
Electronic Notes in Theoretical Computer Science 44 No. 3 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 18 pages

Some algebraic laws for spans
(and their connections with multirelations)1

Roberto Bruni and Fabio Gadducci

Dipartimento di Informatica, Università di Pisa
{bruni,gadducci }@di.unipi.it

Abstract

This paper investigates some key algebraic properties of the categories of spans and cospans
(up to isomorphic supports) over the categorySetof (small) sets and functions, analyzing
the monoidal structures induced over both spans and cospans by cartesian product and dis-
joint union of sets. Our results find analogous counterparts in (and are partly inspired by)
the theory of relational algebras, thus our paper also sheds some light on the relationship
between (co)spans and the categories of (multi)relations and of equivalence relations. And,
since (co)spans yield an intuitive presentation of dynamical systems with input and output
interfaces, our results introduce an expressive, two-fold algebra that can serve as a specifi-
cation formalism for rewriting systems and for composing software modules.

Key words: spans, relations, monoidal categories, modular specification

Introduction

The use of spans [1,6] (and of the dual notion of cospans) have been quite ubiqui-
tous in recent years. They have been used as a syntactical device for system spec-
ification [4,18,19]; as a foundational tool for graphs and graph rewriting [14,15];
or as a semantical domain for the study of partial and multi-algebras [9,26], and of
predicate transformers [17].

Their presentation is deceptively simple: given a categoryC with pullbacks, the
associated categorySpan(C) has the same objects asC , and as a generic arrow from
a to b a span, i.e., an objectc ∈ C (called thesupport) together with two arrows
f :c→ a andg:c→ b in C (calledlegs) havingc as common source. Intuitively, a
span can be viewed as a sort of input/output system, where each system modulec is
equipped with two “views” [19], which can be used to simulate system interaction,
i.e., through which different modules may be interfaced.

1 Research partly supported by the EC TMR Networkgetgrats and by the Italian MURST
Projecttosca.

c©2001 Published by Elsevier Science B. V.

Bruni and Gadducci

Despite being straightforward, the span construction presents some subtleties.
First of all, for a given categoryC , the resultingSpan(C) would be better described
as a (bi)category, since composition is not really associative (if not up-to isomor-
phism); and, moreover, an intuitive notion of morphism between spans is easily
given, making the resulting structure a2-categoryat least. Second, various restric-
tion on the class of admissible spans may heavily restrict the class of derived arrows
(e.g., requiring that at least one of the leg is a mono, see [26]) and the resulting
structure may greatly vary, from the point of view of the algebraic properties.

The goal of this paper is rather modest: we consider the categorySetof (small)
sets and functions, and study some algebraic properties ofSpan(Set) (and of the
dualCoSpan(Set)). More precisely, we investigate the key features of the monoidal
structures induced on these categories by lifting the cartesian product and the dis-
joint union inSet, obtaining a preliminary taxonomy for these properties. The rele-
vance of such a taxonomy lies in the uses of (co)spans as a general-purpose frame-
work. In fact, from one side it offers an abstract view of programs with interfaces
(respectively the support and the legs of the span) and therefore the algebraic laws
of the category express the way of composing programs by connecting their inter-
faces; from the other side, having an algebra of spans yields an abstract data type
that can be used in rewriting systems for modeling distributed system via intercon-
nected modules that can change dynamically.

As a suitable example, we illustrate a quite straightforward application for our
framework as a semantic domain for Petri nets [24], a well-known specification
mechanism for representing program schemata and distributed systems, which are
built out of connecting, e.g., software modules and architecture components (i.e.,
the transitionsof the net). In our paper we tacklecontextual nets[23], i.e., nets of-
fering read-only arcs (also called positive contexts, which allow to model multiple
concurrent readings of the same resource), and we show how modeling each net
computation as a suitable cospan, which is able to recover causal dependencies be-
tween fetched and produced resources (i.e., thetokensof the net), so that our result
may seem to recast the well-known correspondence result forprocessesof ordinary
nets [22]. Furthermore, we show that by modeling, instead, each net computation
as a span, we can recover information about the persistence of resources in a com-
putation, namely, those tokens which are may have been read but have not been
consumed. In this setting, system reconfiguration can be viewed as a rule-driven
reduction system that allows for simplifying program schemata and software archi-
tectures, and therefore, one can prototype automated normalizations of processes
by using languages based on rewrite rules (e.g.,MAUDE andELAN, cfr. the doc-
umentation available at the URL’shttp://maude.csl.sri.comandhttp://elan.loria.fr)
on the underlying span algebra.

The restriction toSet is limiting, and we leave as future work the task of lifting
our taxonomy to other categories. Nevertheless,Span(Set) represents an important
instance of the paradigm, which might be generalized to e.g. complete or regular
categories. Furthermore, it better drives our intuition, since its correspondence with
(multi)relations allows us to cast our properties against analogous results already

2

http://maude.csl.sri.com�
http://elan.loria.fr�

Bruni and Gadducci

presented in e.g. the theory of relational algebras [2]. In fact, even if the overall jus-
tification for the study of the categories of spans have been their connections with
relations [5,6] (and it was already clear since [3] the one-to-one correspondence
betweenunitary pretabular allegories[13] and cartesian bicategories), a careful
analysis of these connections may result in a few surprises.

In Section2 we make the correspondence precise by exploiting the notion of
multirelation. As a suitable introduction, the relationship is fully worked out, even
if it could be considered as an established fact in the literature, after Lawvere’s
work [21] (but see [29] for an up-to date presentation of the connection between
categories of matrices and relations). What seems to be original, to the best of our
knowledge, is the negative result in Proposition2.2, stating the non-existence of
object-preserving functors between the category of relations andSpan(Set).

In Section3 we provide the relevant results of the paper, analyzing the equa-
tional properties of the monoidal structures induced onSpan(Set) by cartesian
product and disjoint union inSet. As we will see, the resulting axiomatizations
fully coincide with two different proposals present in the flownomial calculus on
the one side, and in cartesian bicategories on the other.

In Section4 we consider the “opposite” of the category of spans, namely, the
categoryCoSpan(Set) = Span(Setop) of sets and cospans. We sketch the corre-
spondence between cospans andequivalence relations, analyzing the equational
properties of the structures induced onCoSpan(Set) by cartesian product and dis-
joint union in Set: While the latter category shares many of the properties of the
monoidal category induced on spans by the cartesian product, the former fails to
be monoidal, yielding apre-monoidal category[25]. These correspondence results
are, to the best of our knowledge, new.

Finally, in Section5 we illustrate an application of spans to the modeling of
Petri nets. We consider in particular contextual nets, an extension of the classical
model including read-only arcs, and we prove that both categories of spans and
cospans can be used to recover information about the causal dependencies between
resources, as well as their persistence, in a computation.

1 Preliminaries

We introduce now the terminology and the notation that will be used in the rest of
the paper, assuming the reader familiar with the basic concepts of category theory.

Abusing the notation we will often denote the identity arrowida by the object
namea itself. Sequential composition off :a→ b andg:b→ c is written f ;g:a→ c,
i.e., the symbol; composes in the diagrammatic order.

We shall refer to theoppositecategoryC op of a categoryC as the category
having the same objects asC , but where the direction of the arrows is reversed. For
two categoriesC andD we let C ×D denote their cartesian product inCat, the
category of (small) categories and functors.

3

Bruni and Gadducci

1.1 Monoidal Categories

As standard in functorial semantics, we restrict to categoriesstrictly preserving
the additional structure; and, in particular, to monoidal structures where the ten-
sor product isstrictly associative and with unit, instead of being so only up to a
canonical isomorphism. This allows us to focus on the overall presentation of the
monoidal structure itself as a suitable data type, at the same time easing the nota-
tion, even if all the relevant structure is indeed preserved only up to iso on concrete
categories such asSet. We refer the reader for details to the recent [9].

Definition 1.1 A (strict) monoidal category(mc) is a triple〈C ,⊗,e〉, whereC is
the underlying category, thetensor product⊗:C ×C → C is a functor satisfying
the associative law(t1⊗ t2)⊗ t3 = t1⊗ (t2⊗ t3), and theunit e is an object ofC
satisfying the identity lawt1⊗e= t1 = e⊗ t1, for all arrowst1, t2 andt3.

A symmetric monoidal category(smc) is a 4-tuple〈C ,⊗,e,γ〉, where〈C ,⊗,e〉
is amc, andγ: 1⊗ 2⇒ 2⊗ 1 is a natural transformation satisfying the coherence
axiomsγa⊗b,c = (a⊗ γb,c);(γa,c⊗b) andγa,b;γb,a = a⊗b, for all a,b,c.

As a matter of terminology, given two functorsF,G:C → D, we use the term
transformation(from F to G) to denote a familyη of arrows inD indexed by
the objects ofC , such thatηa:F(a)→ G(a) for all objectsa in C . It is a natural
transformationif F(f);ηb = ηa;G(f) for any arrow f :a→ b in C . For example,
the naturality of symmetries in asmc 〈C ,⊗,e,γ〉 amounts to say that for allf :a→ b,
g:c→ d we have(f ⊗g);γb,d = γa,c;(g⊗ f).

Additional structures may live insmc’s, and suitable arrows such asduplicators
anddischargers(and also their co-versions) do play significant roles. In particular,
cartesian categories are monoidal categories such that duplicators and dischargers
automatically exist, and are uniquely determined by the universal property of termi-
nal object and products. A duplicator∇ is a transformation from the identity onC
to the functorD;⊗= 1⊗ 1 obtained by precomposing the tensor by thediagonal
functorD:C → C ×C (with D(f) = (f , f) for all f ∈ C). A discharger! is a trans-
formation between the identity onC and the constant functor that sends everything
into the unite. Moreover, the following coherence axioms must be satisfied:

∇a⊗b = (∇a⊗∇b);(a⊗ γa,b⊗b) !a⊗b =!a⊗!b ∇e =!e = ide

∇a;(∇a⊗a) = ∇a;(a⊗∇a) ∇a;γa,a = ∇a ∇a;(!a⊗a) = a

This situation is sometimes referred to in the literature by saying that each ob-
ject is equipped with a comonoid structure [12], while, after [7], we denote such
a structured category asgs-monoidal. If ∇ and ! are natural (i.e., if they satisfy
f ;∇b = ∇a;(f ⊗ f) and f ; !b =!a for all f :a→ b), then the category is cartesian.

Similarly, co-duplicators∆a:a⊗a→ a and co-dischargers

!

a:e→ a must satisfy
dual coherence axioms, and we denote the resulting category ascogs-monoidal;
when naturality is also satisfied, it yieldsco-cartesianity. There are various ways
for the gs-monoidal and the cogs-monoidal structures to interact. In particular, the
following laws have been pointed out in the literature (see, e.g., [6,10]).

4

Bruni and Gadducci

∇a;∆a = a(1)

∆a;∇a = (∇a⊗∇a);(a⊗ γa,a⊗a);(∆a⊗∆a)(2)

∆a;∇a = (∇a⊗a);(a⊗∆a)(3)

∆a;∇a = (a⊗∇a);(∆a⊗a)(4)

!

a; !a = e(5)

!a;

!

a = a(6)

!

a;∇a =

!

a⊗ !

a(7)

∆a; !a = !a⊗!a(8)

As a set, these laws are of course redundant. For example, laws (3) and (4)
are equivalent, and they subsume law (2). At the same time, they are linked with
naturality: The law (2) is e.g. satisfied when the monoidal product is both cartesian
and co-cartesian, i.e., if the underlying category hasbiproducts.

Several subsets of the eight laws listed above have been studied in the litera-
ture, usually as a model for various algebras of systems. Case studies range from
theflownomials calculusproposed by C̆az̆anescu and Ştefănescu [10,28], to thebi-
categories of relationsintroduced by Carboni and Walters [5,6]. As stated in the
Introduction, we plan to show which algebraic laws are satisfied by (co)span cate-
gories overSet, thus offering a taxonomy for those laws.

1.2 On spans (and cospans)

Definition 1.2 [Span] Given a categoryC , aspanonC is an ordered pair of arrows
with common sourcef :a→ b andg:a→ c in C , and it is denoted by

〈 f ,g〉:b← a→ c.

The objecta is called thesupportof the span, whilef andg are called respectively
the left and theright legof the span.

Two spans〈 f1,g1〉:b← a1→ c and〈 f2,g2〉:b← a2→ c areequivalentif an iso-
morphismφ:a1→ a2∈ C exists such thatφ; f2 = f1 andφ;g2 = g1. Other choices of
equivalence are available, but this is enforced by our understanding of spans as ab-
stractmodulesof a distributed system: The arrows represent the interfaces offered
for connecting to other components, and the support implements the functionality
of the module. Morphisms between supports could be considered as refinement op-
erations, as in [18]; thus, our equivalence modulo isomorphism abstracts away from
the choice of the support, without altering its internal structure. At the same time,
the equivalence allows for an associative operation of sequential composition: A
span〈 f ,g〉 is seen as an arrow from the target off to the target ofg.

Definition 1.3 [Composition of spans] Given any two composable spans
〈 f ,g〉:b← a→ c and〈h,k〉:c← d→ e, their sequential composition〈 f ,g〉;〈h,k〉
is the span〈p1; f , p2;k〉, wherep1 and p2 are the projections associated with the
pullback ofg andh in C , if it exists (see Figure1).

Since pullbacks are unique only up to isomorphism, it is essential to work on
equivalence classes of spans; otherwise, either a choice of pullbacks would be re-
quired, or suitablebicategories of spans[1] should be considered. Summarizing, by
slightly abusing the notation we use the terminology “spans” to denote equivalence
classes rather than concrete diagrams.

5

Bruni and Gadducci

g×0 h
p1

yysssssss p2

%%KKKKKKK

b af
oo

g))SSSSSSSS d
hu ukkkkkkkk k

/ / e

c

Figure 1.Sequential composition of spans.

Similarly, we will ignore the obvious 2-categorical enrichment [1,20]: Each
hom-set has a natural pre-order, where〈 f1,g1〉:b← a1→ c≤ 〈 f2,g2〉:b← a2→ c
if there exists a functionφ:a1→ a2 such thatφ; f2 = f1 andφ;g2 = g1. As we argued
before, this enrichment falls outside the scope of the paper, which is interested only
in a preliminary analysis of the equational properties of the framework.

Definition 1.4 [Identities] For each objecta∈ C , we letida = 〈ida, ida〉.
Definition 1.5 [Category of spans onC] Given a categoryC with all pullbacks, the
categorySpan(C) has the objects ofC as objects and the spans onC as arrows. Ar-
row composition and identities are defined as in Definition1.3and Definition1.4.

We focus on the structure of categoriesSpan(Set) and Span(Setop) =
CoSpan(Set). In the latter case, objects are setsA,B,C, . . . and arrows arecospans
[f ,g]:B→ A←C, with identitiesidA = [idA, idA], and composition of cospans is
computed via pushout inSet.

2 Spans and relations

In this section we focus on the categoryRel of (small) sets and relations,
highlightening its relationship with the categorySpan(Set). While a functor
R:Span(Set)→Rel is easily defined (see Section2.1), a straightforward definition
for an inverse mapping fromRel to Span(Set) fails to be functorial, because spans
retain more information about themultiplicity of components. Moreover, under rea-
sonable assumptions no such functor exists, while a more precise correspondence
can be drawn betweenSpan(Set) and the categoryMRel of multiset relations.

2.1 Spans are more concrete than relations

There is an obvious full functorR : Span(Set)→ Rel: It is the identity on objects
and maps each span〈 f ,g〉:B← A→C to the relation

R(〈 f ,g〉) = {(b,c) ∈ B×C | ∃a∈ A. f (a) = b∧g(a) = c}.
It can be easily verified thatR preserves identities and composition, e.g., that

R(〈 f ,g〉;〈h,k〉) = R(〈 f ,g〉);R(〈h,k〉) for spans as in Figure1.

Remark 2.1 We recall that inSet the pullback ofg andh can be defined as the
triple (g×0 h, p1, p2), whereg×0 h = {(a,d) ∈ A×D | g(a) = h(d)}, with p1 and
p2 the obvious projections.

6

Bruni and Gadducci

Let us consider the functionS from Rel to Span(Set) that is the identity on
objects and maps a relationr ⊆ B×C to the span〈q1,q2〉:B← r →C, with qi the
obvious restriction, to the subsetr, of the projectionπB×C

i from B×C to the ith
component (B if i = 1, C if i = 2), later denotedπB×C

i |r .
The mappingS models the intuitive way of regarding a relation as a span, but

can it be extended to a functor? It preserves identities, becauseA is isomorphic to
the set{(a,a) | a∈ A}. To check ifS preserves composition, we must show that
for any relationsr:B→C ands:C→ E, thenS (r;s) is equivalent toS (r);S (s).
But this is not the case, becauseS (r);S (s) = 〈πB×C

1 |r ,π
B×C
2 |r〉;〈πC×E

1 |s,π
C×E
2 |s〉

= 〈πB×C×C×E
1 |t ,π

B×C×C×E
4 |t〉, wheret = {(b,c,c,e) | (b,c) ∈ r ∧ (c,e) ∈ s}. Since

r;s= {(b,e) | ∃c∈C.(b,c) ∈ r ∧ (c,e) ∈ s}, it follows thatS (r;s) = S (r);S (s)
holds only if t andr;s are isomorphic. This happens if for allb∈ B ande∈ E, at
most onec∈C exists, with(b,c) ∈ r and(c,e) ∈ s; otherwise the cardinality oft
is greater than that ofr;s. Thus, the obvious lluf (i.e., bijective on objects) functor
from Rel to Span(Set) does not work. Also the “dual” solution (i.e., saturating
the span with infinite multiplicities for each pair in the relation by lettingS (r) =
〈p1, p2〉:B← r ×N→C and taking advantage of the fact thatN×N is iso toN)
fails, since the induced functor would preserve composition, but not identities.

Proposition 2.2 No lluf functorS :Rel→ Span(Set) exists s.t.S ;R = 1.

Proof LetA= {a} andB= {b1,b2}. It is straightforward that the identity relation
on A coincides withr;s, for r = {(a,b1),(a,b2)} and s= {(b1,a),(b2,a)}. Thus,
let S (r) = 〈 f ,g〉:A← X → B andS (s) = 〈h,k〉:B←Y → A for suitableX and
Y. Since we expect thatR(〈 f ,g〉) = r, the setX must contain at least two elements
x1 and x2 that are mapped byg in different elements ofB, and similarly forY.
Thus, the pullback objectg×0 h also contains two elements (at least) and therefore
S (r);S (s) cannot be equivalent to the identity span on the singletonA. 2

2.2 Spans define multirelations

We denote byNω the semiring〈N,+, ·〉 extended with the top element> and the
obvious infinitary operations (assuming that0·>= 0).

Definition 2.3 [Multirelations] LetA andB be sets. Amultiset relation(multirela-
tion) onA andB is a multisetM:A×B→Nω, whereM(a,b) defines themultiplicity
of the pair(a,b) ∈ A×B. As for relations, a multirelationM:A×B→ Nω can be
viewed as an arrowM:A→ B.

Definition 2.4 Given two multirelationsM:A→BandN:B→C, their composition
is the multirelationM;N such that

(M;N)(a,c) = ∑
b∈B

M(a,b) ·N(b,c)

for any (a,c) ∈ A×C, assuming the sum being> for B countable. Sets and mul-
tirelations form a category, denotedMRel.

7

Bruni and Gadducci

With the previous definition,MRel results the Kleisli category of the monad
induced by the functor×Nω from Setto itself.

Given a multirelationM, its underlying relationrM is such that(a,b) ∈ rM

iff M(a,b) > 0. It is immediate to note that a relation is just a multirelation
M:A×B→ {0,1}, howeverRel, the category of sets and relations, is not a sub-
category ofMRel, as it follows from the results in the previous section. Instead, it
is then possible to define a functor fromSpan(Set) to MRel. The functionM is
the identity on objects and maps each span〈 f ,g〉:B← A→C to the multirelation
M (〈 f ,g〉) such that for allb∈ B andc∈C we have

M (〈 f ,g〉)(b,c) = |{a∈ A | f (a) = b∧g(a) = c}|
Proposition 2.5 The functionM can be extended to a functor.

The functorP:MRel → Span(Set), inverse toM , can be defined as follows:
P is the identity on objects and maps any multirelationM:B→ C to the span
〈p1, p2〉:B← M̂ →C, whereM̂ = {(b,c, i) ∈ B×C×N | 0 < i ≤M(b,c)} andp1

andp2 are the obvious projections. For identities, the setÂ= {(a,a,1) | a∈A} is of
course isomorphic to the setA. Moreover, given any two multirelationsM:B→C
andN:C→ E, thenP(M;N) = P(M);P(N).

It is easy to verify thatP;M is the identity functor onMRel, since

M (P(M))(b,c) = |{(b,c, i) | 0 < i ≤M(b,c)}|= M(b,c).

Taken a generic span〈 f ,g〉:B← A→C, then:

P(M (〈 f ,g〉)) = 〈p1, p2〉:B← Ã→C,

where Ã = {(f (a),g(a), i) | 0 < i ≤ M (〈 f ,g〉)(f (a),g(a))}, and p1 and p2 are
the obvious projections. Then, any isomorphism betweenA andÃ that mapsa into
(f (a),g(a), ia) for suitable indexia proves the equivalence betweenP(M (〈 f ,g〉))
and〈 f ,g〉.
Proposition 2.6 The categoriesSpan(Set) andMRel are equivalent.

2.3 Partial functions, minimal spans and relations

A further abstraction has to be required on spans, in order to discard multiplici-
ties, but “syntactical” restrictions on span components do not suffice. For example,
requesting left legs to be mono is a property closed under composition (pullbacks
preserve monos) and thus yields a category, but inSpan(Set) this just captures
partial functions[26]. In fact if in 〈 f ,g〉, f :A → B is mono, then at most one
pair (b,g(a)) can be assigned tob ∈ B with f (a) = b. For the converse corre-
spondence, given a partial functionk:B→ C we just take the spankp given by
〈in,k|dom(k)〉:B ← dom(k) → C, with in:dom(k) → B the obvious inclusion. In-
deed, given a second partial functionh:C→ E, then the compositionkp;hp has as
pullback object the domain ofk;h, as expected.

Similarly, the restriction to mono right legs still yields a subcategory (dual to
the previous one), while no category exists if restricting tojointly monospans, be-
cause they are not closed under composition. Nevertheless,Rel can be recovered

8

Bruni and Gadducci

either redefining the composition for the category of jointly mono spans (namely,
considering a suitable epi-mono decomposition component of the resulting span),
or equivalently by collapsing spans whose supports are related by a surjective func-
tion (an epimorphism inSet.)

Definition 2.7 Two spans〈 f1,g1〉:B← A1→C and〈 f2,g2〉:B← A2→C areker-
nel ordered, written 〈 f1,g1〉 �e 〈 f2,g2〉, if there is an epie:A2 → A1 such that
f2;e= f1 andg2;e= g1.

Composition of spans is monotonic with respect to such an ordering, and thus
�e induces a partial order overSpan(Set). We denote by∼=e the symmetric clo-
sure of�e, and bySpane(Set) the category of spans modulo the equivalence∼=e.
Each∼=e-equivalence class has a minimal element (unique up to iso) that gives the
minimal representation of the underlying relation.

Proposition 2.8 The categoriesSpane(Set) andRel are isomorphic.

3 Two monoidal structures for spans

In this section we study the equational properties of the two different monoidal
structures overSpan(Set), induced by product and disjoint union inSet. While
both structures result gs-monoidaland cogs-monoidal (since they are self-dual),
the laws satisfied by the interaction of their respective operators are quite different.

3.1 Spans and product

We first analyze the case in which the tensor product is induced by the carte-
sian product inSet, denoting the resulting structure as〈Span(Set),⊗〉. Given two
objectsA1 and A2, their tensor product is the setA1×A2, and given two spans
〈 f1,g1〉:B1 ← A1 → C1 and 〈 f2,g2〉:B2 ← A2 → C2, their product is the span
〈 f1× f2,g1×g2〉:B1×B2← A1×A2→C1×C2. The unit for the tensor product is
the singleton1 = {•} (e.g., we assumeA×1 = A = 1×A for all setsA).

The symmetry atA andB is the span〈idA× idB,XA,B〉:A×B← A×B→ B×A,
whereXA,B(a,b) = (b,a) for all a∈A andb∈B. Note that the symmetry could have
been defined as well as being the span〈XB,A, idB× idA〉, which is in fact equivalent
to the previous one. We denote〈idA× idB,XA,B〉 by the symbolγ⊗A,B. Coherence and

naturality ofγ⊗A,B rely on the properties ofXA,B in Set.

The duplicator atA is given by∇⊗A = 〈idA,∇A〉:A←A→A×A, where the func-
tion ∇A:A→A×A is defined as∇A(a) = (a,a) for all a∈A. Although the duplica-
tor ∇ is natural inSet, in general the duplicator∇⊗ is not natural in〈Span(Set),⊗〉.
Proposition 3.1 Given a span〈 f ,g〉:B← A→C, the compositions〈 f ,g〉;∇⊗C and
∇⊗B ;〈 f × f ,g×g〉 are equivalent ifff is mono.

This result is in fact pivotal in the characterization of spans as partial functions
(see e.g. [26], and the recent [9] for a general discussion on gs-monoidal categories
and varieties of partial algebras).

9

Bruni and Gadducci

The discharger atA is given by!⊗A = 〈idA, !A〉:A← A→ 1, where!A:A→ 1 is
the unique constant function with!A(a) = • for all a∈ A. Although the discharger
! is natural inSet, the discharger!⊗ is not natural in〈Span(Set),⊗〉.
Proposition 3.2 Given a span〈 f ,g〉:B ← A → C, the composition〈 f ,g〉; !⊗C is
equivalent to!⊗B iff f is iso.

Hence, this amounts to say that the discharger in〈Span(Set),⊗〉 is not natural
because1 is not terminal. In fact, for each setA there are infinitely many arrows
to 1, which are differentiated by their left component. The coherence axioms can
be easily verified due to the particular nature of the spansγ⊗, ∇⊗ and!⊗ that have
an iso as the left leg, and due to the fact that this property is preserved by span
composition. Thus all coherence axioms trivially reduce to the analogous ones in
Set, which are of course valid.

The self-dual nature ofSpan(Set) allows for a straightforward definition of
the dual of duplicators and dischargers. Hence, we have the co-duplicator∆⊗A =
〈∇A, idA〉:A×A ← A → A, and the co-discharger

!⊗
A = 〈!A, idA〉:1 ← A → A. It

is obvious that co-duplicators and co-dischargers are not natural and satisfy the
coherence axioms. The interesting question concerns the validity of laws (1)-(8).

Proposition 3.3 The category〈Span(Set),⊗〉 satisfies the laws (1)-(4).

The other laws are a different matter. For example, by composing dischargers
with co-dischargers in〈Span(Set),⊗〉 in general we get

!⊗
A ; !⊗A = 〈!A, !A〉 6= id1 and

!⊗A ;
!⊗

A = 〈πA×A
1 ,πA×A

2 〉 6= idA. In the first case, the equality holds iffA is either iso
to 1, or to /0; in the second case, iffA is iso to1.

Likewise, the composition of duplicators and co-dischargers usually yields!⊗
A ;∇⊗A = 〈!A,∇A〉 6= !⊗

A ×

!⊗
A and∆⊗A ; !⊗A = 〈∇A, !A〉 6= !⊗A × !⊗A . Also in these cases,

the equalities hold iffA is either iso to1, or to /0.
Note that the same set of equations holds for relations. Thus, considering

Spane(Set), and denoting by〈Spane(Set),⊗〉 the monoidal category induced by
the cartesian product of sets, we can state the following result.

Proposition 3.4 The category〈Spane(Set),⊗〉 satisfies the laws (1)-(4).

3.2 Spans and disjoint union

The disjoint union inSet induces a different gs-monoidal structure onSpan(Set),
denoted by〈Span(Set),⊕〉. Given two setsA and B, their tensor product is the
disjoint unionA]B = {(0,a) | a ∈ A}∪{(1,b) | b ∈ B}, with the empty set/0 as
unit. Given two spans〈 f1,g1〉 and〈 f2,g2〉, their tensor is〈 f1] f2,g1]g2〉, where

(f]g)(x) =

(0, f (a)) if x = (0,a)

(1,g(b)) if x = (1,b)

The symmetry atA andB is γ⊕A,B = 〈idA] idB,χA,B〉:A]B← A]B→ B]A,
whereχA,B(i,x) = (i +1 mod 2,x) (for x∈ A∪B). The duplicator atA is given by

10

Bruni and Gadducci

∇⊕A = 〈τA, idA]A〉:A←A]A→A]A, whereτA:A]A→A is defined asτA(i,a) = a
for all i ∈ [0,1] and a ∈ A, and it is natural. The discharger atA is defined by
!⊕A = 〈φA, id /0〉:A← /0 → /0, whereφA: /0 → A is the unique arrow from the initial
object ofSetto the setA, and it is also natural. Since also the coherence axioms are
satisfied byγ⊕, ∇⊕ and!⊕, we can conclude the following result.

Proposition 3.5 Disjoint union makesSpan(Set) a cartesian category.

Dually, the natural co-duplicator is∆⊕A = 〈idA]A,τA〉:A]A← A]A→ A and
the natural co-discharger is

!⊕
A = 〈id /0,φA〉: /0← /0→ A.

Proposition 3.6 Disjoint union makesSpan(Set) a co-cartesian category.

However, the interplay between the two dual structures in〈Span(Set),⊕〉 sat-
isfies only laws (2), (5), (7) and (8), whereas the other laws are trivially satisfied iff
A is empty. Instead, relations satisfy one more law: We can summarize the situation
with a result analogous to Proposition3.3and Proposition3.4.

Proposition 3.7 The category〈Span(Set),⊕〉 satisfies the laws (2), (5), (7) and
(8); whereas the category〈Spane(Set),⊕〉 additionally satisfies law (1).

4 Cospans

Many analogies can be drawn between the categoriesSpan(Set) andCoSpan(Set).
In particular,equivalence relationsplay for cospans the role played by relations for
spans: In a cospan[f ,g]:B→ A←C all the elements ofB andC that are mapped
to the same elementa∈ A are viewed as belonging to the same equivalence class.
It is worth remarking that more information is stored in cospans, if the two arrows
f ,g are notjointly epi. Differently from Span(Set), CoSpan(Set) possesses only
one monoidal structure, obtained by lifting disjoint union. The structure resulting
from the lifting of product is just pre-monoidal: One of the few “natural” examples
of such categories, to the best of our knowledge.

4.1 Cospans and equivalence relations

We try now to establish similar results between cospans and equivalence relations,
as those holding between spans and relations. We first give the explicit definition
of ERel, the category of sets and equivalence relations.

Definition 4.1 [Equivalence relations] LetA andB be sets. Anequivalence relation
(also,partition) e from A to B is a reflexive, transitive and symmetric relation over
A]B. A redundantpartitionep from A to B is a pair〈e,ne〉, for partitione:A→ B
andne ∈ Nω. Given partitionsE:A→ B andF:B→C, their composition is given

by the pair〈(̂e; f)∗,ne+ nf + nB〉, where(̂e; f)∗ is the restriction toA]C of the
transitive closure ofe; f , and nB is the cardinality of the family of equivalence
classes in(e; f)∗ containing only elements inB.

11

Bruni and Gadducci

Sets and (redundant) equivalence relations form a category, denoted byERel
(respectivelyRERel).

There is an obvious full functorP that maps each cospan[f ,g]:B→ A←C
to the partitionP = P([f ,g]), such thatP = {P1, . . . ,Pn | n = | f (B)∪g(C)|} and
d ∈ Pi iff, given a total orderingx1, ...,xn, ... over f (B)∪ g(C), then eitherd ∈ B
and f (B) = xi , or d ∈C andg(C) = xi . In the other direction, there is a lluf functor
from RERel to CoSpan(Set). In addition,ERel can be identified with a suitable
quotient category ofCoSpan(Set).

Definition 4.2 Two cospans[f1,g1]:B → A1 ← C and [f2,g2]:B → A2 ← C are
image ordered, written〈 f1,g1〉 �m 〈 f2,g2〉, if there is a monom:A2→ A1 such that
f2;e= f1 andg2;e= g1.

Composition of cospans is monotonic with respect to such an ordering, and
thus�m induces a partial order overCoSpan(Set). We denote by∼=m the symmetric
closure of�m, and byCoSpanm(Set) the category of spans modulo the equivalence
∼=m. Each∼=m-equivalence class has a minimal element (unique up to iso) that gives
the minimal representation of the underlying relation.

Proposition 4.3 The categoriesCoSpan(Set) (CoSpanm(Set)) and RERel (re-
spectivelyERel) are equivalent (isomorphic).

4.2 Cospans and disjoint union

A monoidal structure ofCoSpan(Set) is given by taking as tensor product ofA and
B their disjoint unionA]B: We denote the resulting structure as〈CoSpan(Set),⊕〉.
Given two cospans[f1,g1] and[f2,g2], their tensorial product is[f1] f2,g1]g2] and
the unit is the empty set/0.

The symmetry atA andB is γ⊕A,B = [idA] idB,χB,A]:A]B→ A]B← B]A,
and satisfies the naturality axiom for symmetries. The duplicator atA is defined by
∇⊕A = [idA,τA]:A→ A← A]A; the discharger atA is !

⊕
A = [idA,φA]:A→ A← /0. In

general, duplicators and dischargers are not natural.

Proposition 4.4 Given[f ,g]:B→ A←C, then[f ,g];∇⊕C = ∇⊕B ; [f] f ,g]g] iff f
is surjective; whereas[f ,g]; !⊕C = !

⊕
B iff f is iso.

It is straightforward that the coherence axioms are satisfied byγ⊕, ∇⊕ and!
⊕

.
The co-duplicator and co-discharger atA are∆⊕A = [τA, idA]:A]A→ A← A and

!⊕
A = [φA, idA]: /0→ A← A, respectively. The interplay between the two dual struc-

tures yields a monoidal structure very similar to the one of〈Span(Set),⊗〉.
Proposition 4.5 The category〈CoSpan(Set),⊕〉 satisfies the laws (1)–(4).

This analogy is partly supported by looking at laws (5)–(8): They are satisfied
iff A is empty, as summarized in Table1.

12

Bruni and Gadducci

4.3 Cospans and products

As we already claimed, lifting the cartesian product ofSetto CoSpan(Set) does not
result into a monoidal category. A simple counterexample is given by considering
the discharger!

⊗
A and the co-discharger

!⊗
A of the monoidal structure induced by the

disjoint union, and showing that the functoriality of product does not hold, namely,
(!⊗A ;

!⊗
A)⊗ (!⊗A ;

!⊗
A) 6= (!⊗A ⊗ !

⊗
A);(

!⊗
A ⊗

!⊗
A). In fact, the structure〈CoSpan(Set),⊗〉

forms a pre-monoidal category: A relevant structure, albeit it lies ouside of the
scope of the present paper, and its analysis is left for future work.

5 Spans, cospans and Petri nets

A Petri netN is a graph whose nodes are taken in the free commutative monoidS⊕
generated by a set ofplacesand whose arcs are calledtransitions. We leta,b, ...
range overSandt,s, ... range over the set of transitionsT. The elementsu,v, ... of
S⊕ are calledmarkings. We letu∪ v, u⊆ v, andv\u denote respectively multiset
union, multiset inclusion (ofu into v) and multiset difference (defined ifu⊆ v).
Each markingu = ⊕a∈Sna ·a defines a configuration of the system, i.e. a multiset
of resources (tokens) typed over the placesS; a transitiont:ut → vt is enabledat
u if ut ⊆ u, and its execution (firing) leads to(u\ut)∪ vt ; a multiset of transitions
τ = {n1 · t1, ...,nk · tk} with ti :ui → vi for i ∈ [1,k], is (concurrently)enabledat u ifS

i∈[1,k] ni ·ui ⊆ u and their firing leads to(u\Si∈[1,k] ni ·ui)∪
S

i∈[1,k] ni ·vi .
Nets with read arcs (orpositive contexts) differ from ordinary Petri nets by

distinguishing for a transitiont:u→ v a multisetw of ‘read but not consumed’
resources, with the obvious requirement thatu ⊇ w ⊆ v. As a consequence, the
concurrent firing of a multiset of transitions is allowed whenever they are concur-
rently enabled for what concerns their ‘fetched’ resources, but where ‘contexts’ can
be instead shared, so that one ‘contextual’ token can enable more transitions at the
same time. Let us now make some precise definition, restricting our attention, for
the sake of simplicity, to nets where each arc has weight 1.

Definition 5.1 [contextual net] Acontextual netN (also c-net) is a five-tuple
(SN,TN,preN,postN,ctxN) such thatSN andTN are finite sets ofplacesandtransi-
tions, respectively; andpreN,postN,ctxN : TN → SN are jointly injective functions.

We plan to further restrict the class of nets under analysis. To this end, we need
some additional definitions, concerning possiblesequencesof transitions.

Definition 5.2 [computations] LetN be a net andu a marking. A computationσ,
starting fromu, is a sequence of transitiont1, . . . , tn, such that for eachi ∈ [1,n],
the transitionti is enabled inui (i.e., preN(ti)∪ ctxN(ti) ⊆ ui), with u1 = u and
ui+1 = ui \preN(ti)∪postN(ti). The markingsui are said to bereachablefrom u.

Spans can interpret computations in such a way that the information about non-
consuming readings is maintained. For the sake of simplicity we illustrate the map-
ping for the class ofsafenets, just sketching its extension to all nets.

13

Bruni and Gadducci

Definition 5.3 [safeness] Given an initial markinguN ⊆ SN, the netN is safe(for
uN) if all the markings which can be reached starting fromuN are also just sets.

The notion of enabling for multisets of transitions can be easily given for safe
contextual nets: simply, the tokens in the preset of each single transition are dis-
jointly united, while those in the contexts are simply united.

It is possible to interpret each computation (eventually composed by a sequence
of multisets of transitions) of a safe netN in 〈Span(Set),⊕〉, by assigning to each
transitiont the span

〈 ft ,gt〉:preN(t)∪ctxN(t)← ctxN(t)→ postN(t)∪ctxN(t),

where ft andgt are the obvious injections.
The firing oft at markingu⊇ preN(t)∪ctxN(t) is then interpreted as the tensor

product (in〈Span(Set),⊕〉) of 〈 ft ,gt〉 with the identity ofu\ (preN(t)∪ ctxN(t));
i.e., as〈 ft ,gt〉⊕ idu\(preN(t)∪ctxN(t)):u← u\preN(t) → (u\ preN(t))∪postN(t). In
fact, the support contains those resources which are only read by the transition
(namely,ctxN(t)) and those which are not checked at all in the transition itself
(namely,(u\ctxN(t))\preN(t)).

Finally, the span associated with a computationσ = t1, ..., tn is given by sequen-
tially composing the spans associated with then firings of theti ’s (at their respective
ui ’s, see Definition5.2). Thus, to each computation a span is associated inductively,
and the following claim may be safely stated.

Claim 5.4 Let ρσ:u← w→ v be the span associated with a computationσ. The
elementsa∈ u which are in the image of the supportw are those resources which
are eventually read, but never consumed, in the computation. Moreover, for each
elementa∈ w, its images through the left and right legs of the spanρσ represent
the same (idle or read) resource of the computationσ.

A more intriguing characterization may be obtained interpreting computations
in 〈CoSpan(Set),⊕〉, by assigning to each transitiont the cospan

[ft ,gt]:preN(t)∪ctxN(t)→{t}∪ctxN(t)← postN(t)∪ctxN(t),

where ft andgt are the identities onctxN(t), and the constant functions onpreN(t)
andpostN(t) (sending everything to the elementt of the support). Thus, the support
contains, in addition to those resources which are only read (namely,ctxN(t)), also a
token simulating the occurrence of a causal dependency among the other resources.
Or, more appropriately, a relation of necessary consumption between them. While,
to some extent, fetched and produced resources belong to the same thread (the
elementt in the support), read resources have associated one side-thread each.

This could be better understood by introducing two types in the support:T and
C, whereC≤ T, with typing assignmentsτ(t) = T andτ(a) = C for all a∈ ctxN(t).
When cospans are sequentially composed, the types of the elements in the resulting
support is given by the sup of the types of the elements in their counterimages,
i.e., when composing[f ,g] with [h,k] via the pushout(D,q1:B→ D,q2:C→ D)
of g:A→ C andh:A→ B, then the typeτ(d) of any elementd ∈ D is given by
τ(d) =

F
b∈q−1

1 (d) τ(b)tFc∈q−1
2 (d) τ(c).

14

Bruni and Gadducci

This reflects the intuition that a token read by the first step of a computation and
then consumed in the second step becomes a consumed token (similarly for tokens
that are first produced and then read). Of course, to each computation a cospan is
associated inductively as before, and the following claim may be safely stated.

Claim 5.5 Let ησ:u→ w ← v be the cospan associated with a computationσ.
Given a ∈ u and b ∈ v, if they are mapped by the legs of the span to the same
element, sayc, of the support, then in the computation the resourcea has been
fetched for producing the resourceb. Moreover, ifτ(c) = C, thena and b would
correspond to the same contextual (or idle) token.

It is by no chance that cospans may intuitively allow for a discussion on causal
dependencies among the differentthreads, so to say, of a computation. In fact, the
causal and concurrent semantics of a netN is usually expressed by means of so-
calleddeterministic processes, a particular kind of acyclic safe nets, each one of
them modeling a computation ofN. In this case, the possible simultaneous execu-
tion of two transitions sharing the same resource has its counterpart in the causal
independence between their representation as processes.

In [11] it has been shown that the deterministic processes of a generic netN
form the arrows of a suitable symmetric monoidal category (symmetries have the
task of eventually rearranging multiple tokens in the same place, whenever this is
needed for composing processes), and in [16], the relationship has been extended
to a fairly sophisticate embedding of processes of a contextual nets intomatch-
sharecategories. These categories are essentially symmetric monoidal categories
equipped with duplicators and coduplicators satisfying laws (1) and (3), and con-
sequently, also laws (2) and (4). Reading without consuming is in fact modeled by
first duplicating the contextual resources, then executing the transition with an idle
copy of the original resources in parallel, finally matching (via a coduplicator) the
idle copy with the corresponding resources in the postset of the step.

Thus, sinceCoSpan(Set) is a model of the match-share category generated by
N, each contextual process ofN can be interpreted in that category, by first defin-
ing the image of transitions (as we have illustrated above) and then exploiting the
features of initial model semantics to lift the mapping to all the processes via the
unique strict match-share functor that extends the interpretation of transitions.

In non-safe nets, markings can involve several tokens in the same place. Corre-
spondingly, when composing computations, it is crucial not to mix up those tokens,
as they can carry different causal (and persistence) information. Though the token
types (i.e., the place where they belong) get lost in the interpretation, the correct
typing would be preserved by the functorial interpretation of processes.

Remark 5.6 Alternatively, typed (co)spans could be employed. Formally, a span
〈 f ,g〉:A←C→ B is typedoverSwhen it is equipped with two functionsfS:A→ S
andgS:B→ S; moreover, it is composable with a span〈h,k〉:B← E → D typed
over S by hS and kS, if gS = hS (composition is defined as usual, with resulting
typings given byfS andkS). Likewise, for typed cospans.

15

Bruni and Gadducci

(1) (2) (3) (4) (5) (6) (7) (8) nat. dup. nat. dis.

Span(Set),⊗ + + + + | A |≤ 1 | A |≤ 1 A' 1 A' 1 f mono f iso

Span(Set),⊕ A = /0 + A = /0 A = /0 + A = /0 + + + +

CoSpan(Set),⊕ + + + + A = /0 A = /0 A = /0 A = /0 f epi f iso

Rel,⊗ + + + + | A |≤ 1 | A |≤ 1 A' 1 A' 1 f mono f iso

Rel,⊕ + + A = /0 A = /0 + A = /0 + + + +

ERel,⊕ + + + + A = /0 A = /0 A = /0 A = /0 f epi f iso

Table 1
Summary of results for (co)spans and (equivalence) relations.

Concluding Remarks

The aim of our paper was to investigate some algebraic properties satisfied by the
categoriesSpan(Set) andCoSpan(Set). In particular, we analyzed the monoidal
structures over those two categories, induced by cartesian product and disjoint
union in Set: Our results are summarized in Table1. Each row is dedicated to a
particular symmetric monoidal category; each column is associated with a particu-
lar property (laws (1)–(8), naturality of (co)duplicators and (co)dischargers). Each
entry describes whether the property holds in the category: The symbol+ states that
the axiom is valid, while the other entries describe the sufficient and necessary con-
dition under which the axiom is satisfied. As for the naturality axioms, conditions
refer to a generic span〈 f ,g〉 or cospan[f ,g] with supportA.

In particular, the table displays the similarity betweenSpan(Set) with products
andCoSpan(Set) with unions: Not too surprising, given the duality in their defini-
tion; more striking is the different behaviour over the alternative structures, which
we were not able to pinpoint in a formal way. In fact, our results are still prelim-
inary. As an example, we did not tackle at all the issue of the intuitive ordering
over (co)spans, except in defining the categoriesSpane(Set) andCoSpanm(Set).
This is a relevant topic, both semantically, as shown e.g. in the predicate trans-
former construction in [17]; and syntactically, since it would allow us to take fur-
ther the connection between our work and e.g. the notion of direct product [2] in
relational algebras, which is for now forbidden by our restriction with respect to the
2-dimensional aspects of the formalism. Nevertheless, theflat view we pursued in
this paper seems to be enough for recasting and extending several other properties
used in relational approaches (e.g., thanks to the correspondence we sketched in
Section4.1, one can easily generalize the notion ofdifunctionality [27] which is
then preserved by composition, yielding a subcategory).

Moreover, we also plan to investigate if, and how, our taxonomy can be ex-
tended and generalized to (either complete or regular) categories other thanSet.
We are thinking in particular ofGraph, given the importance of the resulting cat-
egories in the modeling of the operational behaviour of rewriting systems and of
automata, as pointed out in [8,15] and [18,19], respectively.

16

Bruni and Gadducci

References

[1] J. Bénabou. Introduction to bicategories. InMidwest Category Seminar, volume 47
of Lectures Notes in Mathematics, pages 1–77. Springer Verlag, 1967.

[2] R. Berghammer, A. Haeberer, G. Schmidt, and P. Veloso. Comparing two different
approaches to products in abstract relational algebra. In M. Nivat, Ch. Rattray, T. Rus,
and G. Scollo, editors,Algebraic Methodology and Software Technology, Workshops
in Computing, pages 167–176. Springer Verlag, 1994.

[3] C. Brown and A. Jeffrey. Allegories of circuits. In A. Nerode and Y. Matiyasevich,
editors,Logic Foundations of Computer Science, volume 813 ofLect. Notes in Comp.
Science, pages 56–68. Springer Verlag, 1994.

[4] R. Bruni, F. Gadducci, and U. Montanari. Normal forms for partitions and relations.
In J.L. Fiadeiro, editor,Recent Trends in Algebraic Development Techniques, volume
1589 ofLect. Notes in Comp. Science, pages 31–47. Springer Verlag, 1999.

[5] A. Carboni, S. Kasangian, and R.H. Street. Bicategories of spans and relations.
Journal of Pure and Applied Algebra, 33:259–267, 1984.

[6] A. Carboni and R.F.C. Walters. Cartesian bicategories I.Journal of Pure and Applied
Algebra, 49:11–32, 1987.

[7] A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via gs-
monoidal categories.Applied Categorical Structures, 7:299–331, 1999.

[8] A. Corradini and F. Gadducci. Rewriting on cyclic structures: Equivalence
between the operational and the categorical description.Informatique Th́eorique et
Applications/Theoretical Informatics and Applications, 33:467–493, 1999.

[9] A. Corradini and F. Gadducci. A functorial semantics for multi-algebras and partial
algebras, with applications to syntax.Theoret. Comput. Sci., 2001. To appear.
Available athttp://www.di.unipi.it/˜gadducci/papers .

[10] V.-E. Căz̆anescu and Gh. Ştefănescu. Classes of finite relations as initial abstract data
types I.Discrete Mathematics, 90:233–265, 1991.

[11] P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net
computations and processes.Acta Informatica, 33:641–667, 1996.

[12] T. Fox. Coalgebras and cartesian categories.Communications in Algebra, 4:665–667,
1976.

[13] P. Freyd and A. Scedrov.Categories, Allegories. North-Holland, 1990.

[14] F. Gadducci and R. Heckel. An inductive view of graph transformation. In F. Parisi-
Presicce, editor,Recent Trends in Algebraic Development Techniques, volume 1376 of
Lect. Notes in Comp. Science, pages 219–233. Springer Verlag, 1998.

[15] F. Gadducci, R. Heckel, and M. Llabrés. A bi-categorical axiomatisation of
concurrent graph rewriting. In M. Hofmann, D. Pavlovic̀, and G. Rosolini, editors,

17

http://www.di.unipi.it/~gadducci/papers�

Bruni and Gadducci

Category Theory and Computer Science, volume 29 ofElectronic Notes in Theoretical
Computer Science. Elsevier Sciences, 1999. Available athttp://www.elsevier.
nl/locate/entcs/volume29.html/ .

[16] F. Gadducci and U. Montanari. Axioms for contextual net processes. In K.G. Larsen,
S. Skyum, and G. Winskel, editors,Automata, Languages and Programming, volume
1443 ofLect. Notes in Comp. Science, pages 296–308. Springer Verlag, 1998.

[17] P. Gardiner, C. Martin, and O. de Moor. An algebraic construction of predicate
trasformers. In R.S. Bird, C.C. Morgan, and Woodcock J.C.P., editors,Mathematics of
Program Construction, volume 669 ofLect. Notes in Comp. Science. Springer Verlag,
1992.

[18] P. Katis, N. Sabadini, and R.F.C. Walters. Bicategories of processes.Journal of Pure
and Applied Algebra, 115:141–178, 1997.

[19] P. Katis, N. Sabadini, and R.F.C. Walters. SPAN(Graph): A categorical algebra
of transition systems. In M. Johnson, editor,Algebraic Methodology and Software
Technology, volume 1349 ofLect. Notes in Comp. Science, pages 307–321. Springer
Verlag, 1997.

[20] G.M. Kelly and R.H. Street. Review of the elements of 2-categories. In G.M. Kelly,
editor,Sydney Category Seminar, volume 420 ofLecture Notes in Mathematics, pages
75–103. Springer Verlag, 1974.

[21] F.W. Lawvere. Metric spaces, generalized logic, and closed categories.Rendiconti del
Seminario Matematico e Fisico di Milano, 43:135–166, 1973.

[22] J. Meseguer and U. Montanari. Petri nets are monoids.Information and Computation,
88:105–155, 1990.

[23] U. Montanari and F. Rossi. Contextual nets.Acta Informatica, 32:545–596, 1995.

[24] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut f̈ur Instrumentelle
Matematik, Bonn, 1962.

[25] J. Power and E. Robinson. Premonoidal categories and notions of computation.
Mathematical Structures in Computer Science, 7:453–468, 1998.

[26] E. Robinson and G. Rosolini. Categories of partial maps.Information and
Computation, 79:95–130, 1988.

[27] G. Schmidt and T. Ströhlein. Relations and Graphs, Discrete Mathematics
for Computer Scientists. EATCS-Monographs on Theoretical Computer Science.
Springer Verlag, 1993.

[28] Gh. Ştef̆anescu.Network Algebra. Springer Verlag, 2000.

[29] M. Winter. A pseudo representation theorem for various categories of relations.
Theory and Application of Categories, 7:23–37, 2000. Available athttp://www.
tac.mta.ca/tac/ .

18

http://www.elsevier.nl/locate/entcs/volume29.html/�
http://www.elsevier.nl/locate/entcs/volume29.html/�
http://www.tac.mta.ca/tac/�
http://www.tac.mta.ca/tac/�

