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Abstract

Under several regards, various of the recently proposed computational paradigms are open-ended, i.e. they may comprise
components whose behaviour is not or cannot be fully specified. For instance, applications can be distributed across different
administration domains that do not fully disclose their internal business processes to each other, or the dynamics of the system
may allow reconfigurations and dynamic bindings whose specification is not available at design time. While a large set of
mature design and analysis techniques for closed systems have been developed, their lifting to the open case is not always
straightforward. Some existing approaches in the process calculi community are based on the need of proving properties
for components that may hold in any, or significantly many, execution environments. Dually, frameworks describing the
dynamics of systems with unspecified components have also been presented. In this paper we lay some preliminary ideas
on how to extend a symbolic semantics model for open systems in order to deal with name-based calculi. Moreover, we
also discuss how the use of a simple type system based on name-decoration for unknown components can improve the
expressiveness of the framework. The approach is illustrated on a simple, paradigmatic calculus of web crawlers, whichcan
be understood as a term representation of a simple class of graphs.
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1 Introduction

Concurrent and distributed systems are more and more becomingopenenvironments where
components, agents or services interact one with another bydynamically establishing con-
nections. For instance, in service oriented architectures, computational resources may be
accessed through temporary interactive sessions. Such open-interaction environments, sub-
ject to the dynamical binding of their components, may result into systems being partially
defined even at run-time. Describing and analysing the behaviour of such systems in pres-
ence of incomplete information clearly appears more difficult than the analysis of closed
interactive systems, already recognised as a challenging problem in its own.

Open computational environments have been first addressed in terms of execution con-
texts, for instance in order to determine the (minimal) execution context where the com-
putation of a component may exhibit some desired properties. In the semantical approach
of [Sew98], the possible transitions of a component are labelled withinformation character-
ising those contexts in which behavioural equivalence enjoys congruence properties (rele-
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vant to allow modular reasoning). Then, several other authors have proposed differentsym-
bolic semantics [LM00,SS03,SS05a,SS05b,KSS05,BGMS05,EK06] so as not considering
all the possible contexts, because universal quantification can seriously impair verification
techniques. These semantics carry abstract representations of the minimal contexts neces-
sary for components to evolve. Here the term “symbolic” reminds the attempt of defining
suitably abstract representations that can finitely represent universal classes of components
and contexts. The issue of avoiding universal closure of contexts finds its dual formulation
in avoiding universal closure with respect to pluggable components.

In [BBB07], jointly with Paolo Baldan, a general methodology for analysing the be-
haviour of open systems modelled ascontextsC[X1, ...,Xn], i.e. open terms of suitable
process calculi have been proposed. Variables of open termsrepresentholeswhere other
contexts andcomponentsp, i.e. closed terms, can be dynamically plugged in. The op-
erational semantics of contexts is given by means of asymbolic transition system(STS),
where states are contexts and transitions are labelled by modal formulae characterising the
structure that a component must possess or the actions it must be able to perform in order
to enable a symbolic transition. Symbolic transitions are of the form:

C[X1, ...,Xn]
ϕ1,..,ϕn
−−−−−−→aD[Y1, . . . , Ym]

The corresponding closed systemC[p1, ..., pn] can perform a transition labelled witha,
whenever each componentpi satisfies the corresponding formulaϕi. The target state will
be a suitable instance ofD[Y1, . . . , Ym], where process variablesY1, . . . , Ym appear in
formulaeϕ1, .., ϕn. The logic where the formulaeϕi live and the notion of satisfaction are
targeted to the process calculus under study. Starting fromthe rules defining a calculus, a
constructive procedure based on unification distills a (sound and complete) standardSTS.

Given anSTS, several behavioural equivalences can be defined directly over contexts,
amongst which we mentionstrict andloosebisimilarities. The former is a straight extension
of the ordinary bisimilarity with exact matching of transition labels, while the latter is
obtained by relaxing the requirements when comparing formulas during the bisimulation
game. In order to abstract from internal computations, symbolic counterparts of weak
bisimilarity have been defined. They are calledstrict and loose weak symbolic bisimilarity
(denoted≈s and≈l, respectively). All these equivalences are correct approximations of
their universal counterparts. Differently from other approaches theSTSsemantics preserves
the openness of the system during its evolution, thus allowing dynamic instantiation to be
accounted for in the semantics.

By integrating ideas from [BBB02,BBB07] and [BLMT08,BLM08,BLMT07], we are
interested in the development of a flexible semantic framework for open systems that admits
a graphical counterpart. In this extended abstract we report on an ongoing development of
theSTS theory aimed at accounting for calculi with an explicit treatment of names, à laπ-
calculus. Names broadly represent references of a possiblyreconfigurable interconnection
network amongst components. Consequently, the extended theory may be adapted also to
other representation formalisms, such as the hierarchicalgraphs considered in [BLM08],
where names can be used to account for the hierarchy.

In order to make the framework more flexible, drawing inspiration from [BLMT08], we
introduce a type discipline for open systems which prescribes how processes, contexts and
variables can be composed together. Types fix a basic interface, allowing or disallowing
the use of certain names within the corresponding well-typed processes.

We present our type framework with the help of a web crawling scenario, modelled
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with a simple nominal calculi, where names stand for references to web pages and pro-
cesses offer an abstract representation for web crawlers and pages. In this first exploration
the use of names is limited (for instance we do not deal with restriction operators), but we
believe it is still sufficient to illustrate the relevance ofthe proposed approach. We define
crawlers with different policies and confront them with a non-fully specified network. By
adopting a suitable symbolic equivalence we can test the different behaviours over a sym-
bolic semantics. The needed extensions to the theory ofSTS are discussed. For the sake of
readability and generality, the actors of our scenario are also illustrated as graphs, where
processes and names play the role of edges and connections, and operational rules that of
graph transformations. A further advantage of this graphical presentation is to make evi-
dent that interfaces can dynamically evolve, e.g. crawlersexpose the web addresses they
know and such knowledge is increased during their exploration activity.

We show how global properties of the network can be enforced by imposing type re-
strictions to unknown network components. Types constrainthe pages that the unknown
part of the network is enforced to contain and the list of links that the network can point
to. In particular, we shall concentrate onvalid networks, where no broken link is allowed.
Such type restrictions have to be updated according to the symbolic transitions that make
the overall system evolve. Consequently, standard subjectreduction results have to be
rethought in this dynamical open context. One of the benefitsof considering type restric-
tions in our example is that, while crawlers can be distinguished in arbitrary networks, their
behaviour is equivalent in networks of typevalid.

Summarising, the main objective of this extended abstract is twofold: (i) to define
typed extensions of theSTS symbolic semantics for nominal calculi, and (ii) to use a type
discipline for unknown components to derive suitable abstract equivalences. We remark
that our types are inspired by graphical models of process calculi and that, for the first time,
it is shown a significant abstract equivalence based on looseweak symbolic bisimilarity.

This paper is structured as follows. Section2 overviews the basics ofSTS. Section3
describes our simple web crawling scenario: a simple nominal calculus over which we
apply theSTS theory. Section4 introduces name-decorated types in theSTS approach.
Section5 draws some conclusions and outlines future developments.

2 Background

The main concepts aboutSTSand associated symbolic behavioural equivalences are briefly
recalled. A detailed presentation can be found in [BBB07].

For mere illustration purposes, we introduce for this section a simple process calculus,
calledTick. The processes of theTick calculus are defined by the syntax and operational
rules in Figure1, whereℓ ranges over a fixed set of labelsΛ, τ ∈ Λ is a distinguished
label anda ranges overΛ − {τ}. Tick processes consist of lists of actions which can
be performed sequentially. The hiding operator(a) allows to hide actiona, which then
shows up as silent actionτ at the top level. For example, theTick process(a) (b) c. a. 0

can perform a series of two steps:(a) (b) c. a. 0 →c (a) (b) a. 0 →τ (a) (b) 0. Note that to
avoid confusion with the positioning of labels in symbolic transitions, we put the action
label on the lower-right of the arrow and not above it.
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p ::= 0 | ℓ. p | (a) p

ℓ. p →ℓ p
(pref )

p →a q

(a) p →τ (a) q
(hide)

p →ℓ q

(a) p →ℓ (a) q
(lift) ℓ 6= a

Figure 1.Tick calculus.

2.1 Processes, Contexts and Formulas

We distinguish betweenprocesses(ranged over byp, q, ...), i.e. closed terms of a pro-
cess calculus, andcontexts(ranged byC[X1, ...,Xn],D[X1, ...,Xn], ...), i.e. terms of the
calculus that may contain variables. For the sake of readability, we consider only single-
holed contextsC[X], whereX is the variable occurring in the context. Processes are often
considered up to some suitable structural congruence≡ but in our example we will not.

An operational and abstract semantics of contexts, can be defined as asymbolic tran-
sition system, whose states are contexts and whose labels encode the structural and be-
havioural conditions that components should fulfil to enable the move, according to the
following principles: (1) abstracting from components not playing an active role in the
transition; (2) specifying the active components as less as possible; and(3) making as-
sumptions both on the structure and on the behaviour of the active components.

Labels consist of formulae of a suitable logic,φ,ψ, ... comprising bothtemporaland
spatial modalities in the style of [CC01,CG00] and depend on the specific calculus con-
sidered. Each formula represents the set of processes that fulfil it. A possible temporal
formula is⋄aφ, satisfied by the processes that can fulfilφ after having performed ana
labelled transition (p |= ⋄aφ if ∃q. p →a q ∧ q |= φ). Spatial formulae are about the alge-
braic structure of a term, so that, for instance,p |= f(φ) if ∃q.p ≡ f(q) andq |= φ, where
f is one of the operators of the calculus. Thus, each componentp can also be regarded as a
(purely spatial) formula.

To gain some insights regarding the choice of the logic, notethat an instanceC[p] of
a given contextC[X], in order to perform a transition, must match the left-hand side of
the conclusion of a semantical rule. This might impose the componentp to have a certain
structure, hence the need of inserting the spatial operators f ∈ Σ in the logic, whereΣ
denotes the signature of the calculus under consideration.Furthermore, the premises of the
matched rule must be satisfiable. Such premises may require componentp to be able to
exhibit some behaviour, i.e. to perform a certain transition. Hence the logic includes also
temporal operators⋄a expressing the capability of performing actiona.

Labels must also be able to express no constraints over unspecified components of
contexts, for instance when they do not take active part in the transition or in order to avoid
unnecessarily tight constraints over components. This is achieved by including variables
as formulas of the logic which are fulfilled by any process. For instance, the formula⋄aX
is satisfied by any process which is able to perform an actiona, i.e. by any processp such
that p →a q for someq. Variables in formulae will be used to identify the continuation,
or residual, of a process after it has exhibited the capabilities and structure imposed by
the formula. For instance, wheneverp |= ⋄aX and thusp →a q, the variableX in the
formula ⋄aX, identifies the continuationq. We say thatp satisfiesφ with residualq,
written p |= φ; q, whenp |= φ[q/X ], for X being the only process variable ofφ. Symbol;
is also used for formulae composition such thatφ;ψ is an alias forφ[ψ/X ].
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2.2 Symbolic Transition Systems

An STSS is a set of symbolic transitions

C[X]
φ
−→aD[Y ]

The variable names in contexts are not relevant, while the correspondence between each
variableX in the source and its residualY in the target, as expressed by the formulaφ in
which the residual may occur, is relevant.

ForS to provide an abstract view of a given process calculus we require some additional
properties enforcing the correspondence with the ground transitions over components. In-

tuitively, wheneverC[X]
φ
−→aD[Y ], the contextC, if instantiated with any component sat-

isfying φ, must be able to perform actiona and become a suitable instance ofD. More
precisely, for any componentq such thatp |= φ; q, the componentC[p] can performa be-
comingD[q] (soundness). Analogously, any ground transition on componentsC[p] →a q

should have a suitable symbolic counterpart with sourceC[X] (completeness).
A constructive procedure for determining a correct and complete STS has been defined

(see [BBB07]). It relies on unification for defining the constraints overunknown compo-
nents of a coordinator according to the structure of semantical rules. It can be straightfor-
ward implemented in Prolog for a large class of calculi. An overview of the construction
will be given in Section3.1.

Example 2.1 LetC[X] denote an arbitrary context inTick. Then theSTSconsisting of the
following (schema of) symbolic transitions is sound and complete:

(a1) . . . (an) a.C[X]
Y
−→τ (a1) . . . (an)C[Y ] (a1) . . . (an)X

⋄a Y
−−−→τ (a1) . . . (an)Y

(a1) . . . (an) ℓ. C[X]
Y
−→ℓ(a1) . . . (an)C[Y ] (a1) . . . (an)X

⋄ℓ Y
−−−→ℓ(a1) . . . (an)Y

wheren ≥ 0, a ∈ {a1, . . . , an} andℓ 6∈ {a1, . . . , an}. Intuitively, either the hole does
nothing and the rest of the context is able to execute an action according to(hide)or (lift)
(leftmost transitions), or the hole itself is able to perform an action (rightmost transitions).

For example, the contexts(a) (b) a.X and(a) (b)X have the transitions

(a) (b) a.X
Y
−→τ (a) (b)Y and (a) (b)X

⋄αY
−−−−→τ (a) (b)Y (a) (b)X

⋄ℓ Y
−−−→ℓ(a) (b)Y

for ℓ 6∈ {a, b} andα ∈ {a, b}.

2.3 Strong Symbolic Bisimilarities

Given a process calculus, several observational equivalences can be defined on top of its
operational semantics given in terms of a labelled transition system (LTS). We focus on
bisimilarity, by far the most popular equivalence due to itssuitability to support modular
reasoning and efficient model checking techniques. We startrecalling ground bisimilarity.

Definition 2.2 [∼] A strong bisimulationis a symmetric relation÷ over processes such
that if p ÷ q, then for any transitionp →a p

′ a componentq′ and a transitionq →a q
′ exist

such thatp′ ÷ q′. We denote by∼ the largest bisimulation, calledstrong bisimilarityor
just bisimilarity.
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A natural way of lifting equivalences from ground processesto contexts consists of
considering all possible closed instances of the contexts,so thatC[X] ÷u D[X] if and
only if ∀p,C[p] ÷ D[p]. However, universal quantification makes verification hardwhen
not unfeasible. Moreover, such a bisimilarity works with a complete, although potentially
infinite, specification of the system future behaviour, i.e.all its possible instantiations. This
may not be appropriate when dealing with open systems. Informally speaking, the instant in
which information becomes available seems to have a role in distinguishing the behaviour
of different contexts.

Definition 2.3 [∼s] A symmetric relation÷ over the set of contextsC is astrict symbolic
bisimulation if for any two contextsC[X] andD[X] such thatC[X] ÷ D[X], for any
transition

C[X]
φ
−→aC

′[Y ]

there exists a transitionD[X]
φ
−→aD

′[Y ] such thatC ′[Y ]÷D′[Y ]. The largest strict symbolic
bisimulation is an equivalence relation∼s calledstrict symbolic bisimilarity.

For instance, referring to the calculusTick, we can show that(a) (b)X ∼s (b) (a)X,
since the symbolic moves for the contexts (see Example2.1) are of the kind

(a) (b)X
⋄αY
−−−−→ℓ(a) (b)Y (b) (a)X

⋄αY
−−−−→ℓ(b) (a)Y

whereℓ = α if α 6∈ {a, b} andℓ = τ , otherwise.
For a sound and completeSTS we have∼s ⇒ ∼u, but the converse does not hold in

general. As mentioned, open processes that are equivalent under strict symbolic bisimilarity
are ensured to be equivalent under universal closure but thevice-versa may not hold.

A non-trivial relaxation in the presence of spatial formulae regards the requirement
of exact matching between the formulae labels: a transitioncan be simulated by another
transition with weaker spatial constraints on the residuals.

Definition 2.4 [
�

∼l] A symmetric relation÷ over the set of contextsC is a loose symbolic
bisimulationif for any pair of contextsC[X] andD[X] such thatC[X] ÷ D[X], for any
transition

C[X]
φ
−→aC

′[Y ]

a transitionD[X]
ψ
−→aD

′[Z] and a spatial formulaψ′ exists such thatφ = ψ;ψ′ andC ′[Y ]÷

D′[ψ′]. The greatest loose bisimulation
�

∼l is calledloose symbolic bisimilarity.

For sound and completeSTS it holds∼s ⇒
�

∼l ⇒ ∼u. We note that
�

∼l is not guaran-
teed to be an equivalence relation, since it may fail to be transitive in some “pathological”
situations (see the example in [BBB05]). In such cases, its transitive closure(

�

∼l)
∗ should

be considered as the relevant equivalence.

2.4 Weak Symbolic Bisimilarities

Many calculi, in particular those representing distributed systems, presentsilentactions (τ )
that model internal (non-observable) computations. In such cases, strong bisimilarity is too
fine, andweak bisimilarity≈, which abstracts away non-observable transitions during the
simulation game, provides a more meaningful equivalence. We denote by≈u its counter-
part over contexts defined by universal closure, and we present a straight weak extension
of symbolic bisimilarities.
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The relations
φ

=⇒a and
φ

=⇒ represent in a single transition, calledweak (symbolic)
transition, a sequence of symbolic transitions with at most one observable action or none,
respectively. Formulaφ, labelling the weak transitions, arises as the compositionof the for-

mulae labelling each single step. ThenC[X]
φ

=⇒ D[Y ] if C[X]
φ1
−−→τ

φ2
−−→τ · · ·

φh
−−→τD[Y ],

with φ = φ1; . . . ;φh and h ≥ 0. Analogously, C[X]
φ

=⇒a D[Y ] stands for

C[X]
φ1
−−→τ · · ·

φk−1
−−−−→τ

φk
−−→a

φk+1
−−−−→τ · · ·

φh
−−→τD[Y ]. In the following we let

φ
=⇒

ℓ̂
denote

φ
=⇒

if ℓ = τ and
φ

=⇒ℓ otherwise.

Definition 2.5 [≈s] A symmetric relation÷ on contexts is astrict weak symbolic bisimu-
lation if for all contextsC[X],D[X] with C[X] ÷D[X] we have

• if C[X]
φ
−→ℓC

′[Y ] thenD[X]
φ

=⇒
ℓ̂
D′[Y ] andC ′[Y ] ÷D′[Y ].

The largest strict weak symbolic bisimulation≈s is an equivalence relation calledstrict
weak symbolic bisimilarity(it holds∼s⇒≈s⇒≈u).

The contexts(a) a.X and(a)X of theTick calculus are not strict bisimilar, but they are
weak strict bisimilar. Roughly, this happens because the symbolic move(a) a.X Y

−→τ (a)X

can be weakly simulated by(a)X by remaining idle.
Finally, a loose weak symbolic bisimilarity can be defined, abstracting on silent actions

and releasing constraints over formula correspondence.

Definition 2.6 [≈l] A symmetric relation÷ on contexts is aloose weak symbolic bisimu-
lation if for all contextsC[X],D[X] with C[X] ÷D[X]

• if C[X]
φ
−→ℓC

′[Y ] thenD[X]
ψ

=⇒
ℓ̂
D′[Z] and a spatial formulaψ′ exists such thatφ =

ψ;ψ′ andC ′[Y ] ÷D′[ψ′].

The largest loose weak symbolic bisimulation≈l is calledloose weak symbolic bisimilarity.

3 Scenario: Web Crawlers

Web crawlers (also known as bots, spiders or scutters) are programs that systematically
browse the web to gather (and even produce) data. Prominent examples include useful
applications such as those used to feed search engines (e.g.Googlebot), and spambots
that collect email addresses or post forums with malicious purposes (e.g. spamming or
phishing).

Crawlers start their search with aseedof pages and maintain a list of visited pages.
Known pages are examined to extract their links and add them to the list of pages to visit
(thecrawling frontier). Crawlers follow certain policies that regard page selection or if and
how frequently pages are revisited. Such policies have an impact on the performance of
a site and in particular on its performance: a non polite crawler with a high frequency of
page request can overload the web server.

Some protocols exist that aim at harmonising the collaboration between crawlers and
sites. For instance, robot exclusion and inclusion protocols (e.g. the de-facto standards
robots.txt and sitemaps, respectively) are used by web sites to inform crawlers of links to
be excluded and included in their spidering activity. Crawlers are free to respect or not
such protocols but web servers can sometimes distinguish crawlers from human browsers
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(e.g. based on navigation speed or patterns) and thus control whether protocols are being
respected or violated.

We consider a scenario in which crawlers adhere to differentpolicies that depend on
the level of trust in the information available from the net,viz. their propensity to check
the validity of links. Ascrupulouscrawler checks the existence (e.g. requesting the page
header only) of a page before deciding to examine it (i.e. downloading it completely)
and before communicating the page to its (possibly remote) database. Acautiouscrawler
moves (i.e. changes target page) in a similar way, but does not check the page existence
when communicating the url of a page to its database. Arashcrawler checks nothing, i.e.
it assumes the existence of pages that it communicates or tries to examine. All three kinds
of crawler are able to examine an existing page. For the sake of simplicity we restrict to
static networks: no page is added or removed during crawlingactivities.

Each kind of crawler has a different impact on a web server performance: a scrupulous
crawler performs more page requests than the the cautious one, which, in his turn, performs
more requests than the rash one.

We model such scenario with a simple name-based calculus where crawler agentsc
operate on a web of linkslink(x, y). We assume denumerable sets of channel names (ranged
by a, b, ...) and of site addresses (ranged byx, y, z, w, ...) are available. The web systems
may be empty or comprise crawlers, links and their composition:

s ::= 0 | c | link(x, y) | s|s

Pages are seen just as collections of links with the same origin. If the collection is
empty we say the page ismissing, it is valid otherwise. If the target of a link is a missing
page, then the link is calledbroken.

A crawler is an autonomous agent that can visit sites, learn new site addresses and com-
municate them to its database on a given channel. We distinguish three kinds of crawlers

c ::= rash(a, x, ỹ) | cautious(a, x, ỹ) | scrupulous(a, x, ỹ)

wherea is the channel for communicating site addresses,x is the current site address of
the crawler and̃y is the set of site addresses the crawler has already learnt (but not nec-
essarily valid or visited). We let̃y denote the set{y1, ..., yn} and writeỹ + x for the set
{y1, ..., yn, x} andỹ − yi for the set{y1, ..., yi−1, yi+1, ..., yn}.

The operational semantics is given by few (unconditional) rewrite rules, see Figures2–
4, assuming that parallel composition is associative, commutative and with identity0. The
rules are parametric w.r.t. a generic systems and w.r.t. suitable site addressesx, ỹ, z, w and
reference channela for the crawler.

The rules are accompanied by a self-explanatory visual notation that is reminiscent of
a graphical interpretation of process calculi (see e.g. [Gad07,FHL+05]): names are repre-
sented as nodes of type◦ and• for channels and pages, respectively, crawlers and links as
hyper-edges (rounded boxes) and their arguments (names used) are indicated by tentacles
of various types. More precisely, the first argument of a crawler (e.g. the address of its
database) is indicated by an upwards concave tentacle, the second one (the current site) by
a bar-ended tentacle and the set of visited sites by arrowed tentacles. For links the arrowed
tentacle indicates the target and the plain one represents the source. In our intuitive nota-
tion, items in the left- and right-hand side are identified bytheir position and we remark
that a graph rewriting reading of the rules should be understood with matchings not be-
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c(a, x, ỹ) | link(x, z) | s →τ c(a, x, ỹ + z) | link(x, z) | s

(i)

◦

�� ��

�� ��c

?�

�

|| ""

•
�� ��

�� ��link // •

• ... •

→τ

◦

�� ��

�� ��c

?�

�

|| ""

;;•
�� ��

�� ��link // •

• ... •

(ii)

Figure 2. Textual (i) and graphical (ii) representation of LEARN rules wherec ∈ {rash, cautious, scrupulous}.

rash(a, x, ỹ + z) | s →τ rash(a, z, ỹ + x) | s

c(a, x, ỹ + z) | link(z,w) | s →τ c(a, z, ỹ + x) | link(z,w) | s

(i)

◦

�� ��

�� ��c′

?�

�

|| ""

•

• ... •

→τ

◦

�� ��

�� ��c′

?�

`||

?? •

• ... •

◦

�� ��

�� ��c

?�

�

|| ""

•

• ... •
�� ��

�� ��link // •

→τ

◦

�� ��

�� ��c

?�

`||

?? •

• ... •
�� ��

�� ��link // •

(ii)

Figure 3. Textual (i) and graphical (ii) representation of MOVE rules wherec′ = rash andc ∈ {cautious, scrupulous}.

ing injective, i.e. two different rule nodes can be matched with the same actual node (e.g.
learning of known pages is allowed).

Any crawler can learn new site addresses by looking at the links departing from its
current site. The corresponding rules are identical for thethree different kind of crawlers
and abstract away the actual interaction that would take place in concrete crawlers (rules
LEARN). The graphical representation makes evident that the interface of the crawler agent
may be enlarged by the acquisition of a new site address.

Any crawler can move to new sites (rules MOVE). In particular,rash crawlers move
eagerly around the web, to any target they have learnt;cautious andscrupulous crawlers
move only to valid sites. The graphical representations show the two different policies used
by the crawlers and make evident the swap of names in the interface of the crawler.
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c(a, x, ỹ) | s →az c(a, x, ỹ) | s with z ∈ ỹ + x

scrupulous(a, x, ỹ) | s →ax scrupulous(a, x, ỹ) | s

(i)

a
◦

�� ��

�� ��c

?�

�

{{ ##

•x

•y1
... •yn

→az

a
◦

�� ��

�� ��c

?�

�

{{ ##

•x

•y1
... •yn

a
◦

�� ��

�� ��c′

?�

�

|| ""

•x

• ... •

→ax

a
◦

�� ��

�� ��c′

?�

�

|| ""

•x

• ... •

(ii)

Figure 4. Textual (i) and graphical (ii) representation of OBS rules wherec ∈ {rash, cautious} andc’=scrupulous.

A second difference in the considered policies lies in the observations crawlers
can make (rules OBS): rash and cautious communicate any site addresses they know;
scrupulous crawlers communicate only site addresses they are currently examining.

3.1 Symbolic Transitions

A (sound and complete) symbolic transition system for our calculus is simply obtained by
taking as symbolic transitions for each contextC[X] all the transitions resulting from the
possible (most general) unifications with the left hand sides of each rewrite rule, where
s, x, ỹ, z, w, a are seen as (fresh) variables. More precisely, ifL[s] →α R[s] is a rewrite
rule (for a suitable labelα, possibly the silent one), andθ is a most general unifier between
L[s] andC[X], then we have the transition

C[X]
θ(X)
−−−−→αθ(R[s])

whereθ(X) denotes the term substituted forX by the substitutionθ (which with a slight
abuse of notation can be directly interpreted as a spatial formula) andθ(R[s]) inductively
applies the substitutionθ to the variables inR[s] (recall thatθ(L[s]) = θ(C[X])).

For instance, considering the contextrash(a, x, ỹ) | X and the LEARN rule of Fig.2,
we obtain a unifierθ that unifiesX with link(x, z)|s. The resulting symbolic transition is
the topmost of Fig.5.

Unification is considered up to associativity, commutativity and identity of parallel
composition (see [BBB07]). We also require an exact matching for non-process variables
x, ỹ, z, w, a appearing in the rules, i.e.θ must substitute them with actual values.

In the following we shall often focus on the three open processesR[X], K[X] andS[X]
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R[X]
link(x,z)|Y
−−−−−−−−→τ rash(a, x, ỹ + z) | link(x, z) | Y (for anyz)

R[X]
Y
−→τ rash(a, yi, ỹ + x− yi) | Y

R[X]
Y
−→ax R[Y ]

R[X]
Y
−→ayi

R[Y ]

K[X]
link(x,z)|Y
−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y (for anyz)

K[X]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x− yi) | link(yi, z) | Y (for anyz)

K[X]
Y
−→ax K[Y ]

K[X]
Y
−→ayi

K[Y ]

S[X]
link(x,z)|Y
−−−−−−−−→τ scrupulous(a, x, ỹ + z) | link(x, z) | Y (for anyz)

S[X]
link(yi,z)|Y
−−−−−−−−−→τ scrupulous(a, yi, ỹ + x− yi) | link(yi, z) | Y (for anyz)

S[X]
Y
−→ax S[Y ]

Figure 5. Some examples of symbolic transitions.

defined below:

R[X]
def
= rash(a, x, ỹ) | X

K[X]
def
= cautious(a, x, ỹ) | X

S[X]
def
= scrupulous(a, x, ỹ) | X

Some of the symbolic transitions forR[X], K[X] andS[X] obtained with this technique
can be found in Fig.5. In particular, the first transition is obtained from rule LEARN for
rash contexts, the second one from rule MOVE, the next two from rule OBS, and so on.
Other transitions, needed for determining a completeSTS regard the presence of crawlers
in holes and are not considered here for brevity.

3.2 Abstract Semantics

A natural question that emerges is: under which situation can the different crawlers ex-
hibit essentially the same abstract behaviour? If we consider weak bisimilarities then it
is evident thatrash(a, x, ỹ)|s andcautious(a, x, ỹ)|s are equivalent for any given system
s. Indeed even if they follow different movement policies both communicate all the ad-
dresses they gather (valid or not). Instead, it is possible to find suitable networks that distin-
guishscrupulous crawlers fromrash andcautious crawlers with the same knowledge. For
instance, consider the processesrash(a, x, ∅)|link(x, y) andscrupulous(a, x, ∅)|link(x, y).
The latter will be able to communicate only the valid sitex, while the former can commu-
nicate also the missing sitey. It follows from the considerations above thatR[X] ≈u K[X],
whilst R[X] 6≈u S[X] 6≈u K[X].

When we consider symbolic semantics, the situation is slightly different. In fact, it
might be the case that certain silent moves forK[X] require the presence of some links as

11
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hypothesis, while this is not the case forR[X]. This is evident when comparing the two
transitions relative to the MOVE rules forR[X] andK[X] (from Fig.5):

R[X]
Y
−→τ rash(a, yi, ỹ + x− yi) | Y

K[X]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x− yi) | link(yi, z) | Y (for anyz)

It follows thatR[X] 6≈s K[X] but this is not a desirable result, when considering that
both contexts behave bisimilarly in terms of pages observed. Indeed, we know thatR[X]

andK[X] are equivalent under universal closure weak bisimilarity.
However, the situation changes when we consider the coarserequivalence≈l, according

to which the symbolic move ofK[X] can be simulated by the less constraining (more
abstract) move ofR[X]. But canK[X] loosely simulateR[X]? The answer is yes, because
even ifK[X] has no transition that can be used to simulate the silent step

R[X]
Y
−→τ rash(a, yi, ỹ + x− yi) | Y

still, K[X] can just stay idle. Thus whileR[X] 6≈s K[X] we haveR[X] ≈l K[X]. In words,
the loose bisimilarity approximates universal closure weak bisimilarity, better than strict
bisimilarity.

The situation is slightly different when consideringK[X] andS[X], becauseS[X] can-
not observeyi without first moving toyi, thus requiring the site to be valid, whileK[X] can
observe it anyway.S[X] can only communicateyi as:

S[X]
link(yi,z)|Y
−−−−−−−−−→τ scrupulous(a, yi, ỹ + x− yi) | link(yi, z) | Y

Y
−→ayi

...

Hence, we have thatcautious and scrupulous are not equivalent under loose weak
bisimilarity but neither they are under universal weak bisimilarity. Indeed, it can be shown
that the behaviour of acautious crawler subsumes that of ascrupulous crawler by showing
thatK[X] loosely simulatesS[K[X]]. In words a context with acautious crawler behaves
like a context with both acautious and ascrupulous crawler.

4 Typed Symbolic Transition Systems

In the previous section we saw that some crawlers can exhibitdifferent behaviours de-
pending on the network of pages they operate on. Now suppose that we are given some
guarantees about the holes that appear in a context, like thefact thatR[X], K[X] andS[X]

represent valid networks, in the sense that they contain valid site addresses only. Then, we
would expect thatR[X], K[X] andS[X] are all equivalent as they are all able to observe
the same pages in the same order. Indeed, we would like to consider them to be equivalent
under a variant of universal weak bisimilarity that takes into account the set of valid holes,
rather than any possible system. Unfortunately, we saw in the previous section that our
loose equivalence≈l distinguishescautious andrash from scrupulous in the general case.

In this section we propose a technique for stipulating some guarantees over the holes
and for manipulating the symbolic transitions under such guarantees in order to account for
an equivalence coarser than≈l. We show the technique at work on our case study and then
try to distill some general guidelines for making it applicable in general.
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4.1 Typing

First, we define a suitable type system for terms. Here we consider a type system based on
the page addresses with particular types for valid networks. Types take the formT

d̃,p̃
, where

d̃ is the set of addresses thatmustcorrespond to valid sites, i.e. defined within the system,
and p̃ is the set of addresses thatcan be pointed by the system without being necessarily
valid within the system itself.

Definition 4.1 [Typed Systems] A systems has typeT
d̃,p̃

, written s : T
d̃,p̃

, iff

• for anyx ∈ d̃ there existsy, s′ such thats ≡ s′|link(x, y);

• for any link link(x, y) in s such thaty 6∈ p̃ there existsz, s′ such thats ≡ s′|link(y, z).

Let def (s) = {x|∃y, s′ such thats ≡ link(x, y)|s′ } denote the set ofdefinedpages of
a systems, andref (s) = { y|∃x, s′ such thats ≡ link(x, y)|s′ } denote the set ofpointed
pages of a systems. Then, in the definition above,̃d ⊆ def (s) is the set of pages that the
typed system explicitly guarantees to exist, whilep̃ ⊇ ref (s) − def (s) are the pages that
the system is allowed to point even if they might not be definedwithin the system itself.
Any pointed pagey 6∈ ref (s) that is not inp̃ must necessarily be provided by the system
itself, i.e. it must be indef (s). Summing up, a systems is allowed to point to pages iñd,
p̃ − d̃ (possibly outsides) and even not iñp, provided that they are indef (s). Note thatd̃
and p̃ are not necessarily disjoint, although, according to the definition, their intersection
can be excluded from̃p, as stated by the following lemma.

Lemma 4.2 Given a systems such thats : T
d̃,p̃

, for somed̃ and p̃, thens : T
d̃,p̃−d̃.

As underlined by the lemma, it is easy to see that a site can have different types. More
importantly, any system can be typed, i.e. for anys there existd̃ and p̃ such thats : T

d̃,p̃

(e.g. T∅,ref (s)−def (s)). The following lemma expresses how the requirements imposed by
a type can be relaxed: if a system fulfils a type then it also fulfils a type that requires less
page definitions than the original one, or allows a larger setof pointed pages.

Lemma 4.3 If s : Td̃,p̃, then for anyx, y it holds

• s : T
d̃−x,p̃, and

• s : T
d̃,p̃+y.

The above lemma induces a partial order over types, i.e.T
d̃,p̃

� Tẽ,q̃ whend̃ ⊆ ẽ and
q̃ ⊆ p̃. It is easy to see that the maximal type amongst those fulfilled by a systems is
Tdef (s),ref (s)−def (s), i.e. the one that exposes all the defined pages and permits only the
needed ones to be pointed outside the system. Such type represents the most precise type
we can assign to a system and it is called thecharacteristic typeof s.

Example 4.4 Let s ≡ link(x, y)|link(x, z)|link(y,w). Then the characteristic type ofs is
T{x,y},{z,w}. By Lemma4.3we also know thats : T{x},{z,w,x} ands : T∅,{z,w,x,u}. On the
contrary, it is not the case thats : T{y},{z}, becauses points tow 6∈ def (s) andw is not
mentioned in the type. Similarly, it is not the case thats : T{x,y,w},{z,w}, becausew is not
a defined name ofs.

Clearly, the presence of crawlers does not influence the typing of a system, which de-
pends just on links. Moreover, as the rewrite rules cannot change the set of links in the
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system, it follows that the typing enjoys subject reduction.

Lemma 4.5 (Subject Reduction)If s : T
d̃,p̃

ands →α s
′, thens′ : T

d̃,p̃
.

Finally, a type-based characterisation of valid systems can be expressed by the fact that
the system has a type requiring that all the pointed pages aredefined in the system.

Definition 4.6 [Valid System] A systems is calledvalid if s : T
d̃,p̃

andp̃ ⊆ d̃.

From Lemma4.2 and Lemma4.3, an alternative characterisation of valid systems as
thoses such thats : T∅,∅ easily follows. Quite naturally, compositional properties of types
and systems can be determined, as for instance stated by the next lemma and its trivial
corollary.

Lemma 4.7 Lets : T
d̃,p̃

ands′ : T
d̃′,p̃′

be two typed systems, thens|s′ : T
d̃+d̃′,p̃+p̃′ .

It is immediate from from Lemma4.2 to see thats|s′ : T
d̃+d̃′,p̃+p̃′−(d̃+d̃′) and from

Lemma4.3thats|s′ : T∅,p̃+p̃′−(d̃+d̃′).

Corollary 4.8 Lets : T
d̃,p̃

ands′ : T
p̃,d̃

be two typed systems, thens|s′ is valid.

More relevant for the application of our technique is the following theorem. It charac-
terises the structure of a typed site with respect to the links and other typed components
occurring in it.

Theorem 4.9 For any sites, site addresses̃d, p̃ andx ∈ d̃, the typings : Td̃,p̃ holds iff

• y ∈ p̃ ands′ exist such thats ≡ link(x, y)|s′ ands′ : T
d̃−x,p̃+x , or

• z 6∈ p̃ ands′ exist such thats ≡ link(x, z)|s′ ands′ : T
d̃−x+z,p̃+x .

The theorem states that given a typings : Td̃,p̃ we know thats can be decomposed in
two forms:(i) the site has a link from a guaranteed pagex to a pagey in p̃, hence the rest of
the site does not need to guaranteex and is allowed to point tox, or (ii) the site has a link
from a guaranteed pagex to pagez not in p̃. By definition such page must necessarily be
part of the site. Hence, the rest of the site has a type requiring to guaranteez. The converse
implication follows from the type definition.

We observe that Theorem4.9establishes a logical equivalence between the type predi-
cate : Td̃,p̃ and the disjunction of spatial formulas with typed holes, namely:

∨

y∈p̃

link(x, y)| : T
d̃−x,p̃+x ∨

∨

z 6∈p̃

link(x, z)| : T
d̃−x+z,p̃+x+z

Figures6 and7 illustrate the two items of theorem4.9. A site is denoted by enclosing
it in a dotted box. Pages are replicated and connected with waved arrows and lines to
emphasise the interface of a site (its type). The type of the site is written at the top left
corner of the enclosing box. The remaining part of the site (i.e. s′) is represented as an
edge labelled with its name and type.

4.2 Decorated Variables

The second step towards our typedSTS is the decoration of process variables with typing
information, so to consider well-typed contexts only.
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T
d̃,p̃ • •p̃1

//o/ o/ o/ o/

...

�� ��

�� ��

s′:T
d̃−x,p̃+x

//

..

..

�� ��

�� ��link // • •p̃i=y//o/ o/ o/

...

• •p̃|p̃|//o/ o/ o/

• ... • ... •

•
d̃1

O�
O�
O�

... •
d̃i=x

O�
O�
O�

... •
d̃
|d̃|

O�
O�
O�

Figure 6. First item of theorem4.9.

T
d̃,p̃ • •p̃1

//o/ o/ o/

�� ��

�� ��

s′:T
d̃+z−x,p̃+x

//

..

��

...

•z • •p̃|p̃|//o/ o/ o/

�� ��

�� ��link

::

• ... • ... •

•
d̃1

O�
O�
O�

... •
d̃i=x

O�
O�
O�

... •
d̃
|d̃|

O�
O�
O�

Figure 7. Second item of theorem4.9.

A decorated variable takes the formX : T
d̃,p̃

. It represents a hole that can be filled only
with systemss of the corresponding type, i.e. such thats : T

d̃,p̃
.

Definition 4.10 [Typed Contexts] We say thatC[X : Td̃,p̃] has type Tẽ,q̃, written
C[X : T

d̃,p̃
] : Tẽ,q̃ iff for any s : T

d̃,p̃
thenC[s] : Tẽ,q̃. A contextC[X : T

d̃,p̃
] is called

valid if C[X : T
d̃,p̃

] : Tẽ,q̃ andq̃ ⊆ ẽ.

Lemma 4.11 For anyC[X : Td̃,p̃], there exist̃e and q̃ such thatC[X : Td̃,p̃] : Tẽ,q̃.

Note that anyC[X] takes the forms|X for somes, so that Lemma4.7can be exploited
to typeC[X : Td̃,p̃] by combining the characteristic type ofs and the typing information
attached toX. Moreover the type ofX can be restricted while preserving the type of its
context as stated by the following lemma.

Lemma 4.12 For anyz andy if C[X : Td̃,p̃] : Tẽ,q̃ then:

• C[X : T
d̃,p̃−y] : Tẽ,q̃, and

• C[X : T
d̃+z,p̃+z] : Tẽ,q̃.

Example 4.13 Figure8 depicts a contextC[X] ≡ link(x, z) | link(y, y) | X in untyped
form (left) and with a typingC[X : T{y,u},{x,v}] : T{x,y,u},{z,v} that constraintsX to define
pagesy andu and allowsX to point tox, v.
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•x
�� ��

�� ��link // •z

?

?
�� ��

�� ��X
##

//

?

�� ��

�� ��link

||
•y

T{x,y,u},{z,v}

•x
�� ��

�� ��link // •z •//o/

•u

�� ��

�� ��

X:T{y,u},{x,v}
$$

dd

•v •//o/

�� ��

�� ��link

||
•y

•

O�
O�
O�
O�
O�
O�
O�
O�
O�
O�
O�
O�
O�

•

O�
O�
O�
O�
O�
O�
O�
O�

•
O�

Figure 8. Untyped and typed contexts.

As far as the contextsR[X], K[X] andS[X] are concerned, we are interested in consid-
ering valid systems w.r.t. the names initially known by the crawlers, hence we can restrict
to R[X : Tỹ+x,∅], K[X : Tỹ+x,∅] andS[X : Tỹ+x,∅], which are all of typeTỹ+x,∅, i.e. valid.

4.3 Typed Universal Equivalence

The third step is to refine the universal weak bisimilarity≈u according to the type decora-
tion of the variables: we say thatC[X : Td̃,p̃] is universally weak bisimilar toD[X : Td̃,p̃],
writtenC[X : T

d̃,p̃
] ≈u D[X : T

d̃,p̃
], if for any s : T

d̃,p̃
we haveC[s] ≈ D[s].

Lemma 4.14 For any typeT
d̃,p̃

and any contextsC[X] andD[X] such thatC[X] ≈u

D[X] we haveC[X : T
d̃,p̃

] ≈u D[X : T
d̃,p̃

].

Note that the overall types ofC[X : Td̃,p̃] andD[X : Td̃,p̃] are not considered and might
be even different. From the above lemma, it follows thatR[X : Tỹ+x,∅] ≈u K[X : Tỹ+x,∅].
Moreover, from the notion of typed systems we can expect thatK[X : Tỹ+x,∅] ≈u

S[X : Tỹ+x,∅], but the proof ofK[X : Tỹ+x,∅] ≈u S[X : Tỹ+x,∅] requires universal closure
w.r.t. all systemss : Tỹ+x,∅.

4.4 Decorated Symbolic Transitions

The last and fourth step is to exploit symbolic equivalencesto conclude that
K[X : Tỹ+x,∅] ≈u S[X : Tỹ+x,∅], i.e. that all three crawlers are equivalent in valid net-
works that contain the initial knowledge of the crawlers. Unfortunately, we have already
seen thatK[X] 6≈l S[X]. However, our idea is to exploit the logical equivalence exposed
by Theorem4.9 to give S[X] the possibility of simulating the unmatched transition (see
Section3.2)

K[X]
Y
−→ayi

K[Y ]

We notice that all symbolic transitions carry as formula just some spatial information.
In general, given the kind of rewrite rules under consideration, such spatial labels can take
one of the following forms (wherec stands for the presence of a suitable crawler):

(a) C[X]
Y
−→α D[Y ] (b) C[X]

c | Y
−−−−→α D[Y ]

(c) C[X]
link(x,y) | Y
−−−−−−−−−→α D[Y ] (d) C[X]

c | link(x,y) | Y
−−−−−−−−−−−−→α D[Y ]
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K[X : Tỹ+x,∅]
link(x,x)|Y
−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y : Tỹ,x

K[X : Tỹ+x,∅]
link(x,yi)|Y
−−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, yi) | Y : Tỹ,x

K[X : Tỹ+x,∅]
link(x,z)|Y
−−−−−−−−→τ cautious(a, x, ỹ + z) | link(x, z) | Y : Tỹ+z,x

K[X : Tỹ+x,∅]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x− yi) | link(yi, z) | Y : Tỹ+x−yi,x

K[X : Tỹ+x,∅]
link(yi,yj)|Y
−−−−−−−−−−→τ cautious(a, yi, ỹ + x− yi) | link(yi, yj) | Y : Tỹ+x−yi,x

K[X : Tỹ+x,∅]
link(yi,z)|Y
−−−−−−−−−→τ cautious(a, yi, ỹ + x− yi) | link(yi, z) | Y : Tỹ+x−yi+z,x

K[X : Tỹ+x,∅]
Y
−→ax K[Y : Tỹ+x,∅]

K[X : Tỹ+x,∅]
Y
−→ayi

K[Y : Tỹ+x,∅]

Figure 9. Some examples of decorated symbolic transitions (z 6∈ ỹ + x).

For the forms (a) and (b) (observationsY and c | Y , respectively) we just keep the
decoration assigned in the source, resulting in the decorated transitions:

(a’) C[X : Td̃,p̃]
Y
−→α D[Y : Td̃,p̃] (b’) C[X : Td̃,p̃]

c | Y
−−−−→α D[Y : Td̃,p̃]

For the forms (c) and (d) (observationslink(x, y) | Y andc | link(x, y) | Y ) we exploit
Theorem4.9to derive a proper decoration forY . We show what happens forlink(x, y) | Y ,
but the other case is entirely analogous.

(c1) C[X : T
d̃,p̃

]
link(x,y) | Y
−−−−−−−−−→α D[Y : T

d̃−x,p̃+x] if y ∈ p̃

(c2) C[X : T
d̃,p̃

]
link(x,y) | Y
−−−−−−−−−→α D[Y : T

d̃−x+y,p̃+x] if y 6∈ p̃

The decorated symbolic transitions forK[X : Tỹ+x,∅] are in Fig.9, wherez 6∈ ỹ + x.
Note that it is not important to decorateY also in the labels, because they are matched
exactly, and given that the decoration ofX is known, that ofY follows unambiguously.

We define a new notion of bisimilarity, calleddecorated loose weak bisimilarity≈d.

Definition 4.15 [≈d.] Two contextsC[X : T
d̃,p̃

] andC ′[X : T
d̃,p̃

] aredecorated loose weak
bisimilar if there is a symmetric relation÷ s. t. wheneverC[X : T

d̃,p̃
] ÷ C ′[X : T

d̃,p̃
] we

have that for each transitionC[X : Td̃,p̃]
φ
−→α D[Y : Tẽ,q̃] the following holds:

(i) φ 6= Y and there exists a (weak) decorated symbolic transitionC ′[X : T
d̃,p̃

]
ψ

=⇒α̂

D′[Z : Tf̃ ,r̃] and a spatial formulaψ′ such thatφ = ψ;ψ′ andD[Y : Tẽ,q̃] ÷ D′[ψ′],

(ii) φ = Y (and hencẽd = ẽ, p̃ = q̃) and

i) eitherC ′[X : T
d̃,p̃

]
Y

=⇒α D′[Y : T
d̃,p̃

] andD[Y : T
d̃,p̃

] ÷ D′[Y : T
d̃,p̃

],

ii) or for anyx ∈ d̃, y ∈ p̃ andz 6∈ p̃ it holds that:

• C ′[X : T
d̃,p̃

]
link(x,y) | Y

=⇒ α D′[Y : T
d̃−x,p̃+x] with D[link(x, y) | Y : T

d̃−x,p̃] ÷
D′[Y : T

d̃−x,p̃+x], and

• C ′[X : T
d̃,p̃

]
link(x,z) | Y

=⇒ α D′′[Y : T
d̃−x+z,p̃+x] with D[link(x, z) | Y :

T
d̃−x+z,p̃+z] ÷ D′′[Y : T

d̃−x+z,p̃+x]

whereα̂ stands for labelα if α 6= τ and no label otherwise.
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Note that we give the possibility of simulating the formulaY when the hole has type
T
d̃,p̃

by considering all the possible cases exposed by Theorem4.9. That is, not only a step
could be simulated by one with a more general label as it was possible also in≈l, but here
a Y labelled step can be simulated by the collection of more specific steps performed by
the instances compatible with the type ofY .

Let us now return to our goal of showing the equivalence of crawlers in valid networks.
This result is obtained by showing thatS[X : Tỹ+x,∅] ≈d K[X : Tỹ+x,∅]. Indeed, we now
can show that the symbolic move

K[X : Tỹ+x,∅]
Y
−→ayi

K[Y : Tỹ+x,∅]

can be simulated by the symbolic moves

S[X : Tỹ+x,∅]
link(yi,z)|Y

=⇒ ayi
scrupulous(a, yi, ỹ + x− yi) | link(yi, z) | Y : Tỹ+x−yi,yi

for z ∈ ỹ + x, and

S[X : Tỹ+x,ỹ+x]
link(yi,z)|Y

=⇒ ayi
scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi+z,yi
for z 6∈ ỹ + x.

In fact, we have also:
K[link(yi, z) | Y : Tỹ+x−yi,yi

] ≈d scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi,yi
,

and
K[link(yi, z) | Y : Tỹ+x−yi+z,yi

] ≈d scrupulous(a, yi, ỹ + x − yi) | link(yi, z) | Y :

Tỹ+x−yi+z,yi
for z 6∈ ỹ + x.

In conclusion all three crawlers are equivalent in valid networks according to the deco-
rated bisimilarity introduced in this paper and this is a nice result in the illustrating scenario
because we know that in a valid network one can freely chose the desired policy with the
guarantee of obtaining the same (observable) behaviour.

4.5 Scenario Implementation

For the convenience of the reader we have implemented our scenario and made it avail-
able athttp://www.di.unipi.it/˜lafuente/ice08 . The web page proposes
a simple game where players should find out the crawling policy according to observations
only. While deduction is possible in missing sites, in validsites (as shown in this paper) it
is all a matter of guessing and having luck on one’s side.

We remark that the site typesT
d̃,p̃

we use are related to typical inclusion and exclusion

protocols. For instance, the sitemap index can be seen asd̃, i.e. the list of pages whose
existence a site guarantees, while the robots.txt file wouldbe pages iñp − d̃ that reside on
the site, i.e. the list of pages that a site asks not to visit.

In our scenario the motivation under the site asking crawlers not to visit certain pages
is that they are not guaranteed to exist and not because they contain information the site
would prefer not to be crawled, which is the typical intention of robots.txt.

Thus, in our implementation we call this file mightmiss.txt.Thepolite crawler offered
there behaves like the scrupulous one, but exploits the information in that file to perform
less page existence checks, thus lowering the server’s load.

We believe that one could apply our technique to establish new crawling protocols or
enrich existing ones. For instance, web sites can exhibit their type and, based on it and
desired behaviour, crawlers can decide the most convenientpolicy.

18
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5 Final remarks

We have performed a first step towards the treatment of names and types inSTS, our ap-
proach to the specification and reasoning of open systems. Our work has been illustrated
with a simple nominal calculus, inspired by a web crawling scenario. We have shown how
the usual equivalence notion ofSTS is too fine grained, in the sense that it does distinguish
between web crawlers one expects to be equivalent in some networks. We have thus de-
fined a suitable (name-decorated) type system, that allows us, e.g. to constrain an unknown
network to be valid, i.e. to not contain any broken link. Based on such types, a new variant
of bisimilarity have been defined. According to this notion,all three considered crawlers
are equivalent for valid networks.

The presented work should be understood as a first step towards the quite ambitious goal
of having more general equivalences, e.g. based on types defined by structural induction.

As future work we plan to generalise our technique to prominent nominal calculi (e.g.
the π-calculus) and to deepen in the relationship with graph transformation approaches
dealing with types and unspecified graph parts (e.g. [BLMT08]). More precisely, we would
like to focus on service oriented calculi (e.g. [BBNL08]) where the notion of hole and type
naturally resemble services and their specifications.
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