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Abstract. The algebraic models of computation for contextual nets that have
been proposed in the literature either rely on a non-free monoid of objects, or
introduce too many fictitious behaviors that must be somewhat filtered out. In
this paper, we exploit partial membership equational logic to define a suitable
theory of models, where the meaningful concurrent computations can be selected
by means of membership predicates.

1 Introduction

Thanks to their friendly formulation as multiset rewrite systems and to their graphical
presentation, Petri net23,26] are an appealing formalism for the specification and
study of concurrent and distributed systems: states constskehdistributions over

the set ofplacesandtransitionscan atomically fetch the tokens in their presets and
generate new tokens according to their postsets. In particular, several transitions can
execute concurrently when they work on mutually disjoint sets of tokens.

Contextual netsZ4] (also introduced separately with different names, such as nets
with read arcs3(], nets with test arcsg], and nets with activator arc4f]) encompass
a non-destructive reading operation not present in the basic Petri net model. In fact,
read arcs allow multiple concurrent readings of the same resource, an operation whose
need arises naturally in many distributed systems, while thieenencoding of read
arcs as self-loops in ordinary Petri nets serializes all the accesses to read tokens with
a dramatic loss of concurrency. Nets with read arcs have been used to model a variety
of applications and phenomena, such as transaction serializability in databales [
concurrent constraint programmir@3], asynchronous systemg9], and analysis of
cryptographic protocolsl0)].

As a drawback, the presence of read arcs introduces some complication in the math-
ematical characterization of computations, leading to the development of suitable ex-
tensions of well-studied domains and models for Petri nets. Extensions of this kind
include: the asymmetric event structuresjf fhe match-share categories @8], and
the monoids of places proposed V[ and fully developed in7] and in 22].

In this paper we extend the so-called “Petri nets are monoids” approach initiated
in [19) to find a neat algebraic characterization of the monoidal category of concurrent
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computations in the presence of read arcs. In particular, we improve [d8hmhere

such computations were shown to be faithfully embedded in a too large, freely gener-
ated category. Our approach is to define a typing discipline — expressed by membership
predicategserm: Sort in partial membership equational logit§] — that characterizes

in that category the valid computations, distinguishing them from “garbage” expres-
sions. Moreover, by considering pre-nets as “implementations” of ordinary Petri nets
(in the sense explained ib][and recalled in Sectic®), we are able to give functorial
construction, respecting the simulation morphisms between nets, a result not achieved
in all previous proposals in the literatu(®7]13,7].

Synopsisln Sectior2we summarize the techniques used for defining functorial models
for Petri nets. Sectio3 describes the technical problems arising when extending the
approach to nets with read arcs, and Sedipresents our solution. Sectidrgives our
conclusions. Proofs omitted for space limitation can be found in the technical réport [

We assume the reader has some familiarity with some basic concepts from category
theory as, e.g., the notion of natural transformation, adjunction and monoidal category.

2 On the algebraic semantics of Petri nets

Petri netsare one of the most studied models for concurrency, thanks to their natural
representation of concurrent and distributed systems based on multiset rewriting. Their
flexibility has encouraged many different semantical interpretations. In particular, an
overall distinction can be drawn betweeallectiveandindividual token philosophies

(see, e.g.,14]). According to the collective token philosophgTph), net semantics
should not distinguish between different tokens in the same place, because any such
token isoperationally equivalento all the others. The individual token philosophy
(ITph) says that the different origins and histories of tokens must be accounted for,
because choosing different tokens can make an event causally dependent on different
past events, and causal dependencies may influence the degree of concurrency in the
computations. In the classical example below, for instance, @fterdt; have fired, a

firing of t will look as caused by one of them and concurrent to the other, depending on
which of two tokens irc is consumed. Also, two instancestofnay fire concurrently

that only differ in their causal histories.
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The “Petri nets are monoids” approad®]is an algebraic approach to the analysis
of concurrent semantics based on the observation that the monoidal structure of mark-
ings can be lifted to computations, in such a way that the suitably axiomatized terms of
the new algebra exactly correspond to the concurrent computations of place/transitions
Petri nets ¥ T nets), according to theTph. This construction respects the intuitisien-
ulation morphismbetween nets, when these are seen as graphs with structured nodes.




This is expressed as a functbrfrom the categoryPetri of PT nets (as objects) and sim-
ulation morphisms (as arrows) to the categ@lonCat of strictly symmetric strict
monoidal categories (as objects) and monoidal functors (as arrows). Mor@over,
the left adjoint to an obvious forgetful functor from the full subcategorZbfonCat
consisting of categories whose set of objects is a free monoid.

The functorial character of the construction is important for at least two reasons:
(1) working within categories, we make explicit the associatedphismswhich cor-
respond to appropriate notions of “simulation” or “refinement” between nets; (2) func-
tors act on objects and behave consistently on their simulation maps, preserving them.
Furthermore, when functors aaeljointsthey preserve limits or colimits, yielding good
compositionality properties, since complex models can often be expressed as (co)limits
of their simpler constituent30].

Since the publication ofll9], several studies have extended the functorial construc-
tion from the CTph towards thelTph [12,21,28]. Building on the notion ofprocess
presented in15], the idea has been to take semantic models in the categsgpohet-
ric monoidal categoriesBut all the proposed constructions lacked functoriality. The
difficulty in dealing with thelTph is that net morphisms iRetri allow replacing two
different tokensa andb in the source net by, say, the same token the target net. In
this way, an ambiguity about the origin ofis introduced that confuses causal histo-
ries in the target net and makes a functorial treatment impossible. A first solution was
proposed in28] based on pseudo functors (see aBt]).

In [5], we introducedpre-nets which are more suitable thaT nets to be given a
functorial semantics according to theph. A pre-net is essentially an implementation
of apT net, where the abstract data structure of multisets is refined into a more concrete
string structure, and where each transitionu — v is simulated byone arbitrarily
fixed, linear implementatiotyy: u — v for some linearizationsi andv of u and Vi
Although resorting to pre-nets (insteadraf nets) might at first appear unnatural to net
enthusiasts, our formal approach to thigh benefits from several good properties:

— All the pre-net implementations of the same net share the same semantic model,
i.e. the semantics is independent of the choice of linearizations.

— Algebraic models of pre-nets are freely generated and, as part of adjunctions, pre-
serve colimit constructions, allowing a form of compositional reasoning.

In [5] it is shown that the construction can be conveniently expressed at the level of
algebraic theories of the for(x, E), rather than at the level of their categories of mod-
els, i.e. of(Z,E)-algebras. Essentially, HETRI is the theory ofPT nets andCMONCAT
is the theory of strictly symmetric monoidal categories, then there is a theory mor-
phism formPETRI to CMONCAT that induces a forgetful functor between the category
of CMONCAT-algebras (i.e., strictly symmetric monoidal categories) and the category of
PETRI-algebras (i.e.pT nets). The left-adjoint to this forgetful functor is the free con-
struction that associates to eagchnet the strictly symmetric monoidal category of its

4 We observe, lest confusion arises, that pre-nets differ sharply from phrase-structure grammars,
because pre-nets do not distinguish between terminal and non-terminal symbols, and strings
can be permuted before performing any step. Grammars only generate monoidal categories,
with no symmetries.



concurrent computations. In such category, objects are the markings of the net, arrows
are computations, (arrow) composition models progression in time of a computation,
while tensor product accounts for concurrent activities. For instance, in the example
above tg;t represents the sequential executiongadndt, while tg ® t; stands for the
concurrent firing oftp andt;. In the individual token philosophy, the strict symmetry
— characteristic of the collective token interpretation — must be given up to model the
causal flows of tokens in computations. The order of transitions in a parallel composi-
tion, sayto ®t1, determines the order of tokens “in the output” and, consequently, the
causal connections to the activities that may follow. For instafteeit ) ; (t®idc) rep-
resents the computation wherédepends causally dg (that is, it consumes the instance
of ¢ generated by that transitions). We are allowed to exch&ngedt; in the tensor
product only if we keep track of this and maintain the correct order of output tokens, as
e.g.in(t1 ®tp);y; (t®idc), for y the swap symmetry oo® c. (A thorough discussion
and the details are given, e.g., B, but see alscl2/21].) As explained above, we can
relate the theorPRENETS of pre-netgwhere pre- and post-sets of transitions are taken
in the free monoid of places instead than in the free commutative monoid) to the theory
SMONCAT of symmetric monoidal categories (details/8})[

The above-mentioned theories can be conveniently expresgeattinl member-
ship equational logigqPMEQqtl, see [[L.8/20] for self-contained presentations), taking
advantage of membership predicates and subsorting to model objects as a special kind
of arrows (the identities), and of partiality to model sequential composition, defined
only if the codomain of the first arrow coincides with the domain of the second arrow.
Moreover, the notion of tensor product of theories allows a more modular presentation
of concepts; for example, we can define the theory of monoidal categories as the tensor
product of the theory of monoids and that of categories.

3 Atoms, electrons and match-share categories

The extension of the approach to nets with read arcs has been considergdoin |
relying on non-free monoids of objects, and &t8], exploiting match-share categories
in place of symmetric monoidal categories.
Regarding 7], the idea is to model each tokenas anatomthat can emit “neg-
ative” particlesa” (electron$ while keeping track of their number, i.e., as suggested
in [17], we have that for alk € N, a= ak® ®_;a", whereak represents an atom that
has released exactly particles to the environment. Then, by replacing context arcs
on a with self-loop arcs ora”, we obtain an axiomatic construction of the monoidal
category of concurrent net computations. The approach]afdals satisfactorily with
both the collective and the individual token philosophy; possibly, a remaining concern
is that non-free monoids of objects sit uneasily with the traditional intuition of tokens as
atomic pieces of data that one should not be able to decompose. The problem with the
construction in/13] is instead that the freely generated model of computations has too
many arrows, representing spurious computations that contextual nets cannot perform.
In this paper we improve upoAd§] by selecting suitable theories in partial mem-
bership equational logic in order to distinguish ‘good’ arrows — corresponding to com-
putations — from meaningless ones.



ops d() c(): Arrow -> Object. *** domain and codomain

op _®_: Arrow -> Object. ** monoidal product
op e : Object. % unit of _®-
op _;_ . *** Arrow composition (partial op.)

op V(. ): Object Object -> Arrow. *** symmetric natural transformation

Fig. 1. Operators irBMONCAT.

We refer the reader to the appendix Bf for the essentials of partial membership
equational logic. Instead, for the reader’s convenience, we summarize in AppEndix
the description of the theories of monoids, categories, monoidal categories and symmet-
ric monoidal categories. Here we just remark tBAONCAT includes two sorts called
Object andArrow (with Object a subsort ofirrow, written Object < Arrow), and
six operators (see Figud satisfying the axioms of symmetric monoidal categories.

The idea presented ill] is to model multiple concurrent readings by introduc-
ing in the class of net computations suitable transformations that take care of creating
as many copies as needeshdringphase) and then reassembling all copies after the
reading (natchingphase). These two transformations are called duplicators and co-
duplicators and are denoted byandA respectively. It is worth observing that they are
“non-natural”, in the technical sense that the naturality axidmgl = 0O, f ® f and
A; f=f®f;Aare not enforced.

The theory of match-share categories is summarized in Figulde right-hand
side of the figure gives a pictorial representation of the main axioms of the left-hand
side. The first group of axioms expresses the coherentk(défining the domain and
codomain of each component(@f stating that the ung s trivially shared and that the
component foa® b can be expressed in terms of the components famdb, the last
two axioms roughly establishing that sharing is associative and commutative), and the
second group that df. The third group of axioms states how the two transformations
interact together. If we look dfl(a) as a wiring establishing two connections between
the objecta in the domain and the occurrencesanin the codomain, and dually for
A(a), the last two axioms say that the multiplicity of connections is not important, and
that connections are bidirectional, i.e. it is not important how objects are connected but
just the fact that they are connected by an undirected path of “wiring.”

The theory of match-share categories is a conservative extension of the theory of
symmetric monoidal categories and therefore the construction between (pre-)nets and
symmetric monoidal categories can be straightforwardly extended to match-share cate-
gories. For modeling read arcs, the idea is to first view read arcs as self-loops (i.e. pairs
of inbound and outbound arcs), so that a transitiom —— v from u to vin contextw is
regarded as an ordinary pre-net transitidn u®@w — v®w, and then apply the free
construction to the resulting pre-net, building a match-share category of computations.
The special role ofv — a “context” marking represented as an ordinary one — is dealt
with by copying and matchind\. This however generates arrows that do not represent
admissible computations of the net. The construction is not resource-conscious, and the
distinction between read arcs and pre/post-sets is lost, since each token can be matched
and shared in all possible ways.
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Fig. 2. Theory of match-share categories.

On the other hand, once we replace read arcs with self-loops, we can form the free
symmetric monoidal category of computations of the pre-net. Such category distin-
guishes arrows that represent the same concurrent computation, in that the construction
enforces sequentialization of all multiple readings of the same resource. For instance,
if t: a— b, the fact that can fire two concurrent instances fram a® c will not be
reflected. However, the monoidal and the match-share category can be combined via a
mapping from the former to the latter that: (1) identifies all computations that are distin-
guished because of the order in which multiple readings are performed; and (2) selects
only the admissible computations of the net with read arcs.

Notation. Let Rbe a pre-net with read arcs. We denotgRjthe pre-net with the same
places afR and transitiong[t]: U@ W — v W | t: U — v € R}. Moreover, we let
S([R]) denote the free symmetric monoidal category generatd&jbgnd letMS([R))
denote the free match-share category generatég]by

Definition 1. The symmetric monoidal funct@r: S([R]) — MS([R]) is defined on gen-
erators by:

"a (for any placeae R)

Q.

() £ (ue 0w); ([t ow); (ve©Ay)  (for any transitiont: u - v e R).



fth RAUT is including MON.

sort Rtrans.

subsort Monoid < Rtrans.

ops pre(_) post(_) ctx() : Rtrans -> Monoid.
var u : Monoid.

eq pre(u) = e.

eq post(u) = e.

eq ctx(u) = u.

endfth.

Fig. 3. Theory of read-automata.

Proposition 1 (cfr. [13]). The imageZE(S([R])) € MS([R]) is isomorphic (via a sym-
metric monoidal functor) to the category of concatenable contextual procesRes of

The question that then arises is how to tell whether an arrdW(f[R]) belongs to
E(S([R])). We answer this by reformulating the construction at the level of theories in
partial membership equational logic, thus expressing a typing discipline for discarding
all meaningless arrows froMS([R]), while keeping all the good ones.

4 Functorial models for pre-nets with read arcs

The first step is to define the theory of “programs,” that is our base category of nets. Itis
technically convenient to consider a larger class of nets, whose states are elements of a
generic, non-free monoid, as expressed in Fi@uiehe class of pre-nets with read arcs

is then embedded as the full subclass whose states are free monoids (generated from
the set of places), and the results can be extended via the obvious embedding.

The theoryRAUT has three operationgre(- ), post(-), andctx(- ), that define
respectively source, target and (read) context of each read-transitikurams. Idle
transitions are included by the subsorting relationoid < Rtrans. The sortMonoid
comes from the theorjfloON of monoids, consisting of a total operation which is
associative and has the constarts unit (see Figur@in AppendixA).

The second step is to refine the thedBCAT into a theoryRCOMP by adding sorts
and operators that are needed to characterize the class of meaningful arrows. Thus, we
add two sortRtrans andRarrow, with Object < Rtrans < Rarrow < Arrow: the
sortRtrans is for embedding basic transitions, and the &atrow is for collecting
all correct computations. Among the operators, we add thoReuif for source, target
and context of basic transitions (i.exe(- ), post(- ), andctx(-)). Note that these
operators, unlike those for domain and codomain (@€.) andc(-)), are not defined
for all arrows, but only for the elements Btrans. Note also that they are related to
the domain and codomain of transitions by the first two equations of the theory. The
membership axioms state that the sattrow is closed under monoidal and sequential
composition and that it contains all the symmetries. The main novel ingredient is the
operatormk (- ), which models the embeddirg described above, nametk(t) = [t],
for any transitiont, as expressed by the last equation of the theory. The presence of
mk(- ) is also technically convenient to prove the main correspondence results.



fth RCOMP is including MSCAT.

sorts Rtrans Rarrow.  subsorts Object < Rtrans < Rarrow < Arrow.
ops pre(_) post(_) ctx() : Rtrans -> Object.

op mk() : Rtrans -> Arrow.

vars h k : Rarrow. var t : Rtrans. var u : Object.

mb hxk : Rarrow.

mb  y(u,v) : Rarrow.

cmb hik : Rarrow if c(h) == d(k).

eq pre(t) ctx(t) = d().

eq post() ctx(t) = c(t).

eq pre(u) = e.

eq post(u) = e.

eq ctx(u) =u

eq d(mk(t) = d(t).

eq c(mk(t) = c().

eq mk(u) = u

eq (pre(t) ®@O(ctx());(mk(t) ®ctx(t));(post(t) RA(ctx(t) = t.
endfth.

f

Fig. 4. Theory of read-computations.

view RV from RAUT to RCOMP is
sort Monoid to Object.
endview.

Fig. 5. The viewRV.

The third step is to express the adjunction between the class of programs and that
of models. This task is accomplished by the signature morpRisin Figure5, which
embeds homonym sorts and operators and maps thél@ostid of RAUT to the sort
Object of RCOMP. It is easy to verify that all axioms IRAUT are respected bgv:

Proposition 2. The viewRvV is a theory morphism.

By Proposition2 and because of the properties of theory morphistfis jve know
that there is a right-adjoint forgetful functdizy from the category oRCOMP-algebras
to the category oRAUT-algebras, which includes all pre-nets with read arcs. We denote
by Zzy the left-adjoint going in the opposite direction.

Lemma 1. Given a pre-net with read arcR, its initial RCOMP-algebra Fxy(R) is a
match-share category.

Proof. The free functorfyy ensures that the elements of sbrt-ow of Fzy(R) are built
by composing objects, transitiohs R, symmetries and (co-)duplicators, together with
the additional elemenisk(t) for anyt € R. The axioms of match-share categories are
enforced on all the elements frow by inclusion of the theoryiSCAT intoRCOMP. 0O

The fourth and final step is to show that the Sartrow can be used to characterize
all meaningful computations dR. For the following definition, we recall that a lluf
subcategonA of a categon(C is just a subcategory having all the objectsof



Definition 2. Given a pre-net with read ardR, we letRarrow(R) denote the lluf sub-
category of the match-share categghy; (R) whose arrows have soRarrow.

Lemma 2. For any pre-net with read arcR, an element has sorRtrans in Fey(R) if
and only ift is a transition ofR or t is a string of places.

Lemma 3. The categonRarrow(R) is symmetric monoidal.

Theorem 1. The categoryMS([R)) is isomorphic (via a match-share functgl) to
}-RV(R)-

Proof. The match-share categofiy(R) is generated by composirigandmk(t) (for

any transitiont) with identities, symmetries and (co-)duplicators in all possible ways.
Any expression of sotrrow can be equivalently expressed as the parallel and sequen-
tial composition of just thenk(t)’s with identities, symmetries and (co-)duplicators,
because of the equation

eq (pre(t) @O(ctx(t)));(mk(t) ®ctx(t));(post(t) ®A(Ctx(1)) = t.

that allows replacing all occurrences tofNote that ift = u for some objecu, then
mk(u) = u. Hence the constructaik(_ ) cannot be applied to identities for generating
new arrows. Moreover, no other axioms involvingRtrans are present that could
further quotient out the elements of saftrow.

Let us consider the match-share funcforMS([R]) — Fry(R) sendingt] to mk(t)
(and being the identity otherwise) which is well-defined by initialityM®([R]). The
functor is full and faithful, it preserves symmetries and (co-)duplicators, and it defines
an isomorphism on objects (and thus on arrows). ad

Theorem 2. The categoryE(S([R))) is isomorphic (via a symmetric monoidal functor
R) toRarrow(R).

Proof. The functor®_is S restricted toE(S([R])). In fact, suppose that € £(S([R))),

then an arrow3 € S([R]) must exist such thaE(B) = a. Let Q: S([R]) — Rarrow(R)

be the symmetric monoidal functor sendiftgto t and preserving identities, symme-
tries, sequential composition and monoidal composition. Then it is straightforward that
S(a) = Q(P) and hences(a) has sorRarrow. The functorg_ is an isomorphism be-
cause it is injective on the generators (the transitions of the net) and preserves the oper-
ations of symmetric monoidal categories strictly. ad

Note that the categorie(S([R])) andRarrow(R) are not match-share categories,
and hence the functa_ is not a match-share functor.

Theorem?2 defines a typing discipline for selecting the admissible computations
from the larger clasMS([R]). Since, under appropriate assumptio8s fnembership
predicates allow automated verification in languagesNikede [9], then the construc-
tion RV answers to the ambiguity of.

Note that for the arrows iRarrow(R) only the operations of domain and codomain
are defined, not those involved with contexts. However, the properties of the initial
model can be exploited to factor out the domain and codomain of arroRegrirow(R)
into their consumed, read and produced parts. We show this below.
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Fig. 6. A read object for the arrowh.
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Fig. 7. The proof of Lemma, graphically.

Definition 3. Leth € Rarrow(R) and leta be an object withi(h) = u; ® a® u, and
c(h) = vi ® a® v, for suitable objectsi, Uy, v1, V2. The objectiis saidto be read irh
if h can be written as (cf. Figuré):

(ul @U@ uz) : (ul ®a®y(a, uz)); (h® a); (vl ®a® y(vz,a)>; (vl ®A(a) ®vz).

Lemma 4. Lett : Rtrans. Then,ctx(t) is read inh.

The proof is graphically illustrated in Figurg where for simplicity we letu =
pre(t), v=post(t) andw = ctx(t). The marking read — and not consumed —Hig
the maximum marking read by, and it can be characterized as follows.

Definition 4. Leth € Rarrow(R). The arrowhis pureif d(h) =u®wandc(h) =vaw,
with (u® O(w)); (h@w); (v® A(w)) = h and no other object i and v is read. The
objectw is called thecontextof h and denoted bytx(h), while u andv are denoted
respectively bypre(h) andpost(h).

For h pure, we denote bi the twistedversion ofh obtained by exchanging the
position of the context with that of the pre- and post-set (respectively, in the domain
and codomain of), i.e.h = y(w,u); h; y(v,w).

Corollary 1 (From Lemma 4). Any arrowh € Rtrans(R) is pure.

Lemma 5. Leth € Rarrow(R) be pure, withpre(h) = u, post(h) =vandctx(h) =w.
Thenh € Rarrow(R) andh = (O(w) ® u); (W® h); (A(w) @ V).
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Fig. 8. The proof of Propositiol8, graphically.

The following result shows that computations which are serialized on contexts are
equivalent to the concurrent executions with multiple readings of the context.

Proposition 3. Leth;, hy € Rarrow(R) be pure arrows, witlpre(h;) = uj, post(hi) =
vi andctx(hj) =wfori=1,2. Then:

(@ Up); (Vi ® o) = (U ® O(W) @ Wp); (hy @ ha); (Vi @ D(W) @ Vi)
= (i ®hy); (L @Vv2)
Proof. The proof exploits Lemma4 and5 and is (partially) illustrated in Figui&:

— we first make explicit that the arrows andh, read the contex by applying the
laws (valid for pure arrows):

hy = (L@ O(w)); (hy ®W); (Vi @ A(w))
hp = (O(W) @ Uy); (W& h); (A(W) @ Vi)

— then, we apply the axioms of match-share categories to rearrange the matching and
sharing ofw to have enough concurrent copies of it available at the same time and
use functoriality of the tensor to shiff andh, in parallel;

— finally, we get rid of additional copies by applying back the laws of pure arrows.

The equality with the expression th’?@precedeshl is analogous. ad

5 Conclusion

Previous approaches to extending the “Petri nets are monoids” semantics to nets with
read arcs have either relied on structured tokens or have defined a too rich category of
computations, where it was difficult to filter out meaningless arrows. We have employed
theories in partial membership equational logic to solve the latter problem.



Specifically, we have introduced a suitable there@MP that provides us with a
typing discipline to select all and only the correct concurrent computations. The theory
RCOMP enucleates the fundamental algebraic principles on which the non-trivial opera-
tion of reading without consuminig based on. The functorial construction presented in
this paper has been reconciled with unfolding semantict|itMoreover, as equational
reasoning irPMEqtl is supported by the rewriting logic language Mauék the the-
ory RCOMP offers a mathematical basis for the analysis and optimization of concurrent
computations in systems with many-readers access policies to shared resources (e.g.,
for the applications of contextual nets h1]23,29/10)).

We conclude by mentioning that a non-initial match-share category of abstract mod-
els for nets with read arcs has been use@jnjased on categories of (co)spanSet
However, the models ird] do not retain all the information about the concurrent com-
putations of the net: they just keep track of which resources have been read throughout
the computation and thus can be concurrently accessed from the environment.

AcknowledgmenitVe warmfully thank Paolo Baldan for many interesting discussions
on the semantics of contextual nets. We thank the anonymous referees for their criti-
cisms and suggestions that helped us in preparing the final version.
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Theories in partial membership equational logic

The theory of categorie®T is defined in Figur®. It has sortfbject andArrow with
Object < Arrow. There are two unary total operatiodis. ) andc(- ), for domainand
codomainand a binary composition; _ defined iff the codomain of the first argument

is equal to the domain of the second argument. By convention, functions with given
domain and codomain are total on that domain and codomain. It is easy to check that
a model ofCAT is a category (in which objects coincide with identity arrows), and that
CAT-homomorphisms are just functors (0] for the detalils).

The theoryMON of monoids is even simpler (Figu@). It has a unique soMonoid

and two total operators: the associative tensgr. and the unit elemenry, which is the
identity for_ ® _. Then, by exploiting the tensor product of theorg@sdefined in R0,



fth CAT is fth MON is

sorts Object Arrow. sort Monoid.
subsort Object < Arrow. op e : -> Monoid.
ops d() c() : Arrow -> Object. op _ ®_ : Monoid Monoid -> Monoid
op ;. [assoc id: e].
var a : Object. endfth
vars f g h : Arrow.
eq d(@) = a fth MONCAT is
eq c(@ = a MON & CAT renamed by (
ceq af = f sort (Monoid,Object) to Object.
if d(f)y == a. sort (Monoid,Arrow) to Arrow.
ceq fa = op e left to e.
if c(f) == a. op _ ® leftto ®.
cmb f,g : Arrow op _;_right to _; .
if c(f) == d(q). op d() right to d().
ceq c(f) = d(g) op c() right to c(). ).
if ;g9 : Arrow. endfth

ceq d(fig) = d(f) if c(f) == d(g).

ceq c(fi,g) = c(g) if c(f) == d(9).

ceq (f,ghh = fi(g:h) if ¢(f) == d(g) and c(g) == d(h).
endfth

Fig. 9. The theorie€AT, MON, andMONCAT.

the theory of monoidal categories can be obtained by combining the th&otesnd
CAT as illustrated in Figur8. Note that the tensor product constructiN @ CAT has
the sort poset originated from the product of the two sort poseti@linand CAT and
operators bpM left” and “opC right” for each operatoopM in MON andopC in
CAT. The axioms oflON @ CAT are generated by combining the axiom$I0f andCAT
(see the appendix df] for details). The theoryflONCAT just renames sorts and operators
by a more friendly notation.

Finally, the theory of symmetric monoidal categor&ONCAT is defined in Fig-
urel10, by adding the symmetric natural transformatign, _ ).

fth SMONCAT s including MONCAT.
op Y(_,_) : Object Object -> Arrow.
vars a @ b b’ ¢ : Object. vars f f : Arrow.

eq d(vab) = a b.
eq c(y@b) =b ®a
eq Vv@e) = a
eq Yyea) = a.

eq y@a®be) = (a ®ybe)( vac) b).
eq Vv@b), vba) =a b
ceq (f &f); ybb) = y@aa)f ®)
if dfy == a and d(f) == &' and c(f) == b and c(f) == b".
endfth

Fig. 10.The theorySMONCAT.



