∀Y) θ(w j ) : sj for j ∈ J

(∀Y) θ(tl )→ θ(t ′l ) for l ∈ L, (∀Y) θ(x)→ θ′(x) for x∈ ν(t, t ′)

(∀Y) θ(t)→ θ′(t ′)
Nested
Replacement

Fig. 2. Deduction rules for generalized rewrite theories.

Definition 2.3 (Frozen variables).Givent ∈ TΣ(X) we say that the variablex∈ X is
frozenin t if there exists a frozen occurrence ofx in t, otherwise it is calledunfrozen.

We letφ(t) andν(t) denote, respectively, the set of frozen and unfrozen variables of
t. Analogously,φ(t1, . . . , tn) (resp.ν(t1, . . . , tn)) denotes the set of variables for which a
frozen occurrence appears in at least oneti (resp. that are unfrozen in allti).

By combining conditional rewrite theories withMEL specifications and frozen ar-
guments, we obtain a rather general notion of rewrite theory.

Definition 2.4 (Generalized rewrite theory).A generalized rewrite theory(GRT) is a
tuple R = (Σ,E,φ,R) consisting of: (i) a generalizedMEL signature(Σ,φ) with say
kindsk ∈ K, sortss∈ S, andK∗×K-indexed set of generalized operatorsf ∈ Σ with
frozen arguments according toφ; (ii) a MEL theory(Σ,E); (iii) a set R of (universally
quantified) labeled conditional rewrite rulesr having the general form

(∀X) r: t → t ′ if
V

i∈I pi = qi ∧ V j∈J w j : sj ∧ Vl∈L tl → t ′l (2)

where, for appropriate kindsk andkl in K, t, t ′ ∈ TΣ(X)k andtl , t ′l ∈ TΣ(X)kl for l ∈ L.

2.1 Inference in generalized rewriting logic

Given aGRT R = (Σ,E,φ,R), asequentof R is a pair of (universally quantified) terms
of the same kindt, t ′, denoted(∀X)t → t ′ with X = {x1 : k1, ...,xn : kn} a set of kinded
variables andt, t ′ ∈ TΣ(X)k for somek. We say thatR entailsthe sequent(∀X) t → t ′,
and writeR ` (∀X) t → t ′, if the sequent(∀X) t → t ′ can be obtained by means of the
inference rules in Figure 2, which are briefly described below.

(Reflexivity), (Transitivity) , and(Equality) are the usual rules for idle rewrites,
concatenation of rewrites, and rewriting modulo theMEL theoryE. (Congruence)al-
lows rewriting the arguments of a generalized operator, but we add the condition that
frozen arguments must stay idle (note thatt ′i = ti is syntactic equality). Any unfrozen
argument can still be rewritten, as expressed by the premise(∀X) t j → t ′j for j ∈ ν( f ).
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(Nested Replacement)takes into account the application of a rewrite rule in its
most general form (2). It specifies that for any rewrite ruler ∈ R and for any (kind-
preserving) substitutionθ such that the condition ofr is satisfied whenθ is applied to all
termspi ,qi ,w j , tl , t ′l involved, then it is possible to apply the rewriter to θ(t). Moreover,
if θ′ is a second (kind-preserving) substitution for the variables inX such thatθ andθ′
coincide on all frozen variablesx∈ φ(t, t ′) (second line of premises), while the rewrites
(∀Y) θ(x) → θ′(x) are provable for the unfrozen variablesx ∈ ν(t, t ′) (last premise),
then such nested rewrites can be applied concurrently withr.

Of course, any unsorted rewrite theory can be regarded as aGRT where: (i)Σ has a
unique kind and no sorts; (ii) all the operators are total and unfrozen (i.e.,φ( f ) =∅ for
any f ∈ Σ); (iii) conditions in rewrite rules contain neither equalities nor membership
predicates. In this case, deduction via rules for conditional rewrite theories (Figure 1)
coincides with deduction via rules for generalized rewrite theories (Figure 2).

Theorem 2.1. Let R be a conditional rewrite theory, and let̂R denote its correspond-
ing GRT. Then: R ` (∀X) t → t ′ ⇔ R̂ ` (∀X) t → t ′.

3 Models of generalized rewrite theories

In this section, exploitingMEL, we define the reachability and concurrent model theories
of GRTs and state completeness results.

3.1 Reachability models

Reachability models focus just onwhat terms/states can be reached from a certain state
t via sequences of rewrites, ignoringhowthe rewrites can lead to them.

Definition 3.1 (Reachability relation). Given aGRT R = (Σ,E,φ,R), its reachability
relation→R , is defined proof-theoretically, for each kindk in Σ and each[t], [t ′] ∈
TΣ,E(X)k, by the equivalence: [t]→R [t ′] ⇔ R ` (∀X) t −→ t ′.

The above definition is sound because we have the following easy lemma.

Lemma 3.1. LetR = (Σ,E,φ,R) be aGRT, andt ∈ TΣ(X)k. If R ` (∀X) t −→ t ′, then
t ′ ∈ TΣ(X)k. Moreover, for anyt,u,u′, t ′ ∈ TΣ(X)k such thatu ∈ [t]E, u′ ∈ [t ′]E and
R ` (∀X) u−→ u′, thenR ` (∀X) t −→ t ′.

The reachability relation admits a model-theoretic presentation in terms of the free
models of a suitableMEL theory. We give the details below as a “warm up” for the
model-theoretic concurrent semantics given in the next section. The idea is that→R
can be defined as the family of relations, indexed by the kindsk, given by interpreting
the sortsArk in the free model of the followingMEL theoryReach(R ).

Definition 3.2 (The theoryReach(R )). The membership equational theoryReach(R )
contains the signature and sentences in(Σ,E) together with the following extensions:

1. For each kindk in Σ we add:
(a) a new kind[Pairk] (for k-indexed binary relations on terms of kindk) with four

sorts Ar0k, Ar1
k, Ark and Pairk and subsort inclusions: Ar0

k Ar1
k < Ark < Pairk;

(b) the operators( → ) : k k−→Pairk (pair constructor),s, t : Pairk−→ k (source
and target projections), and( ; ) : [Pairk] [Pairk]−→ [Pairk] (concatenation);
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(c) the (conditional) equations and memberships

(∀x,y : k) s(x→ y) = x

(∀x,y : k) t(x→ y) = y

(∀z : Pairk) (s(z)→ t(z)) = z

(∀x : k) (x→ x) : Ar0
k

(∀x,y,z : k) (x→ z) : Ark if (x→ y) : Ark∧ (y→ z) : Ark

(∀x,y,z : k) (x→ y);(y→ z) = (x→ z).

2. Each f : k1 . . .kn −→ k in Σ with ν( f ) 6= ∅ is lifted to f : [Pairk1] · · · [Pairkn] −→
[Pairk], and for eachi ∈ ν( f ) we declaref : Ar0

k1
· · ·Ar1

ki
· · ·Ar0

kn
−→ Ar1

k; we then
give, for eachi ∈ ν( f ), the equation below, whereXi = {x1 : k1, . . . ,xn : kn,yi : ki}
(∀Xi) f ((x1→ x1), ...,(xi → yi), ...,(xn→ xn)) = f (x1, ...,xn)→ f (x1, ...,yi , ...,xn).

3. For each rule(∀X) r : t → t ′ if
V

i∈I pi = qi ∧V j∈J w j : sj ∧Vl∈L tl → t ′l in R, with,
sayt, t ′ of kindk, andtl , t ′l of kindkl , we give the conditional membership,

(∀X) (t → t ′) : Ar1
k if

î∈I

pi = qi ∧
ĵ∈J

w j : sj ∧
l̂∈L

tl → t ′l : Arkl .

The sortsAr0
k andAr1

k contain respectively idle rewrites and one-step rewrites of
k-kinded terms, while the sortArk containsk-rewrites of arbitrary length. The(Con-
gruence) rule is modeled so that exactly one unfrozen argument can be rewritten in
one-step (see item 2 in Definition 3.2), and(Nested Replacement)is restricted so that
no nested rewrites can take place concurrently (item 3). Nevertheless, these two restric-
tions on how the inference rules are modeled do not alter the reachability relationArk,
because one-step rewrites can be composed in any admissible interleaved fashion (see
the fifth axiom at point 1.(c)). Note that the concatenation operator; is not really
necessary, but its introduction facilitates the proof of Theorem 3.2.

The theoryReach(R ) provides an algebraic model for the reachability relation.
For ground terms, such a model is given by the interpretation of the sortsArk in the
initial modelTReach(R ). For terms with variables inX, the reachability model is the free
algebraTReach(R )(X). This can be summarized by the following theorem:

Theorem 3.1. For R = (Σ,E,φ,R) a GRT andt, t ′ ∈ TΣ(X)k we have the equivalences:

R ` (∀X) t → t ′ ⇔ Reach(R ) ` (∀X) (t → t ′) : Ark

⇔ Reach(R ) |= (∀X) (t → t ′) : Ark

⇔ [(t → t ′)] ∈ TReach(R )(X)Ark.

3.2 Concurrent models

In general, many proofs concluding thatR ` (∀X)t → t ′ are possible. However: (1)
some of the proofs can be computationally equivalent, because they represent different
interleaved sequences for the same concurrent computation, but (2) not all those proofs
are necessarily equivalent, as they may, e.g., differ in the underlying set of applied
rewrite rules, or in the different causal connections between the applications of the
same rules. In this section, we show how to extend the notion of decorated sequents to
GRTs, so as to define an algebraic model oftrue concurrencyfor R .
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As usual, decorated sequents are first defined by attaching aproof term(i.e., an ex-
pression built from variables, operators inΣ, and labels inR) to each sequent, and then
by quotienting out proof terms modulo suitable functoriality, decomposition, and ex-
change laws. We can presentR ’s algebra of sequents as the initial (or free) algebra of a
suitableMEL theoryProof(R ). With respect to the classical presentation via decorated
deduction rules, theMEL specification allows a standard algebraic definition of ini-
tial and loose semantics. Moreover, here we can naturally support many-sorted, order-
sorted, andMEL data theories instead of just unsorted equational theories as in [10].

The construction ofProof(R ) is analogous to that ofReach(R ). The kind[Pairk]
of Reach(R ) is replaced here by a kind[Rwk], whose elements include the proofs of
concurrent computations. The initial and final states are still defined by means of the
source (s) and target (t) operators. Moreover, since the proof of an idle rewrite[t]→ [t]
is [t] itself, we can exploit subsorting to makek a sort of kind[Rwk]. The sortsRw1

k and
Rwk are the analogous ofAr1

k andArk. The sortAr1
k was introduced inReach(R ) to

deal with the “restricted” form of(Congruence)and(Nested Replacement). Having
decorations at hand, we can restore the full expressiveness of the two inference rules,
but the sortRw1

k is still useful in axiomatizing proof-decorated sequents: we define the
(Equality) rule onRw1

k, lifting the equational theoryE to one-step rewrites, and then
exploit functoriality and transitivity to extendE to rewrites of arbitrary length inRwk.

Definition 3.3 (The theoryProof(R )). The membership equational theory Proof(R )
contains the signature and sentences of(Σ,E) together with the following extensions:

1. Each kindk in Σ becomes a sortk in Proof(R ), with s< k for anys∈ Sk in Σ.
2. For each kindk in Σ we add:

(a) a new kind[Rwk] (for k-indexed decorated rewrites onΣ-terms of kindk) with
sorts all sorts ink and the (new) sortsk, Rw1

k and Rwk, with: k Rw1
k < Rwk;

(b) the (overloaded) operators( ; ) : [Rwk] [Rwk]−→ [Rwk] ands, t : Rwk −→ k;
(c) the (conditional) equations and memberships

(∀x : k) s(x) = x

(∀x : k) t(x) = x

(∀x,y : Rwk) x;y : Rwk if t(x) = s(y)
(∀x,y : Rwk) s(x;y) = s(x) if t(x) = s(y)

(∀x : Rwk,y : Rwk) t(x;y) = t(y) if t(x) = s(y)
(∀x : k,y : Rwk) x;y = y if x = s(y)
(∀x : Rwk,y : k) x;y = x if t(x) = y

(∀x,y,z : Rwk) x;(y;z) = (x;y);z if t(x) = s(y) ∧ t(y) = s(z).

3. We lift each operatorf : k1 . . .kn −→ k in Σ to f : [Rwk1] · · · [Rwkn] −→ [Rwk], and
for ν( f ) = {i1, ..., im} we overloadf by f : k1 · · ·Rwki1

· · ·Rwkim
· · ·kn −→ Rwk and

f : k1 · · ·Rw1
ki j
· · ·kn −→ Rw1

k for j = 1, . . . ,m, with equations

(∀X) s( f (x1, . . . ,xn)) = f (s(x1), . . . ,s(xn))
(∀X) t( f (x1, . . . ,xn)) = f (t(x1), . . . , t(xn)),

whereX = {x1 : k1, . . . ,xi1 : Rwki1
, . . . ,xim : Rwkim

, . . . ,xn : kn} and the equation

(∀Y) f (x1, . . . ,(xi1;yi1), . . . ,(xim;yim), . . . ,xn)) =
f (x1, . . . ,xn); f (x1, . . . ,yi1, . . . ,yim, . . . ,xn) if

V
1≤ j≤mt(xi j ) = s(yi j ),

whereY = {x1 : k1, . . . ,xi1,yi1 : Rwki1
, . . . ,xim,yim : Rwkim

, . . . ,xn : kn}.
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4. For each equation(∀x1 : k1, . . . ,xn : kn) t = t ′ if
V

i∈I pi = qi ∧
V

j∈J w j : sj in E,
we letX = {x1 : Rwk1, . . . ,xn : Rwkn} and add the conditional equation

(∀X) t = t ′ if
î∈I

pi = qi∧
ĵ∈J

s(w j) : sj ∧
ĵ∈J

t(w j) : sj ∧
^

xh∈φ(t,t ′)
xh : kh∧

^
xh∈ν(t,t ′)

xh : Rw1
kh

.

5. For each rule(∀X) r : t → t ′ if
V

i∈I pi = qi ∧
V

j∈J w j : sj ∧
V

l∈L tl → t ′l in R, with,
say,X = {x1 : k1, . . . ,xn : kn}, t, t ′ of kindk, andtl , t ′l of kindk′l with L = {1, . . . , `},
we add the operatorr: [Rwk1] · · · [Rwkn][Rwk′1] · · · [Rwk′` ]→ [Rwk] with
(a) the conditional membership for characterizing basic one-step rewrites:

(∀x1 : k1, . . . ,xn : kn,y1 : Rwk′1, . . . ,y` : Rwk′`) r(~x,~y) : Rw1
k if ∆

where∆ = (
V

i∈I pi = qi ∧
V

j∈J w j : sj ∧
V

l∈L s(yl ) = tl ∧
V

l∈L t(yl ) = t ′l ) checks
that the conditions for the application of the ruler are satisfied;

(b) the conditional equations and memberships

(∀Y) r(~z,~y) : Rwk if ∆∧Ψ
(∀Y) s(r(~z,~y)) = t if ∆∧Ψ

(∀Y) t(r(~z,~y)) = t ′[t(~z)/~x] if ∆∧Ψ

whereY = {x1 : k1, . . . ,xn : kn,z1 : Rwk1, . . . ,zn : Rwkn,y1 : Rwk′1, . . . ,y` : Rwk′`},
∆ is as before, andΨ = (

V
xh∈φ(t,t ′) zh = xh∧

V
xh∈ν(t,t ′) s(zh) = xh);

(c) the decomposition law

(∀Z) r(~z,~y) = r(~x,~y); t ′[~z/~x] if ∆∧Ψ

whereZ = {x1 : k1, . . . ,xn : kn,z1 : Rwk1, . . . ,zn : Rwkn,y1 : Rwk′1, . . . ,y` : Rwk′`},
while ∆ andΨ are as before;

(d) the exchange law

(∀W) r(~x,~y); t ′[~z/~x] = t[~z/~x]; r(t(~z),~y′) if ∆∧Ψ∧∆′∧Φ

whereW = {x1 : k1, ...,xn : kn,z1 : Rw1
k1

, ...,zn : Rw1
kn

,y1 : Rwk′1, ...,y` : Rwk′` ,y
′
1 :

Rwk′1, ...,y
′
` : Rwk′`}, ∆ andΨ are as before,∆′ = (

V
i∈I pi [t(~z)/~x] = qi [t(~z)/~x]∧V

j∈J w j [t(~z)/~x] : sj ∧Vl∈L s(y′l ) = tl [t(~z)/~x]∧
V

l∈L t(y′l ) = t ′l [t(~z)/~x]) checks
that the conditions for the application of the ruler are satisfied after applying
the rewrites~zto the arguments oft, andΦ = (

V
l∈L yl ; t ′l [t(~z)/~x] = tl [t(~z)/~x];y′l )

states the correspondence between the “side” rewrites~y and~y′ (via~z).

We briefly comment on the definition ofProof(R ). The operators defined at point
2.(b) are the obvious source/target projections and sequential composition of rewrites,
with the axioms stating that, for eachk, the rewrites inRwk are the arrows of a category
with objects ink. The operatorsf in Σ are lifted to functors over rewrites in 3, while
the equations inE are extended to rewrites in 4. It is worth noting that: (i) whenf ∈ Σ
is lifted, only unfrozen positions can have rewrites as arguments, and therefore the
functoriality is stated w.r.t. unfrozen positions only; (ii) the axioms inE are extended
to one-step rewrites only (in unfrozen positions), hence, they hold for sequences of
rewrites if and only if they can be proved to hold for each rewrite step. Point 5.(a) defines
the basic one-step rewrites, i.e., where no rewrite occurs in the arguments~x. Point 5.(b)
accounts for nested rewrites~zbelowr, provided that the side-conditions ofr are satisfied
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by the initial state; in particular note that the expressionr(~z,~y) is always equivalent to
r(~x,~y); t ′[~z/~x] (see decomposition law), where firstr is applied at the top of the term
and then the arguments are rewritten according to~z undert ′. Finally, the exchange law
states that, under suitable hypotheses, the arguments~x can be equivalently rewritten
first, and the rewrite ruler applied later. Note that, as in the equations extendingE, the
exchange law is stated for one-step nested rewrites only. Nevertheless, it can be used in
conjunction with the decomposition law to prove the exchange law for arbitrary long
sequences of rewrites (provided that it can be applied step-by-step).

An important property forProof(R ) is the preservation of the underlying state the-
ory (Σ,E). Otherwise, the additional axioms inProof(R ) might collapse terms that are
different in(Σ,E). In this regard, the fact of adding the sortsRw1

k andRwk on top ofk
is a potential source of term collapses. However, we can prove that, for anyGRT R , the
theoryProof(R ) is a conservative extension of the underlying theory(Σ,E).

Proposition 3.1. Let R = (Σ,E,φ,R) be aGRT, and lett, t ′ ∈ TΣ(X)k, ands∈ Sk for
some kindk. Then, for any formulaϕ of the formt : k or t : s or t = t ′ we have that:
E ` (∀X) ϕ ⇔ Proof(R ) ` (∀X) ϕ.

The main result is thatProof(R ) is complete w.r.t. the inference rules in Figure 2.

Theorem 3.2 (Completeness I).For any GRT R = (Σ,E,φ,R) and anyt, t ′ ∈ TΣ(X)k,
we have:R ` (∀X) t → t ′ ⇔ ∃α. Proof(R )` (∀X) α : Rwk ∧ s(α) = t ∧ t(α) = t ′.

The relevance of theMEL theoryProof(R ) is far beyond the essence of reachability,
as it precisely characterizes the class of computational models ofR .

Definition 3.4 (Concurrent models ofR ). Let R be aGRT. A concurrent modelof R
is a Proof(R )-algebra.

SinceProof(R ) is an ordinaryMEL theory, it admits initial and free models [11].
Hence, the completeness result can be consolidated by stating the equivalence between
formulae provable inProof(R ) using MEL deduction rules, formulae holding for all
concurrent models ofR and formulae valid in the initial and free concurrent models.

Theorem 3.3 (Completeness II).For R a GRT and for anyMEL sentenceϕ over
Proof(R ) (and thus, forϕ any of the formulaeα : Rwk, s(α) = t, t(α) = t ′), we have:
Proof(R ) ` (∀X) ϕ ⇔ Proof(R ) |= (∀X) ϕ ⇔ TProof(R )(X) |= (∀X) ϕ.

Theorems 3.1, 3.2 and 3.3 can be combined together to state a stronger completeness
result forProof(R ), showing the equivalence between deduction at the level ofGRTs,
their (initial and free) reachability models, and their (initial and free) concurrent models.

By Theorem 2.1 we have that the specialized versions of all our results forGRT over
unsorted equational theories without frozen arguments and without equality / member-
ship conditions in rewrite rules coincide with the classical ones. In particular, ifR is an
ordinary rewrite theory, anyR -system is a concurrent model of the correspondingGRT

R̂ , because there is a forgetful functorMR from the category ofProof(R̂ )-algebras to
the category ofR -systems. Indeed, the functorMR preserves initial and free models.

Conclusion

We have definedgeneralized rewrite theoriesto substantially extend the expressiveness
of rewriting logic in many applications. We have given rules of deduction for these
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theories, defined their models asMEL algebras, and shown that initial and free models
exist (for both reachability and true concurrency models). We have also shown that this
generalized rewriting logic is complete with respect to its model theory, and that our
results generalize the original results for unsorted rewrite theories in [10]. Future work
will make more explicit the 2-categorical nature of our model theory, and will develop
the semantics ofgeneralized rewrite theory morphisms, extending the ideas in [9].

When evaluating the trade-offs between the complexity of the presentation and the
expressiveness of the proposed rewrite theories, we have preferred to give the precise
foundational semantics for the most general form of rewrite theories used in practice.
Although the result suggests thatMEL is expressive enough to embedGRTs just asMEL

theories plus some syntactic sugar, we argue that the intrinsic separation of concerns in
GRTs (i.e., equational vs operational reasoning) is fundamental in most applications.

The theoryProof(R ) has an obvious reading as theGRT counterpart of the classic
Curry-Howard isomorphism. Along this line of research there is a flourishing literature
that focuses on the full integration of type theory with rewriting logic. We just men-
tion the joint work of Stehr with the second author on the formalization of Pure Type
Systems inRL [14], and the work of Cirstea, Kirchner and Liquori on theρ-calculus [1].
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