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1 Introduction

A lively research direction in concurrent and distributed computing is pushing
for a synergic design of theoretical frameworks and programming mechanisms
that help theoreticians and practitioners to cope with the complexity of large
system development and analysis. Among others, type-based approaches look
rather handy both for theoretical and applied research. Process calculi provide
a paradigmatic example: they offer a convenient formal setting for modeling
modern systems (e.g., Service Oriented Computing (SOC) [2, 8, 4]) and yield a
natural framework for enforcing desired properties using behavioral types [5].

Recently, researchers have shown a growing interest around the notion of
a multiparty session [6, 1], because typical modern distributed applications can
involve the coordination of many endpoints. Remarkably, SOC adds a further
difficulty as endpoints may be dynamically discovered and assembled. In fact,
SOC aims to the seamless and trustworthy integration of separately developed
computational entities, called services. To achieve this, matching criteria must
be available for comparing a service description against the requirements of the
invoker before binding the two.

µse (read “muse”, after MUltiparty SEssions) [3], is a process calculus for
expressing computations where endpoints dynamically join existing multiparty
sessions. In this context, it is crucial to have type systems for the early detection
of possible sources of incompatibility.

In this paper we consider µse without name passing and intra-site commu-
nication (§ 2) and sketch a type system aimed to guarantee a weak form of
compatibility (§ 3), in the sense that all the interactions required by each local
task can be provided either by endpoints currently participating to its session
or by endpoints that can join that session later.

This is work in progress and we plan to refine the type system to have stronger
guarantees. Due to space limitation we cannot give a comprehensive presentation
of our ideas, which will be spelled out in the full version of this paper.

⋆ Research supported by the FET-GC2 EU project IST-2005-16004 Sensoria by the
UK project HiDeA4SOC and by the Italian FIRB project TOCAI.



S, T ::= l :: a ⇒ P Service definition P, Q ::= 0 Empty process
| l :: P Located process | c.P Action prefix
| S|T Parallel composition | install[a ⇒ P ].Q Service installation
| (νn)S New name | invoke a.P Service invocation

| r
·
= s explicit substitution | mergep e.P Entry-point

| r ⊲ P Endpoint
| P |Q Parallel composition
| (νn)P New name
| rec X.P Recursive process
| X Recursive call

Fig. 1. Syntax of systems and processes

c.P
c
−→ P mergep e.P

ep

−→ P invoke a.P
⊥a
−−→ P a ⇒ P

r⊤a
−−→ r ⊲ P

P
α
−→ Q α ∈ {⊥a, c, ep}

r ⊲ P
r α
−−→ r ⊲ Q

P
α
−→ Q α /∈ {⊥a, c, ep}

r ⊲ P
α
−→ r ⊲ Q

install[a ⇒ R].P
a[R]
−−−→ P

P
a[R]
−−−→ Q

l :: P
τ
−→ l :: Q | l :: a ⇒ R

P
α
−→ Q α /∈ {a[R]}

l :: P
α
−→ l :: Q

A
r c
−−→ A′ B

r c
−−→ B′

A|B
τ
−→ A′|B′

A
re+

−−→ A′ B
se−

−−→ B′

A|B
τ
−→ A′|B′|s

·
= r

S
r⊤a
−−→ S′ T

r⊥a
−−→ T ′

S|T
τ
−→ S′|T ′

A
α
−→ A′

A|B
α
−→ A′|B

A
α
−→ A′ n /∈ n(α)

(νn)A
α
−→ (νn)A′

A ≡ A′ A′ α
−→ B′ B′ ≡ B

A
α
−→ B

Fig. 2. Operational semantics

2 µse Basics

The syntax of µse is in Fig. 1. We assume given sets of names for services
(ranged by a, ...), sessions (r, s, ...), communication channels (x, ...), co-actions
(x, ...), entry-points (e, ...), and sites (l, ...). We let c, ... range over x, x, ... and
let c = c.

Processes P, Q, ... comprise ordinary operators such as the nil process 0, par-
allel composition P |Q, communication prefixes c.P , recursion rec X.P and name
restriction (νn)P , together with primitives invoke a.P for service invocation,
install[a ⇒ P ].Q for dynamic installation of new services, r ⊲ P for session end-
points and mergep e.P for dynamic merge of sessions on suitable entry-points.
Merge prefixes are polarized with p ∈ {+,−}. Trailing occurrences of 0 will
be omitted. Systems S, T, ... comprise located service definitions l :: a ⇒ P or
processes l :: P , parallel composition S|T , name restriction (νn)S, and explicit

fusions of session names r
·

= s. We let A,B, ... range over systems and processes.
The operational semantics of µse is in Fig. 2. It relies on the structural

congruence in Fig. 3. Roughly, the following interactions are possible. If service
definition l :: a ⇒ P is available, an invocation to a within a session r creates a
new endpoint l :: r ⊲ P for r on site l. The prefix install[a ⇒ R].P dynamically



A|A′ ≡ A′|A A|0 ≡ A (A|A′)|A′′ ≡ A|(A′|A′′)

(νn)(νm)A ≡ (νm)(νn)A
(νn)A ≡ A

(νn)(A|A′′) ≡ A|(νn)A′′

ff

if n 6∈ fn(A)

rec X.P ≡ P{rec X.P/X} r ⊲ (νn)P ≡ (νn)(r ⊲ P ), if n 6= r

l :: (νn)P ≡ (νn)(l :: P ) l :: P |l :: Q ≡ l :: (P |Q)

(r
·
= r) ≡ 0 (νr)(r

·
= s) ≡ 0 r

·
= s|P ≡ r

·
= s|P{r/s} (r

·
= s) ≡ (s

·
= r)

r ⊲ (s
·
= t|P ) ≡ (s

·
= t)|r ⊲ P l :: (r

·
= s|P ) ≡ (r

·
= s)|l :: P

Fig. 3. Structural congruence rules

installs a new service definition a ⇒ R at the top of the site where it runs. Dual
action prefixes c.P and c.Q can synchronize only if they run on endpoints of the
same session. Complementary merges in sessions r and s on the same entry-point
e (i.e., merge+ e and merge− e) can synchronize, releasing the fusion r

·

= s.

Example 1. Consider T1 = (νr1, r2, r3)(l1 :: P1 | l2 :: P2 | l3 :: P3), where:

P1 = r1 ⊲ merge+ e1.x.y

P2 = r2 ⊲ merge− e1.merge+ e2.x

P3 = r3 ⊲ merge− e2.y

Session r1 and r2 join together on the entry-point e1 and session r2 and r3 join
on e2. After two steps, S reduces to (νr1)(l1 :: r1 ⊲x.y | l2 :: r1 ⊲x | l3 :: r1 ⊲ y),
where x.y, x and y run in the same session.

Example 2. The two-buyers-protocol below is inspired by an example in [6]. Let
T2 = (νr1, r2)(l1 :: Buy1 | l2 :: Buy2 | ls :: Sell), where

Buy1 = r1 ⊲ invoke sell .title.quote.bid.Q1

Buy2 = r2 ⊲ invoke offer .title.quote.bid.Q2

Sell = sell ⇒ title.install[offer ⇒ merge+ e.(title.quote.quote.Q)].merge− e

The service sell waits for a buyer to require a quote for a book (title). The
buyer at l1 invokes sell so that the new service offer is installed. Upon the
invocation from the buyer at l2, offer provides the book’s title so that quotes
are communicated to both buyers after the sessions are merged by the service.
Finally, the buyers communicate over bid and the negotiation is concluded by
the interactions among Q, Q1 and Q2 (not modeled here).

3 Types for Dynamic Multiparty Sessions

We consider types generated from the following CCS-like grammar:

ρ, σ ::= 0 | c.ρ | σ|ρ | β | µβ.ρ



(Tzero)

Γ ; ∅ ⊢ 0 : {0 ր 0}

(Taction)

Γ ;∆ ⊢ P : {σ ր ρ}
Γ ;∆ ⊢ c.P : {c ∗ σ ր ρ}

(Tvar)

Γ, X : Φ; ∆ ⊢ X : {Φ}

(Tinvoke)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ ր ρ′ Γ (a−) = 0 ր σ2

Γ ;∆ ⊢ invoke a.P : {σ|σ1 ր σ2|ρ}

(Trec)

Γ, X : Φ; ∆ ⊢ P : {Φ}
Γ ; ∆ ⊢ rec X.P : {Φ}

(Tinstall)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ1 ր σ2 Γ (a−) = 0 ր ρ′ Γ ; ∆ ⊢ Q : {Φ}
Γ ; ∆ ⊢ install[a ⇒ P ].Q : {Φ}

(Tmerge)

Γ ;∆ ⊢ P : {σ1|σ2|σ3 ր ρ} Γ (ep) = σ|σ2 ր σ3 Γ (ep) = σ′|σ′′ ր ρ′ σ ≈ σ′′

Γ ; ∆ ⊢ merge
p e.P : {σ′|σ1|σ

′′ ր σ2|σ3|ρ}
(Tpar)

Γ ; ∆1 ⊢ P : {σ ր ρ} Γ ;∆2 ⊢ Q : {σ′ ր ρ′}
Γ ;∆1|∆2 ⊢ P |Q : {σ|σ′ ր ρ|ρ′}

(Tses)

Γ ; ∆ ⊢ P : {σ ր ρ}
Γ ;∆, r : σ ⊢ r ⊲ P : {0 ր 0}

(Tservice)

Γ ; ∆ ⊢ P : {σ1|σ2 ր ρ} Γ (a+) = σ1 ր σ2 Γ (a−) = 0 ր ρ′

Γ ;∆ ⊢ l :: a ⇒ P : {0 ր 0}
(Tloc)

Γ ; ∆ ⊢ P : {Φ}
Γ ;∆ ⊢ l :: P : {Φ}

(Tspar)

Γ ; ∆1 ⊢ S : {σ ր ρ} Γ ;∆2 ⊢ T : {σ′ ր ρ′}
Γ ; ∆1|∆2 ⊢ S|T : {σ|σ′ ր ρ|ρ′}

(Tnew)

Γ, n+ : (σ ր ρ), n− : (σ′ ր ρ′); ∆ ⊢ S : {Φ} ρ ≈ ρ′

Γ ;∆ ⊢ (νn)S : {Φ}

(TnewR)

Γ ; ∆, r : σ ⊢ S : {Φ} σ ∈⇓0

Γ ;∆ ⊢ (νr)S : {Φ}

Fig. 4. Type system

with the expected structural properties and labeled transition relation
c

7→.

Type judgments for processes take the form Γ ; ∆ ⊢ P : {σ ր ρ}, meaning
that: (i) P must perform communication activities in σ and ρ, (ii) it plans to
interact as σ with the current participants of its session, (iii) it has delegated
the interaction ρ to other endpoints that P itself will allow to join its session
(via merge or service invocation). For a pair Φ = σ ր ρ, we call σ the current

type, and ρ the delegated type.

The type environment Γ is a finite partial mapping from variables X and
polarized service / entry-point names np (with p ∈ {+,−}) to type pairs σ ր ρ,
with the understanding that actions in ρ are delegated to np. The linear session
environment ∆ is a finite partial mapping from session names r to types σ,
such that ∆(r) represents the parallel composition of the current types of all
endpoints of r. We assume ∆(r) = 0 when r 6∈ ∆. We let ∆1|∆2 denote the
environment ∆ such that ∆(r) = ∆1(r)|∆2(r) for each r ∈ ∆1 ∪ ∆2

Our type judgments are in Fig. 4. They are parametric w.r.t. three notions:
(1) task separation c ∗ σ, (2) type compatibility ≈, (3) session completion ⇓0.

Task separation is used to project the activities of P in separate threads (in
case they must be delegated). Here we take the most relaxed form of separation,
where c ∗ σ = c|σ. Other possibilities exploit prefixes in types to take care of
causality information.



Type compatibility σ ≈ ρ says that σ and ρ are complementary. Let I(σ) =

{c | ∃σ′ : σ
c

7→ σ′} denote the set of initial actions σ can perform. Here we take
the largest relation on types such that whenever σ is compatible with ρ it holds
that either I(σ) = I(ρ) = ∅, or K = I(σ) ∩ I(ρ) 6= ∅ and, for each x ∈ K and

for each σ′ and ρ′ such that σ
x

7→ σ′ and ρ
x

7→ ρ′, then σ′ and ρ′ are compatible.
The completion set ⇓0 contains those types σ that express admissible inter-

actions of multiple endpoints. Here we define ⇓0 as the largest set of types σ

such that: (i) for each c ∈ I(σ) such that c 6∈ I(σ) and for each σ
τ

7→ σ′ there

exists σ′′ such that c ∈ I(σ′′) and σ′
τ

7→
∗

σ′′, (ii) if σ
τ

7→ σ′ then σ′ ∈⇓0.
We say that Γ is well-formed if: (i) whenever Γ (np) = σ ր ρ, then Γ (np) =

σ′ ր ρ′ for some ρ′ ≈ ρ, and (ii) whenever Γ (a−) = σ ր ρ, then σ = 0. We say
that ∆ is fully-formed if whenever ∆(r) = σ, then σ ∈⇓0. We say that a system
S is self-typeable if Γ ; ∆ ⊢ S : {0 ր 0} for some well-formed Γ and fully-formed
∆. For simplicity, we shall omit the type rules for explicit fusion of session names
and restrict to self-typeable systems S without nested sessions and with no free
session name, i.e. such that Γ ; ∅ ⊢ S : {0 ր 0} for some well-formed Γ .

Rule (Tmerge) best illustrates the flavor of our type system. Note that if Γ

is well-formed, it must be ρ′ ≈ σ3. Then: (1) P matches σ3 to ρ′, (2) P delegates
σ2 to the other endpoints of the merged session, (3) the other endpoints of the
session of P delegate σ to the merging endpoint, and symmetrically (4) the
merging endpoint and its partners delegate σ′|σ′′ to the partners of P .

The systems T1 and T2 from § 2 are self-typeable. The type derivation for T1

is reported below, where we omit some labels and rules due to space limitation.

(Tzero)
Γ ; ∅ ⊢ 0 : {0 ր 0}

(Taction)
Γ ; ∅ ⊢ x : {x ր 0}

(Tmerge)
Γ ; ∅ ⊢ merge+ e2.x : {x|y ր 0}

(Tmerge)
Γ ; ∅ ⊢ merge− e1.merge+ e2.x : {0 ր x|y}

(Tses)
Γ ;∆2 ⊢ P2 : {0 ր 0}

(Tloc)
Γ ; ∆2 ⊢ l2 :: P2 : {0 ր 0} (†)

...

Γ ; ∅ ⊢ merge+ e1.x.y : {0 ր x|y}

Γ ; ∆1 ⊢ P1 : {0 ր 0}

Γ ; ∆1 ⊢ l1 :: P1 : {0 ր 0}

(†)

...

Γ ; ∅ ⊢ merge− e2.y : {0 ր y}

...

Γ ; ∆2|∆3 ⊢ l2 :: P2 | l3 :: P3 : {0 ր 0}

Γ ; ∆ ⊢ l1 :: P1 | l2 :: P2 | l3 :: P3 : {0 ր 0}

...
Γ ; ∅ ⊢ T1 : {0 ր 0}

where Γ = { e+

1 : (0 ր x|y), e−1 : (0 ր x|y), e+

2 : (0 ր 0), e−2 : (y ր 0) },
∆1 = {r1 : 0}, ∆2 = {r2 : 0}, ∆3 = {r3 : 0}, and ∆ = {r1 : 0, r2 : 0, r3 : 0}. The
condition of ≈ for e1 is satisfied since x|y ≈ x|y holds and the condition for e2

is satisfied since 0 ≈ 0.



For T2, we assume Q ≡ Q3|Q4 with Q1 ≈ Q3 and Q2 ≈ Q4, write b for bid , t

for title, q for quote, and have Γ ; ∅ ⊢ T2 : {0 ր 0} for Γ shown below (together
with some excerpts of type derivations).

∆ = { r1 : 0, r2 : 0 }
Γ = { sell+ : (0 ր b|t|q|Q3),

sell− : (0 ր b|t.q|Q1),

offer+ : (0 ր b|t|q|Q4),
offer− : (0 ր b|t|q|Q2),

e− : (b ր 0),
e+ : (q|b|Q3 ր 0) }

...

Γ ; ∅ ⊢ t.q.b.Q1 : {b|t|q|Q1 ր 0}

Γ ; ∅ ⊢ invoke sell .t.q.b.Q1 : {0 ր b|t|q|Q1}

Γ ; ∆ ⊢ r1 ⊲ invoke sell .t.q.b.Q1 : {0 ր 0}

Similarly, Γ ; ∆ ⊢ r2 ⊲ invoke offer .t.q.b.Q2 : {0 ր 0}

...
Γ ; ∅ ⊢ t.q.q.(Q) : {q|t|q|Q ր 0}

Γ ; ∅ ⊢ merge+ e.(t.q.q.(Q)) : {b|t|q|Q4 ր q|Q3}

Γ ; ∅ ⊢ offer ⇒ merge+ e.(t.q.q.(Q)) : {0 ր 0}

Γ ; ∅ ⊢ 0 : {0 ր 0}

Γ ; ∅ ⊢ merge− e : {b|q|Q3 ր 0}

Γ ; ∅ ⊢ sell ⇒ t.install[offer ⇒ merge+ e.(t.q.q.(Q))].merge− e : {0 ր 0}

This is still a preliminary study, but we conjecture that self-typeability enjoys
subject reduction and that any non self-typeable system has at least one session
that can deadlock on some pending communication. On the other hand, we point
out that some self-typeable systems can deadlock, because, e.g., rule (Taction)
relaxes the order of execution of actions, and the type system checks neither
that the number of positive merges on an endpoint is the same as the number of
negative merges on such endpoint nor that the number of invocations to a service
is less than the number of times such service is available / installed. We guess
that stronger guarantees can be obtained by restricting the syntax of endpoints,
by tuning the definitions of c ∗ σ, ≈ and ⇓0, and by extending the types with
capability / obligation level annotations à la Kobayashi [7].
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