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Abstract

This paper investigates some key algebraic properties of the categories of spans and cospans
(up to isomorphic supports) over the categ8etof (small) sets and functions, analyzing

the monoidal structures induced over both spans and cospans by cartesian product and dis-
joint union of sets. Our results find analogous counterparts in (and are partly inspired by)
the theory of relational algebras, thus our paper also sheds some light on the relationship
between (co)spans and the categories of (multi)relations and of equivalence relations. And,
since (co)spans yield an intuitive presentation of dynamical systems with input and output
interfaces, our results introduce an expressive, two-fold algebra that can serve as a specifi-
cation formalism for rewriting systems and for composing software modules.
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Introduction

The use of spand6] (and of the dual notion of cospans) have been quite ubiqui-
tous in recent years. They have been used as a syntactical device for system spec-
ification |4/18,19]; as a foundational tool for graphs and graph rewritifid,15];

or as a semantical domain for the study of partial and multi-algeBj2€][ and of
predicate transformerg7].

Their presentation is deceptively simple: given a categbwith pullbacks, the
associated catego8pan( () has the same objects @sand as a generic arrow from
ato b aspan i.e., an object € (C (called thesuppor) together with two arrows
f:c—aandg:.c — bin C (calledlegy havingc as common source. Intuitively, a
span can be viewed as a sort of input/output system, where each system msdule
equipped with two “views”19], which can be used to simulate system interaction,
I.e., through which different modules may be interfaced.

1 Research partly supported by the EC TMR NetwarkrcraTs and by the Italian MURST
ProjectToscaA.

(©2001 Published by Elsevier Science B. V.



BRuUNI AND GADDUCCI

Despite being straightforward, the span construction presents some subtleties.
First of all, for a given category, the resultingspan(C) would be better described
as a (bi)category, since composition is not really associative (if not up-to isomor-
phism); and, moreover, an intuitive notion of morphism between spans is easily
given, making the resulting structur@ecategoryat least. Second, various restric-
tion on the class of admissible spans may heavily restrict the class of derived arrows
(e.g., requiring that at least one of the leg is a mono, 2€p fnd the resulting
structure may greatly vary, from the point of view of the algebraic properties.

The goal of this paper is rather modest: we consider the cat&gnf (small)
sets and functions, and study some algebraic propertiepasf(Set) (and of the
dualCoSpan(Set)). More precisely, we investigate the key features of the monoidal
structures induced on these categories by lifting the cartesian product and the dis-
joint union inSet obtaining a preliminary taxonomy for these properties. The rele-
vance of such a taxonomy lies in the uses of (co)spans as a general-purpose frame-
work. In fact, from one side it offers an abstract view of programs with interfaces
(respectively the support and the legs of the span) and therefore the algebraic laws
of the category express the way of composing programs by connecting their inter-
faces; from the other side, having an algebra of spans yields an abstract data type
that can be used in rewriting systems for modeling distributed system via intercon-
nected modules that can change dynamically.

As a suitable example, we illustrate a quite straightforward application for our
framework as a semantic domain for Petri n@&4][a well-known specification
mechanism for representing program schemata and distributed systems, which are
built out of connecting, e.g., software modules and architecture components (i.e.,
thetransitionsof the net). In our paper we tackb®ntextual net§23], i.e., nets of-
fering read-only arcs (also called positive contexts, which allow to model multiple
concurrent readings of the same resource), and we show how modeling each net
computation as a suitable cospan, which is able to recover causal dependencies be-
tween fetched and produced resources (i.e.tdkensof the net), so that our result
may seem to recast the well-known correspondence resydtdoessesf ordinary
nets P2]. Furthermore, we show that by modeling, instead, each net computation
as a span, we can recover information about the persistence of resources in a com-
putation, namely, those tokens which are may have been read but have not been
consumed. In this setting, system reconfiguration can be viewed as a rule-driven
reduction system that allows for simplifying program schemata and software archi-
tectures, and therefore, one can prototype automated normalizations of processes
by using languages based on rewrite rules (&4pUDE andELAN, cfr. the doc-
umentation available at the URLIdtp://maude.csl.sri.comndhttp://elan.loria.fy
on the underlying span algebra.

The restriction tdsetis limiting, and we leave as future work the task of lifting
our taxonomy to other categories. Neverthel8pan(Set) represents an important
instance of the paradigm, which might be generalized to e.g. complete or regular
categories. Furthermore, it better drives our intuition, since its correspondence with
(multi)relations allows us to cast our properties against analogous results already
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presented in e.g. the theory of relational alget2hdi fact, even if the overall jus-
tification for the study of the categories of spans have been their connections with
relations B/6] (and it was already clear sinc8][the one-to-one correspondence
betweenunitary pretabular allegorieg13] and cartesian bicategories), a careful
analysis of these connections may result in a few surprises.

In Section2 we make the correspondence precise by exploiting the notion of
multirelation As a suitable introduction, the relationship is fully worked out, even
if it could be considered as an established fact in the literature, after Lawvere’s
work [2]] (but see R9] for an up-to date presentation of the connection between
categories of matrices and relations). What seems to be original, to the best of our
knowledge, is the negative result in Propositg, stating the non-existence of
object-preserving functors between the category of relationspaa Set).

In Section3 we provide the relevant results of the paper, analyzing the equa-
tional properties of the monoidal structures inducedSpan(Set) by cartesian
product and disjoint union ifset As we will see, the resulting axiomatizations
fully coincide with two different proposals present in the flownomial calculus on
the one side, and in cartesian bicategories on the other.

In Section4 we consider the “opposite” of the category of spans, namely, the
categoryCoSpan(Set) = Span(Sef®) of sets and cospans. We sketch the corre-
spondence between cospans a&aggiivalence relationsanalyzing the equational
properties of the structures induced @oSpan(Set) by cartesian product and dis-
joint union in Set While the latter category shares many of the properties of the
monoidal category induced on spans by the cartesian product, the former fails to
be monoidal, yielding @re-monoidal categorf25]. These correspondence results
are, to the best of our knowledge, new.

Finally, in Sectior5 we illustrate an application of spans to the modeling of
Petri nets. We consider in particular contextual nets, an extension of the classical
model including read-only arcs, and we prove that both categories of spans and
cospans can be used to recover information about the causal dependencies between
resources, as well as their persistence, in a computation.

1 Preliminaries

We introduce now the terminology and the notation that will be used in the rest of
the paper, assuming the reader familiar with the basic concepts of category theory.

Abusing the notation we will often denote the identity arnoly by the object
nameaitself. Sequential composition ¢t a— bandg: b — cis writtenf;g:a—c,

i.e., the symbol; - composes in the diagrammatic order.

We shall refer to theppositecategoryC°P of a categoryC as the category
having the same objects gsbut where the direction of the arrows is reversed. For
two categorie” and D we let C x D denote their cartesian product @at, the
category of (small) categories and functors.
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1.1 Monoidal Categories

As standard in functorial semantics, we restrict to categaiestly preserving

the additional structure; and, in particular, to monoidal structures where the ten-
sor product isstrictly associative and with unit, instead of being so only up to a
canonical isomorphism. This allows us to focus on the overall presentation of the
monoidal structure itself as a suitable data type, at the same time easing the nota-
tion, even if all the relevant structure is indeed preserved only up to iso on concrete
categories such &et We refer the reader for details to the recéjt [

Definition 1.1 A (strict) monoidal categonfwmc) is a triple (C,®,€), where( is
the underlying category, thensor productz: C x C — C is a functor satisfying
the associative lawt; @ ty) ® t3 = t1 ® (t2 ®t3), and theunit e is an object ofC
satisfying the identity laviy ® e =t; = e® 1y, for all arrowsts, to andts.

A symmetric monoidal categofywvc) is a 4-tuple(C,®, e y), where(C,®,€)
Is amc, andy. _1 ® 2 = _»® _1 IS a hatural transformation satisfying the coherence
axiomsyagh,c = (A® Yo,c); (Yac ®b) andyap; Yoa =a®Mb, for all a,b, c.

As a matter of terminology, given two functosG: ¢ — D, we use the term
transformation(from F to G) to denote a familyn of arrows inD indexed by
the objects ofC, such thain,:F(a) — G(a) for all objectsa in C. It is anatural
transformationif F(f);np = na; G(f) for any arrowf:a — bin C. For example,
the naturality of symmetries insaic (C, ®,e,y) amounts to say that for alt a— b,

g:c — d we have(f ®0);Ybd = Yac; (® ).

Additional structures may live isvic’s, and suitable arrows such dsplicators
anddischargergand also their co-versions) do play significant roles. In particular,
cartesian categories are monoidal categories such that duplicators and dischargers
automatically exist, and are uniquely determined by the universal property of termi-
nal object and products. A duplicataris a transformation from the identity an
to the functoD; ® = _1 ® _1 obtained by precomposing the tensor by degonal
functorD: C — C x C (with D(f) = (f, f) for all f € C). A discharget is a trans-
formation between the identity ail and the constant functor that sends everything
into the unite. Moreover, the following coherence axioms must be satisfied:

Dagb = (Da®Op); (@2 Yap®b)  lagh ='a®!ly  He=le=ide
Ha; (Da®a) = Oa; (a® Oa) Ua;Yaa = Ua o (lfa®a) =a

This situation is sometimes referred to in the literature by saying that each ob-

ject is equipped with a comonoid structud?], while, after [7], we denote such

a structured category as-monoidal If [J and! are natural (i.e., if they satisfy

f;0p=Ua; (f® f)andf;!y =!5for all f:a— b), then the category is cartesian.
Similarly, co-duplicatordy: a® a— aand co-dischargelig: e — a must satisfy

dual coherence axioms, and we denote the resulting categarygasmonoidal

when naturality is also satisfied, it yields-cartesianity There are various ways

for the gs-monoidal and the cogs-monoidal structures to interact. In particular, the

following laws have been pointed out in the literature (see, &d.0]).
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(1) Oaba=a (B5) igla=e
(2) Da0a= (Da®Ua); (@®Yaa®a); (Ba®la) (6) laia=a
() Ly Ua= (Ha®a); (a®lbq) (7) ia0a=ia®ia
(4) Dy Ua=(a®Ua);(Aa®a) (8) Agla=!a®la

As a set, these laws are of course redundant. For example, Bvesid @)
are equivalent, and they subsume |&). At the same time, they are linked with
naturality: The law2) is e.g. satisfied when the monoidal product is both cartesian
and co-cartesian, i.e., if the underlying category higsoducts

Several subsets of the eight laws listed above have been studied in the litera-
ture, usually as a model for various algebras of systems. Case studies range from
theflownomials calculuproposed by @zanescu and Stéhescul10,28], to thebi-
categories of relationgntroduced by Carboni and WalterS/6]. As stated in the
Introduction, we plan to show which algebraic laws are satisfied by (co)span cate-
gories ovelSet thus offering a taxonomy for those laws.

1.2 On spans (and cospans)

Definition 1.2 [Span] Given a category, aspanon C is an ordered pair of arrows
with common sourcé:a— bandg:a— cin C, and it is denoted by

(f,g):b—a—c.

The objectais called thesupportof the span, whilg andg are called respectively
theleft and theright leg of the span.

Two spang f1,01): b+« a; — cand(f,,g2): b« a; — careequivalenif an iso-
morphismg.a; — ap € C exists such thap; fo = f1 andg; g2 = g1. Other choices of
equivalence are available, but this is enforced by our understanding of spans as ab-
stractmodulesof a distributed system: The arrows represent the interfaces offered
for connecting to other components, and the support implements the functionality
of the module. Morphisms between supports could be considered as refinement op-
erations, as inl8]; thus, our equivalence modulo isomorphism abstracts away from
the choice of the support, without altering its internal structure. At the same time,
the equivalence allows for an associative operation of sequential composition: A
span(f,qg) is seen as an arrow from the targetfa the target of.

Definition 1.3 [Composition of spans] Given any two composable spans
(f,g):b— a— cand(h,k):c— d — e, their sequential compositioff,g); (h,k)

is the span(ps; f, p2; k), wherep; and p, are the projections associated with the
pullback ofg andhin ¢, if it exists (see Figurg).

Since pullbacks are unique only up to isomorphism, it is essential to work on
equivalence classes of spans; otherwise, either a choice of pullbacks would be re-
quired, or suitabl®icategories of sparnd] should be considered. Summarizing, by
slightly abusing the notation we use the terminology “spans” to denote equivalence
classes rather than concrete diagrams.
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Figure 1.Sequential composition of spans.

Similarly, we will ignore the obvious 2-categorical enrichmetP(]: Each
hom-set has a natural pre-order, whéfgg;):b—a; — c < (fy,g2):b—ay—c
if there exists a functiop: a; — ap such thatp; f, = f; andg; g> = g1. As we argued
before, this enrichment falls outside the scope of the paper, which is interested only
in a preliminary analysis of the equational properties of the framework.

Definition 1.4 [Identities] For each obje@ € C, we letida = (ida,ida).

Definition 1.5 [Category of spans o] Given a category” with all pullbacks, the
categorySpan((C) has the objects af as objects and the spans Oras arrows. Ar-
row composition and identities are defined as in Definifidhand Definitioril.4.

We focus on the structure of categori€pan(Set) and Span(SefP) =
CoSpan(Set). In the latter case, objects are sai8,C, ... and arrows areospans
[f,g]:B — A« C, with identitiesida = [ida,ida], and composition of cospans is
computed via pushout iBet

2 Spans and relations

In this section we focus on the categoRel of (small) sets and relations,
highlightening its relationship with the categoBpan(Set). While a functor

2 Span(Set) — Relis easily defined (see Secti@ril), a straightforward definition

for an inverse mapping fromRel to Span(Set) fails to be functorial, because spans
retain more information about tmeultiplicity of components. Moreover, under rea-
sonable assumptions no such functor exists, while a more precise correspondence
can be drawn betweedpan(Set) and the categorlyiRel of multiset relations

2.1 Spans are more concrete than relations
There is an obvious full functa# : Span(Set) — Rel: It is the identity on objects
and maps each spéf, g): B < A — C to the relation
Z((f,9)) ={(b,c) eBxC|JacA.f(a)=bAg(a) =c}.
It can be easily verified tha# preserves identities and composition, e.g., that
Z((f,0); (hk) =2((f,9));%((h,k)) for spans as in Figur&.

Remark 2.1 We recall that inSetthe pullback ofg andh can be defined as the
triple (g xoh, p1, p2), whereg xoh = {(a,d) € Ax D | g(a) = h(d)}, with p; and
p2 the obvious projections.
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Let us consider the functio’ from Rel to Span(Set) that is the identity on
objects and maps a relatiorC B x C to the spanqs,dz):B < r — C, with g; the
obvious restriction, to the subsetof the projectionﬂ,BXC from B x C to theith
componentBif i = 1, Cif i = 2), later denotedﬂ-”xc‘r.

The mapping? models the intuitive way of regarding a relation as a span, but
can it be extended to a functor? It preserves identities, bedaisssomorphic to
the set{(a,a) | a € A}. To check if.” preserves composition, we must show that
for any relations:B — C ands.C — E, theny r;s) is equivalent to(r); . (s).

But this is not the case, becausg(r);.” n‘fXC“,T[‘;XC'r TﬁXEB,TngEIS

= (Tl‘fXCXCXE“,T[BXCXCXE‘ ), wheret = {(b, c.c,e) | (b,c) erA(c,e) € s}. Since
r;s={(b,e) | dc € C.(b,c) er A(c,e) € s}, it follows that.”(r;s) = .7 (r); .~ (9)
holds only ift andr;s are isomorphic. This happens if for &llc B ande € E, at
most onec € C exists, with(b,c) € r and(c,e) € s, otherwise the cardinality df

is greater than that af s. Thus, the obvious lluf (i.e., bijective on objects) functor
from Rel to Span(Set) does not work. Also the “dual” solution (i.e., saturating
the span with infinite multiplicities for each pair in the relation by letti#gr) =
(p1, p2):B«—r x N — C and taking advantage of the fact thétx N is iso toN)
fails, since the induced functor would preserve composition, but not identities.

Proposition 2.2 No lluf functor.#: Rel — Span(Set) exists s.t.”; #Z = 1.

Proof LetA= {a} andB = {bs,by}. Itis straightforward that the identity relation
on A coincides withr;s, forr = {(a,b1),(a,bp)} ands= {(b1,a), (b2,a)}. Thus,

let #(r) = (f,9):A— X — Band.¥(s) = (h,k):B <Y — A for suitableX and

Y. Since we expect tha£((f,g)) =r, the seiX must contain at least two elements
X1 and xo that are mapped by in different elements dB, and similarly forY.
Thus, the pullback objectxoh also contains two elements (at least) and therefore
Z(r);-(s) cannot be equivalent to the identity span on the singléton O

2.2 Spans define multirelations

We denote byN® the semiring(N, +,-) extended with the top element and the
obvious infinitary operations (assuming tidafl = 0).

Definition 2.3 [Multirelations] LetA andB be sets. Anultiset relation(multirela-
tion) onAandBis a multiseM: Ax B— N®, whereM(a, b) defines thenultiplicity
of the pair(a,b) € Ax B. As for relations, a multirelatioM: A x B — N® can be
viewed as an arrom: A — B.

Definition 2.4 Given two multirelation$1: A— B andN: B — C, their composition
is the multirelatiorM; N such that
(M;N)(a z M(a,b) - N(b,c)
beB
for any (a,c) € A x C, assuming the sum being for B countable. Sets and mul-
tirelations form a category, denot&tRel.
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With the previous definitioniMRel results the Kleisli category of the monad
induced by the functor x N® from Setto itself.

Given a multirelationM, its underlying relatiorry is such that(a,b) € ry
iff M(a,b) > 0. It is immediate to note that a relation is just a multirelation
M:A x B — {0,1}, howeverRel, the category of sets and relations, is not a sub-
category ofMRel, as it follows from the results in the previous section. Instead, it
is then possible to define a functor fra®pan(Set) to MRel. The function.Z is
the identity on objects and maps each spam): B «— A — C to the multirelation
# ((f,g)) such that for alb € B andc € C we have

A ((t,9))(b,c) ={ac Al f(a) =bAg(a) =c}|
Proposition 2.5 The function# can be extended to a functor.

The functorZ”: MRel — Span(Set), inverse ta#, can be defined as follows:
& is the identity on objects and maps any multirelatdnB — C to the span
(p1,p2):B<—M — C, whereM = {(b,c,i) e BxCxN|0<i<M(b,c)} andp;
andpy are the obvious projections. For identities, thefset{(a,a,1) |ac A} is of
course isomorphic to the sAt Moreover, given any two multirelatiorid:B — C
andN:C — E, thenZ(M;N) = Z(M); Z(N).

It is easy to verify that”?; # is the identity functor oiMRel, since

A (P (M))(b,c) = [{(b,c,i) | 0<i<M(b,c)}| =M(b,c).
Taken a generic spaff,g):B «— A— C, then:
P (A ((f,9))) = (P, p2):B—A—C,

whereA = {(f(a),g(a).i) | 0 < i < .Z((f,9))(f(a),g(a))}, and ps and p; are
the obvious projections. Then, any isomorphism betw&andA that maps into
(f(a),9(a),ia) for suitable index, proves the equivalence betweef(.# ((f,g)))
and(f,qg).

Proposition 2.6 The categoriesSpan(Set) and MRel are equivalent.

2.3 Partial functions, minimal spans and relations

A further abstraction has to be required on spans, in order to discard multiplici-
ties, but “syntactical” restrictions on span components do not suffice. For example,
requesting left legs to be mono is a property closed under composition (pullbacks
preserve monos) and thus yields a category, bupan(Set) this just captures
partial functions[26]. In fact if in (f,g), f:A — B is mono, then at most one
pair (b,g(a)) can be assigned tb € B with f(a) = b. For the converse corre-
spondence, given a partial functiénB — C we just take the spak, given by
(in,Kidomk)): B < dom(k) — C, with in:domk) — B the obvious inclusion. In-
deed, given a second partial functibr€C — E, then the compositioky; hy has as
pullback object the domain & h, as expected.

Similarly, the restriction to mono right legs still yields a subcategory (dual to
the previous one), while no category exists if restrictingptotly monospans, be-
cause they are not closed under composition. Neverthdketgan be recovered
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either redefining the composition for the category of jointly mono spans (hamely,
considering a suitable epi-mono decomposition component of the resulting span),
or equivalently by collapsing spans whose supports are related by a surjective func-
tion (an epimorphism iset)

Definition 2.7 Two spangf1,01):B «— A; — C and(fz,02):B «— Ay — C areker-
nel ordered written (f1,01) <e (f2,02), if there is an epie: A, — A; such that
fo;e= f1 andgy; e = gs.

Composition of spans is monotonic with respect to such an ordering, and thus
=<e induces a partial order ov@pan(Set). We denote by the symmetric clo-
sure of=<g, and bySpang(Set) the category of spans modulo the equivalefge
Each>e-equivalence class has a minimal element (unique up to iso) that gives the
minimal representation of the underlying relation.

Proposition 2.8 The categorieSpang(Set) and Rel are isomorphic.

3 Two monoidal structures for spans

In this section we study the equational properties of the two different monoidal
structures ovespan(Set), induced by product and disjoint union Bet While

both structures result gs-monoidahd cogs-monoidal (since they are self-dual),
the laws satisfied by the interaction of their respective operators are quite different.

3.1 Spans and product

We first analyze the case in which the tensor product is induced by the carte-
sian product irSet denoting the resulting structure é&pan(Set), ®). Given two
objectsA; and Ay, their tensor product is the séf x Ay, and given two spans
(f1,01):B1 «— A1 — Cy and (fz,02):Bz « Ay — Cp, their product is the span

(f1 x f2,01 X 02):B1 x By «— A1 X Ap — Cq x Cp. The unit for the tensor product is

the singletorl = {e} (e.g., we assuma x 1 =A=1x Afor all setsA).

The symmetry af andB is the spar{ida x idg, Xap):Ax B«— Ax B — B x A,
whereXag(a,b) = (b, a) for allac Aandb € B. Note that the symmetry could have
been defined as well as being the sp&p A, idg x ida), which is in fact equivalent
to the previous one. We dendfiéla x idg, Xa g) by the symboV%iB. Coherence and

naturality ofyj g rely on the properties ofag in Set

The duplicator a\is given bydy = (ida, Oa): A< A— Ax A, where the func-
tion Oa:A— Ax Ais defined asla(a) = (a,a) for all a € A. Although the duplica-
tor O is natural inSet in general the duplicatdi® is not natural in'Span(Set), ®).

Proposition 3.1 Given a spar(f,g):B « A — C, the compositionéf, g); O and
Og; (f x f,gx g) are equivalent ifff is mono.

This result is in fact pivotal in the characterization of spans as partial functions
(see e.g.26], and the recenlq] for a general discussion on gs-monoidal categories
and varieties of partial algebras).
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The discharger & is given by!Y = (ida,!a): A« A — 1, wherela:A — 1is
the unique constant function witih(a) = e for all a € A. Although the discharger
I is natural inSet the discharger® is not natural in{Span(Set), ®).

Proposition 3.2 Given a span(f,g):B — A — C, the compositionf,g);!& is
equivalent tdg iff f is iso.

Hence, this amounts to say that the dischargéspan(Set), ®) is not natural
becausd is not terminal. In fact, for each sétthere are infinitely many arrows
to 1, which are differentiated by their left component. The coherence axioms can
be easily verified due to the particular nature of the spangl® and!® that have
an iso as the left leg, and due to the fact that this property is preserved by span
composition. Thus all coherence axioms trivially reduce to the analogous ones in
Set which are of course valid.

The self-dual nature opan(Set) allows for a straightforward definition of
the dual of duplicators and dischargers. Hence, we have the co-duplicater
(Oa,ida):Ax A — A — A, and the co-dischargdly = (!a,ida):1 — A — A. It
Is obvious that co-duplicators and co-dischargers are not natural and satisfy the
coherence axioms. The interesting question concerns the validity of 1x4&) (

Proposition 3.3 The categorySpan(Set), ®) satisfies the lawsLj-(4).

The other laws are a different matter. For example, by composing dischargers
with co-dischargers ifSpan(Set), ®) in general we gety;!¥ = (!a,!a) # id1 and
1D5i% = (A, 1A £ ida. In the first case, the equality holds Afis either iso
to 1, or to0; in the second case, iKis iso tol.

Likewise, the composition of duplicators and co-dischargers usually yields
in:0x = (1a,0a) # ix x iy andAF; 1Y = (Oa,!a) # 13 x 1%, Also in these cases,
the equalities hold ifA is either iso tdl, or to 0.

Note that the same set of equations holds for relations. Thus, considering
Spang(Set), and denoting bySpang(Set), ®) the monoidal category induced by
the cartesian product of sets, we can state the following result.

Proposition 3.4 The categorySpane(Set), ®) satisfies the lawslj-(4).

3.2 Spans and disjoint union

The disjoint union inSetinduces a different gs-monoidal structure $pan(Set),
denoted by(Span(Set), ®). Given two setsA and B, their tensor product is the
disjoint unionAwB = {(0,a) | a€ A} U{(1,b) | b € B}, with the empty sed as
unit. Given two spansfi,g1) and(f2,0p), their tensor i f1 & f2,91 Wg2), where

(wg)(x)_{(o,f(a» ?fx:(o,a)
(1,9(b)) if x=(1,b)

The symmetry afA andB is yy g = (idaWids, Xag): AUB « AWB — BWA,
wherexag(i,x) = (i +1 mod 2,x) (for x € AUB). The duplicator af\ is given by

10
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Ox = (Ta, idasa): A— A”A — AwA, whereta: AWA — Ais defined asa(i,a) = a

for all i € [0,1] anda € A, and it is natural. The discharger Atis defined by

!f = (@n,idp): A — 0 — 0, where@a:0 — A is the unique arrow from the initial
object ofSetto the sefA, and it is also natural. Since also the coherence axioms are
satisfied by, 0% and!®, we can conclude the following result.

Proposition 3.5 Disjoint union makeSpan(Set) a cartesian category.

Dually, the natural co-duplicator &% = (idawa, Ta):AWA «— AWA — A and
the natural co-discharger i§ = (idp, @a):0 < 0 — A.

Proposition 3.6 Disjoint union makesSpan(Set) a co-cartesian category.

However, the interplay between the two dual structureSSpan(Set), @) sat-
isfies only laws2), (5), (7) and 8), whereas the other laws are trivially satisfied iff
Ais empty. Instead, relations satisfy one more law: We can summarize the situation
with a result analogous to Propositi8r8 and Propositior3.4.

Proposition 3.7 The category(Span(Set),®) satisfies the laws2j, (5), (7) and
(8); whereas the categorispang(Set), ©) additionally satisfies lawl).

4 Cospans

Many analogies can be drawn between the categ8pas(Set) andCoSpan(Set).

In particular,equivalence relationglay for cospans the role played by relations for
spans: In a cospdli,g|:B — A «— C all the elements oB andC that are mapped

to the same elemente A are viewed as belonging to the same equivalence class.
It is worth remarking that more information is stored in cospans, if the two arrows
f,g are notjointly epi. Differently from Span(Set), CoSpan(Set) possesses only
one monoidal structure, obtained by lifting disjoint union. The structure resulting
from the lifting of product is just pre-monoidal: One of the few “natural” examples
of such categories, to the best of our knowledge.

4.1 Cospans and equivalence relations

We try now to establish similar results between cospans and equivalence relations,
as those holding between spans and relations. We first give the explicit definition
of ERel, the category of sets and equivalence relations.

Definition 4.1 [Equivalence relations] Lek andB be sets. Arequivalence relation
(also,partition) e from A to B is a reflexive, transitive and symmetric relation over
Ay B. A redundantpartitione, from Ato B is a pair(e, ne), for partitione: A — B
andne € N®, Given partitionsE: A — B andF:B — C, their composition is given

o —

by the pair((e; f)*,ne+ n¢ + ng), where(?;ﬁk is the restriction t)AwC of the
transitive closure of; f, andng is the cardinality of the family of equivalence
classes ir{e; f)* containing only elements iB.

11
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Sets and (redundant) equivalence relations form a category, denoteldly
(respectivelyREREel).

There is an obvious full functa” that maps each cospafh g):B — A« C
to the partitionP = &([f,q]), such thatP = {Py,...,P, | n=|f(B)Ug(C)|} and
d € R, iff, given a total orderingy, ..., Xn, ... over f(B) Ug(C), then eitherd € B
andf(B) = x;, ord € C andg(C) = x. In the other direction, there is a lluf functor
from RERel to CoSpan(Set). In addition,ERel can be identified with a suitable
quotient category ofoSpan(Set).

Definition 4.2 Two cospangf1,0i1]:B — A1 < C and [f2,02]:B — Ay < C are
image orderegwritten (f1,g1) <m (f2,02), if there is a monan: A, — A; such that
fore= f1 andgz; e=0i.

Composition of cospans is monotonic with respect to such an ordering, and
thus=<, induces a partial order oveoSpan(Set). We denote by, the symmetric
closure of<, and byCoSpan,,(Set) the category of spans modulo the equivalence
~ . Each=n-equivalence class has a minimal element (unigue up to iso) that gives
the minimal representation of the underlying relation.

Proposition 4.3 The categoriesCoSpan(Set) (CoSpan,,(Set)) and RERel (re-
spectivelyERel) are equivalent (isomorphic).

4.2 Cospans and disjoint union

A monoidal structure o€oSpan(Set) is given by taking as tensor productAdgnd
B their disjoint uniorAw B: We denote the resulting structure(@oSpan(Set), ®).
Given two cospandf1, g1] and|f2, go], their tensorial product igf1 W f2, g1 Wgp] and
the unit is the empty sét

The symmetry aA andB is VQAB.B = [idawidp,XgAl:AWB — AWB «— BWA,
and satisfies the naturality axiom for symmetries. The duplicataigtefined by
Ox = [ida, Ta]:A— A — AwA; the discharger ais Ty = [ida, gaJ:A— A— 0. In
general, duplicators and dischargers are not natural.

Proposition 4.4 Given|[f,g:B — A — C, then[f,g|;0c = Og;[f ¥ f,gwg] iff f
is surjective; whereasf,g]; e = I iff f is iso.

It is straightforward that the coherence axioms are satisfie{(iabﬁ69 and!”.
The co-duplicator and co-dischargerﬁca‘areZi9 = [Ta,ida]:AWA — A— Aand
_if = [@a,ida]: 0 — A — A, respectively. The interplay between the two dual struc-
tures yields a monoidal structure very similar to the onéspan(Set), ®).

Proposition 4.5 The categoryCoSpan(Set), &) satisfies the lawslj—(4).

This analogy is partly supported by looking at lavs}¥-(8): They are satisfied
iff Ais empty, as summarized in Talie

12
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4.3 Cospans and products

As we already claimed, lifting the cartesian producBetto CoSpan(Set) does not
result into a monoidal category. A simple counterexample is given by considering
the discharge?rf> and the co-dischargéf of the monoidal structure induced by the
disjoint union, and showing that the functoriality of product does not hold, namely,
(a1 i) @ (Taiia) # (Ta ®1x): (s ® Ta). In fact, the structuréCoSpan(Set), ®)
forms a pre-monoidal category: A relevant structure, albeit it lies ouside of the
scope of the present paper, and its analysis is left for future work.

5 Spans, cospans and Petri nets

A Petri netN is a graph whose nodes are taken in the free commutative m8foid
generated by a set glacesand whose arcs are callécnsitions We leta,b, ...
range ovelSandt,s, ... range over the set of transitiofis The elementsi, v, ... of
SP are callednarkings We letuUyv, u C v, andv )\ u denote respectively multiset
union, multiset inclusion (obi into v) and multiset difference (defined uf C v).
Each markingu = ®acsha - a defines a configuration of the system, i.e. a multiset
of resourcestpkens$ typed over the placeS; a transitiont: uy — Vv is enabledat
uif w C u, and its executionfifing) leads to(u\ u;) Uw; a multiset of transitions
T={ng-tg,....,ng -t} with ti:u; — v; for i € [1,k], is (concurrentlyenabledat u if
Uiea Ni - Ui € uand their firing leads tou\ Uic(1 Ni - Ui) UUie[1 Ni - Vi

Nets with read arcs (opositive contexisdiffer from ordinary Petri nets by
distinguishing for a transitiom:u — v a multisetw of ‘read but not consumed’
resources, with the obvious requirement that w C v. As a consequence, the
concurrent firing of a multiset of transitions is allowed whenever they are concur-
rently enabled for what concerns their ‘fetched’ resources, but where ‘contexts’ can
be instead shared, so that one ‘contextual’ token can enable more transitions at the
same time. Let us now make some precise definition, restricting our attention, for
the sake of simplicity, to nets where each arc has weight 1.

Definition 5.1 [contextual net] Acontextual netN (also c-ne) is a five-tuple
(SN, Tn, prey, Postky, ctxy ) such thatSy andTy are finite sets oplacesandtransi-
tions respectively; angrey, posty, Ctxy : Ty — Sy are jointly injective functions.

We plan to further restrict the class of nets under analysis. To this end, we need
some additional definitions, concerning possi®guencesf transitions.

Definition 5.2 [computations] LeN be a net andi a marking. A computatiow,
starting fromu, is a sequence of transitidp, . . .,t,, such that for eache [1,n],
the transitiont; is enabled inu; (i.e., prey(ti) U ctx(t) € uj), with up = u and
Ui+1 = Ui \ prey(ti) Upost(ti). The markingsy; are said to beeachablefrom u.

Spans can interpret computations in such a way that the information about non-
consuming readings is maintained. For the sake of simplicity we illustrate the map-
ping for the class o$afenets, just sketching its extension to all nets.

13



BRuUNI AND GADDUCCI

Definition 5.3 [safeness] Given an initial markingy C Sy, the netN is safe(for
uy) if all the markings which can be reached starting fraynare also just sets.

The notion of enabling for multisets of transitions can be easily given for safe
contextual nets: simply, the tokens in the preset of each single transition are dis-
jointly united, while those in the contexts are simply united.

Itis possible to interpret each computation (eventually composed by a sequence
of multisets of transitions) of a safe n€tin (Span(Set), ®), by assigning to each
transitiont the span

(ft,0r):prey(t) Uctxy(t) < ctxy(t) — posty(t) Uctxn(t),
wheref; andg; are the obvious injections.

The firing oft at markingu 2 prey(t) Uctxy(t) is then interpreted as the tensor
product (in{Span(Set), ®)) of (fi,g:) with the identity ofu\ (prey(t) Uctx(t));
i.€., as(ft, 0t) @ idy (preyt)uct () U < U\ prey(t) — (u\ prey(t)) Uposk(t). In
fact, the support contains those resources which are only read by the transition
(namely,ctxy(t)) and those which are not checked at all in the transition itself
(namely,(u\ ctx(t)) \ prey(t)).

Finally, the span associated with a computatioaty, ..., t, is given by sequen-
tially composing the spans associated withrilfieings of thet;’s (at their respective
u's, see Definitiorb.2). Thus, to each computation a span is associated inductively,
and the following claim may be safely stated.

Claim 5.4 Let ps:u < w — Vv be the span associated with a computat@mnrhe
elementsa € u which are in the image of the suppanrtare those resources which

are eventually read, but never consumed, in the computation. Moreover, for each
elementa € w, its images through the left and right legs of the sjpgrrepresent

the same (idle or read) resource of the computation

A more intriguing characterization may be obtained interpreting computations

in (CoSpan(Set), ©), by assigning to each transitibthe cospan
[fr, 0] pren(t) Uctx (t) — {t}Ucta(t) < posiy(t) Uctu(t),

wheref; andg; are the identities ontxy(t), and the constant functions qmey(t)
andposi (t) (sending everything to the elemerdf the support). Thus, the support
contains, in addition to those resources which are only read (nacbelyt)), also a
token simulating the occurrence of a causal dependency among the other resources.
Or, more appropriately, a relation of necessary consumption between them. While,
to some extent, fetched and produced resources belong to the same thread (the
element in the support), read resources have associated one side-thread each.

This could be better understood by introducing two types in the suppartd
C, whereC < T, with typing assignments(t) = T andt(a) = C for all a € ctxy(t).
When cospans are sequentially composed, the types of the elements in the resulting
support is given by the sup of the types of the elements in their counterimages,
i.e., when composingf,g| with [h, k| via the pushoutD,q;:B — D,q2:C — D)
of g:A — C andh:A — B, then the type(d) of any elemend € D is given by
1(d) = uquIl(d) T(b) L Ucqul(d) 1(C).
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This reflects the intuition that a token read by the first step of a computation and
then consumed in the second step becomes a consumed token (similarly for tokens
that are first produced and then read). Of course, to each computation a cospan is
associated inductively as before, and the following claim may be safely stated.

Claim 5.5 Let ng:u — w < v be the cospan associated with a computaton
Givena € u andb € v, if they are mapped by the legs of the span to the same
element, say, of the support, then in the computation the resowadeas been
fetched for producing the resourde Moreover, ift(c) = C, thena and b would
correspond to the same contextual (or idle) token.

It is by no chance that cospans may intuitively allow for a discussion on causal
dependencies among the differéimteads so to say, of a computation. In fact, the
causal and concurrent semantics of aMas usually expressed by means of so-
calleddeterministic processesa particular kind of acyclic safe nets, each one of
them modeling a computation &F. In this case, the possible simultaneous execu-
tion of two transitions sharing the same resource has its counterpart in the causal
independence between their representation as processes.

In [1]] it has been shown that the deterministic processes of a generid net
form the arrows of a suitable symmetric monoidal category (symmetries have the
task of eventually rearranging multiple tokens in the same place, whenever this is
needed for composing processes), andLg},[the relationship has been extended
to a fairly sophisticate embedding of processes of a contextual netsnistich-
sharecategories. These categories are essentially symmetric monoidal categories
equipped with duplicators and coduplicators satisfying ladysatd @), and con-
sequently, also law2) and 4). Reading without consuming is in fact modeled by
first duplicating the contextual resources, then executing the transition with an idle
copy of the original resources in parallel, finally matching (via a coduplicator) the
idle copy with the corresponding resources in the postset of the step.

Thus, sinceCoSpan(Se) is a model of the match-share category generated by
N, each contextual process Wfcan be interpreted in that category, by first defin-
ing the image of transitions (as we have illustrated above) and then exploiting the
features of initial model semantics to lift the mapping to all the processes via the
unique strict match-share functor that extends the interpretation of transitions.

In non-safe nets, markings can involve several tokens in the same place. Corre-
spondingly, when composing computations, it is crucial not to mix up those tokens,
as they can carry different causal (and persistence) information. Though the token
types (i.e., the place where they belong) get lost in the interpretation, the correct
typing would be preserved by the functorial interpretation of processes.

Remark 5.6 Alternatively, typed (co)spans could be employed. Formally, a span
(f,g0):A«— C — BistypedoverSwhen it is equipped with two functiong: A — S
andgs:B — S moreover, it is composable with a spamk):B «— E — D typed
over S by hg andks, if gs = hs (composition is defined as usual, with resulting
typings given byfs andks). Likewise, for typed cospans.
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(1) (2) (3) (] (5 (6) (7) (8) nat. dup. | nat. dis.
Span(Set), ® + + + + |A|<1 |Al<1 | A~1 | Ax~1 f mono fiso
Span(Set), ® A=0 + A=0 | A=0 + A=0 + + + +
CoSpan(Set), & + + + + A=0 A=0 A= A=0 f epi f iso
Rel,® + + + + |Al<1 |Al<1 | A1 | Ax~1 f mono fiso
Rel,® + + A=0 | A=0 + A=0 + + + +
ERel.® + + + + A=0 A=0 A=0 | A=0 f epi fiso

Table 1
Summary of results for (co)spans and (equivalence) relations.

Concluding Remarks

The aim of our paper was to investigate some algebraic properties satisfied by the
categoriesSpan(Set) and CoSpan(Set). In particular, we analyzed the monoidal
structures over those two categories, induced by cartesian product and disjoint
union in Set Our results are summarized in TaldleEach row is dedicated to a
particular symmetric monoidal category; each column is associated with a particu-
lar property (laws/1)—(8), naturality of (co)duplicators and (co)dischargers). Each
entry describes whether the property holds in the category: The synshaties that

the axiom is valid, while the other entries describe the sufficient and necessary con-
dition under which the axiom is satisfied. As for the naturality axioms, conditions
refer to a generic spaff,g) or cosparif,g| with supportA.

In particular, the table displays the similarity betweran(Set) with products
andCoSpan(Set) with unions: Not too surprising, given the duality in their defini-
tion; more striking is the different behaviour over the alternative structures, which
we were not able to pinpoint in a formal way. In fact, our results are still prelim-
inary. As an example, we did not tackle at all the issue of the intuitive ordering
over (co)spans, except in defining the categoBipsn(Set) and CoSpan,,(Set).

This is a relevant topic, both semantically, as shown e.g. in the predicate trans-
former construction in17]; and syntactically, since it would allow us to take fur-

ther the connection between our work and e.g. the notion of direct prc2juct [
relational algebras, which is for now forbidden by our restriction with respect to the
2-dimensional aspects of the formalism. Neverthelessfldhgiew we pursued in

this paper seems to be enough for recasting and extending several other properties
used in relational approaches (e.g., thanks to the correspondence we sketched in
Section4.]1, one can easily generalize the notiondifiunctionality[27] which is

then preserved by composition, yielding a subcategory).

Moreover, we also plan to investigate if, and how, our taxonomy can be ex-
tended and generalized to (either complete or regular) categories othe®ahan
We are thinking in particular oBraph, given the importance of the resulting cat-
egories in the modeling of the operational behaviour of rewriting systems and of
automata, as pointed out i,L5] and 18,19, respectively.
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