Theoretical Foundations for Compensations in Flow
Composition Languages *

Roberto Bruni
Dipartimento di Informatica
Universita di Pisa, ltalia

bruni@di.unipi.it

ABSTRACT

A key aspect when aggregating business processes and web
services is to assure transactional properties of process ex-
ecutions. Since transactions in this context may require
long periods of time to complete, traditional mechanisms
for guaranteeing atomicity are not always appropriate. Gen-
erally the concept of long running transactions relies on a
weaker notion of atomicity based on compensations. For
this reason, programming languages for service composition
cannot leave out two key aspects: compensations, i.e. ad hoc
activities that can undo the effects of a process that fails to
complete, and transactional boundaries to delimit the scope
of a transactional flow. This paper presents a hierarchy
of transactional calculi with increasing expressiveness. We
start from a very small language in which activities can only
be composed sequentially. Then, we progressively introduce
parallel composition, nesting, programmable compensations
and exception handling. A running example illustrates the
main features of each calculus in the hierarchy.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent program-
ming—Distributed programming; D.3.1 [Programming
Languages]|: Formal Definitions and Theory; D.3.3 [Pro-
gramming Languages|: Language Constructs and Fea-
tures—Concurrent programming structures; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages— Operational semantics

General Terms
Languages, Theory

*Research supported by the FET-GC Project IST-2001-
32747 AGILE, by the MIUR Project COFIN 2001013518
COMETA, and by the MURST-CNR 1999 Project Software
Architectures on Cooperative WAN.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

POPL’ 05, January 12-14, 2005, Long Beach, California, USA.

Copyright 2005 ACM 1-58113-830-X/05/0001 ...$5.00.

Hernan Melgratti
Dipartimento di Informatica
Universita di Pisa, Italia

melgratt@di.unipi.it

Ugo Montanari
Dipartimento di Informatica
Universita di Pisa, Italia

ugo@di.unipi.it

Keywords

Transactions, compensations, process description languages

1. INTRODUCTION

The ultimate goal of web services technologies is to allow
the distribution, delivery and interoperability of heteroge-
neous components over the Internet. Applications achieve
interoperability by adhering to standard protocols that pro-
vide uniform ways to describe services (namely wsDL), to
look for particular services (i.e., UDDI), and to access ser-
vices (i.e., SOAP). In this way standards facilitate the inter-
action of different services, not only within an organization
but also across organization boundaries. Nevertheless, these
standards do not provide yet any support to describe com-
plex interactions between several applications. Recently,
many proposals have addressed the problem of aggregat-
ing services, giving birth to a family of xmL-based compo-
sition languages (also known as choreography or orchestra-
tion languages), such as BPML [6], XLANG [21], WSFL [16],
BPEL4WS [5] and wscI [24].

Choreography languages allow the definition of complex
services in terms of the interactions among simpler services.
In general, composition can be specified in one of the fol-
lowing styles [16]: (i) flow composition (also known as hi-
erarchical patterns) and (ii) interaction based composition
(also known as conversational patterns or global models).
Flow composition is reminiscent of workflow systems [13],
where composed services are described by a process that
states precisely the flow of both control and data between
the component parts. Instead, conversational based lan-
guages are aimed at describing the interaction protocols or
patterns that services should follow in order to achieve a
specific goal. In this case, any service declares the ways in
which it can be engaged in a larger process.

Usually flow composition is associated with a centralized
coordination mechanism (the flow engine) that monitors the
order in which activities are run, while interaction models
are related to distributed orchestration, in which partici-
pants are responsible for adhering to a specific protocol.

Most proposals for orchestration languages contain a large
amount of primitives, allowing for both styles of composi-
tion. (For a discussion about the several patterns or prim-
itives they provide we refer to [2]). Since the official spec-
ifications of composition languages for web services mainly
consist in an informal textual description of their construc-
tors, many recent efforts have attempted to formalize dif-
ferent subsets of such proposals (see for instance [7, 3, 22]).



At the same time, foundational models for concurrency has
been proposed also as foundational models for web services
orchestration ([18, 1]). Nevertheless, there are several funda-
mental aspects when describing composed services, in par-
ticular the transactional properties of flows, that have re-
ceived little attention in the area of process description lan-
guages (PDLs) like the w-calculus or ccs. These properties
are somehow orthogonal to usual PDL’s operators, and al-
though they could be possibly encoded into standard oper-
ators, the extension of PDLs with this kind of abstractions
are desirable (at least) for the following reasons: (i) to lay
the foundations for the formal definition of orchestration
languages; (ii) to facilitate the comparison of different se-
mantics; (iii) to reason about the relation among operators;
(iv) as the starting point for comparing the expressive power
of newly proposed primitives (i.e., whether they can be con-
veniently defined in term of usual operators or not) and
for studying the properties preserved by different encodings;
and (v) to give insights about implementation details.

In this paper, we study primitives for long running trans-
actions in flow composition languages, and in particular in
structured control flows, i.e. flows defined in terms of a
fixed set of primitives, like sequencing and branching. We
provide a formal semantics for a hierarchy of transactional
languages with increasing expressiveness and we prove that
the semantics is adequate to the modelled features.

Transactional aspects in composed web services have been
mainly inherited from workflow languages. The key idea is
that valid executions of a transactional business process (or
of a part of it) are those that “complete” all involved activ-
ities. Nevertheless, since the execution of a business process
may require a very long period of time in order to complete
(perhaps some hours or days), traditional mechanisms for as-
suring atomicity, such as locking of resources, are regarded
as not suitable. Since the seminal work of Sagas [12], the
key mechanism for dealing with long running transactions
is that of “compensating activities”. Instead of relying on
locking and roll-back mechanisms to perfectly undo incom-
plete executions and avoid interference among transactions,
a more relaxed form of atomicity is granted by associating
processes with activities that can recover partial executions.

Although compensations can be regarded as an exception
handling mechanism [17], the distinctive feature is that com-
pensation handlers are dynamically built during the execu-
tion of processes. Consider the saga given in Figure 1, where
the transactional process P consists in the sequential exe-
cution of the activities A;, Az and As, that can be com-
pensated respectively by Bi, B2 and Bs. Suppose now that
activity A; completes successfully while activity A fails. In
this case, after A» fails, the compensation B; (correspond-
ing to the successfully completed activities) is run to undo
as much as possible the effects of A;, because the transac-
tion failed as a whole. Note that B> is not executed, because
Ay has not completed. Instead, if both A; and A» succeed
while A3 fails, then the compensations will be executed in
the reverse order, i.e. first B2 and then Bj.

After Sagas, several workflow models have been proposed
in literature for equipping processes with different (compen-
sation-based) transactional capabilities, such as nesting and
forward recovery (for a general overview see [20]). Contrast-
ingly, the study of PpDLs with compensations have been less
numerous. An extension of the asynchronous m-calculus,
called wt-calculus, with transactional contexts has been in-

Figure 1: A sequential saga.

troduced in [4]. The mt-calculus formalizes the close relation
between exception handling and compensations. Neverthe-
less, this approach is not aimed at capturing the order in
which compensations should be activated, i.e. there is not a
strong relation between compensations and the control flow
of the original processes. For instance, if activity As fails
during the execution of flow depicted in Figure 1, compen-
sations B; and By are activated concurrently.

A different approach is taken by StAC [9], where compen-
sations are installed to be executed in the reverse order w.r.t.
that of completion of original activities. StAC is a language
in the spirit of process algebras like CsP or ¢Cs with excep-
tion handling mechanisms and compensations inspired by
BPBeans, a framework for modelling business processes inte-
grated to WebSphere [23]. Although being (to the best of our
knowledge) the first process calculus where compensations
are closely related to the control flow of the executed pro-
cess!, there are several aspects in StAC that deserve further
investigation. For instance, compensations in StAC should
be explicitly activated through special primitives, i.e. they
are not related to the failure or success of the activities of
processes, as usually expected in workflows and composition
languages, e.g. BPEL4WS. Moreover, to reason about StAC
processes, it is necessary to know the low level description
of activities. In fact, there is an interplay between data
structures used by activities and the control flow of pro-
cesses. Finally, StAC provides a large number of operators
including the imperative fragment of a programming lan-
guage, whose operational semantics has been given in terms
of an even richer intermediate language, called StAC; [10].
In this way, operators in StAC can only be understood by
analyzing their encodings into StAC; operators. Due to the
complex definition of the operational semantics of StAC;, it
is difficult to reason about the interplay among exception
handling, compensations, nesting and parallel composition
in StAC. Moreover, some usual behaviors of compensations
(for instance, the failure of a branch in a parallel composi-
tion requiring the compensation of both branches) are only
achieved by combining several operators, making the seman-
tics in [10] not entirely satisfactory. (Recent ongoing work
by Butler, Ferreira and Hoare aims to define a clean trace
semantics for a subset of StAC.)

In this work we intend to give a more compact description
of StAC-like languages: in the spirit of PDLs, we are aimed at
providing a minimal set of operators with orthogonal mean-
ing and, in particular, we are interested on marking the
distinction between compensations and exception handling
mechanisms. Moreover we attempt to provide our opera-
tors with the meaning most frequently used in composition
languages. Additionally, we relate the behavior of whole
processes with the success or failure of atomic activities.

!We are aware of previous formal approaches to define com-
pensations, such as ACTA [11] in the context of database
transactions and the work done by C.A.R Hoare [14], but
they are not process calculi



In order to achieve these goals, we start from a very small
language formalizing Sagas. First, we show a language cor-
responding to its sequential version (i.e., allowing only the
sequential composition of activities inside a saga). Then we
introduce the parallel composition and discuss different al-
ternatives in defining the semantics for the compensation
of parallel activities. After that, we add the possibility of
defining nested transactions. Finally, we present some ex-
tensions, such as programmable compensations, exception
handling and forward recovery. Each language in the result-
ing hierarchy comes with a clean big-step semantics and an
adequacy result for such semantics.

As a running example, we select a business process for
ordering goods. It is simple enough to require a process
that fits in one line, yet it is expressive enough to show how
the primitives can enhance business process design.

Structure of the paper. In Section 2 we present the
core language for sequential sagas, which has primitives for
compensated activities A + B, sequential composition P;Q
and saga scope {{P]}. In Section 3 we extend the core lan-
guage with parallel composition P|Q, and in Section 4 we
extend parallel sagas with nesting {{S]}. In Section 5 we
discuss how the language for nested sagas can be further
extended with additional features like programmable com-
pensations, exception handling, choices, and dependencies.
Concluding remarks and future work are in Section 6.

2. SEQUENTIAL SAGAS

As mentioned before, Sagas [12] is one of the first propos-
als for dealing with long running transactions in database
applications. A sequential saga (i.e., a long lived trans-
action) is a sequence of atomic activities (called subtrans-
actions, activities or steps) that should be executed com-
pletely. The parallel execution of several sagas can inter-
leave steps in any way, but any single step is guaranteed to
be atomic. Subtransactions are atomic in the sense that ei-
ther they are successfully executed (committed) or no effect
is observed when the execution fails (aborted). In addition,
no intermediate states computed by an activity are visible to
other activities. Activities are transactions with short dura-
tion, and therefore they can rely on traditional mechanisms
to assure the usual ACID properties (i.e., Atomicity, Consis-
tency, Isolation and Durability). Additionally, any activity
A; in a saga has a compensating activity B; that can be ac-
tivated to “undo” the effects of a successful execution of A;
upon a later failure. (We remind that, in this context, the
term “undo” does not mean to exactly reverse the effects by
restoring the original state, but just to perform an ad hoc
activity that moves the system to a sound state).

Any partial execution of a saga is undesirable, and if
it occurs, it must be compensated for. A saga involving
Ai,..., A, (where each A; has a compensation B;) is guar-
anteed to execute either the entire series Ajj...; A, or the
compensated sequence Ai;...; Aj; By;...; B for some j < n.
The first case stands for the successful execution of the whole
saga, i.e., when all activities in the sequence complete. In
the second case, the activity A;4 fails, and all activities al-
ready completed (Ar;...; A;) are recovered by executing the
corresponding compensations, in reverse order (Bj;...; B1).

In this section we introduce a compensation language for
sequential sagas. The semantics is intended to describe the
behavior of top-level processes but not the low-level compu-
tations performed by atomic activities. The only assumption

made on subtransactions is that their executions end either
successfully or with a failure.

We rely on an infinite set .A of names for atomic activities,
ranged over by A, B, .. .. Moreover, we will consider a special
nil activity 0 ¢ A that always completes and has no effect.

DEFINITION 1 (SEQUENTIAL SAGAS). The set of all se-
quential sagas is given by the following grammar:

(STEP) X == 0] A| A+B
(PROCESS) P u= X | P;P
(SAGA) S u= {P}

A sequential saga S consists in a sequential process P.
Each step in P corresponds either to an activity A or a
compensated activity A + B, where A is the activity of the
normal flow and B its compensation. The term 0 repre-
sents the inert process, and P; P stands for the sequential
composition of processes.

We define the semantics of sagas up-to structural congru-
ence over processes and steps given by the following axioms:

A-0=A (NULL COMPENSATION)
0O;P=P0 = P (NULL PROCESS)
(P;Q);R = P;(Q;R) (Assoc. oF SEQ. Comp.)

For simplicity we will consider all (instances of) activities
in a saga named differently. This does not mean we do not
allow the same activity to be executed more than once in a
saga, but we consider any execution as a different instance
of it and, hence distinguishable from all other instances.

DEFINITION 2  (ACTIVITIES OF A SAGA). The set of ac-
tivities of a saga S is defined as A(S) = {A | A occurs in S}.

2.1 Big Step Semantics

As described above, the execution of a saga S either com-
mits — i.e., every activity executes successfully — or it
aborts and all completed steps are compensated for. This
model implicitly assumes that compensations always suc-
ceed. In order to relax this assumption, we allow also com-
pensations to fail. In this case, a saga S has an abnormal
termination. Abnormal termination could be managed by
suitable exception handling mechanisms. (We informally
discuss exception handling in Section 5.2). Thus, the set of
possible results for the execution of a saga is R = {[@, X, @},
where [ stands for commit, X for (compensated) abort, and
@ for abnormal termination. We let O range over R.

The execution of a sequential saga is described in terms of
the results obtained by performing their constituent activi-
ties. As we are not interested on the low-level behavior of
individual tasks, we rely on the abstract description of their
executions, stating whether they complete successfully or
abort. This information is given by a context I'. Formally,
T is a partial function over A that maps any activity to the
result obtained with its execution, ie., I' : A — {K,@}.
Note that activities can only commit or abort (they do not
terminate abnormally). We denote a particular function I'
as Ay — Oi,...,Ap — O,, where A; # A, for all i # j
(i.e., ’, stands for the disjoint union of partial functions).

The semantics of a sequential saga S is given by the rela-
tion I' - § —%s O defined by the inference rules in Figure 2.
The notation I' - § -2+ O denotes that the execution of S
produces [0 when the atomic activities behave like I'. The



(zERO) (s-AcT)
T'H(0,8) = (m, )

ATk (A< B,B) -5 (@, B; B)

(s-cmp)
T'F{(8,0) = (@,0)
AR TF(A+B,p) 2 (R,0)

(F-cMP) (s-sTEP) , (A-STEP)
T'F(8,0) %+ (R,0) TH(P,B) % (@,8") TH(Q,B") (0,8 TH(PB) % (0,0) o (X m}
A RTH(A+ B,B) - (®,0) N(P;Q,,B)‘ﬁ’(ﬂ,ﬂ') I'F{P;Q,B) = (s,0)
(saca)
LH(P,0) = (0,8)
It {rPy =0 . . .
Figure 2: Semantics of sequential sagas.
observation a describes the actual flow of control occurring
Accept Order Update Credit Prepare Order

when executing S under the context I'. The flow a is a
process whose activities have no compensations.

The auxiliary relation T' F (P, 8) -%+ (O, 8’) describes the
behavior of a process P within a saga that already installed
the compensation 8 (8 stands for a process without compen-
sations). I' and « are analogous to the previous case. When
P is executed inside a saga, it can either commit, abort, or
fail, but additionally, it can change the compensations, for
instance by installing new activities, like in rule (s-ACT).

Rule (ZERO) states that 0 always commits without chang-
ing the installed compensation. Rule (s-ACT) stands for the
successful execution of the compensated activity A+ B when
A commits. In this case, the observation is A (i.e., the only
executed activity), the obtained result is [, while the com-
pensation is updated by installing B in front of 8. Note
that A is the last executed activity, hence the first to be
compensated for if the next activity in the saga fails.

Rules (s-cmp) and (r-cmP) describe the execution of A+B
when A fails in a saga that has already installed 8. Both
rules activate the compensation procedure by executing
(premises of the rules). Note that neither A nor B are re-
ally executed. In fact, since A is an atomic activity that
aborts, A has no effects and hence, it is not compensated
for. For this reason the observation « is just the flow ob-
served by executing 8. In particular, (s-cMmP) describes the
case in which the compensation procedure completes suc-
cessfully. Rule (F-cMP) stands for the case in which the
compensation procedure fails. In this case, the process fin-
ishes abnormally (the corresponding result is #). Since all
steps in B have trivial nil compensations, the execution of 3
cannot produce #. For the same reason, the execution of 3
installs no significant compensations, and hence any execu-
tion that ends with K or @ must have 0 as compensation.

Rule (s-sTEP) describes the behavior of a process P;Q
when the step P commits. In such case the remaining pro-
cess @ is executed by taking into account the compensation
produced after the execution of P. The observation for the
whole process P; @ corresponds to the sequential composi-
tion of a, i.e. the observation of executing P, and o', i.e. the
flow corresponding to the execution of ). The final result is
that obtained when executing Q.

Rule (A-sTEP) handles the case in which P;@ is stopped
because P ends with abort or abnormal termination. Note

that the compensation is activated when P reaches the abort.

Last rule (SAGA) states that the execution of a saga {{P]}
is the activation of P with no installed compensations.

Although a more concise set of rules could be used to
describe the semantics, we choose this presentation for con-
venience when extending the language in the next sections.

Refuse Order Refund Order Update Stock

Figure 3: A sequential saga for handling orders.

EXAMPLE 1  (SEQUENTIAL SAGAS). Figure 8 shows a se-
quential saga for dealing with purchase orders. It consists
on three activities composed sequentially. The first activ-
ity (Accept order) handles a request from a client and it is
compensated by Refuse order, which will contact the client
to notify her/him that the order was canceled. The second
step (Update Credit) charge the amount of the order to the
balance of the client. This activity could fail, for instance
when the client has not enough credit to proceed, activating
the compensation, i.e., executing Refuse order. Instead, if
it succeeds, then the compensation Refund order is also in-
stalled. Refund order is responsible for updating the balance
with the amount detracted previously. Last activity (Prepare
Order) handles the packaging of the order and update the
stock. Its compensation (Update Stock) will increment the
stock with the proper values.

The following result states that the execution of a saga
corresponds to the intuitive notion we gave initially.

THEOREM 1 (ADEQUACY). Let S = {{A1+By;...; An+
B,J} be a saga. Then:

(CoMPLETION) TFS -5 @ iff Vi<n:A; = EET and
a=Ai;.. . An;

(Successrul, COMPENSATION) T' F § % R iff 3Tk, 1 <
k<n AN Ay »Rel A Vi<k:(A — 0,B; —
O CT) and a = Ay;...;Ag—1;Bg—1;-..; B1.

(FAILED COMPENSATION) T'F S % @ iff 3j,k, 1 <k <n
AN1<j<kst AxmReTl AB;—»Rel AVi<
k:Ai»mel)ANVhe[j+1,k—1]:By—»@eT)
andaEAl;...;Ak_l;Bk_l;...;Bj+1.

It is clear from the above theorem that the last compensa-
tion B, is never activated. Nevertheless we allow such kind
of definitions because they can be useful when specifying
more complex sagas in the following sections.

3. PARALLEL SAGAS

In order to allow several activities to be executed concur-
rently, the language of sequential sagas is extended with the
operator '|’, denoting the parallel composition of processes.



(s-PAR)

TH(P,0) - (@,8) TH(Q,0 <5 (@, 8"
T (PIQ,8) 1% (m, 818" )

(P-PAR-NAIVE-1)

T F(P,0) 25 (8,00 TF(Q,0)=5(X,0) Tk (80 250,80 O,=
r+(PlQ,8) “4 (s, 0)

X if(0; =@
otherwise

(F-PAR-NAIVE-2)

TH(P,0) % (8,00 TF(Q,0)<5(mA) Tk (8,0 50,0
T+ (P|Q,8) “25" (m,0)

(F-PAR-NAIVE-3)

T (P,0) -2 (®,0) T F(Q,0) 5 (c,0)

I F(P|Q,8) % (@, 0)

(F-PAR-NAIVE-4)

Tk (P,0) -5 (R,0) Tk (Q,0) 5 (m,A) T (88,0 501,00 0,

with o € {X, ®}

X if(0, =@
B otherwise

TF(P|Q,B) “°5 (0s,0)

Figure 4: Naive semantics of parallel composition.

DEFINITION 3 (PARALLEL SAGAS). The set of all par-
allel sagas is defined by the grammar:

(sTEP) X == 0|A| A+B
(PrROCESS) P == X | P;P | P|P
(saGa) S = {P]}

In addition to the structural axioms for sequential sagas,
we require '|" to be associative and commutative with unit
0. We let sequential composition have higher priority than
parallel, i.e. P;Q|R; S stands for (P;Q)|(R; S).

Note that the dependencies among activities are described
by a structured flow, and in particular synchronizations be-
tween processes take place only when composing sequen-
tially. We will not consider descriptions based on links de-
pendencies like those allowed in WSFL until Section 5.5.

As for sequential sagas, a computation of a parallel saga
is successful only when all its activities commit, while the
whole saga should be compensated for when an activity fails.
Also we like compensations to be performed in the reverse
order of the normal flow. Composition languages usually
express this requirement by stating that all compensation
handlers for completed activities run in the reverse order of
completion. In our approach the compensations of concur-
rent activities are concurrent, because we want a semantics
where compensations do not depend on the particular inter-
leaving of executed concurrent activities.

We first give a semantics where parallel branches are com-
pletely independent (Section 3.1). This semantics is simple
but not entirely satisfactory when modelling real problems,
because it does not allow to force the failure in one branch
as soon as a failure is detected in the other branch. A more
complex semantics is then given in Section 3.2, which can
deal properly with this kind of optimization.

3.1 Naive definition for the semantics of ’|’

In a first attempt at defining the semantics of the par-
allel composition we add the rules in Figure 4 to those of
sequential sagas. Note that transition labels a can now take

the form ~y|y', where v and v’ are uncompensated processes.
In this way we quotient out all possible interleaving exe-
cutions of |y'. We recall that activities are atomic steps,
and therefore there is no interaction among them. For this
reason any interleaving of |y’ is a valid execution of the
process. Hence, the parallel branches of P|Q are executed
independently, i.e. each branch performs until completion
in its own thread, which has no initial compensation.

The first rule (s-PAR) handles the successful execution of
P|Q, i.e. every activity commits and both P and @ pro-
duce [ as result. The compensation for the whole process is
updated by installing the parallel composition of 3’ and 8"
at the top, i.e. the compensation of parallel processes cor-
responds to the parallel compensation of its branches. The
observed flow is the parallel composition of the flows for P
and Q.

The remaining four rules handle the cases where at least
one activity aborts. If both branches fail during the normal
flow but their compensation completes, then the execution
ends by activating the original compensation 3 (rule F-PAR-
NATVE-1). The result is X when 3 finishes without problems.
On the contrary, if 8 aborts, then the whole process termi-
nates abnormally (producing @).

Rules (F-PAR-NAIVE-2) and (F-PAR-NAIVE-3) stand for the
cases in which P terminates abnormally, i.e. some activity
in the normal flow of P aborts activating its compensation
procedure, which also fails. In such cases, the original com-
pensation [ is not executed, because it should follow the
compensation of P that has failed. The behavior is similar
to the sequential case, where the compensation procedure
stops when some activity aborts. In particular, rule (F-PAR-
NAIVE-2) handles the situation in which the remaining pro-
cess @ has completed successfully and it is compensated for.
For this reason the compensation 8’ installed by @ is acti-
vated. The final result is in any case @, and the observed
flow corresponds to the parallel execution of both branches
followed by the execution of the compensation 3. Instead
(F-PAR-NAIVE-3) describes the cases in which ) has already



Update Credit
/ Refund Order
| Refuse Order
i 7\ Prepare Order
LN
1
1

Accept Order

Figure 5: A parallel saga for handling orders.

been compensated for (i.e., the result is K or @), and there-
fore no further compensation is activated. Also, in this case
the process P|Q terminates abnormally.

Last rule (F-PAR-NAIVE-4) describes the behavior when
one of the branches finishes successfully and the other has
been aborted and properly compensated for. Hence. the
execution done by the successful branch needs to be reversed
(by running 3') before activating the original compensation
B. If the whole compensation (i.e., the execution of 3';3)
finishes with success, then the final result is X, otherwise
the whole process terminates abnormally.

EXAMPLE 2  (PARALLEL SAGAS). The second and third
activities in Ezample 1 could be performed in parallel as
shown in Figure 5. Nevertheless, in case some activity aborts,
we would like all completed steps to be compensated for.

Although given rules allow a failed branch to start its
compensation as soon as it aborts, the successful branch
is forced to execute until completion, even when it will be
compensated for. Consider the following parallel saga:

S ={A1+B1; A2+ By | C1+D1]}

and the context in which all activities but C; commit, i.e.
I' =A1 = 0,4 = 0,01 = K, By — [&,B2 — [, the
only possible computation for S produces as result X with
observation (A1; A2|0); Ba; B:.

In a real execution of S where C; fails while A; is still ex-
ecuting, it would be desirable to avoid the execution of both
A, and its compensation B» by starting the compensation
procedure as soon as A; finishes. (We remind that activities
are atomic and hence their execution cannot be stopped once
they have started). In general, when several processes exe-
cute concurrently and some activity aborts, then the whole
saga aborts and every completed activity should be compen-
sated for. Hence, it would be desirable to stop all processes
before completion and to start the compensation procedure
of partially executed branches as soon as a concurrent ac-
tivity aborts. The following section presents a semantics for
parallel sagas that allows such kind of behaviors.

3.2 Parallel Sagas Revised

To handle partial executions of successful branches dur-
ing an aborted execution of a saga, we introduce two new
kinds of results for a process running in a saga: (i) X de-
noting that the process has been forced to compensate and
then it has been compensated for successfully, and (ii)
denoting that the process has been forced to compensate
but the compensation procedure has failed. Let [, 01,02
range over R = R U {X,®E}. Moreover, we use the binary
operator A over R to express the result obtained by combin-
ing the execution of two parallel branches. The associative

and commutative operator A is defined in the following table
(because of commutativity we omit half of the table).

Al B X ® X ]
o o

X - X

= - = =

X - X E3| X

—

Note that A is not defined when one operand is [@ and
the other not. In fact, it is not possible for a branch to
commit when the other aborts or fails: in the process P|Q,
when P commits but @ does not, P is forced to compensate.
The other interesting cases are the two last rows on the
table, in which one of the branches is forced to compensate
(producing either ® or @). If the remaining branch really
fails (i.e., it reduces to a configuration with result X or M)
then the parallel composition actually fails. Otherwise —if
it is also forced to compensate— then the whole process has
been forced to compensate.

The semantics for parallel sagas is given in Figure 6. All
rules for sequential sagas remain unchanged but A-STEP,
whose side condition considers also the new kinds of results
for o, and four new rules are added.

Rules (s-PAR), (F-PAR) and (C-PAR) specify the behavior
of parallel composition. As for the naive semantics, parallel
branches are run in parallel without initial compensations.
If both branches commit (rule (s-PAR)), then the original
compensation 3 is updated with the compensations 8’ and
B" installed by both branches. In particular, if the whole
process P|Q has to be compensated, then 8’ and 8" are
activated in parallel and g is started only when they finish.

If some branch has activated its compensation procedure,
then also the other branch is required to be compensated for.
If one of the branches fails during the compensation proce-
dure (rule (F-PAR)), then the final result for P|Q will be a
(possibly forced) abnormal termination (i.e., ® or ®). In
this case the compensation [ installed before the execution
of P|Q is not even activated.

Finally, rule (C-PAR) handles the case in which both P
and @ are successfully compensated for. In such case, also
the previously installed compensation 8 is run.

The new rule (FORCED-ABT) handles the forced compen-
sation of a process P, i.e. P can activate the compensation
procedure before starting its execution that will produce a
forced termination X or ®. Nevertheless, by rule (SAGA),
the execution of a saga ends only when P produces &, K or
H. Hence, a valid execution forces a process to compensate
only when it is a branch of a parallel composition. Moreover,
in order to remove the tag of forced termination, the other
branch is required to actually abort or finish abnormally.
This is achieved by rules (F-PAR) and (C-PAR) that use the
operator A to combine the results of concurrent executions.

As done for sequential sagas, we state the correspondence
between the proposed semantics and the intended meaning
of parallel sagas. We start by defining some notions that are
needed to formalize the correspondence.

DEFINITION 4  (FORWARD FLOW). The forward flow |S]|
of a parallel saga S is obtained by removing all compensa-
tions from S, i.e. terms A + B are replaced by A.

In defining the order of a saga, we assume all activities to
have a compensation (A = A+ 0). Since activities in a saga



(zERO) (s-AcCT)
T+ (0, ) = (3, 8)
(F-cmp) (s-sTEP)
T F(8,0) = (®,0)

ATk (A B,B) -2 (m, B; )

TF(P,B) 2 (m,8") T F(Q,B") 25 (0,8)

(s-cmp)

'+ (B,0) % (&,0)
AR, TF(A+ B,B) % (R,0)
(A-STEP)

'+ (P,B) % (s,0)

oc{R =K =}

A RTF(A+B,B % (80
(s-PAR)
Tk (P,0) % (@,8) T+ (Q,0) 25 (3,8

T+ (P|Q, ) %1% (m,5'(6"; 8)

(c-PAR)

TH(P,0) -2 (01,0) T (Q,0) =5 (02,0) Tk (8,0) - (Os,0)

T (P;Q,8) U (O, )

I+ (P;Q,B8) = (0,0)

(F-PAR) _
T+ (P,0) % (01,0) T F{(Q,0) % (02,0) { o1 €{®, B}

T+ (PI@,) 37 (01 Aoz AT, 0)
(FORCED-ABT)

TH(8,0) = (01,0) O, = { i,ftEelr;isf

[e3

L'E(P,B) — (02,0)

7 o2 € {K,=,X,H}
ala
TH(P|Q,8) — (01 A 02,0)

_ X if0; =@

01,02 € {X,X} and Oy = { othelrwise

(saca)

T'H(P,0) % (0,8) oec{m Rz}
I'+{P} o

Figure 6: Semantics of parallel sagas.

are named differently, we univocally identify the compensa-
tion of an activity A+ B with A™! = B.

DEFINITION 5 (ORDER OF A SAGA). Let S be a parallel
saga, the order of a saga S is the least transitive relation <s

on A(S) s.t.:
1. if A+ B occurs in S then A <s B;
2. if P;Q then A <s B VYA € A(|P|) and VB € A(|Q|);
8. if A,B € A(S) and A <s B then B™! <5 A™'.

Given A C A(S), we write <g|, for the order <s restricted
to the elements of A. We will use A <5 {A1,...,A,} (and
{A1,..., An} <s A) if Fi sit. A <5 A; (resp. A; <s A).

The adequacy is now expressed by three theorems.

THEOREM 2 (COMPLETION). Given a parallel saga S,
'S mifVAc A(S|):A— B €T and a =|9|.

THEOREM 3  (SUCCESSFUL COMPENSATION). Let S be a

parallel saga. T'F S -2 R iff there exists a non empty set
Fa C A(S]) of failed activities (i.e., VA€ Fy,A—~»KRE€eT)
s.t. VA B € Fa: A 4s B and the following conditions hold:

1. <a==5|A(a), i-€. the observed flow respects the flow
given by S;

2. if Ae A(a) then A— @ €T, i.e. all observed activi-
ties commit;

3. if A€ Fy then A & A(a), i.e. failed activities are not
observed;

4. if A € A(|S]) and A <s Fa then A € A(a), i.e. all
activities that precede Fa are executed successfully;

5. if A€ A(|S]) and Fa <s A then A & A(a), i.e. all
activities after Fa in the forward flow are not run;

6. if A€ A(|S|) and A € A(a) then A~ € A(a), i.e. all

ezecuted activities are compensated successfully.

THEOREM 4 (ABNORMAL TERMINATION). Given a par-
allel saga S. Then T'+ S -5 ® iff there exist a non empty
set of failed activities Fa C A(|S|) s.t. VA1, Ay € Fa:
A1 £As Az, and a non empty set of failed compensations
Fe C A(S) st. Fen A(S]) = 0 and VB1,B> € Fe:
B1 £As Ba, and the following conditions hold: 1 — 5 as
in Theorem 3 and

6. if A€ A(S|) and A € A(a) and A~ <5 Fc then
A7 € A(a), i.e. activities whose compensations pre-
cede F¢ are compensated successfully;

7. if A7 € Fc then A7 ¢ A(a), i.e. failed compensa-
tions are not executed;

8. if A € A(|S|) and A € A(a) and Fc <s A™! then
Al & A(Q), i.e. activities whose compensations fol-
lows F¢ are not compensated.

Above results are a generalization of Theorem 1. In fact,
the order of a sequential saga is a total order, and constraints
in Theorems 2—4 reduce to conditions in Theorem 1.

4. ADDING NESTING TO SAGAS

Nesting has been introduced in database transactions to
localize failures within a transaction and to allow partial roll-
backs [19]. Basically, a nested transaction is decomposed
into a hierarchy of activities called subtransactions. The
root of the hierarchy is usually referred to as the top-level
transaction. In this scheme, any subtransaction executes
independently and concurrently with respect to its parent
and siblings, deciding autonomously to commit or abort.
When a transaction aborts all its subtransactions should
abort and consequently all committed subtransactions must
be rolled back. Nevertheless, a top-level transaction can
commit even though some subtransactions have aborted.

DEFINITION 6 (NESTED SAGAS). Nested sagas are de-
fined by the following grammar:

(STEP) X == 0| A| A+B
(PROCESS) P =:= X | P;P | PP | S
(sAGA) S u= {P}



(suB-cMT)
L F(P,0) = (&, 4)

(SUB-ABT)

'+ (P,0) = (K,0)

(SUB-FAIL)
I'+(P,0) % (®,0)

rke <{[P]}=ﬂ> =5 (Eaﬁl;ﬂ>

(SUB-FORCED-1)
'+ (P,0) % (&, 0)

(SUB-FORCED-2)

T ({P},B8) = (3, B8)

I+ ({P},8) = (=,0)

Ik (P,0) % (®,0) T'F(8,0) = (01,0 DQZ{E if O =0

if 0 € {K, =}

I ={P},8) = (®,0)

L ({P},B) 23 (Os,0)

Figure 7: Semantics of nested Sagas

The additional rules for nested sagas are in Figure 7. The
main idea is that a subtransaction {{P]} executes P in an
independent thread without initial compensation. The suc-
cessful completion of {{P]} (rule SUB-CMT) is analogous to
the case of a successful activity (rule s-ACT). When the
subtransaction commits, the compensation 8’ computed by
P is installed on top of the compensations.

Rule (SUB-ABT) describes the silent abortion of a sub-
transaction. As aforementioned, nesting is intended to allow
the commit of a transaction even when some activities fail.
That is, if an activity in P fails while running {{P]}, and the
executed activities of P are successfully compensated for,
then the abort is hidden to the parent. For this reason the
result associated with {{PJ} is @ even though P aborts. (We
discuss another possibility for handling this situation in Sec-
tion 5.3). The observed flow corresponds to the execution
of P and the original compensation 3 is not modified.

Instead, {{P]} ends abnormally when P has an abnormal
termination (SUB-FAIL). This result is propagated until the
top-level transaction, which will finish abnormally. (Sec-
tion 5.2 introduces local handlers for abnormal termination).

The three rules described above do not allow a subtransac-
tion to be stopped and compensated for when a concurrent
activity aborts.

Consider the saga S = { {{P} | A+ BJ} and a con-
text ' = A +— K,T’ such that T'F (P,0) = (@, 3) and

T'{B,0) 2= (K, 0), the whole saga S should abort because
A aborts. With the rules seen until now we can build only
the two derivations shown in Figure 8. The branch {{P]}
is forced to abort either before (Figure 8(a)) or after (Fig-
ure 8(b)) the whole execution of P. Nevertheless, if P is
a composed process, for instance a sequence, it is not pos-
sible to stop the execution of P once it starts. To allow
the activation of the compensation procedure in subtrans-
actions as soon as possible, we add the last two rules in Fig-
ure 7, which handle the interruption and compensation of
a subtransaction. Rule (SUB-FORCED-1) handles the failure
of the forced compensation. In this case the compensation
[ previously installed is not activated since the compensa-
tion procedure fails. On the contrary, rule (SUB-FORCED-2)
activates § when P is compensated successfully.

EXAMPLE 3  (NESTED SAGAS). The organization has a
reward program in which users accumulate points when they
purchase. The activity Add points updates the reward balance
of a user. This activity aborts when the buyer is not part of
the reward program. Clearly, we do not like the whole process
to abort when the user is not registered, for this reason we
model this activity as a nested transaction (see Figure 9).
The compensation Subtract points undoes the step Add points
when some activity in the top level flow fails.

To formalize the adequacy theorems we need some pre-
liminary definitions.

DEFINITION 7  (SUBTRANSACTIONS). The set of all sub-
transactions of S are S(S) = {{P]} | {P] is a proper sub-
term of S} while the top-level subtransactions are Siop(S) =
{S'1S" € S(S)AVS" € §(S): S & 8(S")}. The set of all
top-level activities of S is Awp(S) = {A | A € A(|S]) and

A does not occur in a subterm {{P]}}.

The definition of order of a saga considers only top activ-
ities and subtransactions (i.e., A and B range over top ac-
tivities and subtransactions, and A™" denotes also compen-
sations of subtransactions seen as symbolic atoms). Again,
we break the adequacy results in three theorems.

THEOREM 5 (COMPLETION). Let S be a nested saga.
Then T+ S = @ iff

1. if A€ Awop(|S|) then A~ @ €T

2. if §' € Siop(S) then T F {S',0) LN (@, B) for some
o, B.
THEOREM 6 (SUCCESSFUL COMPENSATION). Let S be a

nested saga. Then T+ S -2 R iff there exists a non empty
set of failed activities Fa C Aiwop(|S|) s.t. VA, B € Fa:
A £s B, and the following conditions hold:

1. if A€ A(a) then A—» @ €T}
2. if A€ Fa then A ¢ A(a);

3. if A€ Awop(|S]) and A <s Fa then A € A(w), i.e. all
top activities that precede F 4 are executed successfully;

4. if S € Siop(S) and S' <s Fa then T F (S',0) =
(3,8), and T + (8,0) - (@,0) for some o,B and
v, i.e. all top subtransactions before Fa (and their
compensations) are successful;

5. if A € Awop(|S]) and Fa <s A then A & A(w), i.e. all
activities in the forward flow after Fa are not ezecuted;

6. if S’ € Siop(S) and Fao <s S then VA € A(S') :
A ¢ A(a), i.e. activities of subtransactions following
FA are not executed;

7. if A€ A(|S|) and A € A(a) then A~ € A(a), i.e. all

ezecuted activities are compensated successfully.

THEOREM 7 (ABNORMAL TERMINATION). Let S be a
nested saga. Then T'F S -2 @ iff there emist: (i) a set of
failed activities Fy C A(|S|) and (%) a set of abnormal ter-
minated subtransactions Fs C Stop(S) s.t.: Fa=F 4 UFs



ZERO

I'F(0,0) - (@,0) I'F(0,0) - (@,0)

FORCED-ABT

T - ({P],0) % (®,0)

A R T (A= B,0) - (®,0)

$-CMP 5 ZERO
T'F{0,0) — (,0)

TH( {P} |A+B,0) -5 (K0

C-PAR

SUB-ABT

T+ {P} | A+ BJ,0) > (@,0)

(a) {PT is not activated

I'+(8,0) 1 (®,0)

I ({P},0) = (=,8) T'F(0,8) - (&,0)

FORCED-ABT

ZERO
r'+(0,0) % (=, 0)

'+ ({{P};0,0) =2 (@,0)

S-STEP
A R I F (A< B,0) -2 (R,0)

S-CMP

TH( {P} | A+ B,0) P (m,0)

F-PAR

SUB-FAIL

T {P} | A+ B},0) 2 (@,0)

(b) P is completely executed

Figure 8: Possible executions of S={ {{P]} | A+ B} whenT'= A — X, T".

is not empty and VA1, A2 € Fa: A1 As Aa, (i) a set of
failed compensations F¢ C Awop(S) s.t Fe N A(S]) = 0,
(iv) a set of precommitted subtransactions with failed com-
pensations Fp C Siop(S) s.t. Fo = FoeUFs " UFp ' is
not empty and VA1, As € Fc: A1 As Aa, and the following
conditions hold: conditions 1,3,5,6 as in Theorem 6 and

2. if A€ Fy then A& Ala)

4. if 8§ € Siop(S), S’ <s Fa, and 8’1 <s Fc then
T H (S, 0) 25 (@, 8) and T+ (8,0) - (m, 0)

7. if A€ Awp(|S]) and A € A(a) and A~ <s Fc then
A7l € A(a), i.e. activities whose compensations pre-
cede Fc are compensated successfully.

8. if ' € Fs then T - (S',0) 25 (o,0) with o € {m, &},
i.e. failed subtransactions terminate abnormaly;

9. if S’ € Fp then 8" <s Fa, I'F{(S',0) == (@, B) and
I F (3,00 5 (R,0), i.e. failed precommitted sub-
transactions complete successfully but their installed
compensations fail.

10. if (S’ € Stop(S) and Fe <s '™ and A € A(S")) or
(A € Aiop(S) and Fc <s A™1) then A™' & A(a), i.e.

compensations after Fc are skipped.

Previous results do not characterize precisely the order of
the observation a (as in previous sections). Instead they
state the set of executed steps and the result they produce.

5. ADDITIONAL FEATURES

This section presents further extensions of nested sagas.

5.1 Programmable compensations

The compensation mechanism described until now is usu-
ally referred to as implicit or default compensation. In addi-
tion, some composition languages (such as BPEL4WS) allow

Update Credit
P
Accept Order
Refuse Order
\ Prepare Order
\ Ut ok

Figure 9: A nested saga for handling orders.

the programmer to explicitly define the compensation pro-
cedure associated with a completed subtransaction. In our
case, the syntax of steps should include terms with the fol-
lowing form: S + P. Consider the long running transaction
S ={ {{A1+B1; A2+ By} +P ; As]}, which should behave as
follows: when A; commits and Aj aborts, the default mech-
anism should compensate A; by activating B;. Instead, if
A; and As commit while Az aborts, the programmed com-
pensation P (and not the default Ba; Bi) should be run.

The difference between default and programmable com-
pensations is that the former are always flat processes with-
out compensations whose executions always produce results
like (OJ,0), while the latter can produce ((0,8). Let P =
Ci+ Dy;{Q]} = Q';C> + D> in S above. Clearly, if A3 fails,
then P is activated and it can commit, abort or terminate
abnormally, but it may also generate compensations. In
particular, if P commits, then it produces (&, D2;Q’; D1)
but the rules used in previous sections, which assume com-
pensations not to generate new compensations (i.e. S-CMP,
F-CMP, C-PAR, FORCED-ABT and SUB-FORCED-2), will not
handle this expected behavior.

One alternative for dealing with programmable compensa-
tions is to restrict their syntax to allow only basic activities
or processes without compensations. Similarly, without im-
posing a syntactical restriction, to make compensations to
behave as their forward flow, as follow.



(PGM-cMP)
TH(P,0) = (@, 8)

I'+({PL}+Q,8) - (3,|QL;8)

This rule is similar to (SUB-CMT) in Figure 7 that installs
the default compensation 3’. Differently, rule (PGM-CMP)
discards ' and replaces it by the forward flow |Q| of Q.
We recall that the forward flow of a process is obtained by
replacing in P each term Q =~ Q' by Q. This will assure
that the execution of a compensation never generates new
compensations neither terminates abnormally.

On the contrary, it could be possible to take into ac-
count compensations produced by compensations (as done
in StAC) and to install and use them to repeatedly compen-
sate a process. For instance by adding the following rule

(REPEATED-COMP)
DH(PB) < (R,8") T (8",0) =5 (0,8) B"#0
T+ (P,8) %% (0,8

Consider the process {{ {P}} + Ao ;A1 + (B1+Ci); R}
and an execution in which {{P]} commits and installs A as
a compensation. Then, A; commits and installs B; +C; on
top. Suppose now that R fails and starts the compensation
procedure by executing Bi + C:1. If By commits, C; will be
installed and could be activated later on, for instance when
Ap aborts. Note that this kind of definitions generates an
upward flow of control when a compensation fails, i.e. the
failure of Ao activates Ci. In our approach, where com-
pensations are used to undo committed steps, the meaning
of such a construction is quite obscure. Basically, it would
mean that a successful execution of A; can be undone by
running Bj, which can be in turn compensated with Cj.
In particular if they are perfect compensations, i.e. they
remove all the effects, the term A; + (By + Ci) leaves all
the effects of A1 when the compensation procedure fails.
Moreover it is difficult to figure out real cases in which re-
peated compensation is really necessary. In our opinion the
failure of a compensation can be modelled more naturally
by exploiting an exception handling mechanism like the one
presented in Section 5.2. For this reason, we prefer rule
(pGM-cMP) instead of (REPEATED-COMP) for handling pro-
grammable compensations.

5.2 Exception handling

A basic exception handling mechanism can be added to
the presented languages by interpreting the result (®, 3) as
a process that raises an exception. At the syntactic level,
we can consider exception handlers introduced by steps like
try S with P, where S is a saga and P a generic process.
The behavior for such processes is defined in Figure 10.

The first rule handles the case in which S; finishes with-
out raising an exception. As usual, the exception handler
P; is discarded, and the compensation created by S; is in-
stalled on top of the stack. The second rule describes the
activation of the handler P, when S; raises an exception.
Note that P» starts with the original compensation 3. The
last rule handles the activation of the compensation handler
when the abnormal termination is reached during a forced
compensation. The handler is also run in this case because
it is intended to finish the compensation procedure. Note
that the final result is always a forced termination.

(No-EXCP)

T'+(S,0) = (0,8")
I+ {try S with P,8) - (O, 8’; 8)

(ExCP)

TF(S,0) % (8,0) T+ (P,8) <5 (0,8)

with O € {@, X, X}

T+ (try S with P, 8) %% (0, 8')

(FORCED-EXCP)

TF(S,0) % (@,0) T+ (P8~ (01, 8)

T+ (try S with P, 8) &% (O, 8')
. _ if |:|1 =
with Uz = { X otherwise

Figure 10: Semantics of exception handling

Although the described mechanism is naive, it illustrates
the interplay between both concepts: compensations undo
partial executions of transactions, while exception handling
deals with incomplete compensations.

5.3 Alternatives to aborted subtransactions

In the nested model we presented in Section 4, the be-
havior of a parent transaction does not depend on the com-
pletion/abortion of its subtransactions. In fact, rule SUB-
ABT hides to the parent transaction the fact that one (or
more) of its subtransactions have not been executed (i.e.,
compensated). Nevertheless, workflow systems usually al-
low the possibility of specifying forward recovery strategies
for a process that fails to commit, such as the retry of the
activity or the execution of an alternative process.

These aspects can be modelled by extending the language
with new primitive steps try S or P whose behavior can be
described with the following rules

(s-ALT)
I'-(S,0) = (&,8')
T+ (try Sor P,8) - (1, 8'; B)
(F-ALT)
I'F(S,0) — (3,0)
'+ {try Sor P,8) = (00, 0)

(T-ALT)

with O € {®m,X, @}

’

I'H(P,0) = (X,0) T+ (P,B) > (073)

L'k (try S or P,(3) (ﬂ; (Od0,8")

This mechanism is similar to the exception handling de-
scribed above. Nevertheless, while exception handling is
used during backward computation (for failed compensa-
tions) alternative procedures are used as a forward recovery
mechanism. For this reason, an alternative is activated only
when the subtransaction aborts. Moreover, by rule (F-ALT),
which shift the forced abortion X to the parent level, alterna-
tives are not executed during a forced termination. In fact,
alternatives are intended to be used while executing towards
a completion not during the compensation procedure.

5.4 Choices

The recovery capability introduced above allows the se-
quential search of one process that executes successfully.
Some composition languages (like BPML [6]) allow alterna-



(s-CHOICE)

TH(P,0) -5 (m,8) T +(Q,0) -5 (T,0)
T+ (PBQ,B) %S (w4 6)

(F-CHOICE)

with O € {K, K}

Tk (P,0) %5 (01,0) T F{(Q,0) - (a2,0) {016{,}

TH(PEQ,A) 2% (01 Ads,0)

(C-CHOICE)

Tk (P,0) -5 (01,0) TF(Q,0) 25 (02,00 TH(8,0) 5 (01,0) oy,05 € {®,K} and gzz{

o2 € {®, 8,8, &)

X if Oy =@
otherwise

r-(PHBQ,PB) (aﬁl;’y (o1 A o2 A2, 0)

Figure 11: Semantics for the choice of a successful branch: P H Q

tives to be explored in parallel (this kind of choice is known
as discriminator). Once one branch finishes successfully all
the remaining alternatives are stopped and compensated for.
We will write these processes as PHQ), and we assume H as-
sociative and commutative. Inference rules are in Figure 11.
The last two rules (i.e., abnormal termination (F-CHOICE)
and abort ((C-CHOICE)) are analogous to those for paral-
lel composition. Differently, a choice P H @ succeeds only
when one branch commits and the other has been success-
fully (possible forced) compensated for (rule s-CHOICE). A
computation cannot go forward when one branch terminates
abnormally because the state of the system is inconsistent.
Hence, the successful branch is forced to compensate and
the whole process P H @Q ends abnormally (F-CHOICE).
These kind of choices, where the selection takes place once
one of the branches has completed successfully, are quite dif-
ferent to usual internal or external choices. Internal choices
P Q can be defined straightforwardly by defining a unique
rule and requiring M to be associative and commutative.

(INT-CHOICE)
I'F(P,B) = (O,8)
TH(PMQ,A - (0,4)
External choices are related to the notion of synchroniza-
tion of events that make the description of flows not struc-

tured. We analyze more in detailed the synchronization be-
tween flows in the following section.

5.5 Link dependencies

This section discusses the synchronization of concurrent
flows. Consider the flow depicted in Figure 12, and let

P= A1 +Bl; (A2+B2;A4+B4|A3+33;A5+B5);A6+Bﬁ

with the additional constraint stating that A4 must be exe-
cuted after As, written 1ink(As, As). Hence, any valid execu-
tion @ of P must hold both the order given by P and the ad-
ditional constraints Az < A4. Although all languages agree
on this meaning for links (or synchronization) while com-
puting forward, it is less clear which is the desired behavior
when compensating. For instance, StAC (which provides an
operator for parallel composition with synchronization over
a name set) ignores all synchronizations when computing
backward. For instance, if Ag fails during the execution of
P, then, according to the compensation policy of StAC, the
compensation procedure could activate B3 before the ter-
mination of Bs. In our opinion this semantics has a main

drawback in that the encoding of sequential composition
as a synchronization between parallel flows has a different
meaning when compensating. Consider the sequential pro-
cess P=A1+Bi1;A>+B2;Q,and P = A1 +B1 | A2+ B>;Q
with 1ink(A4, As). It is clear that requiring A; <, Az does
not make any execution a of P a valid execution of P’: we
also need By <o Bi.

The following definitions formalize the notion of valid ex-
ecution for a structured flow process with links.

DEFINITION 8 (ORDER OF A SAGA WITH LINKS). Let S
be a parallel saga and L = {link(A4;, A;)|A;, A; € A(S)}
be a set of links. The order <s,. is the least transitive and
antisymmetric relation (if defined) satisfying: (i) <sC~s,L,
and (ii) V1ink(A;, Aj) € L, A; <s,. Aj and A;' <s,p AL

Clearly, when L introduces cycles in the control flow the
order is not defined. The following definition singles out
those executions that satisfy a set of well-defined links.

DEFINITION 9  (VALID EXECUTION WITH LINKS). Let S
be a parallel saga and L a set of links s.t. <s,1. s defined. An

order o is a valid ezecution of S with links L iff T+ S = 0O
and o =<, -

The definition above simply states that a valid execution
of a process with links is an execution of the process that
also satisfies the dependency constraints.

6. CONCLUSION AND FUTURE WORKS

We have presented several primitives and mechanisms for
the specification and execution of long running transactions
in flow composition languages. In this context, the key issue
is the backward compensation of completed activities upon
abortion at a later stage of the transaction: compensations
must be programmable and installable.

Starting from the formalization of sequential sagas with a
minimal set of primitives, we have progressively enriched the
language with primitives for dealing with parallelism, nest-
ing, exception handling and choices. In particular, parallel
composition and nesting requires a careful analysis of the
mechanisms used for notifying failures to siblings and forc-
ing their abortion. We have given to each language a neat
big step semantics and proved its adequacy with respect to
the informal requirements of each different kind of sagas.

This work follows a thread (started not earlier than four
years ago) concerning the formalization of transactions via



Figure 12: A flow with links.

process description languages. Works in the literature rough-
ly fall into one of the categories below:

Extensions of well-known calculi that exploits the original
characteristics of the calculus to describe flow or interaction
based composition.(Like dialects of the m-calculus [4], of the
Join [8], and of the object calculus [15]).

Languages for the description of business processes. They
are generally graphical or XML-based languages that do not
provide a formal / unambiguous definition of their seman-
tics. All well-known (proposed) standards fall into this cat-
egory, for instance XLANG [21], WSFL [16], BPEL4WS [5].

Formal definition of compensations for flow composition
languages. To the best of our knowledge StAC is the only
proposal in this category. Nevertheless, since the use of
operators and transaction scopes are not well-disciplined in
StAC, it allows writing processes with obscure meaning.

This work is a next step in the line initiated by StAC. Our
goal is to formalize the relation of compensation with ordi-
nary primitives in flow languages and to highlight alternative
meanings for them (such as forced termination of concur-
rent processes vs. independent completion of threads, silent
abort of subtransactions vs. forward recovery). Neverthe-
less, there are several aspects in this work that still require
investigation. For instance, we do not include usual impera-
tive features, such as state (or variables), control structures
like branching or iteration, neither data communication be-
tween activities (i.e. parameter passing). We abstract away
from the fact that compensations usually require appropri-
ate data when activated. Dependency links are first step to-
wards this direction, but undoubtedly, more work is needed
to formally explain the “state” seen by compensations. We
leave these issues as future work.

Acknowledgments. We thank Michael Butler and Carla
Ferreira for the discussions about StAC semantics that mo-
tivated this work, and Dan Hirsch for helpful comments.

7. REFERENCES

[1] W. Aalst, M. Dumas, and A. Hofstede. Web service
composition languages: Old wine in new bottles?
Proc. of EUROMICRO’03, pp. 298—307. IEEE
Computer Society, 2003.

W. Aalst, M. Dumas, and A. Hofstede, and P. Wohed,
Analysis of web services composition languages: The
case of BPEL4WS. Proc. of ER’03, vol. 2813 of LNCS,
pp. 200-215. Springer, 2003.

B. Benatallah and R. Hamadi. A Petri net-based
model for web service composition. Proc. of ADC’03,
pp- 191-200. Australian Computer Society, 2003.

L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for
long-running transactions. Proc. of FMOODS’03, vol.
2884 of LNCS, pp. 124-138. Springer, 2003.

[2

—

3

—_

[4

[llaa

[5] BPEL Specification. Version 1.1. Available at http:
//www.ibm.com/developerworks/library/ws-bpel.

[6] Business process modelling language (BPML).
http://www.bpmi.org.

[7] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web services choreographies. Proc. of
WS-FM’0). To appear as ENTCS.

[8] R. Bruni, H. Melgratti, and U. Montanari. Nested
commits for mobile calculi: extending Join. Proc. of
IFIP-TCS 04, pp- 569-582. Kluwer, 2004.

[9] M. Butler, M. Chessell, C. Ferreira, C. Griffin,

P. Henderson, and D. Vines. Extending the concept of
transaction compensation. IBM Systems Journal,
41(4):743-758, 2002.

[10] M. Butler and C. Ferreira. An operational semantics
for StAC, a language for modelling long-running
business transactions. Proc. of Coordination’04, vol.
2949 of LNCS, pp. 87-104. Springer, 2004.

[11] P. Chrysanthis and K. Ramamritham. Transaction
Models for Advanced Applications, ACTA: The SAGA
Continues, pp. 349—397. Morgan Kaufmann, 1992.

[12] H. Garcia-Molina and K. Salem. Sagas. Proc. of ACM
SIGMOD’87, pp. 249-259. ACM Press, 1987.

[13] D. Georgakopoulos, M. Hornick, and A. Sheth. An
overview of workflow management: From process
modeling to workflow automation infrastructure.
Distributed and Parallel Databases, 3(2):119-153,
1995.

[14] C. Hoare. Long-running transactions. Slides for the
Second Microsoft .NET Crash Course 2002.
http://research.microsoft.com/Collaboration/
University/Europe/Events/dotnetcc/Version2.

[15] A. Hosking, S. Jagannathan, J. Vitek, and A. Welc. A
semantic framework for designer transactions. Proc. of
ESOP’04, vol. 2986 of LNCS, pp. 249-263. Springer,
2004.

[16] F. Leymann. The WsFL Guide. Available at
http://www.ibm.com/software/solutions/
webservices/documentation.html.

[17] M. Mazzara and R. Lucchi. A framework for generic
error handling in business processes. Proc. WS-FM’04.
To appear as ENTCS.

[18] L. G. Meredith and S. Bjorg. Contracts and types.
Commun. ACM, 46(10):41-47, 2003.

[19] J. Moss. Nested Transactions: An Approach to
Reliable Distributed Computing. PhD thesis, Dept. of
Electrical Eng. and Computer Sci., MIT, 1981.

[20] A. Sheth and D. Worah. Transactions in transactional
workflows. Advanced Transaction Models and
Architectures, pp- 3-34. Kluwer, 1997.

[21] S. Thatte. XLANG: Web Services for Business Process
Design. Available at http:
//wwu.gotdotnet.com/team/xml_wsspecs/xlang-c.

[22] M. Viroli. Towards a formal foundation to
orchestration languages. Proc. of WS-FM’04. To
appear as ENTCS.

[23] WebSphere Software Platform. IBM. Available at
http://www.ibm.com/software/websphere.

[24] wscl Specification. Version 1.0. Available at
http://www.w3.org/TR/wsci.



