

Dynamic Graph Transformation Systems?

Roberto Bruni1 and Herńan Melgratti2

1 Computer Science Department, University of Pisa, Italy.
2 IMT Lucca Institute for Advanced Studies, Italia.

bruni@di.unipi.it, hernan.melgratti@imtlucca.it

Abstract. We introduce an extension of Graph Grammars (GGs), called Dy-
namic Graph Grammars (DynGGs), where the right-hand side of a production
can spawn fresh parts of the type graph and fresh productions operating on it.
The features of DynGGs make them suitable for the straightforward modeling of
reflexive mobile systems like dynamic nets and theJoin calculus. Our main result
shows that each DynGG can be modeled as a (finite) GG, so that the dynamically
generated structure can be typed statically, still preserving exactly all derivations.

1 Introduction

Graphs can model complex systems at a level of abstraction that is both intuitive and for-
mal. Graph Grammars (GGs) originated in the late 60’s as a suitable extension of string
grammars: string concatenation is replaced by graph gluing and string rewriting by sub-
graph replacing. As a model of concurrency, there is also a close analogy between GGs
and Petri nets (PNs), as a Petri net can be straightforwardly modeled as a particular
GG over discrete graphs. Solid theoretical basis are now available for many different
kinds of graph transformation, ranging from the essential node replacement systems [8]
and edge replacement systems [6] to the more sophisticated synchronized hyperedge
replacement systems [3,11,10] and algebraic approaches to graph rewriting [4,7].

To the best of our knowledge, one extension that has not been deeply investigated
in the literature is the use of reflexive productions that can release new rewrite rules.
Reflexive systems arise naturally in many areas where graph transformation techniques
have been applied with success, like biological and chemical systems and distributed
and mobile computing. Moreover, the reflexive extension of many different kinds of
rewrite systems have been studied in the literature. In particular, dynamic nets are a
mobile extension of PNs, expressive enough to model mobile calculi likeπ-calculus
andJoin calculus [1,2]. Dynamic nets are indeed strictly more expressive than PNs.

Exploiting the analogy between PNs and GGs, we propose a reflexive extension of
GGs, calledDynamic Graph Grammars(DynGGs), whose generality is witnessed by
encodings of dynamic nets andJoin calculus. However, when posing the question:

“Are Dynamic Graph Grammars more expressive than ordinary ones?”

our main result provides a negative answer: though DynGGs can offer a more conve-
nient abstraction, computationally speaking they are not more expressive than GGs.

? Research supported by the EU FET-GC2 IST-2004-16004 Integrated Project SENSORIA

2 R. Bruni and H. Melgratti

From GGs to DynGGs.To complete this informal introduction, we sketch the design
choices of DynGGs, introduce some terminology and give a minimal example.

Let T denote a type graph andGT a graph typed overT. OrdinaryT-typed DPO

productions are spans of the formp : (LT
l← KT

r→ RT) such thatl andr preserve the
typing of items inKT . (We assume that the reader has some familiarity with GGs, and
hence postpone exact formalization to later sections.)

A first simple extension is to consider productions likep : (LT
l← KT

r→RT ′) where
T ⊆ T ′, so that fresh types can be generated and used for typingRT ′ . This way the fresh
types introduced byp cannot be exploited in the (left-hand side of) productions. The
idea is then to spawn also new productions able to operate on items typed inT ′ \T.

A DynGG is thus a triple(T,GT ,P) whereT is a type graph,GT a graph typed over

T andP a set ofT-typed dynamic productions that take the formp : (LT
l← KT

r→ GT ′)
whereGT ′ is again a (T ′-typed) DynGG andr relatesKT to the initial graph ofGT ′ .
For example, whenP = /0, then the grammar is roughly aT-typed graphGT , which
is statically fixed and cannot change. Such grammars are calledstatic. A production
p is static if its right-hand sideGT ′ is a static grammar andT ′ = T. If all productions
are static, then the grammar is calledshallowand is essentially an ordinary GGs: the
application of any production can neither change the type graph nor spawn new rules.

Figures 1 and 2 introduce a small ad hoc example whose purpose is to expose a
peculiarity of dynamic rewrites. LetTa be the singleton type graph with just one node
a. Let Tg⊃ Ta consisting of nodesa andb and two edgesf : a→ b, andg : b→ b.

Take theTa-typed dynamic grammarGa with the dynamic productionp in Figure 1.
For simplicity, we take the inclusions as legs of the span and draw the typing (dotted
lines) only once for each item. The left-hand side (i) ofp consists of aTa-typed graph
with just one noden1, which is preserved by the context (ii), and the right-hand side
(iii) spawns a shallowTg-typed grammarGp whose initial graph has, besiden1, one
additional noden2 and one arch. The grammarGp itself has just one static production
q∈ Pp, illustrated in Figure 2: the left-hand side (i) is a graph with three nodesm0 and
m1,m2, which are all preserved (ii), and two arcsh1,h2, which are deleted, and the right-
hand side (iii) spawns the staticTg-typed grammarGq (i.e., a graph) with one additional
arc l from m1 to m2 and typeg.

Assume the initial graph ofGa is a discrete graphG0 with one nodek typed overa.
The application of the productionp (with the obvious matching fromn1 to k) spawns a
fresh instanceG1

p of Gp: the type graph becomesTg1 and the underlying graph becomes
G1 ⊃ G0 with nodesk (typeda) andk1 (typedb1) connected by an arch1 (typed f1).
Moreover, a productionq1 is now available besidep. A second application ofp spawns
another fresh instanceG2

p of Gp: the type graph becomesTg1 ∪Tg2 and the underlying
graph becomesG2⊃G1 with a new nodek2 and an arch2 : k→ k2. Again, a production
q2 is now available. Similarly,p can be applied again and again (see Figure 6). However,
no suitable matching can ever be found for the application ofq1, q2, etc. In fact, it is
not possible to find two arcs with the same type, sayfi , and the identification condition
prevents a non-injective matching of the two arcs in the left-hand side ofqi .

Now compareGa with its static, flattenedTg-typed version, where only two produc-
tions p andq are available at any time: after two derivation steps withp the underlying
graph has two nodes typed overb and two arcs typed overf , and thusq can be applied!

Dynamic Graph Transformation Systems 3

•

))

p :
n1 ←↩ •

n1
↪→ • h //n1 •

��

n2

Pp = {q}
•

f //
vv

a
Ta

Tg • gddb

Fig. 1.A dynamic productionp.

•

''

m1 •m1 •m1

•

''

h1
88rrrrrr

h2

//q : m0 •

**

m2 ←↩ •m0 •m2 ↪→ •m0 •
l
OO

m2

Pq = /0
•

f //
&& **

a

Tg • gdd
ww

b

Fig. 2.A static productionq.

The difference lies in theseparation principlethat DynGGs imposes on items pro-
duced as freshly-typed instances by different applications of the same production. We
shall reprise this example to show that incautious encodings of DynGGs intro GGs
would introduce unwanted derivations.

Synopsis.§ 2 accounts for some basics of typed GGs [5]. The definition of DynGGs
is original to this contribution and described in § 3, where DynGGs are shown to be a
conservative extension of GGs. § 4 reports some sample encodings of other reflexive
frameworks. The main result of the paper is in § 5, where it is shown that GGs have the
same expressive power as DynGGs. Concluding remarks and future work are in § 6.

2 Typed Graph Grammars

A (directed) graphis a tupleG = 〈NG,EG,sG, tG〉, whereNG is a set ofnodes, EG is
a set ofedges(or arcs), andsG, tG : EG→ NG are thesourceandtarget functions. We
shall omit subscripts when obvious from the context. Agraph morphism f: G→G′ is
a couplef = 〈 fN : N→ N′, fE : E→ E′〉 such that:s′ ◦ fE = fN ◦s andt ′ ◦ fE = fN ◦ t.

Definition 2.1 (Typed Graph). Given agraph of typesT, a T-typed graphis a pair
〈|G|,τG〉, where|G| is theunderlyinggraph andτG : |G| → T is a total morphism.

In GGs the graph|G| defines the configuration of the system and its items (nodes
and edges) model resources, whileτG defines thetyping of the resources. Hence, the
underlying graph|G| evolves dynamically, while the type graphT is statically fixed and
cannot change at run-time. For example, when encoding Petri nets in GGs the places
form the discrete graph of types, while markings form the configurations of the system.

4 R. Bruni and H. Melgratti

Lp :

m

��
(1)

K
loo r //

k

��
(2)

R

h

��
G D

b
oo

d
// H

(a) A DPO direct derivation.

T

σ
��

� � ι // T ′′

ρσ,T′′

��
T ′

� �

ισ,T′′
// Tσ,T ′′

(b) Standard type graph construction.

Fig. 3.DPO and type graph construction.

A morphismbetweenT-typed graphsf : G1→G2 is a graph morphismsf : |G1| →
|G2| such thatτG1 = τG2 ◦ f . The category ofT-typed graphs and their morphisms is
denoted byT-Graph. Since we work only with typed notions, we will usually omit
the qualification “typed”, and we will not indicate explicitly the typing morphisms. The
following notion of retyping will be used extensively in the context of DynGGs.

Definition 2.2 (Graph Retyping). Given a T-typed graph G= 〈|G|,τG〉 and a mor-
phismσ : T→ T ′ we denote byσ ·G the T′-typed graphσ ·G = 〈|G|,σ◦ τG〉.

The key notion togluegraphs together is that of a categorical pushout. Roughly, a
pushout pastes two graphs by injecting them in a larger graph that is (isomorphic to)
their disjoint union modulo the collapsing of some common part. We recall that aspan
is a pair(b,c) of morphismsb : A→ B andc : A→C. A pushoutof the span(b,c) is
then an objectD together with two (co-final) morphismsf : B→D andg : C→D such
that: (i) f ◦b = g◦ c and (ii) for any other choice off ′ : B→ D′ andg′ : C→ D′ s.t.
f ′ ◦b = g′ ◦c there is a uniqued : D→ D′ s.t. f ′ = d◦ f andg′ = d◦g. If the pushout
is defined, thenc andg is called thepushout complementof 〈b, f 〉.

A (T -typed graph) DPO production p: (L l← K
r→ R) is a span of injective graph

morphismsl : K → L and r : K → R. The T-typed graphsL, K, andR are called the
left-hand side, theinterface, and theright-hand sideof the production, respectively.

Definition 2.3 (DPO graph grammar).A (T-typed) DPO graph grammarG is a tuple
〈T,Gin,P〉, where Gin is theinitial (T-typed) graph, P is a set of DPOproductions.

Given a graphG, a productionp : (L l← K
r→ R), and amatch m: L→ G, a direct

derivation δ from G to H using p (based on m)exists, writtenδ : G⇒p H, if and
only if the diagram in Figure 3(a) can be constructed, where both squares are pushouts
in T-Graph: (1) the rewriting step removes from the graphG the itemsm(L− l(K)),
yielding the graphD (with k,b as a pushout complement of〈m, l〉); (2) then, fresh copies
of the items inR− r(K) are added toD yieldingH (as a pushout of(k, r)). The interface
K specifies both what is preserved and how fresh items must be glued to the existing
part. The existence of the pushout complement of〈m, l〉 is subject to the satisfaction of
the followinggluing conditions[4]:

– identification condition:∀x,y∈ L if x 6= y andm(x) = m(y) thenx,y∈ l(K);
– dangling condition:no arc inG\m(L) should be incident to a node inm(L\ l(K)).

Dynamic Graph Transformation Systems 5

The identification condition is satisfied byvalid matches: a match is not valid if it
requires a single item to be consumed twice, or to be both consumed and preserved.

A derivationis a sequenceγ = {δi : Gi−1⇒pi−1 Gi}i∈{1,...,n} of direct derivations.

3 Dynamic Graph Grammars

As aforementioned, aT-typed dynamic production takes the form:p : (LT
l←KT

r→GT ′)
whereGT ′ is a suitable (T ′-typed) dynamic graph grammar. A dynamic graph grammar
can contain any number of such productions. Formally:

Definition 3.1 (Dynamic Graph Grammars). The domain of dynamic graph gram-
mars can be expressed as the least setDGG satisfying the equation:

D = {(T,Gin,P) | Gin ∈GraphT ∧

∀p : (LT
l← KT

r→ GTp) ∈ P.(LT ,KT ∈GraphT ∧ T ⊂ Tp ∧
GTp = (Tp,GTp,Pp) ∈D) }

whereGraphT is the set of T -typed graphs and r: ι ·KT →GTp is a morphism between
Tp-typed graphs, whereι : T ↪→ Tp denotes the obvious sub-graph injection.

Any elementG = (T,Gin,P)∈ DGG is called aDynamic Graph Grammar. It is static

if P = /0. It is shallowif T = Tp andGTp is static for all p: (LT
l← KT

r→ GTp) ∈ P.

Note that all Dynamic Graph Grammars are well-founded: since we takeDGG as the
least set satisfying the recursive domain equation above, the type graphs syntactically
appearing inG = (T,Gin,P) ∈ DGG form a finite treeT(G) rooted inT, with parent re-
lation given by immediate subsetting (i.e.,Ti is parent ofTj iff Ti ⊂ Tj and noTk appears
in G such thatTi ⊂ Tk ⊂ Tj) and where leaves are associated with static grammars. We
remark that each type graphTp ⊃ T extendsT with local declarationsTp \T, whose
scope is bounded by the specific productionp. For simplicity, but without loss of gen-
erality, we assume that all additional items introduced by different type graphs inside
G are named differently (i.e., each additional item occurs only in one type graph). We
let T(G) =

S
Ti∈T(G) Ti denote theoverall flat type graphof G, and letιTi : Ti ↪→ T(G)

denote the obvious sub-graph inclusion. Note that, by the structuring ofT(G), the type
graphT(G) is just the union of all the leaves ofT(G).

Similarly, all nested productions inG form the treeP(G) rooted inP with par-
ent relation given by immediate inclusion (i.e., the set of productionsPi is the par-

ent of Pp iff p : (LT
l← KT

r→ (Tp,GTp,Pp)) ∈ Pi). Given aT-typed dynamic produc-

tion p : (LT
l← KT

r→ GTp) with GTp = (Tp,GTp,Pp) we say that the ordinaryT(G)-

typed productionflat(p) : (ιT ·LT
l← ιT ·KT

r→ ιTp ·GTp) is theflattening of p. We let
P(G) =

S
Pi∈P(G){flat(p) | p ∈ Pi} denote theoverall set of flat productionsof G. The

T(G)-typed shallow grammarF(G) = (T(G), ιT ·Gin,P(G)) is called theflattening ofG.
To define the dynamics of DynGGs we need a more advanced notion of retyping,

which can be used to generate fresh items in the type graph. In the following, when con-
sidering type graph constructions, we assume that a standard choice of pushout objects

6 R. Bruni and H. Melgratti

LT

m

��

""

ιT,Tp · p : KT
loo

}}

k

��

oo ≡ //______ K′

�� k′

��

r ′ // G′p

{{ h

��

G′p = ρT,Tp ·GTp = (TT,Tp,G
′
p,P
′)

T

idT ��

� � ιp // Tp

ρT,Tp ��
T

� �

ιT,Tp

// TT,Tp

Gin

<<

G = (T,Gin,P)

D
b

oo

bb

oo
≡

//_______ D′

dd

d
// H

ii

G′ = (TT,Tp,H,P′∪ ιT,Tp ·P)

Fig. 4.A direct dynamic derivation.

satisfying the following requirements is available: LetT ⊂ T ′′ andσ : T→ T ′ injective,
then we denote byTσ,T ′′ the pushout object of the inclusionι : T ↪→ T ′′ andσ such that
T ′ embeds inTσ,T ′′ via set-theoretical inclusionισ,T ′′ , while T ′′ embeds via an injection
ρσ,T ′′ (see Figure 3(b)) that renames items inT ′′ \T with fresh names. WhenT ⊆ T ′

andσ is the inclusion we replace the subscripting(−)σ,T ′′ with (−)T ′,T ′′ .

Definition 3.2 (Fresh Graph Retyping).Let T⊂ T ′′. Given a T′′-typed graph G=
〈|G|,τG〉 and an injectionσ : T→ T ′ we letσ ·G = 〈|G|,ρσ,T ′′ ◦ τG〉.

Definition 3.3 (Dynamic Retyping).Given a T-typed Dynamic Graph GrammarG =
(T,Gin,P) and an injective morphismσ : T→ T ′ we denote byσ ·G the T′-typed gram-
mar defined recursively by lettingσ ·G = (T ′,σ ·Gin,σ ·P), with σ ·P = {σ · p | p∈ P}
whereσ · p : (σ ·LT

l← σ ·KT
r→ ρσ,Tp ·GTp) for any p: (LT

l← KT
r→ GTp).

Note thatρσ,Tp ·GTp is aTσ,Tp-typed grammar andσ · p is aT ′-typed production.
To define the behaviour of DynGGs, note that the type graph and the available pro-

ductions can change over time: as the computation progresses new items and produc-
tions can be spawn. Hence, as it is typical of reflexive systems, the actual configuration
must comprise data (i.e., the underlying graph), their typing and the control (i.e., avail-
able productions). This means that configurations are themselves DynGGs.

In DynGGs, productions are nested inside (the right-hand sides of) other produc-
tions, but only top-level productions can be applied, by finding a matching of their
left-hand sides into the initial graph. When such a productionp is applied, then fresh
instances of the productionsPp, nested one level belowp, become available at the
top-level, and can be unwound themselves in successive steps. Given a DynGGG =
(T,Gin,P), a productionp : (LT

l← KT
r→ GTp) ∈ P with GTp = (Tp,GTp,Pp), and a

matchingm : LT →Gin, we proceed as follows (see Figure 4):

– We check thatmandl : KT → LT satisfy the gluing conditions.
– We build the pushout complement of〈m, l〉, obtaining aT-typed graphD with

morphismsk : KT → D andb : D→Gin.

Dynamic Graph Transformation Systems 7

•

��

G0
k ⇒n

p •

��

h1
''

h2

44

hn

<<
k •

��

k1 •

��

...
k2 •

��

kn
Gn

•
f1

66

f2

&&
fn

""
		

�� ||

a
Ta

Sn
i=1Tgi • g1dd

b1

• g2dd ...

b2

• gndd
bn

Fig. 5.A derivation wherep is appliedn times.

– We build the standard type graphTT,Tp associated withσ = idT : T → T andιp :
T ↪→ Tp. Note thatιT,Tp = ρT,Tp ◦ ιp. Fresh items of the underlying graph produced
by the application ofp must be typed overTT,Tp.

– We build the retyped graphsD′= ιT,Tp ·D andK′= ιT,Tp ·KT and take the morphism
k′ : K′→ D′ induced byk.

– We build the retyped DynGGG′p = ρT,Tp ·GTp = (TT,Tp,G
′
p,P
′) with G′p = ρT,Tp ·GTp

andP′ = ρT,Tp ·Pp and take the morphismr ′ : K′→G′p induced byr : ιp ·KT→GTp.
– We take the pushout ofk′ andr ′, resulting in aTT,Tp-typed graphH with morphisms

d : D′→ H andh : G′p→ H.
– Finally, we build the DynGGG′ = (TT,Tp,H,P′∪ ιT,Tp ·P).

When all the above is applicable, we say that there is adirect dynamic derivation
α from G to G′ usingp (based onm) and writeα : G⇒p G′. A dynamic derivationis a
sequence of direct dynamic derivations starting from the initial graph

Example 3.1.Let us consider theTa-typed grammarGa presented in the Introduction
(see productionsp andq in Figures 1 and 2). The configuration aftern applications ofp
is shown in Figure 5: the type graph has evolved fromTa to

Sn
i=1Tgi (with Ta =

Tn
i=1Tgi)

and there aren+ 1 available productionsp′,q1, ...,qn at the top level that are suitable
retyped instances ofp andq. However, it is not possible to find a valid matching for any
qi , while there is (always) exactly one valid matching for the application ofp.

3.1 About Shallow Graph Grammars

In the case of shallow grammars, the definition of derivation boils down to classic DPO
derivation. This can be easily proved by noting that the fresh retyping leads toTT,Tp = T
(i.e., the typing is vacuous) and thatP′ = /0 (by definition of shallow grammars).

Proposition 3.1. DynGGs are a conservative extension of GGs.

The proof takes anyT-typed graph grammarG = (T,Gin,P) and constructs the cor-
respondingT-typed shallow graph grammarSh(G). By what said above, it is then im-
mediate to prove thatδ : G⇒p G′ iff δ : Sh(T,G,P)⇒p Sh(T,G′,P).

8 R. Bruni and H. Melgratti

•

��

G0
k ⇒n

p •

��

h1
''

h2

44

hn

<<
k •

��

k1 •

��

...
k2 •

zz

kn
Gn

•
f

//

 �� zz
a

Ta
Tg • gddb

Fig. 6.A flattened derivation wherep is appliedn times.

Since the flatteningF(G) = (T(G), ιT ·Gin,P(G)) of a DynGGG = (T,Gin,P) is also
shallow, an obvious question is “how are the behaviours ofF(G) andG related?”

Proposition 3.2. Let G0 be a DynGG, then{δi : Gi−1 ⇒pi Gi}i∈{1,..,n} implies {δ′i :
G′i−1⇒flat(p′i)

G′i}i∈{1,..,n}. whereG′0 = F(G0) and each pi is instance of p′i ∈ P(G).

The proof shows that there is a standard mapping from the dynamically evolving
type graph of anyG to the static representativeT(G) and also a mapping from pro-
ductions dynamically originated byG to the productions ofF(G). In particular, any
two different freshly-generated instancesq′,q′′ of the same productionq are mapped
to flat(q). We remind that, contrary toG, all productions inF(G) are always available
and cannot change over time. Thus, any valid match for the dynamic graph remains
valid in its flattening (via the retyping) and any direct derivation using the instancepi

of p′i ∈ P(G) can be simulated usingflat(p′i) ∈ P(G).
The counterexample below shows thatF(G) has possibly more derivations thanG.

Example 3.2.Let us take the flatteningF(G) of theTa-typed DynGGG in Example 3.1.
The configuration aftern applications ofp is in Figure 6. Note that the type graph
remainsTg = T(G) and that there are only two available productionsp,q at any time.
Compare the situation with that in Figure 5: in the flattened version it is now possible
to applyq to any pair of (distinct) arcshi ,h j !

4 Case studies: Dynamic nets and Join calculus

Dynamic nets [1,2] are an extension of Petri nets where firings can add fresh places and
transitions. In this sense, any DynGGG = 〈T,Gin,P〉 whereT(G) is a discrete graph
can be seen as a dynamic net. Nevertheless, not all dynamic nets can be represented
by DynGGs over discrete type graphs because tokens may be coloured with the names
of places in the net, and transitions may use such colours to designate places where to
spawn new tokens. Since dynamic nets are in one-to-one correspondence with processes
of theJoin calculus [2], we present the encoding of the latter. LetN be an infinite set of
names ranged byu,v,x,y,z, The syntax ofJoin is given by the grammar

P ::= 0 | x〈y〉 | def D in P | P|Q D ::= J.P | D∧D J ::= x〈y〉 | J|J

Dynamic Graph Transformation Systems 9

The occurrences ofx andu in x〈u〉 are free. Differently, x andy occur bound inP =
def x〈u〉|y〈v〉 . P1 in P2, while u andv occur bound inD = x〈u〉|y〈v〉 . P1. The sets of
free and bound names ofP are written respectivelyf n(P) andbn(P). Moreover,x and
y are the defined names ofD (writtendn(D)).

The semantics of theJoin calculus relies on thereflexive chemical abstract machine
model [9]. In this model a solution is roughly a multiset of active definitionsJ.P and
messagesx〈u〉 (separated by comma). Moves are distinguished betweenstructural�,
which heat or cool processes, and reductions→, which are the basic computational
steps. The multiset rewriting rules forJoin are as follows:

0 � P |Q � P,Q D ∧ E � D,E
def D in P � Dσdn(D),Pσdn(D) (range(σdn(D)) globally fresh)

J.P,Jσ → J.P,Pσ

Structural moves allow for the rearrangement of terms inside a solution. Note that
the term denoting a process with local definitions can be represented by two terms (one
for the definitions and other for the process) only when the locally defined ports are
renamed by fresh names (this rule stands for the dynamic generation of new names). A
reduction can take place when the solution contains a ruleJ. P and an instanceJσ of
theJoin patternJ: when such a match is found,Jσ is replaced byPσ. We writeP 7→ P′

for P �∗ Q→Q′ �∗ P′.

Join processes as DynGGs.For simplicity we assume definitions not to share names.
Any processP is encoded as a DynGGGP = 〈TP,Gin,Q〉. Generally speaking, a channel
x will be encoded as noden but the fact that the channel is namedx is denoted by an arc
x : n→ n. A messagex〈y〉 is represented with the arcm: n1→ n2, wheren1 corresponds
to x andn2 to y. Any firing rule J.P will be encoded as a production. More formally,
the initial type graphTP is shown in Figure 7(a), wherefn(P)∪bn(P) = {x1, . . . ,xn}. TP

has a unique noden standing for channels, one arcm for denoting messages, and one
arcxi for any free or bound name ofP. We call thecontextof P theTP-typed graphCP

with one nodenxi and one arcxi : nxi → nxi for eachxi ∈ fn(P)∪bn(P). Then, the initial
graphGin and the set of productionsQ are inductively defined as follows:

– P = 0. Gin = CP is the empty graph andQ = /0.
– P= x〈y〉. If x 6= y, thenGin =CP∪{m : nx→ ny} is the graph shown in Figure 7(b),

with the typing morphism mapping both nodes ton and being the identity on arcs.
Otherwise,Gin = CP∪{m : nx→ nx} is as in Figure 7(c). In both casesQ = /0

– P = def J1 . P1∧ . . .∧ Jn . Pn in P′. Let GP′ = 〈TP′ ,G
′
in,Q

′〉 be the encoding ofP′,
thenGP = 〈TP,CP∪G′in,Q

′ ∪
S

1≤i≤n{pi}〉, whereTP ⊇ TP′ and pi encodesJi . Pi .
AssumingJi = x1〈u1〉| . . . |xk〈uk〉, thenpi is shown in Figure 7(d), whereG′Pi

is the
extension ofGPi = 〈Ti ,Gini ,Qi〉 over the type graphTi ∪TP and whose initial graph
is the union ofGini with the items preserved by the production. The self-loop arcs
naming the nodesui are not present inpi because the identities of formal parameters
are not known a priori and they will be provided by valid matchings. Moreover, the
left-hand-side and the interface contain a nodenyh and an arcyh for any free name
yh of Pi not in{x1, . . . ,xk,u1, . . . ,uk}. In this way the context of the initial graph of
GPi is bound to the names of the left-hand-side of the production.

10 R. Bruni and H. Melgratti

•

m

��

xn

ZZ

x1

MM n

. . .

(a) Initial Type Graph.

•x ::
nx

•

y

DDm
oo

ny

(b) Encoding ofx〈y〉.

•

m

DD

x

��
n

(c) Encoding ofx〈x〉.

•
m1��

u1
. . . •

mk��

uk
• yhdd

nyh

←↩

•
u1

. . . •
uk

• yhdd
nyh

↪→ G′Pi• x1dd
nx1

• xkdd
nxk

• x1dd
nx1

• xkdd
nxk

(d) Encoding ofx1〈u1〉| . . . |xk〈uk〉.Pi .

Fig. 7.Join processes as Dynamic Graph Grammars.

– P = P1|P2. Let GP1 = 〈T1,Gin1,Q1〉 andGP2 = 〈T2,Gin2,Q2〉 be the encoding ofP1

andP2, then the initial graph is the pushout object of the spanCP∪Gin1 ←↩ CP ↪→
CP∪Gin2, andQ is the union ofQ1 andQ2 (upon production retyping overTP).

Example 4.1.Let P = def x〈u〉. (def y〈v〉.v〈y〉 in y〈u〉|x〈y〉) in x〈z〉. The correspond-
ing grammar isGP = 〈TP,Gin,{p}〉, whereTP andGin are shown in Figure 8(a). The
unique top-level productionp is in Figure 8(b) (for space reasons we omit the represen-
tation of the typing). The right-hand-side ofp is typed over the graphT ′ that adds two
fresh arc typesy : n→ n andu : n→ n to TP. Productionp describes the consumption of
a message sent to the channelx regardless of the name contained by the message (note
that the particular name of the portnu is not fixed by the production). When fired,p
generates two fresh typesy′ : n→ n andu′ : n→ n and modifies the underlying graph
by removingm1 and by adding (i) a new nodeny′ , (ii) a new arc of the fresh typey′,
(iii) a new arc of the fresh typeu′ that works as an alias for the actual name of the
actual parameternu, and (iv) two new messagesm2 andm3. Moreover,p spawns a new
productionq (Figure 8(c)), which handles the messages sent to the fresh porty′.

The encoding ofJoin processes establishes a tight correspondence between deriva-
tions in the two frameworks. The following results hold up to aliasing of names (i.e., by
removing aliasing from grammars).

Proposition 4.1. For anyJoin process P we have:

– If P 7→ P′ using Ji .Pi , then∃Q s.t.GP⇒pi GQ and Q�∗ P′;
– If GP⇒pi G′, then∃P′ s.t. P7→ P′ using Ji .Pi andG′ = GP′ .

5 Encoding Dynamic Graph Grammars as Graph Grammars

In this section we show that DynGGs can be encoded back in GGs. The encoding of a
Dynamic Graph GrammarG relies on the definition of a unique type graph expressive

Dynamic Graph Transformation Systems 11

•x ::

**

nx
•

m
oo zdd

tt

nz

•

m

��

z

ZZ

x

MM

��

''
uu

n

(a) TP andGin

p : •
m1 ��

nu

←↩

•
nu

↪→
•

m2

$$HH
HHH

Hu ::
nu

•x ::
nx

•x ::
nx

•x ::
nx

• yddm3

oo
ny

Pp = {q}
(b) Productionp

q : •
m1 ��

nv

←↩

•
nv

↪→
•v ::
nv

•y ::
ny

•y ::
ny

•
m2

OO

y ::
ny Pq = /0

(c) Productionq

Fig. 8.A Join process as a DynGG.

enough for distinguishing all the types generated dynamically byG. As a first step, we
show how to describe a chain of typesT ordered by inclusionsT1 ⊂ T2 ⊂ . . .⊂ Tn with
a unique type graph{[Tn]}T, called therefined type graph. Informally, any item (i.e.,
node or arc) ofTn is mapped to a node in{[Tn]}T. Every graphTi in the chainT is also
represented in{[Tn]}T by a nodenTi . Moreover, any nodew corresponding to an itemk
of Tn has an arctw to the nodenTi if Ti is the minimal type inT that includesk. We call
Ti thetype of kin T. Formally, for anyk∈ Tn, the type ofk is T(k) = Ti if k∈ Ti\Ti−1.

Definition 5.1 (Refined type graph).Given a type graph T and a chain of typesT =
T1⊂ . . .⊂ Tn, with Tn = T, therefined type graphis {[T]}T = 〈NR,ER,sR, tR〉, where:

– NR = NT ∪ET ∪{nTi |Ti ∈ T} wherenTi are fresh names, i.e., the nodes of{[T]}T
are the nodes and arcs of T plus one extra node for any type inT;

– ER = {e0,e1|e∈ ET}∪{tw|w∈ NT ∪ET}∪{si,i+1|0 < 1 < n−1} where all edge
names are fresh. Source and target functions are defined s.t. the following holds:
• e0 : sT(e)→ e and e1 : e→ tT(e), i.e., e0 connects the node e∈NR to its original

source in T while e1 connects e to its target;
• tw : w→ nT(w), i.e.,tw connects w to the node representing its type;
• si,i+1 : nTi → nTi+1 denotes the inclusion of types Ti ⊂ Ti+1.

Example 5.1.Consider the type graphTg depicted in the bottom part of the Figure 9(a).
The refined type graph for the chainTa = {a} ⊂ Tg = Ta∪{ f ,b,g} is shown at the bot-
tom of Figure 9(b). The original arcf (resp.g) of Tg is represented by the homonymous
node f (resp.g) and the pair of fresh arcsf0 and f1 (resp.g0 andg1). The typesTa and
Tg are represented by the fresh nodesnTa andnTg, while the inclusion relationTa ⊂ Tg

is denoted by the arcs1,2. Finally, for any itemw, tw connectsw to its type node.

Definition 5.2 (RefinedT-Typed Graph). Given a T-typed graph G= 〈|G|,τG〉 and a
chainT = T1⊂ . . .⊂ Tn = T, the{[T]}T-typed graph{[G]}T = 〈|H|,τH〉 is defined as:

12 R. Bruni and H. Melgratti

•
f //

��

a
•

��

b1

•
f //
��

a
Ta

Tg • gdd
b

(a) A Tg-typed Graph.

•
s1,2 //

��

nTa

•

��

nTg

•
f0

//

ta
??~~~~~

��

a
•

f1
//

t f
55jjjjjjjjjjjjj

��

f
• tb1

??~~~~~

��

b1

•
s1,2 //

nTa

•
nTg

•
f0
//

ta
??~~~~~

a
•

f1
//

t f
55jjjjjjjjjjjjj

f
• g0

))
tg

??~~~~~

b
•

g1

ii

tb
__@@@@@

g

(b) RefinedTg-Typed Graph.

Fig. 9.A refinedT-Typed Graph.

– NH = NG∪EG∪{nTi |Ti ∈ T}, i.e., NH has all items of G plus nodes denoting types;
– EH = {e0,e1|e∈ EG}∪{tw|w∈ NG∪EG}∪{si,i+1|0 < 1 < n−1}, where:
• e0 : sT(e)→ e and e1 : e→ tT(e);
• tw : w→ nT(τG(w)), i.e.,tw connects w to the node representing its type inT,

which is obtained by using the typing morphismτG(w);
• si,i+1 : nTi → nTi+1, for the inclusion of types.

– The typing morphismτH is defined as follows

τH(k) = τG(k) if k ∈G τH(nTi) = nTi

τH(ei) = τG(e)i τH(tw) = tτG(w) τH(si,i+1) = si,i+1

Example 5.2.Consider theTg-typed graphG in Figure 9(a). Its refined version for the
chainTa = {a}⊂ Tg = Ta∪{ f ,b,g} is shown in Figure 9(b) (we omit the representation
of the obvious typing of arcs).

We refer to the nodesnTi and the arcstw andsi,i+1 of a refined type graph (resp., a
refinedT-typed graph) as thelocation of the type graph(resp.,location of the graph).

Definition 5.3 (RefinedT-Typed DynGG). LetG = (T,Gin,P) be a DynGG, andT =
T1⊂ . . .⊂Tn, with Tn = T be a chain of types. Then, the refined version ofG is defined as
GT = ({[T]}T,{[Gin]}T,{[P]}T), where{[P]}T = {{[p]}T|p∈P} is obtained by encoding

any production p: (L l← K
r→ (T ′,G′in,P

′)) in P as follows:

{[p]}T : ({[L]}T
l ′←{[K]}T

r ′→{[(T ′,G′in,P′)]}T⊂T ′)

where morphisms l′ and r′ are the obvious extensions of l and r with the identity over
the location of the graph.

Example 5.3.Consider the productionp in Figure 1. Its refined version is in Figure 10.
The type graphs are the refined versions of the original type graphs, while the left-hand-
side, the interface, and the right-hand-side are the refined version of the original ones.

Dynamic Graph Transformation Systems 13

{[p]}Ta :

•

��

nTa

←↩

•
nTa

↪→

•
s1,2 //

nTa

{[Pp]}Ta⊂Tg = {{[q]}Ta⊂Tg}

•

nTg

•

tn1
>>|||||

��

n1

•

tn1
>>|||||

n1

•

tn1
>>|||||

h0

//
n1

•

th

66nnnnnnnnnnn
h1

//

��

h
•

tn2

>>|||||

n2

•
s1,2 //

nTa

• nTg

•
f0

//

ta
>>|||||

a
•

f1
//

t f

44iiiiiiiiiiiiiiii

f
• g0

**
tg

>>|||||

b
•

g1

jj

tb
``BBBBB

g

{[q]}Ta⊂Tg :

•
t f

 B
BB

BB
f1 //

f

←↩

•
tb1��

b1

↪→

•
tb1��

b1
•
tb1��

b1

• ta //

f0
>>|||||

f ′0 B
BB

BBa
•

s1,2 //
nTa

• nTg • ta //
a

•
s1,2 //

nTa

• nTg • ta //
a

•
s1,2 //

nTa

•
nTg

•
tgoo

g1
``BBBBB

g

•

t f ′
>>|||||

f ′1

//
f ′

•
tb2

OO

b2

•
tb2

OO

b2

•

tb2
OO

g0

>>|||||

b2

Fig. 10.A refined productionp.

In particular, the left-hand-side is typed over the refined version ofTa, while the right-
hand-side grammar is typed over the refined version ofTg. Moreover, the production
{[q]}Ta⊂Tg created by the reduction corresponds to the refined versions of the originalq
(for clarity we do not draw the typing morphism, which is the obvious one).

The refined version of a grammarG recreates the static tree of typesT(G). In fact,

any productionp : (LT
l ′← KT

r ′→ GT ′) is encoded by considering the pathT of T(G)
starting from the root ofT(G) to T. Moreover, since previous definitions can be straight-
forwardly extended to consider the whole tree instead of a path, we will use{[]}T to
denote also the refined versions obtained by considering the tree of typesT. Given any
treeT describing type inclusions, the treeT′ = T,T ↪→ T ′ stands for the treeT with the
addition of the typeT ′ as a child ofT (if T ′ is already in the tree, thenT′ = T).

Remark 5.1.For simplicity, we assume the name of any production to be decorated

with the types of its left and right-hand-sides, i.e.,pT↪→T ′ : (LT
l← KT

r→ GT ′).

The result below shows that a refined grammar behaves like the original one.

14 R. Bruni and H. Melgratti

•
f ′1 //

t f ′ ""E
EE

EE
EEf ′ •

tb2||yy
yy

yy
y b2

•
nT ′g

•
nTa

⇒p′ •
s1,2 //

nTa

•
nTg

⇒p′ •
s1,2 //

s′1,2

OO

nTa

•
nTg

•

ta
<<yyyyyyya

•
f0
//

ta
<<yyyyyyya
•

f1
//

t f

55lllllllllllll
f

•
tb1

<<yyyyyyy

b1
•

f0
//

ta
<<yyyyyyy

f ′0

OO

a
•

f1
//

t f

55lllllllllllll

f
•

tb1

<<yyyyyyy

b1

Fig. 11.A flattened, refined derivation.

Lemma 5.1. LetG0 = (T0,H0,P0) andGn = (Tn,Hn,Pn) be DynGGs, then

{δi : Gi ⇒piTpi ↪→T′pi

Gi+1}i∈{0,..,n−1} iff {δ′i : {[Gi]}Ti ⇒pi {[Gi+1]}Ti+1}i∈{0,..,n−1}

whereT0 = T0 andTi+1 = Ti ,Tpi ↪→ T ′pi
for 1≤ i ≤ n.

Proof (Sketch).ConsiderGi ⇒pT↪→T′ Gi+1 and pT↪→T ′ : (LT
l← KT

r→ GT ′). Then, the
derivationGi⇒T↪→T ′ G j is analogous to that one in Figure 4. By construction of{[Gi]}Ti ,
there existsm: LT→Gin iff there existsm′ : {[LT]}Ti →{[Gin]}Ti in the refined grammar.
Since{[KT]}Ti preserves the ”same” elements (up-to suitable encoding) asKT plus the
location of the graph, thenD′ obtained as the pushout complement of〈m′, l ′〉 coincides
with {[D]}T. Since{[RT]}Ti preserves the location of already existing items and gener-
ates a new nodenT ′ and a new arcs : nT→ nT ′ for typing fresh items, thenH ′ coincides
with {[H]}Ti ,T↪→T ′ . The correspondence among fresh productions is straightforward.

Definition 5.4 (Encoding).LetG = 〈T,Gin,P〉 be a DynGG. Then, the equivalent graph
grammar{[G]} is defined as{[G]}= F({[G]}T).

Example 5.4.Consider the DynGGG = 〈Ta,Gin,{p}〉 with Ta and p as in Figures 1
and 2 and its encoding{[G]} = 〈T ′,{[Gin]}Ta,{p′,q′}〉, whereT ′ is the type graph in
Figure 10, andp′ andq′ are analogous to{[p]}Ta and{[q]}Ta⊂Tg in Figure 10. Figure 11
shows a derivation that applies twice the rulep′ over the initial graph consisting of a
unique node typeda. Although the final graph contains two arrows of typef with same
source of typea, there is not a matching forq′, since the left-hand-side ofq′ requires
the targets of the two arrows to have the same location. Hence, the encoding does not
confuse different instantiations of the same type, as formalised by the following result.

Theorem 5.1 (Correspondence).LetG0 be a dynamic graph grammar, then

{δi : Gi−1⇒pi Gi}i∈{0,..,n} iff {δ′i : G′i−1⇒{[pi]} G′i}i∈{0,..,n}

whereG′0 = {[G0]} and{[p]} is the encoding of the rule p inF(G0).

Proof. ⇒) Follows immediately by Lemma 5.1 and Proposition 3.2.⇐) It remains to
prove that the matchings on the encoded version are the same as those of the original
one. In fact, the encoding of a rule assures the location of any graphs to identify items
with the same type while differentiating items with distinct types.

Dynamic Graph Transformation Systems 15

6 Concluding Remarks

We have proposed the original framework of Dynamic Graph Grammars, as a con-
servative extension of Graph Grammars that offers a convenient level of abstraction for
modeling reflexive systems. Our main result proves that Dynamic Graph Grammars can
be simulated by ordinary Graph Grammars, though a non-trivial encoding is necessary.

When compared to the vast literature of theoretical foundations and applications of
graph transformation systems, our investigation on reflexive productions is still prelim-
inary under many aspects. A fully extensive development and assessment is therefore
a very ambitious programme, along which we foresee several promising directions: (1)
to express suitable notion of independent derivations, parallelism, process semantics,
unfolding semantics and event structure semantics so to fully develop a true concur-
rent semantics of DynGGs; (2) to show that concurrency is preserved by our encoding
of DynGGs in GGs; (3) to consider other flavours of dynamic productions, like the
SPO [12,7]; (4) to exploit the encoding in § 5 to reuse verification tools developed for
GGs for systems modeled using DynGGs.

Acknoweldgement.The authors want to thank Ivan Lanese for many helpful discussions
on the encoding of DynGGs back to GGs.

References

1. A. Asperti and N. Busi. Mobile Petri nets. Technical Report UBLCS 96-10, Computer
Science Department, University of Bologna, 1996.

2. M. Buscemi and V. Sassone. High-level Petri nets as type theories in the Join calculus.Proc.
of FoSSaCS’01, Lect. Notes in Comput. Sci.2030, pp. 104–120. Springer, 2001.

3. A. Corradini, P. Degano, and U. Montanari. Specifying highly concurrent data structure
manipulation.Proc. of Computing’85: A Broad Perspective of Current Developments. 1985.

4. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic ap-
proaches to graph transformation I: Basic concepts and double pushout approach. In [13].

5. A. Corradini, U. Montanari, and F. Rossi. Graph processes.Fund. Inf., 26:241–265, 1996.
6. F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars. In [13].
7. H. Ehrig, R. Heckel, M. Korff, M. L̈owe, L. Ribeiro, A. Wagner, and A. Corradini. Algebraic

approaches to graph transformation II: Single pushout approach and comparison with double
pushout approach. In [13].

8. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In [13].
9. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the Join calculus.

Proc. of POPL’96, pp. 372–385. ACM Press, 1996.
10. I. Lanese.Synchronization Strategies for Global Computing Models. PhD thesis, Department

of Computer Science, University of Pisa, 2006.
11. D. Hirsch. Graph Transformation Models for Software Architecture Styles. PhD thesis,

Departamento de Computación, Universidad de Buenos Aires, 2003.
12. M. Löwe. Algebraic approach to single-pushout graph transformation.Theoret. Comput.

Sci., 109:181–224, 1993.
13. G. Rozenberg, editor.Handbook of Graph Grammars and Computing by Graph Transfor-

mation. Vol. 1: Foundations. World Scientific, 1997.

