

Non-sequential behaviour of dynamic nets ?

Roberto Bruni and Hernán Melgratti

Dipartimento di Informatica, Università di Pisa, Italia.
{bruni,melgratt}@di.unipi.it

Abstract. Dynamic nets are an extension of Petri nets where the net
topology may change dynamically. This is achieved by allowing (i) tokens
to be coloured with place names (carried on as data), (ii) transitions to
designate places where to spawn new tokens on the basis of the colours
in the fetched tokens, and (iii) firings to add fresh places and transitions
to the net. Dynamic nets have been given step or interleaving semantics
but, to the best of our knowledge, their non-sequential truly concurrent
semantics has not been addressed in the literature. To fill this gap, we
extend the ordinary notions of processes and unfolding to dynamic nets,
providing two different constructions: (i) a specific process and unfolding
for a particular initial marking, and (ii) processes and unfolding patterns
that abstract away from the colours of the token initially available.

1 Introduction

Petri nets, introduced in [13], have became a reference model for studying concur-
rent systems, mainly due to their simplicity and the intrinsic concurrent nature
of their behaviours. In addition to the classical ”token game” operational seman-
tics, several alternative approaches have appeared in the literature for charac-
terising the semantics of Petri nets, notably non-sequential processes, unfolding
constructions and algebraic models. In particular, non-sequential processes have
played a very important rôle when studying the non-interleaved semantics of
Petri nets. In essence, non-sequential processes provide a full-fledged account for
the causal relations among the steps of a computation, i.e., they provide a full
explanation about the causes that led to the firing of a transition.

Recently, the basic Petri net model has been extended to account for mo-
bility, giving birth to the so called Mobile nets [1] and Dynamic nets [1,5]. The
difference between the two is that the structure of dynamic nets is slightly more
constrained so to enforce the locality principle: tokens in a place can be con-
sumed only by local transitions (that were spawned together with that place).
Dynamic nets are an extension of coloured nets (since tokens carry on informa-
tion) where token colours are the names of places in the net, transitions may use
the information carried on by tokens to designate places where to spawn new
tokens, and transitions may add fresh places and transitions when they fire.

? Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project Sen-
soria.

The behaviour of dynamic nets has been defined by providing their step or
interleaving semantics but, to the best of our knowledge, there is no proposal
for their non-sequential truly concurrent semantics. In this work, we pursue this
line of research by extending the classical notions of processes and unfolding
to dynamic nets. In particular, we provide two different kind of constructions:
(i) a specific process and unfolding for a particular initial marking (where the
information carried on by tokens of the initial marking is essential), and (ii)
a notion of general process and unfolding pattern that do not depend on the
information carried on by tokens of the initial marking.

It is worth remarking that the unfolding construction has proved very helpful
to define the correct notion of processes for dynamic nets, as otherwise it would
have been very difficult to deal with the changes in the net topology due to the
introduction of fresh subnets.

The results presented here can find an interesting application in defining net
models and causal semantics for distributed mobile calculi and programming
languages. More specifically we are thinking of the join calculus [7] and those
languages like JoCaml [6] and C-omega [3] whose designs have been strongly in-
fluenced by the join paradigm. In fact it has been shown in [5] that join processes
may coherently be viewed as dynamic nets (and vice versa).

Structure of the paper. In Section 2 we recall the preliminary definitions from
the literature, aiming to keep the paper self-contained. It is worth noting that
while we expect the reader to have some confidence with the material in Sec-
tions 2.1 and 2.2 (nets, step semantics, causal processes and unfolding), we have
chosen to give an extensive introduction to dynamic nets (Sections 2.3), which
could be a less familiar subject for many readers. The unfolding construction for
marked dynamic nets is carried on in Section 3 accompanied by the definition
of deterministic process of dynamic nets. The main result establishes a strong
correspondence between the two notions. Section 4 introduces unfolding pat-
terns and process patterns as a framework to give more compact and abstract
representations of net behaviour: the same pattern can be instantiated to many
different concrete computations. Conclusions and directions for future work are
given in Section 5.

2 Background

2.1 p/t Petri Nets

Petri nets are built up from places (denoting resources, type of messages), which
are repositories of tokens (representing instances of resources), and transitions,
which fetch and produce tokens. In the following we shall consider an infinite set
P of resource names.

Definition 2.1 (Net). A net N is a 4-tuple N = (SN , TN , δ0N , δ1N) where
SN ⊆ P is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions,
t, t′, . . . (with SN ∩ TN = ∅), and the functions δ0N , δ1N : TN → ℘f(SN) assign
finite sets of places, called respectively source and target, to each transition.

We denote SN ∪ TN by N , and omit the subscript N if no confusion arises.
We abbreviate a transition t ∈ T with preset •t = δ0(t) = s1 and postset t• =
δ1(t) = s2 as s1[〉s2. Similarly for any place a ∈ S, the preset •a = {t|a ∈ t•} of
a is the set of all transitions of which a is target and the postset a• = {t|a ∈ •t}
of a is the set of all transitions of which a is source. We consider only nets
whose transitions have a non-empty preset. If •a∪a• = ∅ the place a is isolated.
Moreover, we let ◦N = {x ∈ N |•x = ∅} and N◦ = {x ∈ N |x• = ∅} denote the
sets of initial and final elements of N respectively.

While according to Definition 2.1 transitions can consume and produce at most
one token in each state, in p/t nets (see Definition 2.2) transitions can fetch
and produce several tokens in a particular place, i.e., the pre- and postsets of
transitions are multisets instead of sets.

Given a set S, a multiset over S is a function m : S → N (where N denotes
the set of natural numbers with zero). Let dom(m) = {s ∈ S | m(s) > 0}. The
set of all finite multisets (i.e., with finite domain) over S is written MS. The
empty multiset (i.e., with dom(m) = ∅) is written ∅. The multiset union ⊕ is
defined as (m1 ⊕m2)(s) = m1(s) + m2(s) for any s ∈ S. Given a multiset m,
|m| = ∑

s∈Sm(s) denotes the size of m.
Note that ⊕ is associative and commutative, and ∅ is the identity for ⊕.

Hence, MS is the free commutative monoid S⊕ over S. We write s for a sin-
gleton multiset m such that dom(s) = {s} and m(s) = 1. Moreover, we write
{[s1, . . . , sn]} for s1 ⊕ . . .⊕ sn. By abusing notation we will apply functions (i.e.,
fS) over (multi)sets, meaning the multiset obtained by applying the function
element-wise: fS({[a0, . . . , an]}) = fS(a0) ⊕ . . . ⊕ fS(an). Also, we shall use set
operators over multisets to denote the operation over the domain of the multiset,
e.g. s ∈ m and m1 ∩m2 in place of s ∈ dom(m) and dom(m1) ∩ dom(m2).

Definition 2.2 (p/t net). A marked place / transition Petri net (p/t net)
is a tuple N = (SN , TN , δ0N , δ1N ,m0N) where SN ⊆ P is a set of places, TN
is a set of transitions, the functions δ0N , δ1N : TN →MSN

assign respectively,
source and target to each transition, and m0N ∈ MSN

is the initial marking.

The notions of pre- and postset, initial and final elements, and isolated places
are straightforwardly extended to consider multisets instead of sets. Note that a
net can be regarded as a p/t net whose arcs have unary weights.

The operational semantics of p/t nets is given by (the least relation induc-
tively generated by) the inference rules in Figure 1. Given a net N , the proof
for m →T m′ means that a marking m evolves to m′ under a step, i.e., the
concurrent firing of several transitions. We omit the subscript T whenever the
set of transitions is clear from the context. Rule (firing) describes the evolu-
tion of the state of a net (represented by the marking m ⊕m′′) by applying a
transition m[〉m′, which consumes the tokens m corresponding to its preset and
produces the tokens m′ corresponding to its postset. The multiset m′′ represents
idle resources, i.e., the tokens that persist during the evolution. Rule (step)
stands for the parallel composition of computations. The sequential composition

(firing)

m [〉 m
′ ∈ T m

′′ ∈ MS

m ⊕ m
′′ →T m

′ ⊕ m
′′

(step)

m1 →T m
′

1 m2 →T m
′

2

m1 ⊕ m2 →T m
′

1 ⊕ m
′

2

Fig. 1. Operational semantics of p/t nets.

of computations is the reflexive and transitive closure of →, which is written
→∗, i.e., m →∗ m′ denotes the evolution of m to m′ under a (possibly empty)
sequence of steps.

2.2 Unfolding and Process Semantics of p/t nets

The definition of the processes and unfolding semantics of p/t nets rely on
the notions of occurrence nets and deterministic causal nets, which are defined
below. (We report here on the presentation given in [12])

Definition 2.3 (Occurrence net). A net N is an occurrence net if

– for all a ∈ SN , |•a| ≤ 1
– the causal dependency relation ≺ is irreflexive, where ≺ is the transitive

closure of the immediate cause relation

≺1= {(a, t)|a ∈ SN ∧ t ∈ a•} ∪ {(t, a)|a ∈ SN ∧ t ∈ •a};
moreover, ∀t ∈ TN , the set {t′ ∈ TN |t′ ≺ t} is finite and the reflexive
closure of ≺ is denoted by �;

– the binary conflict relation # on TN ∪ SN is irreflexive, where # is defined
in terms of the binary direct conflict relation #m as below:

∀t1, t2 ∈ TN , t1#mt2 ⇔ δ0N (t1) ∩ δ0N (t2) 6= ∅ ∧ t1 6= t2

∀x, y ∈ SN ∪ TN , x#y ⇔ ∃t1, t2 ∈ TN : t1#mt2 ∧ t1 � x ∧ t2 � y.
Given x, y ∈ TN ∪SN s.t. x 6= y, x and y are concurrent, written x co y, when

x 6≺ y, y 6≺ x, and ¬x#y. A set X ∈ TN ∪ SN is concurrent, written CO(X), if
∀x, y ∈ X : x 6= y ⇒ x co y, and |{t ∈ TN |∃x ∈ X, t � x}| is finite.

Definition 2.4 (Causal Net). A net K = (SK , TK , δ0K , δ1K) is a causal net
(also called deterministic occurrence net) if it is an occurence net and

∀a ∈ SK , |a•| ≤ 1.

It is worth noting that for any causal net K the conflict relation is empty.
Consequently, a causal net is an acyclic net where the presets (resp. postsets) of
transitions do not share places.

Occurrence nets can represent non-sequential computations: their places rep-
resent tokens and their transitions represents events, i.e., firings. The “typing”
of tokens and events in the occurence net over places and transitions of the ex-
ecuted net can be expressed as net morphisms, mapping tokens to the places
where they have been stored and events to the triggered transitions.

(ini-mk)

mN (a) = n

{(∅, a)} × [n] ⊆ S

(pre)

B = {(εj , bj , ij)|j ∈ J} ⊆ S, Co(B), t ∈ TN , δ0N (t) = ⊕j∈Jbj

(B, t) ∈ T, δ0(B, t) = B
(post)

x = (B, t) ∈ T

Q = {({x}, b, i) | 1 ≤ i ≤ δ1N (t)(b)} ⊆ S, δ1(x) = Q

Fig. 2. Unfolding rules.

Definition 2.5 (Net morphisms). Let N,N ′ be nets. A pair f = (fS : SN →
SN ′ , fT : TN → TN ′) is a net morphism from N to N ′ (written f : N → N ′) if
fS(δiN (t)) = δiN ′(fT (t)) for any t and i = 0, 1. Moreover, N and N ′ are said
to be isomorphic, and thus equivalent, if f is bijective.

The above definition extends in the obvious way to the cases in which N and
N ′ are p/t nets.

Definition 2.6 (Deterministic Causal Process). Let N be p/t net. A de-
terministic causal process for N is a net morphism P from a causal net K to
N such that P (◦K) = m0N ,i.e., P maps the implicit initial marking of K (i.e.,
the minimal elements ◦K) to the initial marking of N .

Roughly, a deterministic process represents just a set of causally equivalent
computations [8]. Differently, the unfolding of a net N is the least occurrence
net that can account for all the possible computations over N , making explicit
the causal dependencies, conflicts and concurrency between firings.

Definition 2.7 (Unfolding). Let N be a p/t net. The occurrence net U [N] =
(S, T, δ0, δ1) generated inductively by the inference rules in Figure 2 is said the
unfolding of N .

In the case of the unfolding U , it can be readily verified that the mapping over
N is just the projection of places and transition names to their second element.
In fact tokens are encoded as triples (H, a, i) where H is the set of immediate
causes (determining the history of the token), a is the place of N where the
token resides and i is a positive integer used to disambiguate tokens in the same
place and with the same history, while events are encoded as pairs (H, t), where
H is the set of immediate causes and t is the fired transition.

2.3 Dynamic nets

Different formulations for dynamic nets have been proposed in the literature [1,5].
The definition we give here is based on [1]. We consider an infinite set of place

names P ranged over by a, b, . . . and an infinite set of variable names X , ranged
over by x, y, We require also variable names to be different from place names,
i.e., X ∩ P = ∅. We will use C = P ∪ X , ranged over by c1, c2,, to refer both
to place and variable names.

Similar to high-level nets, tokens in dynamic nets carry on information (or
colours as they are usually known). Although colours can be thought of as data
structures of any type, for the sake of simplicity we will assume colours to be
sequences of names. Let C be a set of names, C∗ stands for the set of all finite
(possible empty) sequences of C, i.e., C∗ = {(c1, . . . , cn) | ∀i s.t. 0 ≤ i ≤ n :
ci ∈ C}. The empty sequence, i.e. a token that carries no information, is denoted
by • (by analogy with ordinary tokens), and the underlying set of a sequence
(c1, . . . , cn) is written:

(c1, . . . , cn) =
⋃

i

{ci}

Then, markings of a dynamic net are just coloured multisets.

Definition 2.8 (Coloured Multiset). Given two sets S and C, a coloured
multiset over S and C is a function m : S → C → N. Let dom(m) = {(s, c) ∈
S ×C | m(s)(c) > 0}. The set of all finite (coloured) multisets over S and C∗ is
written MS,C. The multiset union is defined as (m1 ⊕m2)(s)(c) = m1(s)(c) +
m2(s)(c).

We write s(c) for a multiset m such that dom(m) = {(s, c)} and m(s)(c) = 1.
Additionally, (s, c) ∈ m is a shorthand for (s, c) ∈ dom(m), while s ∈ m means
(s, c) ∈ m for some c.

Definition 2.9 (DN). The set dn is the least set satisfying the following equa-
tion (when considering the set of colours C):

N = {(SN , TN , δ0N , δ1N ,m0N) |
SN ⊆ P ∧ δ0N : TN →MSN ,C ∧ δ1N : TN → N ∧ m0N ∈MC,C}

For (SN , TN , δ0N , δ1N ,m0N) ∈ dn, SN is the set of places, TN is the set of
the transitions, δ0N and δ1N are the functions assigning the pre- and postset
to every transition, and m0N is the initial marking. Note that N is a domain
equation [9] defining the recursive type of dynamic nets. The simplest elements
in N are markings, i.e., the tuples (∅, ∅, ∅, ∅,m) with m ∈ MC,C. Then, nets
are defined recursively, because the postset of any transition (given by δ1N) is
another element of N . The set dn is defined as the least fixed point of the
recursive equation above.

As usual, we denote SN ∪ TN by N , and omit subscript N whenever no
confusion arises. Moreover, we abbreviate a transition t ∈ T such that δ0(t) = m
and δ1(t) = N as m[〉N , and refer to m as the preset of t (written •t) and N
as the postset of t (written t•).

Note that the initial marking m0N is not required to be a multiset over the
places of the net, i.e., the initial marking can put tokens in places that are not

07162534
��

•

a

t

��

N1

07162534

��

•

a

07162534

��

•

d

t

��

t1

ggNNNNNNN

N1

07162534

��

•

d
′

07162534

��

•

a

07162534

��

•

d

t
′

1

88qqqqqqq

t

��

t1

ffMMMMMMM

N1

(a) Initial state. (b) After firing t. (c) After two firings of t.

Fig. 3. A simple dynamic net.

defined by the net. In fact, the initial marking m0N is a multiset in m0N ∈MC,C
and not over the places of the net SN (e.g., in MSN ,C). A trivial example is to
consider the coloured transition a(x)[〉(∅, ∅, ∅, ∅, b(•)), where b does not belong
to the places of the subnet (∅, ∅, ∅, ∅, b(•)). We usually abbreviate transitions as
the previous one, where the postset does not define new places, by writing just
the initial marking fixed by the postset, i.e., a(x)[〉b(•).

Names defined in SN act as binders on N . Therefore, nets are considered
up-to α-conversion on SN . For instance, the two nets ({a}, ∅, ∅, ∅, a(•)) and
({b}, ∅, ∅, ∅, b(•)) are α-equivalent, while (∅, ∅, ∅, ∅, a(•)) and (∅, ∅, ∅, ∅, b(•)) are
not. Analogously, the names of transitions in TN are binders, and hence we
consider nets up-to α-conversion on transition names.

Example 2.1. Consider the net N in Figure 3(a), where circles are places, boxes
are transitions, and solid lines connect transitions to their pre and postset, and
tokens are represented by their colours. The double-lined arrow indicates the
dynamic transition t = a(•)[〉N1, which creates an instance of the subnet N1

when fired. We allow the initial marking of N1 and the postset of transitions in
TN1 to generate tokens in a. Therefore, the following is a valid definition for N1:
SN1 = {d}, TN1 = {t1}, m0N1 = a(•)⊕d(•) and t1 = d(•)[〉a(•). A firing of t will
lead to (a net isomorphic to) the net shown in Figure 3(b). (Firings are formally
defined in Figure 5.) A fresh place d and a transition t1 (whose pre- and postset
are d(•) and a(•), resp.) have been added to the net. Also two tokens have been
produced: one in a and the other in d, accordingly to the initial marking of N1.
This marking enables t, which can be fired again. The new activation of t will
create a new subnet containing a new place and a new transition whose names
are different from all other names already present in the net (Figure 3(c)).

The colours appearing in the preset of a transition are intended to be the
formal parameters of that transition, which are substituted by the actual colours
of consumed tokens when a transition is fired. The set of formal parameters (or
received names) of a transition is defined below.

Definition 2.10 (Received names of a transition). The set of colours of a
multiset m ⊆ MS,C is defined as col(m) = ∪(a,c)∈m c, the set of constants is
colP(m) = col(m) ∩ P, and the set of variables or received names of a multiset

07162534
w

&&

b

a 07162534
v

xx
v

&&

a

b 07162534
w

xx

c

a

t1

(v,w)
��

t2

w
��
�

�

N1
07162534
v

07162534
u

��

d

07162534
w

d

t

u

��
�

�

07162534
v

(a) N. (b) N1.

Fig. 4. Graphical representation of N and N1.

is rn(m) = colX (m) = col(m) ∩ X . Given a transition t = m[〉N , the set of
received names of t is given by rn(t) = colX (m).

Note that colP(m) stands for the set of constant (not variable) colours used
as formal parameters of a transition. This feature provides a basic mechanism for
pattern matching, since a transition will be enabled only when consumed tokens
carry on the same constant colours as those specified by the preset of the tran-
sition. Differently, colX (m) is the set of all variables, which will be instantiated
when the transition fires.

Definition 2.11 (Defined and Free names). The set of defined names in
a marking m is dn(m) = {a|∃c.(a, c) ∈ m}, i.e., names appearing in place
position. Given N = (SN , TN , δ0N , δ1N ,m0N) ∈ dn, the set of defined (dn) and
free (fn) names of transitions, sets of transitions, and nets are defined as follow:

dn(m1[〉N1) = dn(m1)

dn(TN) =
⋃
t∈TN

dn(t)

dn(N) = SN
fn(m1[〉N1) = dn(m1) ∪ colP(m1) ∪ (fn(N1) \ rn(m1))

fn(TN) =
⋃
t∈TN

fn(t) \ dn(TN)

fn(N) = (fn(TN) ∪ dn(m0N) ∪ col(m0N)) \ SN

Example 2.2. Consider N1 and N defined as follow and depicted in Figure 4
(Note places v and w in the representation of N1 are not defined places by N1):

SN = {a, b, c} TN = {t1, t2}
δ0N (t1) = a(v)⊕ b(w) δ1N(t1) = N1

δ0N (t2) = a(v)⊕ c(w) δ1N(t2) = v(w)
mN = a(b)⊕ b(a)⊕ c(a)

SN1 = {d}
TN1 = {t}
δ0N1(t) = d(u)
δ1N1(t) = v(u)
mN1 = w(d)

The sets of defined, received and free names of N and N1 are as follow

rn(t1) = {v, w} rn(t2) = {v, w} rn(t) = {u}
dn(t1) = {a, b} dn(t2) = {a, c} dn(t) = {d}
fn(t1) = {a, b} fn(t2) = {a, c} fn(t) = {d, v}
dn(TN) = dn(N) = {a, b, c} dn(TN1) = dn(N1) = {d}
fn(TN) = ∅ fn(TN1) = {v}
fn(N) = ∅ fn(N1) = {v, w}

Definition 2.12 (Dynamic Net). N ∈ dn is a dynamic net if fn(N) = ∅.

The above definition states that a dynamic net is closed, i.e., it does not
generate tokens in places that do not belong to it. The condition fn(N) = ∅
assures tokens to be generated always in places of the net, since markings are
bound to places defined by the net, which are guaranteed to be different from
places in other nets.

Remark 2.1. If N is a dynamic net then m0N ∈MSN ,SN
.

The net N presented in Example 2.2 is closed, and hence dynamic, even
though N1 is not. In fact, the names v and w are not bound in N1.

Remark 2.2. As variables in a transition are used to describe parameters, we
consider only dynamic nets whose transitions t = m[〉N satisfy the condition
(fn(N)∩X) ⊆ rn(t). This restriction requires all free variables of the postset of
a transition to be bound to some variable in the preset. Note that this is always
the case when a net is closed.

Similarly to coloured nets, the firing of a transition t requires the instan-
tiation of the received colours of t, i.e., the formal parameters rn(t) of the
transition t have to be replaced by the actual parameters corresponding to the
colours of the consumed tokens. Hence, we need suitable notions of substitution
and instantiation of nets.

Definition 2.13 (Substitution). Let σ : X ⇀ X ∪ P be a partial function.
The substitution σ on a multiset m ∈ MC,C is given by

(mσ)(a1)(c1) =
∑

a∈{a′|a′σ=a1}
∑
c∈{c′|c′σ=c1} m(a)(c)

Definition 2.14 (Instantiation of transitions and nets). Let σ : X ⇀
P∪X be a substitution. The instantiation of a transition t = m1[〉N1 with σ is the
transition tσ = m1σ[〉N1σ. Given a dynamic net N = (SN , TN , δ0N , δ1N ,m0N),
the instantiation of N with σ s.t. range(σ) ∩ SN = ∅ is defined as Nσ =
(SN , TN , δ0N , δ1Nσ,m0Nσ), where δ1Nσ(t) = (δ1N (t))σ if rn(t) ∩ (dom(σ) ∪
range(σ)) = ∅.

Remark 2.3. (i) The recursive definition given above is well-founded because it
is recursive on the structure of a net N ∈ dn, which is well-founded. (ii) The
conditions range(σ)∩SN = ∅ and rn(t)∩ (dom(σ) ∪ range(σ)) = ∅ avoid name

(dyn-firing)

t = m [〉 N1 ∈ T m′′ ∈ MS,C

(S, T, mσ ⊕ m′′) → (S, T, m′′) < N1σ

rn(t) ⊆ dom(σ) and
range(σ) ⊆ S

(dyn-step)

(S, T, m1) → (S, T, m′
1) < N1 (S, T, m2) → (S, T, m′

2) < N2

(S, T, m1 ⊕ m2) → (S, T, m′
1 ⊕ m′

2) < (N1 ⊕ N2)

Fig. 5. Operational semantics of dynamic nets.

clashes. When such condition is not satisfied, α-conversion either on the places
of the net or on the received names of the transition (as defined below) can be
applied before the instantiation. (iii) Note that σ is not applied on δ0N , since
all variables appearing in the preset of a transition are local.

Definition 2.15 (α-equivalence). Two transitions t1 and t2 are α-convertible
if there exists an injective substitution σ : X ⇀ X , with rn(t1) ⊆ dom(σ), s.t.
t1σ = t2. As usual, α-conversion is a equivalence relation denoted by ≡α. Two
nets N and N ′ are α-convertible if there exist bijective substitutions σS : SN →
SN ′ and σT : TN → TN ′ s.t. •tσS [〉t•σS ≡α •(tσT)[〉(tσT)• and m0NσS =
m0N ′ . We shall always consider transitions and nets up-to α-equivalence.

The following definition introduces two different ways for composing nets,
which will be used to formalize the operational semantics of dynamic nets.

Definition 2.16 (Composition of nets). Let N1, N2 ∈ dn s.t. N1 ∩N2 = ∅
(i.e., they share neither places nor transitions) and fn(N1) ∩ SN2 = ∅ (i.e., N2

does not define the free names of N1). Then, the addition of N2 to N1 (written
N1 < N2) is defined as N1 < N2 = (SN1] SN2 , TN1] TN2 , δ0N1] δ0N2 , δ1N1]
δ1N2 ,m0N1 ⊕m0N2). The addition N1 <N2 is said the parallel composition of
N1 and N2 (written N1 ⊕N2) if also fn(N2) ∩ SN1 = ∅.

Observe that the side conditions required by parallel composition avoid free
names of one net to be captured by the transitions defined by the other. Nev-
ertheless, when a subnet N2 is added to a net N1 (N1 <N2) we allow the free
names of N2 to be captured by the definitions in N1. We remind that we are con-
sidering nets up-to α-conversion on the name of places and transitions. Hence,
it is always possible to choose N ′2 α-equivalent to N2 s.t. N1 ∩N ′2 = ∅.

Rules defining the operational semantics of dynamic nets is in Figure 5.
Note that the state of a computation considers not only markings but also
the structure of the net. For simplicity we write (S, T,m) as a shorthand for
(S, T, δ0, δ1,m). Rule (dyn-firing) stands for the firing of t when the marking
contains an instance of the preset of t (for a suitable substitution σ). The re-
sulting net consists of the original net, where the consumed tokens have been
removed, and a new instance of N1 (i.e., the postset of t) has been added. The
composition < of nets assures the names of the added components to be fresh.
The side condition rn(t) ⊆ dom(σ) assures all formal parameters of t to be

instantiated, while range(σ) ⊆ S guarantees all consumed tokens to be coloured
with names defined by the net. Rule (dyn-step) stands for the parallel com-
position of computations when the initial marking contains enough tokens for
executing them independently. Note that both concurrent steps operate over the
same net structure, in fact both start from a net whose places and transitions
are S and T . Those steps can add new elements (i.e., N1 and N2), which by
definition are fresh. Moreover, the new components can be chosen to assure new
elements to be disjoint, i.e., such that (N1 ⊕N2) is defined.

Remark 2.4 (Subject reduction). When starting from a dynamic net, the appli-
cation of rules (dyn-firing) and (dyn-step) generates dynamic nets.

Example 2.3. Consider the dynamic net presented in Example 2.1 (see Fig-
ure 3(a)) but with the initial marking m′ = a(•) ⊕ a(•). In what follows we
show a computation that fires concurrently two instances of t. We have

a(•)[〉N1

({a}, {t}, a(•))→ ({a}, {t}, ∅) <N ′

1

a(•)[〉N1

({a}, {t}, a(•))→ ({a}, {t}, ∅) <N ′′

1

({a}, {t}, a(•) ⊕ a(•))→ ({a}, {t}, ∅) < (N ′

1 ⊕N ′′

1)

where N ′1 = ({d}, {t1}, a(•) ⊕ d(•)) and N ′′1 = ({d′}, {t′1}, a(•) ⊕ d′(•)). Note
that N ′1 ⊕N ′′1 = ({d, d′}, {t1, t′1}, a(•)⊕ d(•)⊕ a(•)⊕ d′(•)). And finally,

({a}, {t}, ∅)< (N ′1 ⊕N ′′1) = ({a, d, d′}, {t, t1, t′1}, a(•)⊕ d(•)⊕ a(•)⊕ d′(•)).

3 Unfolding Dynamic nets

In this section we characterise the unfolding of dynamic nets. Different from
p/t nets, the unfolding of a dynamic net should consider, not only the evolution
of markings but also, the changes on the structure of the net. Intuitively, the
unfolding of a dynamic net gives two different structures: (i) the places and
transitions of the unfolded dynamic net, and (ii) the occurrence net describing
the evolution of the states (i.e., markings).

Definition 3.1 (Dynamic net unfolding). Let N = (SN , TN , δ0N , δ1N ,mN)
be a dynamic net. The unfolding U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) is the joint
combination of an occurrence net (S, T, δ0, δ1) and a dynamic net (S, T , ξ0, ξ1, ∅),
which are defined inductively by the rules in Figure 6.

In the above definition (S, T, δ0, δ1) is the causal net describing the evolution
of the marking of the net, while (S, T , ξ0, ξ1) gives the structure of the unfolded
dynamic net. Note that both structures are inductively defined starting from
the original dynamic net N : At the beginning (by rules ini-pl and ini-tr) the
unfolded structure of the dynamic net (S, T , ξ0, ξ1) coincides with the definition
of N , i.e., with (SN , TN , δ0N and δ1N). Initially, the causal net contains the
places corresponding to the initial marking (rule ini-mk), i.e., for any token a(c)

(ini-pl)

a ∈ SN

a ∈ S

(ini-tr)

t ∈ TN

t ∈ T , ξ0(t) = δ0N (t), ξ1(t) = δ1N(t)

(ini-mk)

mN (a)(c) = n

{(∅, a(c))} × [n] ⊆ S

(pre)

B = {(εj , bj , ij)|j ∈ J} ⊆ S, Co(B), t ∈ T , ξ0(t)σ = ⊕j∈Jbj

(B, σ, t) ∈ T, δ0(B, σ, t) = B
(post)

x = (B, σ, t) ∈ T, ξ1(t) = N1

Q = {({x}, b(c), i) | 0 < i ≤ mN1
ρxσ(b)(c)} ⊆ S, δ1(x) = Q, SN1

ρx ⊆ S,
TN1

ρx ⊆ T , for t ∈ TN1
: ξ0(tρx) = δ0N1

(t)ρx, ξ1(tρx) = δ1N1
(t)ρxσ

Fig. 6. Definition of U [N]

in m0N , there is one place in U [N] named (∅, a(c), i) for some i. Note that the
name of a place contains a set (in this case ∅) that records the history (i.e., the
immediate causes) of the particular token associated to that place. In this case
∅ means that the associated token is part of the initial marking of N (i.e., it
has not been generated by a transition). The part a(c) of the name provides the
correspondence with the original token (it identifies the corresponding place and
colour in N), while the number i univocally identifies one token a(c) when the
initial marking contains several copies.

Then, the rules pre and post unfold the net by defining the transitions
x = (B, σ, t) of the causal structure. In fact, rule pre identifies the set of places
B corresponding to concurrent events (i.e., CO(B)) in the causal structure that
conform an instance (for a substitution σ) of the preset of some transition t in
the dynamic structure T . For any such B, a new transition (B, σ, t) is added to
the causal net. Note that the preset of (B, σ, t) is B. We assume w.l.o.g. that
dom(σ) = rn(t), i.e., we consider only the relevant part of substitutions.

Rule post updates both the dynamic structure and the causal net. Consider
transition x = (B, σ, t) s.t. the postset of t is N1 (i.e., ξ1(t) = N1). Rule post
adds a fresh instance of N1 to the dynamic structure and the events for the
initial marking of N1 to the causal net. Freshness is obtained by applying to
every element of SN1 and TN1 the renaming ρx, which is defined as follow

∀z ∈ SN1 ∪ TN1 : ρx(z) = zx

Note this renaming adds the name of the fired transition x to any element
generated by x (i.e., its history). Hence, by applying ρx we assure new elements
in the generated instance of N1 to be fresh (and unique).

Then, the causal structure is modified as follows: for any place in the initial
marking of N1 a new place is generated in S. Note the name of such places
carries {x} as its history (i.e., the name of the transition that generates them),
the name of the token b(c) corresponding to the tokens in the initial marking
of N1 suitably renamed by ρx (i.e., the names of the fresh instance of N1) and

07162534 u
//

dx1

tx1
u

//07162534
w

((

b

07162534
v

vv
v

((

a

07162534
w

vv

c

t1

(v,w)��

t2

w

��
�

�

N1
07162534
v

Fig. 7. The dynamic part of the unfolding U [N]: (S,T ,ξ0,ξ1).

instantiated by σ (i.e., the colour of the consumed tokens). Moreover, the postset
of x is defined as the set Q of all generated places.

Furthermore, rule post refreshes the structure of the dynamic net by adding
the elements of the fresh instance of N1 (i.e., SN1ρx and TN1ρx), and updating
the flow relations ξi accordingly. In particular, note that σ is also used when
defining ξ1. This is necessary in cases as the following: consider the transition
t = a(x)[〉N1, s.t. N1 defines the transition t1 = b(y)[〉x(y). Since x is free in
t1 (and hence in N1), x is bound to the occurrence of x in the preset of t.
Consequently, if t is fired with the substitution σ, then σ has to be applied to
the transitions in N1. In contrast with this, we do not use σ for ξ0, since the
substitution has no effect on the presets of transitions.

Remark 3.1. (i) The unfolding construction works since transitions generated
dynamically can be seen as resources that are concurrent to tokens. When a new
transition is added to T by using rule post, we are sure that such transition
cannot fetch tokens from already existing places. Hence, all elements generated
previously are still valid. (ii) The unfolding is unique since the result is influ-
enced neither by the order in which productions are applied nor by the multiple
applications of a same rule that produce always the same elements.

Example 3.1. Consider the dynamic net N defined in Example 2.2. Its unfolding
U [N] is depicted in Figures 7 and 8.

Proposition 3.1. Let N be a dynamic net and U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1)
the unfolding of N . Then (S, T, δ0, δ1) is an occurrence net.

Proof. By induction on the structure of the proof x ∈ T .

Proposition 3.2. Let N be a dynamic net and U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1)
the unfolding of N . Then (S, T , ξ0, ξ1, ∅) is a dynamic net.

Proof. By induction on the structure of the proof that t ∈ T .

The unfolding for the case of an ordinary p/t net (when regarded as a dy-
namic net) essentially coincides with the ordinary notion of unfolding, since (i)
tokens carry on the colour •, which determines a unique possible substitution
σ = ∅ in rule pre, and (ii) rule post does not modify the dynamic structure.

The dynamic net unfolding U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) defines an im-
plicit morphism from the occurrence net (S, T, δ0, δ1) to (S, T , ξ0, ξ1, ∅), which

07162534

��

s1 = (∅, b(a), 1)
07162534

++ss

s2 = (∅, a(b), 1)
07162534

��

~~

s3 = (∅, c(a), 1)

x1 = ({s1, s2}, {b/v, a/w}, t1)

��

x2 = ({s2, s3}, {b/v, a/w}, t2)

��07162534

��

s4 = ({x1}, a(dx1), 1)
07162534

s5 = ({x2}, b(a), 1)

x3 = ({s3, s4}, {dx1/v, a/w}, t2)

��

07162534

��

s6 = ({x3}, dx1 (a), 1)

x4 = ({s6}, {a/u}, tx1)

��

07162534
s7 = ({x4}, b(a), 1)

Fig. 8. The causal structure of the unfolding U [N]: (S,T ,δ1,δ2).

is given by the projections of places (ε, b, i) to the second component b and of
transitions (B, σ, t) to the third component t. Exploiting this fact, we can define
the notion of deterministic processes of a dynamic net as below.

Definition 3.2 (Process of a dynamic net). A deterministic process for a
dynamic net N (written P : K N) is a net morphism P from a causal net K
to C = (S, T, δ0, δ1) s.t. P (◦K) = ◦C, where U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1).

We note the set of origins and destinations of P : K → N respectively by
O(P) = ◦K and D(P) = K◦ ∩ SK . Moreover, pre(P) and post(P) stand for the
multisets of initial and final markings of P , i.e., pre(P) =

⊕
(x,b,i)∈P (O(P)) b and

post(P) =
⊕

(x,b,i)∈P (D(P)) b.
The following result relates the operational semantics of dynamic nets with

their non-sequential semantics. In particular, we show that, although processes
capture more information about the behaviour of a net than reductions, compu-
tations in both cases are the same. (We recall that dynamic nets are considered
up-to α-conversion).

Theorem 3.1 (Correspondence). Let N,N ′ be dynamic nets. Then N →∗
N ′ iff there exists a process P : K N such that:

(i) pre(P) = m0N and post(P) = m0N ′ , and
(ii) all places and transitions in N ′ are either in N or they are added by the com-

putation described by P , i.e., N ⊕⊕x=(B,σ,t)∈P (TK) t
•(ρx, σ) = (SN ′ , TN ′ ,

δ0N ′ , δ1N ′ ,m), where substitution t•(ρ, σ) for t• = Ni is defined as (Si, Ti,
δi0, δi1,mi0)(ρ, σ) = (Siρ, Tiρ, δi0ρ, δi0ρσ,mi0ρσ).

(iii) Moreover, for the unfolding U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) of N , we have
SN ′ ⊆ S, TN ′ ⊆ T , δ0N ′ ⊆ ξ0, δ1N ′ ⊆ ξ1.

Proof. ⇒) It follows by induction on the length n of the derivation N →n N ′.
• Base case (n = 0): Hence N = N ′. Conditions (i)−(iii) hold by taking
K = (SK , ∅, ∅, ∅) with SK =

⋃
a(c)∈dom(m0N))(∅, a(c))× [m0N(a)(c)], and

P : K → (S, T, δ0, δ1) as the identity on places and transitions.
• Inductive Step (n = k + 1): Then, N →k N ′′ → N ′. By inductive

hypothesis on N →k N ′′, ∃P ′ satisfying (i)− (iii). The proof follows by
showing (by rule induction on the structure of the proof N ′′ → N ′) that
∃P , which is an extension of P ′, satisfying conditions (i)− (iii).
∗ Rule (dyn-firing): Then, N ′′ → N ′ by firing t ∈ TN ′′ . Note the

final elements of P ′ contains a set M of concurrent elements corre-
sponding to an instance of the preset of t. Since elements in M are
concurrent, the unfolding contains an event e corresponding to the
firing of t with preset M . P adds e and its postset to P ′.
∗ Rule (dyn-step): By inductive hypothesis, there are two processes
P1 and P2 starting from two different markings m1 and m2 of the
same net N . Although, P1 and P2 are processes of two different
unfoldings, they can be seen as being processes of the same unfolding
of N with initial marking m1 ⊕m2. W.l.o.g, we assume K1 and K2

only to share initial elements that are not in conflict. Then, K1 ∪K2

is a causal net. Finally, P is defined as the union of P2 and P2.
In both cases, conditions can be verified by straightforward analysis.

⇐) The proof follows by induction on the number of transitions of K.
• Base Case (|TK | = 0). It follows immediately by taking N ′ = N .
• Inductive Step. TK = TK′ ∪ t s.t. t• ⊆ K◦ Let K ′ be the causal net

obtained from removing t and t• from K, and P ′ the restriction of P to
the elements of K ′. By defining N ′′ as
∗ (SN ′′ , TN ′′ , δ0N ′′ , δ0N ′′ ,m) = N ⊕⊕x=(B,σ,t)∈P (T

K′) t
•(ρx, σ), and

∗ m0N ′′ = post(P ′) = post((D(P) ∪ •t)\t•)
and using inductive hypothesis on P ′, we have N → N ′′. By condition
(iii) and the definition of P , there exists t ∈ N ′′ whose firing makes N ′′

to become N ′.

4 Unfolding pattern

The definitions of unfolding and deterministic processes for dynamic nets given
in the previous section depend on the colours carried on by tokens. The main
disadvantage of such kind of definitions is that they cannot abstract away from
colours that are irrelevant for the computation. Consider the net N , where
SN = {a, b, c}, TN = {t1, t2} s.t. t1 = a(x, y)[〉x(y), t2 = b(x)[〉c(x). When con-
structing the unfoldings for the initial markings m1 = a(b, a) and m2 = a(b, b),
we obtain isomorphic causal nets as shown in Figure 9 (we omit the represen-
tation of the dynamic structure because it stays N in both cases). To quotient
out the set of all unfoldings with isomorphic causal nets and the same dynamic
structure, we generalise the notions given in the previous section by allowing
unfolding and processes to be parametric in (some) colours carried on by tokens
of the initial marking. We call such constructions unfolding and process patterns.

07162534

��

s1 = (∅, a(b, a), 1)

x1 = ({s1}, {b/x, a/y}, t1)

��

07162534

��

s2 = ({x1}, b(a), 1)

x2 = ({s2}, {a/x}, t2)

��

07162534s3 = ({x2}, c(a), 1)

07162534

��

s1 = (∅, a(b, b), 1)

x1 = ({s1}, {b/x, b/y}, t1)

��

07162534

��

s2 = ({x1}, b(b), 1)

x2 = ({s2}, {b/x}, t2)

��

07162534s3 = ({x2}, c(b), 1)

(a) m1 = a(b, a). (b) m2 = a(b, b).

Fig. 9. Causal nets of the Unfolding of N for different initial markings m1 and m2.

(ini-pl-patt)

a ∈ SN

a ∈ S

(ini-tr-patt)

t ∈ TN

t ∈ T , ξ0(t) = δ0N (t), ξ1(t) = δ1N (t)

(ini-mk-patt)

mN(a)(c) = n

{(∅, a(c), ∅)} × [n] ⊆ S

(pre-patt)

B = {(εj , bj , µj , ij)|j ∈ J} ⊆ S, Co(B), t ∈ T , ξ0(t)σ = ⊕j∈Jbjµt,

range(µt) ⊆ SN , µ = µt ∪
⋃

j µj well − defined substitution

(B, σ, t, µ) ∈ T, δ0(B, σ, t, µ) = B
(post-patt)

x = (B, σ, t, µ) ∈ T, ξ1(t) = N1

Q = {({x}, b(c), µ, i) | 0 < i ≤ mN1
ρxσ(b)(c)} ⊆ S, δ1(x) = Q, SN1

ρx ⊆ S,
TN1

ρx ⊆ T , for t ∈ TN1
: ξ0(tρx) = δ0N1

(t)ρx, ξ1(tρx) = δ1N1
(t)ρxσ

Fig. 10. Definition of UP[N]

Definition 4.1 (Pattern). A (marking) pattern is a multiset p ∈MP∪X ,P∪X .
Moreover, p is a colour pattern if p ∈ MP,P∪X , i.e., variables appear only as
colours. A colour pattern p is linear if any variable occur at most once in p.

Definition 4.2 (Unfolding pattern). Let N = (SN , TN , δ0N , δ1N ,mN) ∈ dn,
s.t. the initial marking mN is a linear colour pattern. The unfolding pattern
UP [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) is defined inductively by the rules in Figure 10.

The three first rules are quite similar to the definition of unfolding in the
previous section. The main difference is that place names (rule ini-mk-patt)
carry on an extra element (the third one) that records all substitutions made on
variable colours of the initial pattern. Clearly, for tokens corresponding to the
initial marking, the third element is set to the empty substitution.

As far as the unfolding is concerned, it works analogously to the previous case.
The main difference is that when identifying the preset B of a transition (in rule
pre-patt) it may be the case that

⊕
j bj is actually a pattern more general

07162534
w

&&

b
07162534

v

xx
v

&&

a
07162534

w

xx

c
07162534

u
��

dx1
07162534

u
��

dx4

t1

(v,w)��

t2

w

��
�

�

tx1

u

��
�

�

tx4

u

��
�

�

N1
07162534
v

07162534
y

07162534
x

Fig. 11. The dynamic part of the unfolding pattern UP[N]: (S,T ,ξ0,ξ1).

than the preset of the transition we would like to apply, hence its variables may
require to be instantiated in order to conform the preset of a transition. Consider
the simple case of N containing only the transition t = a(b, x)[〉b(a). When
considering the initial pattern m0N = a(v, w) the causal net of the unfolding
contains the place s1 = (∅, a(v, w), ∅, 1) (i.e., s1 ∈ S). Since t ∈ T we would like
to fire t with the token s1. To make a(v, w) be an instance of •t we need to
substitute the variable v of a(v, w) by b, and substitute the variable x in •t by w.
Hence, we take µt = {b/v} and σ = {w/x}, so that a(v, w)µt = a(b, w) = •tσ.

Moreover, we require µt to be minimal in order for the unfolding to describe
the most general pattern of computation. That is, we will not consider substitu-
tions µt that instantiate more variables than those needed. In the previous ex-
ample we do not consider the substitutions θ1 = {b/v, a/w} and θ2 = {b/v, b/w}
as candidate µt (although they also satisfy the equation a(v, w)θi = •tσi with
σ1 = {a/x} and σ2 = {b/x}) because they are not minimal instantiations. In
particular, µt means that there not exists µ′ satisfying the instantiation condi-
tion and µt = µ′ ◦ µ′′, with µ′′ 6= ∅. Substitutions renaming variables are not
possible µt. In such cases the renaming occurs in σ, as in the previous example.

Since colours in any marking refer to places of the net (i.e., names in SN) and
µt is an instantiation of a pattern corresponding to an initial marking, we require
range(µt) ⊆ SN . Additionally, this condition assures that if a variable appearing
in place position is instantiated, then the chosen transition t belongs to TN
(because transitions generated dynamically cannot fetch messages from already
existing places). Consequently, we are also sure that the applied transition is
causally independent of the consumed tokens.

Condition µ = µt ∪
⋃
j µj well − defined substitution assures that all instan-

tiations made by concurrent computations on pattern variables are consistent.

Example 4.1. Consider the dynamic net N presented in Example 3.1. The un-
folding pattern for the marking a(y)⊕b(x)⊕c(z) is shown in Figures 11 and 12.

While the unfolding is defined for a concrete marking (i.e., all places and
colours are constants), an unfolding pattern defines a set of different unfoldings,
one for any possible (compatible) instantiation of the pattern.

Definition 4.3 (Instance of an unfolding pattern). Let UP [N] the un-
folding pattern of N = (SN , TN , δ0N , δ1N , p), where p is a linear pattern, and

07162534

��

s1 = (∅, b(x), ∅, 1)
07162534

++ss

s2 = (∅, a(y), ∅, 1)
07162534

��

~~

s1 = (∅, c(z), ∅, 1)

x1 = ({s1, s2}, {y/v, x/w}, t1, ∅)

��

x2 = ({s2, s3}, {y/v, z/w}, t2, ∅)

��

07162534

��

s4 = ({x1}, x(dx1), ∅, 1)

07162534

��

s5 = ({x2}, y(z), ∅, 1)

x3 = ({s3, s4}, {dx1/v, z/w}, t2, {a/x})

��

x4 = ({s1, s5}, {z/v, x/w}, t1, {a/y})

��07162534

��

s6 = ({x3}, dx1 (z), {a/x}, 1)

07162534
s7 = ({x4}, x(dx4), {a/y}, 1)

x5 = ({s6}, {z/u}, tx1 , {a/x})

��07162534
s8 = ({x5}, y(z), {a/x}, 1)

Fig. 12. The causal part of the unfolding pattern UP[N]: (S,T ,δ1,δ2).

(H, a(c), µ, n) ∈ S, (µ ∪ θ) well − defined

(H, a(c), µ, n) ∈ Sθ

ax ∈ S, x ∈ Tθ

ax ∈ Sθ

x ∈ Tθ

δθi(x) = δi(x)

(B, σ, t, µ) ∈ T, (µ ∪ θ) well − defined

(B, σ, t, µ) ∈ Tθ

tx ∈ T , x ∈ Tθ

tx ∈ T θ

t ∈ T θ

ξθi(t) = ξi(t)

Fig. 13. Definition of UP[N]θ, the θ-instance of UP[N].

a substitution θ s.t. dom(θ) ⊆ colX (p) and range(θ) ⊆ SN . The instance of
UP [N] by θ, written UP [N]θ = (Sθ, Tθ, δθ0, δθ1,Sθ, T θ, ξθ0, ξθ1), is given by
the inference rules in Figure 13.

Note that UP [N]θ is obtained by removing all elements of UP [N] that are
incompatible with θ, i.e., elements instantiating the variables of p differently from
θ. The following result relates unfoldings and unfolding patterns by showing that
the unfolding corresponding to an initial marking m0 = pθ can be obtained by
instantiating the unfolding pattern for p with θ.

Lemma 4.1. Let U [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) be the unfolding of N , and
UP [N] = (SP , TP , δ0P , δ1P ,SP , TP , ξ0P , ξ1P) be the unfolding pattern of N for
the linear pattern p s.t. m0N = pθ, and UP[N]θ the corresponding instance of
UP [N]. Then, there exists a bijective function f = (fS : S → SP θ, fT : T →
TP θ, fS : S → SP θ, fT : T → TP θ) such that:

1. ∀t ∈ T : fS(•t)[〉fS(t•) ≡α •fT (t)[〉fT (t)•, i.e., dynamic structures are
isomorphic;

2. ∀x ∈ T : fS(•x)[〉fS(x•) = •fT (t)[〉fT (t)•, i.e., causal nets are isomorphic;
3. ∀x = (B, σ, t) ∈ T : fT (x) = (B′, σ′, fT (t), µ), i.e., mapped events corre-

spond to the same transition;
4. ∀s = (H, a(c), i) ∈ S : fS(s) = (H ′, b(c′), µ, j) and a(c) = fS(b(c′)θ), i.e.,

mapped places correspond to the same token.

Proof. The proof follows by rule induction on the definition of U [N]

Then, starting from the definition of the unfolding pattern, we give the notion
of process pattern, which is a process parametric on the colours of the initial
tokens. Such definition relies on the following notion of associated instantiation.

Definition 4.4 (Associated instantiation). Given an UP [N], the instantia-
tion inst(s) associated to an element e of S ∪T is defined as inst(H, σ, µ, i) = µ
and inst(H, σ, t, µ) = µ. Given a set E ⊆ S ∪ T , inst(E) = {inst(e)|e ∈ E}.

The associated instantiations for a set E of elements belonging to an un-
folding pattern collects all the instantiations made by the elements of E to the
variables of the initial pattern. Then, a process pattern is defined as follows.

Definition 4.5 (Process Pattern). A process pattern for a dynamic net N
is a net morphism PP from a causal net K to the net (S, T, δ0, δ1), where
UP [N] = (S, T, δ0, δ1,S, T , ξ0, ξ1) for a particular pattern p as initial marking
s.t. ∀µ1, µ2 ∈ inst(PP (D(PP))) : µ1 ∪ µ2 is a well-defined substitution.

The above definition is analogous to Definition 3.2 but it also requires the
instantiations made by final elements to be consistent. This condition assures
concurrent events in a process not to instantiate variables differently.

As for unfolding patterns, we allow process patterns to be instantiated.

Definition 4.6 (Compatible instantiation of a process). A substitution θ
is a compatible instantiation of a process pattern PP if ∀µ ∈ inst(PP (D(PP))),
µ ∪ θ is a well-defined substitution, i.e., θ is compatible with the instantiations
of final elements of P .

Finally, we show that process patterns generalise the definition of processes.
We start by showing that an instance of a process pattern is a process of the
corresponding instance of the unfolding pattern (Lemma 4.2). Then, we show
that the processes of a marked net can be obtained as instantiations of suitable
process patterns (Theorem 4.1).

Lemma 4.2. Let PP be a process pattern of N for the unfolding pattern UP [N],
and θ a compatible instantiation. Then, PP is a process of UP [N]θ.

Proof. The proof follows from the fact that all elements of the unfolding that
are image of PP are consistent with θ. Hence, they are also in UP [N]θ.

Theorem 4.1. Let PP be a process pattern of N for the linear pattern p s.t.
m0N = pθ. Then, PP describes also a process of U [N].

Proof. By Lemma 4.2, PP with θ is a process of UP [N]θ. By Lemma 4.1, U [N]
and UP [N]θ are isomorphic, then there exists P (defined as the composition of
PP and the function f of Lemma 4.1), which is a process of U [N].

5 Concluding Remarks

We have defined the semantic foundations for expressing and analyzing the
non-sequential behaviour of dynamic nets. This work extends the line initiated
in [4,11], where suitable notions of process and process pattern have been de-
fined for coloured and reconfigurable nets. Here, we have extended the ordinary
notion of unfolding and process to the more expressive setting of dynamic nets.

Since the unfolding semantics have been used for checking properties of, e.g.,
marked p/t nets and graph grammars [10,2], we expect the notions given in
this paper will allow for the development of techniques for checking properties
of dynamic nets. Moreover, unfolding patterns would also enable the study of
properties at a more abstract level than unfoldings, for instance, to prove non
reachability for a set of initial markings instead of just for a marking.

Since dynamic nets are in one-to-one correspondence with asynchronous join
processes, this work provides a process semantics for an asynchronous name pass-
ing calculus. Hence, the notions presented in this paper can serve as a starting
point for studying the non-sequential behaviour of asynchronous name passing
calculus, for instance, for studying process equivalences by considering the true
concurrent semantics of processes.

References

1. A. Asperti and N. Busi. Mobile Petri nets. Technical Report UBLCS 96-10,
Computer Science Department, University of Bologna, 1996.

2. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. Proc. CONCUR’01, LNCS 2154, pp. 381–395. Springer,
2001.

3. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C].
Proc. ECOOP’02, LNCS 2374, pp. 415–440. Springer, 2002.

4. R. Bruni, H. Melgratti, and U. Montanari. Extending the zero-safe approach to
coloured, reconfigurable and dynamic nets. Lectures on Concurrency and Petri
Nets, Advances in Petri Nets, LNCS 3098, pp. 291–327. Springer, 2003.

5. M. Buscemi and V. Sassone. High-level Petri nets as type theories in the Join
calculus. Proc. FoSSaCS’01, LNCS 2030, pp. 104–120. Springer, 2001.

6. S. Conchon and F. Le Fessant. Jocaml: Mobile agents for Objective-Caml. Proc.
ASA’99 / MA’99, pp. 22–29. IEEE, 1999.

7. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the Join
calculus. Proc. POPL’96, pp. 372–385. ACM Press, 1996.

8. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Inform. and
Comput., 57:125–147, 1983.

9. C. Gunter and D Scott. Semantic domains. Handbook of Theoretical Computer
Science, Vol. B: Formal Models and Sematics, pp. 633–674. MIT Press, 1990.

10. K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
11. H. Melgratti. Models and Languages for Global Computing Transactions. PhD

thesis, Computer Science Department, University of Pisa, 2005.
12. J. Meseguer, U. Montanari, and V. Sassone. Process versus unfolding semantics

for place/transition Petri nets. Theoret. Comput. Sci., 153(1-2):171–210, 1996.
13. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle

Mathematik, Bonn, 1962.

