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This work reports on some useful applications of the tile model to the specification
and execution of CCS-like process calculi. This activity is part of our ongoing
research on the relation between tile logic and rewriting logic.

1 Overview

Tile Logict? is a framework for modular descriptions of the dynamic evolution
of concurrent systems, extending rewriting logic >* (in the non-conditional
case), by side-effects and rewriting synchronization. These aspects are very
important when modelling process algebras, because they allow us to represent
the dynamic interaction between processes and “the rest of the world”. Since
rewriting logic is the semantic basis of several language implementation efforts,
it is interesting to map tile logic back into rewriting logic in a conservative way,
to obtain executable specifications of tile systems. However, as explained in®, a
correct rewriting implementation of tile logic must deal with two issues, namely
the possible identification of different tile proofs, and the development of a
meta-layer to control the rewritings. By exploiting the reflective capabilities®”
of the langnage Maude®, the meta-layer can be specified as a kernel of internal
strategies®, which may help the user to direct the computation and to collect
the possible results (Maude is a language that has been recently developed at
SRI International, and it is based on rewriting logic).

In tile logic, a set of rules combines certain basic modules, which may
interact through their interfaces. Roughly speaking, modules are just open
(e.g., partially specified) configurations of the system. The behaviour of a
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system as a whole consists of a coordinated evolution of its sub-modules. The
name “tile” is due to the graphic representation of such rules:

a
also written s, 7s’, states that the initial configuration s of the system evolves

to the final configuration s’ producing an effect b, which can be observed by the
rest of the system. However, such a step is allowed only if the subcomponents
of s (which is in general an open configuration) evolve to the subcomponents
of s’, producing the trigger a. The vertices o of the tile are called interfaces.
Tiles can be composed horizontally (through side effects), vertically (computa-
tional evolutions of a certain component), and in parallel (concurrent steps) to
generate larger steps. By analogy with rewriting logic, tiles can be considered
as special sequents subject to certain inference rules.

In the translation from tile logic to rewriting logic, the basic idea is to
“stretch” tiles into ordinary rewriting cells as pictured below, maintaining the
capability to distinguish between configurations and effects.
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It may happen that both configurations and effects rely on a common
auztliary structure, e.g. for tupling, projecting, and permuting interfaces. In
this case the auxiliary structure becomes “shared” in the stretched translation.
In® two such situations are studied in detail, namely process tile logic and term
tile logic, where both configurations and effects are respectively net-process-like
and term-like structures. As a main result, given a tile system R, a sequent

a

s, s' is entailed by R in tile logic if and only if a sequent s;b = a; s’ is entailed

by the stretched version of R in rewriting logic and its proof satisfies some
additional constraints (see 1%%). Moreover, for a class of tile systems (called
uniform) the additional constraints are automatically satisfied by the fact that
the initial state of the sequent s;b = a;s’ is the sequential composition of a
configuration followed by an effect, and that the final state is the sequential
composition of an effect followed by a configuration. If the tile system is not
uniform, then also the actual proof term decorating the derivation has to be
taken into account. However, since at present we do not have any meaningful
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example of non uniform systems we are not really interested in having such
an implementation. In any case we need to define some rewriting strategies,
exploring the tree of nondeterministic rewritings, until a successful state is
reached. For instance, a general notion of success for uniform tile systems
consists of VH states, i.e., states that are the sequential composition of an
effect followed by a configuration.

A key point is that the internal strategies defined for simulating tile sys-
tems, can also be thought of as general meta-strategies for nondeterministic
rewriting systems equipped with a predicate of success. We refer the interested
reader to® for a detailed description of some internal strategies. In this paper
we show some example of their application to implement concurrent process
calculi. In particular, in Section 2 we define executable implementations of
CCS-like languages, preserving their original operational semantics. The two
case studies considered here are the tile specification of finite CCS given in?
(here discussed in Section 2.1) and and the tile specification of CCS with lo-
cations! given in1? (here discussed in Section 2.2), exemplifying respectively
term tile logic and process tile logic.

2 Rewriting Processes

Milner’s Calculus for Communicating Systems (CCS) '3 is among the best
well-known and studied concurrency models. We present here executable im-
plementations of CCS-like languages defined through the translation in Maude
of suitable tile systems.

The advantage of modelling process algebras with tile logic should be evi-
dent just considering the usual action prefiz operation, denoted by p... When
applied to a certain process P it returns a process p.P, which can perform an
action g and then behaves like P. The corresponding tile is represented below
and can be composed horizontally with the identity cell of any process P to
model the computation step associated to the action prefix.

B P -

o —> 0 0O —=> 0 —> 0
id\L iu id\L id\L J,u
o —=> 0 0O —> 0 —> 0
id P id

Let nil be the inactive process, and consider the process p = py.us2.nil.
If process p tries to execute action ps before executing pq it gets stuck be-
cause there is no tile having py as trigger and pj._ as initial configuration.
In a non-conditional rewriting system, this is not necessarily true, because
rewriting steps can be freely contextualized (and instantiated). This problem
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is well-known in rewriting logic, and some ad-hoc solutions have been already
proposed in the literature 1*'®. OQur methodology could offer a unifying view
for a wide class of related problems.

It follows that a typical query in a tile system could be: “derive all (some
of) the tiles with a given horizontal source s and vertical target b”. A sur-
prising thing, in the translation of a tile system, is that queries start with a
vertical target rather than a source. The obvious explanation consists in the
use of terms to define the vertical arrows. In this case this is the only correct
procedure. However, for CCS-like process calculi?, we realized that the vertical
and horizontal dimensions could be swapped in such a way that the intuitive
queries are of the kind “derive all one-step transitions for a given agent P”.
This is possible because the vertical signature consists of unary actions. So
we can (1) reverse the vertical arrows in the tile system and then (2) rotate
clockwise of 90 degrees the tiles when implementing the system, as illustrated
below for the action prefix tile:

PN C e X ¢-) L S
id\L iu idT Tu id\L $u~-
1—>1 1—>1 1—>1
id id i
(a) ¥ dy
u(p.P) u.P
/_\ /N
14 1 1 4 1
~— 7 S~ 7
P u(P)

Examinining the 2-cell translations the motivation for this way of swapping
the arrows results very clear. The cell on the left (a) states that if we try to force
the process p.P to perform a p action, it succeeds. The other cell (b) states
that process pu.P may perform the action pu. Consequently, an implementation
using the first kind of rules can only be used to test CCS processes, whereas an
implementation based on the second kind of rules generates all and only the
possible evolutions of the system. In any case we need to define some rewriting
strategies, exploring the tree of nondeterministic rewritings, until a successful
configuration is reached. For instance, a general notion of success for uniform
tile systems consists in reaching a state which is the sequential composition of
an effect follwed by a configuration.

2.1 Finite CCS

Let A (ranged over by «) be the set of basic actions, and let A be the set of
complementary actions (where (_) is an involutive function such that A = A
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and AN A = ). We denote by A (ranged over by A) the set AU A. Let
T & A be a distinguished action, and let Act = AU {7} (ranged over by p) be
the set of CCS actions. Then, a finite CCS process is a term generated by the
following grammar:

P:=nil | pP | P\ | Pla/B] | P+ P | P|P.

We let P, @, R, ...range over the set Proc of CCS processes. Assuming the
reader familiar with the notation, we give just an informal description of CCS
algebra operators: the constant nil yields the inactive process; p.P is a process
behaving like P but only after the execution of action u; P\« is the process
P with actions « and @ blocked by restriction \«; Pla/B] behaves like P
with actions o and @ relabelled with 8 and 3; P + @ is the nondeterministic
(guarded) sum of processes P and @; finally P|Q is the parallel composition
of processes P and ). The dynamic behaviour of CCS processes is usually
described by a transition system, presented in the SOS style.

Definition 1 (Operational Semantics of CCS) The CCS transition sys-
tem s given by the relation T' C Proc X Act X Proc inductively generated from
the following set of axioms and inference rules

PHQ _ PEQ PHQ
— ", ———— n¢{a,a} T TR
wP — P P\a — Q\« P+R—Q R+P—Q
P9 P9 P2LQ P-LQ P9
Pla/8] "2 Qla/ 8] PIR L QIR PP L Q@ RIP £ RIQ

where P -5 Q means that (P,p,Q) €T, and the action ula/f] is defined as
Bifu=a, as fif u=a, and as p otherwise.

The operational meaning is that a process P may perform an action u
becoming @ iff it is possible to inductively construct a sequence of rule appli-
cations to conclude that P -2+ Q. More generally, a process Py may evolve
to process P, iff there exists a computation Pqy LN P P, LN P,. In?it
is shown how to associate a tile system to CCS. We adapt their definition to
define the term tile logic for finite CCS.

Remark 1 If both configurations and effects are terms over two signatures ¥ g
and Yy, then we can assume a standard representation of basic tiles having
the form

R
—
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(with he Ts, (X)), g €Ts,(Xy), VE TEV(Xn)k, and u € Ty, (X)), where
Xi = {=1,...,2;} is a chosen set of variables, totally ordered by x;, < xj, iff
J1 < j2) as a sequent n < (E) % (9) where the number of variables in the
u

“upper-left” corner of the tile is made explicit (the values m and k can be easily
retrieved from the lengths of the term vectors decorating the tile).

Definition 2 (Tiles for finite CCS) The term tile system Rccs has the
signature X4 = {p: 1 — 1| u € Act} as horizontal signature, the signature

Yp of CCS processes as vertical signature, and the following basic tiles:

acty 19 (1) T (u(01))  resia s La (ule) ot (u(en) (€ {ora))

(@1[e/B]) B(x1) if p=a
reluas i 19 {uz1) <—> (t) witht= < B(x1) if p = &

wile/F]) w(zy) otherwise
(=1 (z2
(hu s 29 (o) e2) o (@) s 29 (en, plz2)) 2 (o))
) {e1]z2) ) {e1]z2)
Juws 2o (uan), wa) - = (u(za)) - L 29 (e, ple)) - = ()
] < (z1]z2)
lIx =29 (A(21), A22)) oo (r(21))

As explained at the beginning of Section 2, here the vertical dimension is
assoclated to process descriptions, whereas the horizontal dimension represents
the opposite of the dynamic evolution of the system (we say opposite, because
the arrows representing the actions performed by the system are reversed from
their computational-driven intuitive direction).

The following result establishes the correspondence between the set-theoretic
view of the operational semantics 7', and the sequents entailed by Reoces.
Proposition 1 The tile system Rccs is uniform, and for any CCS agents P
and @, and action p:

(P)

P-=QeT < Reest 09 () —>(u(z)) -



In Maude it is possible to use membership assertions (e.g., assertions such
as t:S meaning that the term ¢ has sort S) and subsort specifications to ob-
tain a very general notion of success predicate for uniform term tile systems,
such as Recs. Due to lack of space we refer the interested reader to® for its
detailed description. The idea is that given a uniform term tile system R with
horizontal signature X g and vertical signature Xy, we define a rewriting logic
with the following sorts: the sort W containing the variables of the system as
constants; the sort H containing the terms over the signature X g and variables
in W (similarly for the sort V); the sort HV containing the terms over the signa-
ture Y gyuyv and variables in W such that they are decomposable as terms over
Yy applied to terms over X g (similarly for VH); sorts QH, QV, QHV, and QVH are
quoted versions of the sorts described before (we will denote the quoted version
of a signature Xg by X s/, adopting the convention that all the operators of the
latter are syntactically quoted versions of the operators in Xg); and the sort U
containing terms over the signature Xgyy uguyv: and variables in W.

Then, we add two operations quote and unquote that allow the translation
of a term into its quoted version and vice versa. Finally, the rewrite rules are
the stretched and quoted versions of the tiles in R, and the unary operator
top : U -> Uisintroduced together with two rules start and end to mark the
term to be rewritten, and to begin and terminate the rewriting computation:

crl [start] : top(z;) => top(quote(z;)) if z; : HV .
crl [end] : top(z;) => top(unquote(z;)) if z; : QVH .

Lou
An important theorem states that a sequent h™_ "¢ is entailed by R if and only

if the sequent top(u(k(Z))) = top(g(¥(¥))) is entailed in R. It follows that a
very simple success predicate ok can be defined as follows:

ceq ok(top(¢)) = true iff ¢t : VH .

2.2 CCS with Locations

In the philosophy of true concurrent semantics, the notion of concurrency
cannot be reduced to nondeterminism via interleaving as it happens for the
implementation that we have considered in the last section. To overcome
this problem, one possibility is to define a relation representing those pairs
of events that can occur in any order, i.e., the commuting diamonds of the
transition system 617, A uniform treatment for both the operational and the
abstract concurrent semantics of a CCS-like process calculus with locations!?! is
provided in'?, using (an enriched) process tile logic. In this section we propose
a graph-like presentation of those systems, which can be easily implemented

in Maude. Locations are introduced to allow the external observer to see an
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action together with the location where it takes place. As an example, this
approach distinguishes process «.8.nil + f.«.nil from «.nil|3.nil because the
second process can separately perform « and § in different places, while the
first process cannot.

Let Loc be a (totally ordered) denumerable set of locations, ranged over
by l. A located process P is a term generated by the following grammar:

G:u=nil | p.G | G+G | G|G P:=G | !l:P | PP

where, for the sake of simplicity, we distinguish the ground processes (i.e.,
processes without locations), ranged over by G, G, etc.

The operational semantics is defined by a transition system whose labels
consist of actions together with strings of locations, denoted by u. In a syn-
chronization, the strings associated to the synchronizing actions are paired.
To define the concurrent operational semantics, a concurrency relation, usu-
ally denoted by (- then _ x _ then _), can be defined on the algebra of tran-
sitions and computations to identify the commuting diamonds of the system,
following the approach proposed in !7: some axioms identify the basic dia-
monds, consisting of two transitions performed by two processes composed
in parallel, then some inductive rules propagate the diamonds in all the pos-
sible contexts. Ferrari and Montanari propose 12 a tile rewrite system such
that a translation {_[} from transitions to tiles can be inductively defined
with the property that each diamond (¢; then ¢5 x t3 then t4) implies that
{t1[} - {t=l} = {tsl} - {tal}. Due to space limitation, here we just give a brief
survey of their tile system, using hypergraphs to model configurations and ef-
fects. Each hyperarc is represented with a labelled box connected to its source
and target nodes. Unlabelled arcs represent sharing. The labels of horizontal
hyperarc are taken over the signature ¥s = {+:2— 1,1: 0 — 1,k: 1 —
0}UU,eace{pn : 1 — 1}, and vertical hyperarcs are labelled over the signa-
ture ¥p = {7 :2 — 2} U UueAct{,uv : 1 — 1}. Notice that each hyperarc
is labelled with an operator whose arity and multiplicity exactly match the
number of source and target nodes. FEach node intuitively represents a place
where actions may occur, i.e., a location.

We briefly comment the tiles defined in 2, also showing the graphical
representation of most of them. Tile prefix, states that a “prefix” hyperarc
can execute the corresponding action evolving to a new location. The link to
the old location is maintained, since other agents could be attached there. Two
tiles (Suml, and Sumr,) model the nondeterministic sum. Whenever the “left”
(“right”) process makes a move, then the other process is eliminated via a nil
binding . The locations promoted by the evolving process are propagated
forward.



Pref ixp\ [# ] Suml, [#+]
E’i .

¢ (=]
Rule Comp, is the most important one. It states that if two processes share
the same location and one of them is making a move, then its subprocess
will be allocated to the new location, whereas the parallel process will remain
linked to the old location. We do not need to distinguish between a Compl,
(left) and a Compr, (right), because they can be obtained one from the other
using auxiliary permutation tiles. Rule Synchy allows the synchronization of
two concurrent complementary moves to take place. The resulting action T
states that the two “new” locations will be both correlated to the two “old”
locations, where the complementary actions took place. Two last rules Twin
and TwinComp show how the 7T events can be propagated through sharing.

. . . / .
Li=d fde)
AR

As for finite CCS, we “rotate” the rules before translating them in Maude.
Multiple pointers to the same node name model sharing of locations, and
explicit name management embeds interface permutations. Let us take a stan-
dard denumerable set of nodes {n(i) | i € IN} (sort Node). The operator 1s
constructs lists of nodes (sort NodeList), where the empty list is denoted by
nil. Similarly, the operator set constructs set of nodes (sort NodeSet), the
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constant empty representing the empty set of nodes. A hyperarc (sort Edge) is
then a triple consisting of a list of source nodes, a label (of sort Label) and a list
of target nodes. The operator edge allows the construction of generic hyper-
arcs. A hypergraph (sort EdgeMSet) is just a (multi)set collection of hyperarcs
(constructor ms and neutral element zero). We introduce an operator top to
mark the whole actual configuration of the system (sort State). We define also
some useful operators to extract information of various kind: proj(NL) re-
turns the set of nodes contained in the node list N L, sources (M .S) returns the
set of source nodes contained in the hypergraph M S, targets(MS) returns
the set of target nodes contained in the hypergraph M S, vertices(MS) re-
turns the set of nodes contained in the hypergraph MS, isIn(F,ES) = true
iff the node E is in the set of nodes FS, children(F,MS) returns the set
of children of node E in the hypergraph M S, and desc(E,MS) returns the
set of descendants of node F in the hypergraph M S. The label of a hyperarc
can be either of sort HSign (associated to Xg), or of sort VSign (associated
to ¥p). We fix a denumerable set of basic actions {a(i) | ¢ € IN} and their
complementary actions {bar(a(i)) | ¢ € IN} (sort Channel), together with a
special action tau. Given an action g we denote the associated prefix operators
pp in Xg and g, in Xp respectively by h(u) and v(p). Regarding the other
operators, + is denoted by plus, ! is denoted by dis, k is denoted by codis
and T is denoted by t. A special horizontal operator alias is introduced to
propagate possible renamings caused by rule Suml, and Sumr,. We are now
ready to translate tiles into rewrite rules.

vars BA BA’ : Channel . vars £ E' Fa Fb : Node .
var Mu : Act . var MS : EdgeMSet . vars ES ES’ : NodeSet .
rl [prefix] : top(ms(edge(E’',h(Mu),E),MS)) =>
top(ms(edge(FE',v(Mu),FE),edge(nil,dis,E),MS))
rl [suml] : top(ms(edge(E’,v(Mu),Fa),
edge(ls(Fa, Eb),plus,FE),MS)) =>
top(ms(edge(Fb,codis,nil),edge(E’,v(Mu),E),
edge(Fa,alias,E),MS))
*** sumr is analogous
crl [synch] : top(ms(edge(E,v(BA),Fa),
edge(E',v(BA"),Eb) ,MS)) =>
top(ms(edge(1s(E,E") ,t,1s(Fa,Eb)),MS))

if bar(BA) == BA’

The other tiles are either trivial or special cases of the previous ones, and
thus omitted. The problem is that not all the rewritings are correct, hence
we have to filter computations. This can be done at the meta-level using
the strategies to collect rewritings. We need only to define a notion of suc-
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cess. In particular, we have just to check if the actual state is acyclic and
decomposable in a hypergraph with labels in HSign followed by an hyper-
graph with labels in VSign. A predicate ok accomplishing this task can be
defined as follows, using some auxiliary operators: okHV(M S) = true iff M S
is horizontal-vertical decomposable; acyclic(MS) = true iff M S is acyclic;
disjoint(FES,ES’) = trueiff ESNES’ = 0; and horiz(MS) = true iff all
the hyperarcs of M S have label in HSign.

It can be proved that successful configurations (according to the predicate
ok) reachable in LOCCCS starting from the representation of a process P are all
and only the behaviours of P in the tile system of Ferrari and Montanari.

3 Concluding Remarks

We have implemented and experimented in Maude the translation of two rel-
evant tile systems for CCS-like calculi. Then, the computations of simple
processes in the meta-strategies have been tested using the meta-strategies
of 5. Our experiments are encouraging, since Maude seems to offer a good
trade-off between rewriting kernel efficiency and layer-swapping management
(from terms to their meta-representations and vice versa).
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