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Abstract. The algebraic models of computation for contextual nets that have
been proposed in the literature either rely on a non-free monoid of objects, or
introduce too many fictitious behaviors that must be somewhat filtered out. In
this paper, we exploit partial membership equational logic to define a suitable
theory of models, where the meaningful concurrent computations can be selected
by means of membership predicates.

1 Introduction

Thanks to their friendly formulation as multiset rewrite systems and to their graphical
presentation, Petri nets [25,26] are an appealing formalism for the specification and
study of concurrent and distributed systems: states consist oftokendistributions over
the set ofplacesand transitionscan atomically fetch the tokens in their presets and
generate new tokens according to their postsets. In particular, several transitions can
execute concurrently when they work on mutually disjoint sets of tokens.

Contextual nets [24] (also introduced separately with different names, such as nets
with read arcs [30], nets with test arcs [8], and nets with activator arcs [16]) encompass
a non-destructive reading operation not present in the basic Petri net model. In fact,
read arcs allow multiple concurrent readings of the same resource, an operation whose
need arises naturally in many distributed systems, while the naı̈ve encoding of read
arcs as self-loops in ordinary Petri nets serializes all the accesses to read tokens with
a dramatic loss of concurrency. Nets with read arcs have been used to model a variety
of applications and phenomena, such as transaction serializability in databases [11],
concurrent constraint programming [23], asynchronous systems [29], and analysis of
cryptographic protocols [10].

As a drawback, the presence of read arcs introduces some complication in the math-
ematical characterization of computations, leading to the development of suitable ex-
tensions of well-studied domains and models for Petri nets. Extensions of this kind
include: the asymmetric event structures of [2], the match-share categories of [13], and
the monoids of places proposed in [17] and fully developed in [7] and in [22].

In this paper we extend the so-called “Petri nets are monoids” approach initiated
in [19] to find a neat algebraic characterization of the monoidal category of concurrent
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computations in the presence of read arcs. In particular, we improve upon [13], where
such computations were shown to be faithfully embedded in a too large, freely gener-
ated category. Our approach is to define a typing discipline – expressed by membership
predicatesterm: Sort in partial membership equational logic [18] – that characterizes
in that category the valid computations, distinguishing them from “garbage” expres-
sions. Moreover, by considering pre-nets as “implementations” of ordinary Petri nets
(in the sense explained in [5] and recalled in Section2), we are able to give afunctorial
construction, respecting the simulation morphisms between nets, a result not achieved
in all previous proposals in the literature [17,13,7].

Synopsis.In Section2 we summarize the techniques used for defining functorial models
for Petri nets. Section3 describes the technical problems arising when extending the
approach to nets with read arcs, and Section4 presents our solution. Section5 gives our
conclusions. Proofs omitted for space limitation can be found in the technical report [6].

We assume the reader has some familiarity with some basic concepts from category
theory as, e.g., the notion of natural transformation, adjunction and monoidal category.

2 On the algebraic semantics of Petri nets

Petri netsare one of the most studied models for concurrency, thanks to their natural
representation of concurrent and distributed systems based on multiset rewriting. Their
flexibility has encouraged many different semantical interpretations. In particular, an
overall distinction can be drawn betweencollectiveand individual token philosophies
(see, e.g., [14]). According to the collective token philosophy (CTph), net semantics
should not distinguish between different tokens in the same place, because any such
token isoperationally equivalentto all the others. The individual token philosophy
(ITph) says that the different origins and histories of tokens must be accounted for,
because choosing different tokens can make an event causally dependent on different
past events, and causal dependencies may influence the degree of concurrency in the
computations. In the classical example below, for instance, aftert0 andt1 have fired, a
firing of t will look as caused by one of them and concurrent to the other, depending on
which of two tokens inc is consumed. Also, two instances oft may fire concurrently
that only differ in their causal histories.

•(/).*-+, //a t0

""EEEEE

(/).*-+, //

c
t // (/).*-+,

•(/).*-+, //b t1

<<yyyyy

The “Petri nets are monoids” approach [19] is an algebraic approach to the analysis
of concurrent semantics based on the observation that the monoidal structure of mark-
ings can be lifted to computations, in such a way that the suitably axiomatized terms of
the new algebra exactly correspond to the concurrent computations of place/transitions
Petri nets (PT nets), according to theCTph. This construction respects the intuitivesim-
ulation morphismsbetween nets, when these are seen as graphs with structured nodes.



This is expressed as a functorT from the categoryPetri of PT nets (as objects) and sim-
ulation morphisms (as arrows) to the categoryCMonCat of strictly symmetric strict
monoidal categories (as objects) and monoidal functors (as arrows). Moreover,T is
the left adjoint to an obvious forgetful functor from the full subcategory ofCMonCat
consisting of categories whose set of objects is a free monoid.

The functorial character of the construction is important for at least two reasons:
(1) working within categories, we make explicit the associatedmorphisms, which cor-
respond to appropriate notions of “simulation” or “refinement” between nets; (2) func-
tors act on objects and behave consistently on their simulation maps, preserving them.
Furthermore, when functors areadjointsthey preserve limits or colimits, yielding good
compositionality properties, since complex models can often be expressed as (co)limits
of their simpler constituents [31].

Since the publication of [19], several studies have extended the functorial construc-
tion from theCTph towards theITph [12,21,28]. Building on the notion ofprocess
presented in [15], the idea has been to take semantic models in the category ofsymmet-
ric monoidal categories. But all the proposed constructions lacked functoriality. The
difficulty in dealing with theITph is that net morphisms inPetri allow replacing two
different tokensa andb in the source net by, say, the same tokenc in the target net. In
this way, an ambiguity about the origin ofc is introduced that confuses causal histo-
ries in the target net and makes a functorial treatment impossible. A first solution was
proposed in [28] based on pseudo functors (see also [21]).

In [5], we introducedpre-nets, which are more suitable thanPT nets to be given a
functorial semantics according to theITph. A pre-net is essentially an implementation
of a PT net, where the abstract data structure of multisets is refined into a more concrete
string structure, and where each transitiont : u→ v is simulated byone, arbitrarily
fixed, linear implementationtū,v̄ : ū→ v̄ for some linearizations̄u and v̄ of u andv.4

Although resorting to pre-nets (instead ofPT nets) might at first appear unnatural to net
enthusiasts, our formal approach to theITph benefits from several good properties:

– All the pre-net implementations of the same net share the same semantic model,
i.e. the semantics is independent of the choice of linearizations.

– Algebraic models of pre-nets are freely generated and, as part of adjunctions, pre-
serve colimit constructions, allowing a form of compositional reasoning.

In [5] it is shown that the construction can be conveniently expressed at the level of
algebraic theories of the form(Σ,E), rather than at the level of their categories of mod-
els, i.e. of(Σ,E)-algebras. Essentially, ifPETRI is the theory ofPT nets andCMONCAT
is the theory of strictly symmetric monoidal categories, then there is a theory mor-
phism formPETRI to CMONCAT that induces a forgetful functor between the category
of CMONCAT-algebras (i.e., strictly symmetric monoidal categories) and the category of
PETRI-algebras (i.e.,PT nets). The left-adjoint to this forgetful functor is the free con-
struction that associates to eachPT net the strictly symmetric monoidal category of its

4 We observe, lest confusion arises, that pre-nets differ sharply from phrase-structure grammars,
because pre-nets do not distinguish between terminal and non-terminal symbols, and strings
can be permuted before performing any step. Grammars only generate monoidal categories,
with no symmetries.



concurrent computations. In such category, objects are the markings of the net, arrows
are computations, (arrow) composition models progression in time of a computation,
while tensor product accounts for concurrent activities. For instance, in the example
above,t0; t represents the sequential execution oft0 andt, while t0⊗ t1 stands for the
concurrent firing oft0 andt1. In the individual token philosophy, the strict symmetry
– characteristic of the collective token interpretation – must be given up to model the
causal flows of tokens in computations. The order of transitions in a parallel composi-
tion, sayt0⊗ t1, determines the order of tokens “in the output” and, consequently, the
causal connections to the activities that may follow. For instance,(t0⊗t1) ; (t⊗ idc) rep-
resents the computation wheret depends causally ont0 (that is, it consumes the instance
of c generated by that transitions). We are allowed to exchanget0 andt1 in the tensor
product only if we keep track of this and maintain the correct order of output tokens, as
e.g. in(t1⊗ t0) ; γ ; (t⊗ idc), for γ the swap symmetry onc⊗c. (A thorough discussion
and the details are given, e.g., in [27], but see also [12,21].) As explained above, we can
relate the theoryPRENETS of pre-nets(where pre- and post-sets of transitions are taken
in the free monoid of places instead than in the free commutative monoid) to the theory
SMONCAT of symmetric monoidal categories (details in [5]).

The above-mentioned theories can be conveniently expressed inpartial member-
ship equational logic(PMEqtl , see [18,20] for self-contained presentations), taking
advantage of membership predicates and subsorting to model objects as a special kind
of arrows (the identities), and of partiality to model sequential composition, defined
only if the codomain of the first arrow coincides with the domain of the second arrow.
Moreover, the notion of tensor product of theories allows a more modular presentation
of concepts; for example, we can define the theory of monoidal categories as the tensor
product of the theory of monoids and that of categories.

3 Atoms, electrons and match-share categories

The extension of the approach to nets with read arcs has been considered in [7], by
relying on non-free monoids of objects, and in [13], exploiting match-share categories
in place of symmetric monoidal categories.

Regarding [7], the idea is to model each tokena as anatom that can emit “neg-
ative” particlesa- (electrons) while keeping track of their number, i.e., as suggested
in [17], we have that for allk∈ N, a = ak⊗Nk

i=1a-, whereak represents an atom that
has released exactlyk particles to the environment. Then, by replacing context arcs
on a with self-loop arcs ona-, we obtain an axiomatic construction of the monoidal
category of concurrent net computations. The approach of [7] deals satisfactorily with
both the collective and the individual token philosophy; possibly, a remaining concern
is that non-free monoids of objects sit uneasily with the traditional intuition of tokens as
atomic pieces of data that one should not be able to decompose. The problem with the
construction in [13] is instead that the freely generated model of computations has too
many arrows, representing spurious computations that contextual nets cannot perform.

In this paper we improve upon [13] by selecting suitable theories in partial mem-
bership equational logic in order to distinguish ‘good’ arrows – corresponding to com-
putations – from meaningless ones.



ops d(_) c(_): Arrow -> Object. *** domain and codomain
op _⊗_: Arrow -> Object. *** monoidal product
op e : Object. *** unit of ⊗
op _;_ . *** Arrow composition (partial op.)
op γ(_,_): Object Object -> Arrow. *** symmetric natural transformation

Fig. 1.Operators inSMONCAT.

We refer the reader to the appendix of [5] for the essentials of partial membership
equational logic. Instead, for the reader’s convenience, we summarize in AppendixA
the description of the theories of monoids, categories, monoidal categories and symmet-
ric monoidal categories. Here we just remark thatSMONCAT includes two sorts called
Object andArrow (with Object a subsort ofArrow, written Object < Arrow), and
six operators (see Figure1) satisfying the axioms of symmetric monoidal categories.

The idea presented in [13] is to model multiple concurrent readings by introduc-
ing in the class of net computations suitable transformations that take care of creating
as many copies as needed (sharingphase) and then reassembling all copies after the
reading (matchingphase). These two transformations are called duplicators and co-
duplicators and are denoted by∇ and∆ respectively. It is worth observing that they are
“non-natural”, in the technical sense that the naturality axiomsf ; ∇ = ∇ ; f ⊗ f and
∆ ; f = f ⊗ f ; ∆ are not enforced.

The theory of match-share categories is summarized in Figure2. The right-hand
side of the figure gives a pictorial representation of the main axioms of the left-hand
side. The first group of axioms expresses the coherence of∇ (defining the domain and
codomain of each component of∇, stating that the unite is trivially shared and that the
component fora⊗b can be expressed in terms of the components fora andb, the last
two axioms roughly establishing that sharing is associative and commutative), and the
second group that of∆. The third group of axioms states how the two transformations
interact together. If we look at∇(a) as a wiring establishing two connections between
the objecta in the domain and the occurrences ofa in the codomain, and dually for
∆(a), the last two axioms say that the multiplicity of connections is not important, and
that connections are bidirectional, i.e. it is not important how objects are connected but
just the fact that they are connected by an undirected path of “wiring.”

The theory of match-share categories is a conservative extension of the theory of
symmetric monoidal categories and therefore the construction between (pre-)nets and
symmetric monoidal categories can be straightforwardly extended to match-share cate-
gories. For modeling read arcs, the idea is to first view read arcs as self-loops (i.e. pairs
of inbound and outbound arcs), so that a transitiont : u

w−→ v from u to v in contextw is
regarded as an ordinary pre-net transition[t] : u⊗w−→ v⊗w, and then apply the free
construction to the resulting pre-net, building a match-share category of computations.
The special role ofw – a “context” marking represented as an ordinary one – is dealt
with by copying∇ and matching∆. This however generates arrows that do not represent
admissible computations of the net. The construction is not resource-conscious, and the
distinction between read arcs and pre/post-sets is lost, since each token can be matched
and shared in all possible ways.



fth MSCAT is
including SMONCAT.
ops ∇(_) ∆(_) : Object -> Arrow.

vars a b : Object.

eq d( ∇(a)) = a.
eq c( ∇(a)) = a ⊗a.
eq ∇(e) = e.
eq ∇(a ⊗b) = ( ∇(a) ⊗∇(b));(a ⊗γ(a,b) ⊗b).
eq ∇(a);( ∇(a) ⊗a) = ∇(a);(a ⊗∇(a)).
eq ∇(a); γ(a,a) = ∇(a).

eq d( ∆(a)) = a ⊗a.
eq c( ∆(a)) = a.
eq ∆(e) = e.
eq ∆(a ⊗b) = (a ⊗γ(b,a) ⊗b);( ∆(a) ⊗∆(b)).
eq ( ∆(a) ⊗a); ∆(a) = (a ⊗∆(a)); ∆(a).
eq γ(a,a); ∆(a) = ∆(a).

eq ∇(a); ∆(a) = a.
eq ∆(a); ∇(a) = (a ⊗∇(a));( ∆(a) ⊗a).

endfth
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Fig. 2.Theory of match-share categories.

On the other hand, once we replace read arcs with self-loops, we can form the free
symmetric monoidal category of computations of the pre-net. Such category distin-
guishes arrows that represent the same concurrent computation, in that the construction
enforces sequentialization of all multiple readings of the same resource. For instance,
if t : a

c−→ b, the fact thatt can fire two concurrent instances froma⊗a⊗c will not be
reflected. However, the monoidal and the match-share category can be combined via a
mapping from the former to the latter that: (1) identifies all computations that are distin-
guished because of the order in which multiple readings are performed; and (2) selects
only the admissible computations of the net with read arcs.

Notation. Let Rbe a pre-net with read arcs. We denote by[R] the pre-net with the same
places asR and transitions{[t] : u⊗w−→ v⊗w | t : u

w−→ v ∈ R}. Moreover, we let
S([R]) denote the free symmetric monoidal category generated by[R] and letMS([R])
denote the free match-share category generated by[R].

Definition 1. The symmetric monoidal functorE : S([R])→MS([R]) is defined on gen-
erators by:

E(a) def= a (for any placea∈ R)

E([t]) def= (u⊗∇w);([t]⊗w);(v⊗∆w) (for any transitiont : u
w−→ v∈ R).



fth RAUT is including MON.
sort Rtrans.
subsort Monoid < Rtrans.
ops pre(_) post(_) ctx(_) : Rtrans -> Monoid.
var u : Monoid.
eq pre(u) = e.
eq post(u) = e.
eq ctx(u) = u.

endfth.

Fig. 3.Theory of read-automata.

Proposition 1 (cfr. [13]). The imageE(S([R])) ⊆ MS([R]) is isomorphic (via a sym-
metric monoidal functor) to the category of concatenable contextual processes ofR.

The question that then arises is how to tell whether an arrow ofMS([R]) belongs to
E(S([R])). We answer this by reformulating the construction at the level of theories in
partial membership equational logic, thus expressing a typing discipline for discarding
all meaningless arrows fromMS([R]), while keeping all the good ones.

4 Functorial models for pre-nets with read arcs

The first step is to define the theory of “programs,” that is our base category of nets. It is
technically convenient to consider a larger class of nets, whose states are elements of a
generic, non-free monoid, as expressed in Figure3. The class of pre-nets with read arcs
is then embedded as the full subclass whose states are free monoids (generated from
the set of places), and the results can be extended via the obvious embedding.

The theoryRAUT has three operations,pre( ), post( ), andctx( ), that define
respectively source, target and (read) context of each read-transition inRtrans. Idle
transitions are included by the subsorting relationMonoid < Rtrans. The sortMonoid
comes from the theoryMON of monoids, consisting of a total operation⊗ which is
associative and has the constante as unit (see Figure9 in AppendixA).

The second step is to refine the theoryMSCAT into a theoryRCOMP by adding sorts
and operators that are needed to characterize the class of meaningful arrows. Thus, we
add two sortsRtrans andRarrow, with Object < Rtrans < Rarrow < Arrow: the
sortRtrans is for embedding basic transitions, and the sortRarrow is for collecting
all correct computations. Among the operators, we add those ofRAUT for source, target
and context of basic transitions (i.e.,pre( ), post( ), andctx( )). Note that these
operators, unlike those for domain and codomain (i.e.,d( ) andc( )), are not defined
for all arrows, but only for the elements ofRtrans. Note also that they are related to
the domain and codomain of transitions by the first two equations of the theory. The
membership axioms state that the sortRarrow is closed under monoidal and sequential
composition and that it contains all the symmetries. The main novel ingredient is the
operatormk( ), which models the embeddingE described above, namelymk(t) = [t],
for any transitiont, as expressed by the last equation of the theory. The presence of
mk( ) is also technically convenient to prove the main correspondence results.



fth RCOMP is including MSCAT.
sorts Rtrans Rarrow. subsorts Object < Rtrans < Rarrow < Arrow.
ops pre(_) post(_) ctx(_) : Rtrans -> Object.
op mk(_) : Rtrans -> Arrow.
vars h k : Rarrow. var t : Rtrans. var u : Object.
mb h⊗k : Rarrow.
mb γ(u,v) : Rarrow.
cmb h;k : Rarrow if c(h) == d(k).
eq pre(t) ⊗ctx(t) = d(t).
eq post(t) ⊗ctx(t) = c(t).
eq pre(u) = e.
eq post(u) = e.
eq ctx(u) = u.
eq d(mk(t)) = d(t).
eq c(mk(t)) = c(t).
eq mk(u) = u.
eq (pre(t) ⊗∇(ctx(t)));(mk(t) ⊗ctx(t));(post(t) ⊗∆(ctx(t))) = t.

endfth.

Fig. 4.Theory of read-computations.

view RV from RAUT to RCOMP is
sort Monoid to Object.

endview.

Fig. 5. The viewRV.

The third step is to express the adjunction between the class of programs and that
of models. This task is accomplished by the signature morphismRV in Figure5, which
embeds homonym sorts and operators and maps the sortMonoid of RAUT to the sort
Object of RCOMP. It is easy to verify that all axioms inRAUT are respected byRV:

Proposition 2. The viewRV is a theory morphism.

By Proposition2 and because of the properties of theory morphisms [18], we know
that there is a right-adjoint forgetful functorURV from the category ofRCOMP-algebras
to the category ofRAUT-algebras, which includes all pre-nets with read arcs. We denote
by FRV the left-adjoint going in the opposite direction.

Lemma 1. Given a pre-net with read arcsR, its initial RCOMP-algebra FRV(R) is a
match-share category.

Proof. The free functorFRV ensures that the elements of sortArrow of FRV(R) are built
by composing objects, transitionst ∈R, symmetries and (co-)duplicators, together with
the additional elementsmk(t) for any t ∈ R. The axioms of match-share categories are
enforced on all the elements ofArrow by inclusion of the theoryMSCAT intoRCOMP. ut

The fourth and final step is to show that the sortRarrow can be used to characterize
all meaningful computations ofR. For the following definition, we recall that a lluf
subcategoryA of a categoryC is just a subcategory having all the objects ofC.



Definition 2. Given a pre-net with read arcsR, we letRarrow(R) denote the lluf sub-
category of the match-share categoryFRV(R) whose arrows have sortRarrow.

Lemma 2. For any pre-net with read arcsR, an elementt has sortRtrans in FRV(R) if
and only ift is a transition ofRor t is a string of places.

Lemma 3. The categoryRarrow(R) is symmetric monoidal.

Theorem 1. The categoryMS([R]) is isomorphic (via a match-share functorS ) to
FRV(R).

Proof. The match-share categoryFRV(R) is generated by composingt andmk(t) (for
any transitiont) with identities, symmetries and (co-)duplicators in all possible ways.
Any expression of sortArrow can be equivalently expressed as the parallel and sequen-
tial composition of just themk(t)’s with identities, symmetries and (co-)duplicators,
because of the equation

eq (pre(t) ⊗∇(ctx(t)));(mk(t) ⊗ctx(t));(post(t) ⊗∆(ctx(t))) = t.

that allows replacing all occurrences oft. Note that ift = u for some objectu, then
mk(u) = u. Hence the constructormk( ) cannot be applied to identities for generating
new arrows. Moreover, no other axioms involvingt : Rtrans are present that could
further quotient out the elements of sortArrow.

Let us consider the match-share functorS : MS([R])→ FRV(R) sending[t] to mk(t)
(and being the identity otherwise) which is well-defined by initiality ofMS([R]). The
functorS is full and faithful, it preserves symmetries and (co-)duplicators, and it defines
an isomorphism on objects (and thus on arrows). ut
Theorem 2. The categoryE(S([R])) is isomorphic (via a symmetric monoidal functor
R ) to Rarrow(R).

Proof. The functorR is S restricted toE(S([R])). In fact, suppose thatα ∈ E(S([R])),
then an arrowβ ∈ S([R]) must exist such thatE(β) = α. Let Q : S([R])→ Rarrow(R)
be the symmetric monoidal functor sending[t] to t and preserving identities, symme-
tries, sequential composition and monoidal composition. Then it is straightforward that
S(α) = Q (β) and henceS(α) has sortRarrow. The functorR is an isomorphism be-
cause it is injective on the generators (the transitions of the net) and preserves the oper-
ations of symmetric monoidal categories strictly. ut

Note that the categoriesE(S([R])) andRarrow(R) are not match-share categories,
and hence the functorR is not a match-share functor.

Theorem2 defines a typing discipline for selecting the admissible computations
from the larger classMS([R]). Since, under appropriate assumptions [3], membership
predicates allow automated verification in languages likeMaude [9], then the construc-
tion RV answers to the ambiguity ofE .

Note that for the arrows inRarrow(R) only the operations of domain and codomain
are defined, not those involved with contexts. However, the properties of the initial
model can be exploited to factor out the domain and codomain of arrows inRarrow(R)
into their consumed, read and produced parts. We show this below.
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Definition 3. Let h ∈ Rarrow(R) and leta be an object withd(h) = u1⊗a⊗u2 and
c(h) = v1⊗a⊗v2 for suitable objectsu1, u2, v1, v2. The objecta is saidto be read inh
if h can be written as (cf. Figure6):
(

u1⊗∇(a)⊗u2

)
;
(

u1⊗a⊗ γ(a,u2)
)

;
(

h⊗a
)

;
(

v1⊗a⊗ γ(v2,a)
)

;
(

v1⊗∆(a)⊗v2

)
.

Lemma 4. Let t : Rtrans. Then,ctx(t) is read inh.

The proof is graphically illustrated in Figure7, where for simplicity we letu =
pre(t), v = post(t) andw = ctx(t). The marking read – and not consumed – byh is
the maximum marking read byh, and it can be characterized as follows.

Definition 4. Leth∈ Rarrow(R). The arrowh is pureif d(h) = u⊗w andc(h) = v⊗w,
with (u⊗∇(w));(h⊗w);(v⊗∆(w)) = h and no other object inu and v is read. The
objectw is called thecontextof h and denoted byctx(h), while u and v are denoted
respectively bypre(h) andpost(h).

For h pure, we denote bŷh the twistedversion ofh obtained by exchanging the
position of the context with that of the pre- and post-set (respectively, in the domain
and codomain ofh), i.e. ĥ = γ(w,u);h;γ(v,w).

Corollary 1 (From Lemma 4). Any arrowh∈ Rtrans(R) is pure.

Lemma 5. Leth∈ Rarrow(R) be pure, withpre(h) = u, post(h) = v andctx(h) = w.
Thenĥ∈ Rarrow(R) andĥ = (∇(w)⊗u);(w⊗ ĥ);(∆(w)⊗v).
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Fig. 8.The proof of Proposition3, graphically.

The following result shows that computations which are serialized on contexts are
equivalent to the concurrent executions with multiple readings of the context.

Proposition 3. Leth1,h2 ∈ Rarrow(R) be pure arrows, withpre(hi) = ui , post(hi) =
vi andctx(hi) = w for i = 1,2. Then:

(h1⊗u2);(v1⊗ ĥ2) = (u1⊗∇(w)⊗u2);(h1⊗ ĥ2);(v1⊗∇(w)⊗v2)

= (u1⊗ ĥ2);(h1⊗v2)

Proof. The proof exploits Lemmas4 and5 and is (partially) illustrated in Figure8:

– we first make explicit that the arrowsh1 andĥ2 read the contextw by applying the
laws (valid for pure arrows):

h1 = (u1⊗∇(w));(h1⊗w);(v1⊗∆(w))

ĥ2 = (∇(w)⊗u1);(w⊗ ĥ2);(∆(w)⊗v1)

– then, we apply the axioms of match-share categories to rearrange the matching and
sharing ofw to have enough concurrent copies of it available at the same time and
use functoriality of the tensor to shifth1 andĥ2 in parallel;

– finally, we get rid of additional copies by applying back the laws of pure arrows.

The equality with the expression wherêh2 precedesh1 is analogous. ut

5 Conclusion

Previous approaches to extending the “Petri nets are monoids” semantics to nets with
read arcs have either relied on structured tokens or have defined a too rich category of
computations, where it was difficult to filter out meaningless arrows. We have employed
theories in partial membership equational logic to solve the latter problem.



Specifically, we have introduced a suitable theoryRCOMP that provides us with a
typing discipline to select all and only the correct concurrent computations. The theory
RCOMP enucleates the fundamental algebraic principles on which the non-trivial opera-
tion of reading without consumingis based on. The functorial construction presented in
this paper has been reconciled with unfolding semantics in [1]. Moreover, as equational
reasoning inPMEqtl is supported by the rewriting logic language Maude [9], the the-
ory RCOMP offers a mathematical basis for the analysis and optimization of concurrent
computations in systems with many-readers access policies to shared resources (e.g.,
for the applications of contextual nets in [11,23,29,10]).

We conclude by mentioning that a non-initial match-share category of abstract mod-
els for nets with read arcs has been used in [4], based on categories of (co)spans inSet.
However, the models in [4] do not retain all the information about the concurrent com-
putations of the net: they just keep track of which resources have been read throughout
the computation and thus can be concurrently accessed from the environment.
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A Theories in partial membership equational logic

The theory of categoriesCAT is defined in Figure9. It has sortsObject andArrow with
Object < Arrow. There are two unary total operationsd( ) andc( ), for domainand
codomain, and a binary composition; defined iff the codomain of the first argument
is equal to the domain of the second argument. By convention, functions with given
domain and codomain are total on that domain and codomain. It is easy to check that
a model ofCAT is a category (in which objects coincide with identity arrows), and that
CAT-homomorphisms are just functors (cf. [20] for the details).

The theoryMON of monoids is even simpler (Figure9). It has a unique sortMonoid
and two total operators: the associative tensor⊗ and the unit elemente, which is the
identity for ⊗ . Then, by exploiting the tensor product of theories

N
defined in [20],



fth CAT is fth MON is
sorts Object Arrow. sort Monoid.
subsort Object < Arrow. op e : -> Monoid.
ops d(_) c(_) : Arrow -> Object. op _ ⊗_ : Monoid Monoid -> Monoid
op _;_. [assoc id: e].
var a : Object. endfth
vars f g h : Arrow.
eq d(a) = a. fth MONCAT is
eq c(a) = a. MON

N
CAT renamed by (

ceq a;f = f sort (Monoid,Object) to Object.
if d(f) == a. sort (Monoid,Arrow) to Arrow.

ceq f;a = f op e left to e.
if c(f) == a. op _ ⊗_ left to _ ⊗_.

cmb f;g : Arrow op _;_ right to _;_.
if c(f) == d(g). op d(_) right to d(_).

ceq c(f) = d(g) op c(_) right to c(_). ).
if f;g : Arrow. endfth

ceq d(f;g) = d(f) if c(f) == d(g).
ceq c(f;g) = c(g) if c(f) == d(g).
ceq (f;g);h = f;(g;h) if c(f) == d(g) and c(g) == d(h).

endfth

Fig. 9.The theoriesCAT, MON, andMONCAT.

the theory of monoidal categories can be obtained by combining the theoriesMON and
CAT as illustrated in Figure9. Note that the tensor product constructionMON

N
CAT has

the sort poset originated from the product of the two sort posets inMON andCAT and
operators “opM left” and “opC right” for each operatoropM in MON andopC in
CAT. The axioms ofMON

N
CAT are generated by combining the axioms ofMON andCAT

(see the appendix of [5] for details). The theoryMONCAT just renames sorts and operators
by a more friendly notation.

Finally, the theory of symmetric monoidal categoriesSMONCAT is defined in Fig-
ure10, by adding the symmetric natural transformationγ( , ).

fth SMONCAT is including MONCAT.
op γ(_,_) : Object Object -> Arrow.
vars a a’ b b’ c : Object. vars f f’ : Arrow.
eq d( γ(a,b)) = a ⊗b.
eq c( γ(a,b)) = b ⊗a.
eq γ(a,e) = a.
eq γ(e,a) = a.
eq γ(a ⊗b,c) = (a ⊗γ(b,c));( γ(a,c) ⊗b).
eq γ(a,b); γ(b,a) = a ⊗b.
ceq (f ⊗f’); γ(b,b’) = γ(a,a’);(f’ ⊗f)

if d(f) == a and d(f’) == a’ and c(f) == b and c(f’) == b’.
endfth

Fig. 10.The theorySMONCAT.


