
A Formal Support to Business and Architectural
Design for Service-oriented Systems?

Roberto Bruni1, Howard Foster2, Alberto Lluch Lafuente3,
Ugo Montanari1, and Emilio Tuosto4

1 Department of Computer Science, University of Pisa, Italy
{bruni,ugo}@di.unipi.it

2 Imperial College London, UK
howard.foster@imperial.ac.uk

3 IMT Institute for Advanced Studies Lucca, Italy
alberto.lluch@imtlucca.it

4 Department of Computer Science, University of Leicester, UK
emilio@mcs.le.ac.uk

Abstract. Architectural Design Rewriting (ADR) is an approach for the
design of software architectures developed within Sensoria by reconciling
graph transformation and process calculi techniques. The key feature that
makes ADR a suitable and expressive framework is the algebraic handling
of structured graphs, which improves the support for specification, analysis
and verification of service-oriented architectures and applications. We
show how ADR is used as a formal ground for high-level modelling
languages and approaches developed within Sensoria.

1 Introduction

The IST-FET Integrated Project Sensoria aims at developing a comprehensive
approach to the engineering of service-oriented software systems where foun-
dational theories, techniques and methods are fully integrated into pragmatic
software engineering processes. The development of mathematical foundations
and mathematically well-founded engineering techniques for service-oriented
computing constitutes a key research activity of Sensoria.

In this paper we report the outcome of some research efforts within Sen-
soria aimed at developing formalisations of high-level modelling languages for
service-oriented systems. More precisely, we present Architectural Design Rewrit-
ing (ADR) [5] and we explain how ADR can be used as a formal model for
architectural and business design and how it helps in formalising crucial aspects
of the UML4SOA and SRML modelling languages, see Chapter 1-1 (UML Exten-
sions for Service-Oriented Systems) and Chapter 1-2 (The Sensoria Reference
Modelling Language), respectively, as well as the software modes approach [9].

ADR has been inspired by the long-term experience of Sensoria researchers
on Graph Transformation Systems, process calculi and software engineering and

? This work has been partially sponsored by the project SENSORIA, IST-2005-016004.



Fig. 1. “Graphs within boxes” (left) and “Graphs within edges” (right)

has been entirely developed under the Sensoria project, allowing us to establish
interesting links with many other formalisms developed within Sensoria and
making it possible to strengthen the collaboration among different research groups
with different expertise within the project.

Synopsis. § 2 explains the motivating principles of ADR. § 3 introduces ADR
basics and explains how ADR can be considered as an Architectural Description
Language on the basis of a running example. § 4 overviews some key aspects of
ADR-based formalisations of UML4SOA, SRML and Sofware Modes.

2 Rationale behind Architectural Design Rewriting

The use of graphs or diagrams of various kinds is pervasive in Computer Science,
as they are very handy for describing in a two-dimensional space the logical
or topological structure of systems, models, states, behaviours, computations,
etc.; the reader might be familiar, for example, with the classical graphical
presentations of entity-relationship diagrams, of finite state automata and labelled
transition systems, of data-structures (like various kinds of lists and trees), static
and behavioural UML diagrams (like class, message sequence and state diagrams),
of computational formalisms like Petri nets, and so on. One obvious advantage of
using graphs or diagrams lies in their ability to represent in a direct way relevant
topological features of the systems or models they describe.

On the one hand, software architectural models are intended to describe the
structure of a system in terms of computational components, their interactions,
and its composition patterns [12]. Using plain hypergraphs, the above perspective
can find its realisation by modelling “components” and “connectors” as hyperedges
and their interconnecting “ports” as nodes. Moreover, nodes, hyperedges and
their tentacles can be typed so to discard erroneously linked systems.

On the other hand, in [2] it is argued that structured graphs are the most ap-
propriate ones for service-oriented and global computing systems, where scalable
techniques and open-ended specifications are important issues not immediately



Fig. 2. “Nested graphs”

met by plain hypergraphs alone. Structured graphs offer better support for “un-
derstanding” graphs (like parsing and browsing large systems), designing systems
(like expressing requirements and specifications, facilitating abstraction and re-
finement, allowing modularity and seamless composition), supporting automated
analysis and verification (like model construction, model conformance, behavioural
analysis, assessing sound reconfiguration and refactoring transformations) and
last but not least, sound and complete visual encoding of computational systems.

Different kinds of structures can be super-imposed on graphs. The simplest
one is enclosing a graph G in some sort of box whose label B implicitly defines
some properties of the enclosed graph, i.e., its style. For example, Fig. 1 (left)
shows some basic examples of “topologically” labelled graphs, that can be written,
e.g., Seq [G] and Star [G′] (for obvious graphs G, G′ derivable from Fig. 1) or,
equivalently, as membership annotations G : Seq and G′ : Star , where Seq can
be read as the set of all sequentially-linked graphs, and similarly for Star .

The natural extension of taking a “graphs within boxes” view is then the
“graphs within edges” (or “nested graphs”) view, where boxing can be iterated
by allowing style labels that are edges themselves (see Fig. 1 (right)). Note
that the boxed interfaces are now equipped with tentacles and that dotted lines
make explicit the correspondence between inner nodes exposed by interfaces and
actual nodes where the module is linked to. When the nodes attached to the
tentacles of its (outermost) interface are read as formal parameters, we call it
a design. This way, boxes can be read as enhanced interfaces allowing for more
sophisticated forms of containment, strctured composition, modular specification,
logical hierarchies, and node sharing, among others, making such features easily
understandable also to non-specialists. For example, Fig. 2 shows that sequential
composition of (nested) sequential graphs still yields a sequential graph. Note
that if we remove all enclosing boxes from a nested graph then we are left with
an underlying plain graph, but we loose any information about the conceptual
organization of its elements. Thus in a sense, nested graphs can be read as
“blueprints” of their underlying graphs.

3 Design Foundations

This section overviews the principles of Architectural Design Rewriting (ADR) [5].



Fig. 3. A type graph (left) and a configuration (right)

3.1 System Configurations

A system configuration in ADR is the underlying graph of a design, representing
the architectural units and their interconnections. Recall that a graph is a tuple
G = 〈V,E, θ〉 where V is the set of nodes, E is the set of edges and θ : E → V ∗

is the tentacle function. Given a graph T (called the type graph), a T -typed graph
is a pair 〈G, tG : G→ T 〉, where G is the underlying graph and tG : G→ T is a
graph morphism. From now on we assume that graphs are always typed over a
suitable type graph T , even if sometimes it is not described explicitly. Intuitively,
a type graph plays the role of an architectural vocabulary and enforces certain
tentacles to be connected to nodes of a given type, but note that a type graph T
itself cannot impose any sophisticated topological structure on T -typed graphs.

The distinction between refinable components and non-refinable components
in software architectures amounts to the distinction between non-terminal and
terminal edges in ADR. The underlying idea is the same: a non-terminal edge is
an edge intended to be refined (i.e., replaced by an arbitrarily complex graph).
Non-terminal edges can appear in designs, representing unspecified parts of
a configuration (a refinable component) or in design productions (see later).
Terminal edges instead represent parts of a graph that cannot be further refined
(non-refinable components).

Fig. 3 shows a type graph (left) and a configuration typed over it (right), where
the typing is made explicit by the shapes and labels of nodes and edges. Refinable
components are represented as group-boxes, while non-refinable components as
plain boxes. The type graph in Fig. 3 includes both kinds of edges, while the
configuration is ground, in the sense that it consists of terminal edges only.

3.2 Architectural Designs

An architectural design is a nested graph representing a structured system
configuration. Technically, a design is a triple d = 〈Ld, Rd, id〉, where Ld is the
interface graph consisting of a single non-terminal edge (the interface) whose
tentacles are attached to distinct nodes; Rd is the body graph; and id : VLd

→ VRd

is the (injective) function that maps interface nodes to body nodes.
For example, Fig. 4 shows three designs: the design on the left has a ground

body graph that matches the intuition of its interface edge Star ; the design on



Fig. 4. Three designs

the center has a ground body graph shaped as a ring, hence not exactly matching
the intended meaning associated with the interface edge Seq ; the rightmost
design has a body graph involving all different kinds of edges and exhibiting little
correspondence with the intuitive meaning of its interface edge Star .

3.3 Architectural Styles

To avoid the above raised problems, the shape of graphs embedded in a design
must be constrained. To this aim architectures are designed inductively by a
set of composition operators called design productions which enable: (i) top-
down refinement, like replacing a refinable components with its (possibly non-
ground) realisation, (ii) bottom-up typing, like inferring the “style” of a system
configuration, and (iii) well-formed composition, like composing some well-typed
architectures together so to guarantee that the result is still well-typed.

Design productions take inspiration from Graph Grammars [7], where hyper-
edge replacement rules allow to substitute, in a graph G, a (refinable) edge L
with a particular graph R, suitably connected to the nodes of G where L was
connected to. Technically, a design production p = 〈Lp, Rp, ip〉 is very much like
a design but with an order on the non-terminal edges {e1, ..., enp

} appearing in
its body graph (intuitively, the order of the arguments they represent). The type
of a production p is A1 × A2 × . . . × Anp → Ap, where Ak is the non-terminal
symbol labelling the k-th non-terminal edge ek of the body of the production.
The functional type means that p can be considered as a function that when
applied to a tuple 〈d1, d2, . . . , dnp

〉 of designs such that di : Ai, returns a design
d = p(d1, d2, . . . , dnp

) of type Ap. The definition is obvious: d = (Lp, Rd, ip),
where Rd is obtained from Rp by replacing each non-terminal edge ek in it with
body graph Rdk

of dk respecting its tentacle function idk
, for k = 1, . . . , np.

This view corresponds to a bottom-up design development: a design is con-
structed by putting together some component designs. However, the dual view is
also possible: a production can be seen as a refinement of an abstract component
of type Ap as an assembly of concrete and abstract components, the latter being
of type A1, A2, . . . Anp

.



Fig. 5. Architectural styles for sequences and stars

For example, Fig. 5 shows simple design productions for configurations shaped
as sequences (Seq) and stars (Star). Note that, according to the functional flavor
described above, the labels of enclosing boxes are enriched with the information
about the name of the production, the names of its “arguments”, their types
and the type of the result. For example we have constant building blocks a and b
(respectively for Seq and Star) and operation seq(X,Y ) that takes two arguments
X,Y of style Seq and returns a graph of style Seq obtained by concatenating
the two ends of X and Y to form a sequence and exposing a suitable interface.
Another possible reading for the rules is the following: a graph has style Seq if it
is either a single component a or the sequential composition of two other graphs
of styles Seq ; a graph has style Star if it is a single component b or a sequence
seen as a chord, or the joint composition of two other graphs of styles Star .

3.4 Design Algebra

One key feature of architectural styles is that design productions provide us with
a signature for defining graphs. Furthermore, the terms over such a signature
do not even need to mention node names or edge names, because the way in
which components are connected is entirely embedded in each operation (i.e., in
each design production). For example, a term like star(b, chord(seq(seq(a, a), a)))
describes a ground configuration, that is conformant to style Star : a component
b joined with a chord embedding three components a.

In general, it can be the case that different terms denote the same underly-
ing configuration, like star(b, star(b, b)) and star(star(b, b), b): they essentially
correspond to the graph in Fig. 4 (left). In some cases this distinction can be
even desirable, to mark significant design choices no longer recoverable from
the configuration itself. In other cases, the distinction can be annoying, because
the order in which certain refinement steps are applied is not essential. Often
the latter situation can be dealt with at the level of design algebra by imposing
suitable structural congruence axioms. All such axioms must be sound, in the



sense that terms denoting non-isomorphic ground configurations must be kept
distinct. However the axiomatization is not required to be complete, i.e. terms
that are not structurally congruent may still denote the same graph (up to
isomorphism). For example, the associativity and commutativity of star(·, ·) and
the associativity of seq(·, ·) are natural axioms for our running example.

3.5 Design Reconfiguration

Software architectures might evolve in different dimensions. First, they might
change statically when components are refined or architectures are assembled
together. At run-time instead, architectures might evolve due to actions of normal
behaviour or reconfigurations. Components leaving or joining the system can
require correcting actions that lead the system into a proper state. Sometimes
a reconfiguration rule can be described as a direct manipulation of a design or
its corresponding term (without variables). However, reconfigurations arise more
naturally and in a well-disciplined way at the abstract level of the architecture,
i.e., as manipulations of designs. An additional issue that one would like to have
in a reconfiguration mechanism is the capacity to give guarantees about the
architectural style. For instance, whether it is preserved or not.

Reconfiguration as Graph Rewrites Since our configurations are represented
by graphs, reconfigurations can be defined as graph transformations [7], e.g. based
on the single-pushout and double-pushout approaches. Basically the rules come
with left- and right-hand side graphs GL, GR. Operationally, the rewrite can
be applied to any graph G larger than GL by finding a suitable match (i.e. an
occurrence of GL in G) and the result is the graph obtained from G by removing
that instance of GL and releasing a fresh instance of GR. There can be items
shared by GL and GR that are required to trigger the rewrite, but are preserved
by the transformation.

This view operates on flat, unstructured graphs, thus disregarding the archi-
tectural information and, for instance, not guaranteeing style preservation in the
general case. When style preservation is a requirement, we need either ad hoc
proofs or a rule format that ensures that any reconfiguration of a well-styled
configuration leads to another well-styled configuration. This is not obvious to
set-up for graph rewriting techniques as one has to consider all possible contexts
where rules are applied.

Synchronised Hyperedge Replacement (SHR) [8] is a graph-based framework
for modelling the operational semantics of systems with mobility and multiple
synchronisation. Several flavours of SHR semantics exist, but here we focus on a
variant without mobility and with Milner dyadic synchronisation, where pairs
of complementary transition actions (e.g. read and write) can be synchronised.
Since each transition may carry more than one action the synchronisation might
involve the whole system. In § 4.2 we shall see that this variant is suitable for
defining SRML run-time semantics with ADR. In particular, rewrite rules in that
style do not change the interface of components and this is a sufficient condition
for the style preservation.



Reconfiguration as Term Rewrites. We have seen that design rules can be
given an algebraic formulation in terms of many-sorted operations over a suitable
algebra of typed graphs (with interfaces), with terms describing a particular
style-proof. Note that in this way it is possible that: (i) the same well-defined
architecture can be described by different terms; (ii) the same well-defined
architecture can be assigned different classes.

Since style-preserving reconfigurations essentially operate at the level of
style-proofs, the algebraic view can be pushed further by term rewriting over
(style-)proof terms: a graph transformation rule is seen as a rewrite rule l→ r,
where l and r are terms of our design algebra with the same type. Typically, both
l and r may contain (typed) variables, but they are linear and all the variables
in r appear in l. These variables can be instantiated in any way consistent with
the types, and both r and l can be freely contextualized in larger contexts. Then,
it is possible to apply the rule in any larger architecture t(lσ), where σ assigns
proof terms to variables and where the type of the hole in t(·) is at the same as
the type of l. After the reconfiguration, the architecture t(rσ) is obtained.

There is a simple sufficient condition for enforcing style preservation, namely
that both the left-hand side l and the right-hand side r of the reconfiguration
can be assigned the same proper abstract class. For example, the rewrite rule
chord(seq(a, x))→ star(b, chord(x)) can be applied under star(b, ·) with substi-
tution x 7→ a for rewriting star(b, chord(seq(a, a))) to star(b, star(b, chord(a))).

However, it is often the case that a structured architecture can be reconfigured
only if all its sub-components are suitably reconfigured first. Stretching the
analogy between reconfigurations and rewrite systems the expressiveness of our
reconfiguration language is increased by considering conditional labelled rewrite
rules, defined inductively over the terms encoding style proofs in SOS style:

x1 : S1
a1−→ x′1 : S′1 . . . xn : Sn

an−→ x′n : S′n
l(x1, . . . , xn)

a−→ r(x′1, . . . , x
′
n)

The labels a, a1, ..., an tag the kind of rewrite under consideration. The meaning
of such a rule is that, given any assignment σ of concrete architectures to the
parameters of l and r, the architecture lσ can be reconfigured according to rσ
only if each xiσ (conformant to style Si) can be reconfigured to x′iσ (conformant
to style S′i). Obviously, types are not preserved by some of these cases and thus
the right- and left-hand sides of the rewriting rule cannot be applied in the same
contexts. But this is not a problem because rules are intended to be applied in
appropriate (inductively defined) contexts. When no tag labels a rewrite step,
then we tacitly assume that its source and target have the same style and that
the rewrite step can be applied in any larger context. For example the three SOS
rules below account for sequence to star transformation:

a
?→ b

x : Seq
?→ x′ : Star y : Seq

?→ y′ : Star

seq(x, y)
?→ star(x′, y′)

x : Seq
?→ x′ : Star

chord(x)→ x′



Using them it is possible, e.g., to infer the one-step, unlabelled rewrite leading
from star(b, chord(seq(a, a))) to star(b, star(b, b)).

We shall exploit SOS style rules in § 4.1 and § 4.3 for modelling reconfigurations
in UML4SOA and in software Modes.

4 Formal Support to Business and Architectural Design

We provide in this section a brief overview on the ADR-based formalisation of
business and architectural design issues of UML4SOA and SRML.

4.1 UML4SOA Reconfiguration Profile

UML4SOA is a UML profile for designing service-oriented software, defined
as a conservative extension of the UML2 metamodel, see Chapter 1-1 (UML
Extensions for Service-Oriented Systems). Such a UML profile is the basis for
the specification of a model-driven approach for the automated generation of
service-oriented software through model transformations. UML4SOA uses ex-
tended internal structure and deployment diagrams. The extension for structure
diagrams comprises service, service interface and service description. A com-
ponent may publish several services specified as ports, which are described by
service descriptions. Each service may contain a required and a provided interface
containing operations. The orchestration of these services defines a new service.
The extension for deployment diagrams is restricted to different types of commu-
nication paths between the nodes of a distributed system: permanent, temporary
and on-the-fly.

UML4SOA profile aims at providing convenient mechanisms to model the
inherent dynamic topologies of service-oriented systems: components join and
leave the system, and connections are re-arranged. Such dynamic reconfigurations
exhibit a number of beneficial features, but require a suitable mechanism to
constrain the possible evolutions of system configurations and to avoid ill-formed
configurations. In order to express such constraints on topologies, UML4SOA pro-
vides ingredients to specify architectural styles, and a methodology for modelling
dynamic changes of configurations under architectural styles.

The main idea behind the ADR formalisation is that 〈〈fragment〉〉-stereotyped
components, i.e. configurations, are represented by ADR designs, while the
architectural constraints imposed by UML4SOA concepts such as multiplicity
or productions are captured by appropriate ADR types and design productions.
UML4SOA reconfiguration rules specified as 〈〈transformation〉〉 packages are
represented by ADR rewrite rules. It is worth to recall that the main novel
principles of the profile, i.e. style-consistent design-by-refinement and style-
preserving, conditional reconfigurations are indeed the quintessence of ADR.

Figure 6 exemplifies how UML4SOA 〈〈fragment〉〉 components can be mapped
to ADR designs: 〈〈service〉〉 ports are mapped to ADR nodes, while the port
type determines the node type (e.g. UML types ChainingPort, CarAcccessPort
and StationAcccessPort are represented by node types •, ◦ and }, respectively).



Fig. 6. A configuration of the On Road Connectivity scenario

Components are mapped to hyper-edges, where the component type determines
the hyper-edge type.

The interface of the design is defined by the ports and the generalisation
of the 〈〈fragment〉〉 component. The ports of the 〈〈fragment〉〉 define the set of
interface nodes VLd

, and each 〈〈delegates〉〉 edge defines a maplet of the mapping
id from interface to body nodes VRd

. The type of the graph, as defined by the
UML4SOA model, is determined by the generalisation of each 〈〈fragment〉〉.

Modelling Architectural Styles in ADR. Refinable components and non-refinable
components of UML4SOA specifications are respectively modelled by non-
terminal and terminal edges in ADR. Internal structure diagrams and productions
are the style definition mechanisms of UML4SOA; they are modelled by ADR
design productions. Note however that some of the architectural constraints
involved in class diagrams, such as multiplicities, cannot be expressed by type
graphs directly. Indeed, type graphs do not impose any multiplicity constraint,
i.e. they would amount to a UML [0..∗] multiplicity constraint. A suitable way to
impose a multiplicity constraint in ADR is by means of design productions. For
instance, in ADR the treatment of sets of cars in the UML4SOA specification via
multiplicities is dealt with the design productions Car and Cars (see Fig. 7), which
respectively allow to refine a generic set of cars as an empty set, a single car
or the union of two other sets. In this way, UML4SOA productions are directly
mapped into ADR design productions.

Modelling Reconfigurations under Architectural Styles. We just recall here that
one of the advantages of ADR reconfigurations over other graph-based approaches
is style-preservation, which is guaranteed by rewrites that do not change the
overall type (they can actually change the type of certain sub-parts in the rule
derivation of the overall reconfiguration).



Fig. 7. Design productions for On Road Connectivity scenario

Translating UML4SOA reconfiguration rules to ADR in the general case is
done by translating the precondition rules, the 〈〈transforms〉〉 left- and right-hand
sides of the rule conclusion, and translating transformation labels into their
respective counterparts in ADR. In this process, 〈〈pattern〉〉 components are
translated to ADR designs by first producing ADR design graphs (replacing
components with [0..∗] multiplicities by the corresponding non-terminal hyper-
edge, as done in the example with Cars) and then parsing the result using the
ADR productions generated from the UML4SOA productions.

We show now a simple example of an ad-hoc network reconfiguration, which
is modelled with inductive reconfiguration rules in SOS style. The base reconfigu-
ration involves a single car:

CarToCell : Car
tocell−→ CarCell

The inductive case we consider is when the union of two collections of cars is
reconfigured as the concatenation of the respective reconfigured cells:

CarsToCellChain :
x1

tocell−→ x′1 x2
tocell−→ x′2

Cars(x1, x2)
tocell−→ Chain(x′1, x

′
2)

Finally, the cell with the station shutting down is reconfigured by:

CellToChain :
x

tocell−→ x′

CarStation(x) −→ x′

Obviously, types are not preserved by CarToCell and CarsToCellChain and thus
the right- and left-hand sides of the rewriting rule cannot be applied in the same



contexts. Type changing allows for the modelling of reconfigurations that lead
from one architectural style to another. The last rule CellToChain, instead, is
given as a conditional term rewrite rule, where the premise is in its turn a rewrite
rule requiring a collection of cars to become a chain cell, while the conclusion
actually transforms a chain of cells into a chain of cells. The type is preserved and
the silent label makes it applicable in any larger context (unlike style-changing
rewrites labelled tocell).

4.2 SRML

In this section we provide a formalisation of some aspects of the Sensoria Ref-
erence Modelling Language (SRML), see Chapter 1-2 (The Sensoria Reference
Modelling Language). SRML is inspired by the Service Component Architecture
(SCA [11]). Roughly, it provides primitives for modelling composite services and
activities whose business logic involves the orchestration of interactions among
more elementary components and the invocation of services provided by external
parties.

In [4] we presented a formalisation of the design and reconfiguration aspects of
SRML based on ADR. The main idea was to define an ADR architectural style of
correct SRML diagrams and set of ADR reconfiguration rules correctly modelling
the internalisation of services that occurs in SRML, both at design-time (static
module composition) and at run-time (dynamic service binding). After recalling
the work in [4], this section mainly outlines a formal semantics of the behaviour of
SRML specifications based on ADR rules in the form of Synchronised Hyperedge
Replacement (SHR).

More precisely, given a SRML specification, first we exploit the translation
given in [4] to derive a corresponding ADR design term that evaluates to a
particular design, and then we consider the application of SHR rules directly
over the design and not over the design term as in the case of reconfiguration.

Binding-time reconfigurations in SRML. We consider a scenario that involves
an activity OnRoadRepair that takes place in a software system embedded in
a vehicle to handle engine failures detected by a sensor. When the activity is
triggered, the system determines the current location of the car by using a GPS
device, searches for the closest garage that can ensure minimal levels of repair
and call a tow truck, and contacts a car rental service near the garage.

Some architectural elements of SRML are drawn in Fig. 8 and include service
modules, service components, wires and interfaces. A module is specified in terms
of a number of entities and the way they are interconnected. For example, the
activity module shown in Fig. 8 (top-left) involves the following software entities:
OR (the orchestrator that coordinates the interactions with the external services)
and IM (the component that manages the interactions with the driver). These
entities are interconnected through wires, each of which defines an interaction
protocol between two entities. Typically, wires deal with the heterogeneity of
partners involved in the activity by performing data integration. The activity
OnRoadRepair relies on a number of external services that will be discovered on



Fig. 8. An SRML diagram before (top) and after (bottom) composition.

the fly: (1) the service for booking a garage and calling a tow-truck, and (2) the
service for booking a rental car. This dependency is made explicit through the
requires-interfaces GA and CR, respectively. As illustrated, every activity module
declares interfaces of various kind: one and only one provides-interface that binds
the activity to the application that triggered its execution (e.g., CR in module
RepairService), and a number of requires-interfaces (possibly none) that bind the
activity to services that are procured externally when certain conditions become
true (e.g., GA in module OnRoadRepair). Service modules such as RepairService
in Fig. 8 provide a service to the external environment and can be dynamically
discovered and invoked (instead of being launched directly by users).

The graphical notation of SRML is inspired by the traditional boxes-and-lines
or component-and-connectors notations and elements are shaped as in SCA. The
structural constraints, in turn, require modules to be interconnected via external
wires such that one of the require interfaces of a module is connected to the
provide interface of another one. Inside a module, components and interfaces
are connected via internal wires. An SRML architecture is given at the highest
level of abstraction by an assembly of modules with possibly some discovered but
not yet bound service modules (i.e., they are still connected via external wires).
Figure 8 (top) shows the architecture of our scenario with the service module
OnRoadRepair, where one of the two required services (namely RepairService,
corresponding to the interface GA) has been discovered and connected via an
external wire (EW).

An example of a reconfiguration in SRML is the composition of (already
discovered) interconnected modules into a single module. SRML provides a



Fig. 9. ADR-view of SRML binding (top) and composition (bottom)

mechanism to achieve this static reconfiguration, by means of an algorithm that
manipulates SRML specifications. As an example, the assembly of Fig. 8 (top)
can be composed into the service module depicted in Fig. 8 (bottom), where the
wire OCG is derived according to certain composition rules. Such reconfigurations
require a proof of correctness w.r.t. style preservation.

The formalization of SRML in ADR given in [4] introduces suitable architec-
tural elements for representing service components, internal wires, external wires,
provide interface specifications, require interface specifications as terminal edges
and activity modules, service modules, wrapped modules and their bodies as
non-terminal edges. While the interested reader is referred to [4] for full details,
we sketch here the basic idea of the modelling. Figure 9 (top) shows the ADR
service module and wrapped module corresponding to the SRML diagram in
Fig. 8 (top). When a binding is performed, then the wrapped module is plugged-in
the service module. SRML composition is then realised via conditional rewrite
rules that synthesize a suitable wiring out of the specifications of the require
interface and provide interface of the composed modules, according to the internal
and external wiring connecting them. The result is shown in Fig. 9 (bottom),
where the internal wiring OCG is synthesized out of OG, GA, EW, CR, and CG.



Fig. 10. Some operational rules modelling SRML behaviour

Operational Semantics for SRML. To illustrate the SHR modelling of ordinary
computational aspects of SRML, let us consider the automotive scenario where the
service execution is at the point in which a garage service has been discovered and
bound (see Fig. 9 (bottom). The new configuration includes the components and
the top/bottom layer interfaces of OnRoadRepair and those of RepairService. The
representation of a configuration does not include the external provide/require
interfaces because external interfaces do not describe an executable process.
Note that Fig. 9 presents a simplified form of the actual graphs, where we just
decorate the edges with the component and connector names, while additional
information such as the type and state of components or the name of interactions
are abstracted away. We shall explicitly represent some of those details when
needed.

We continue our illustration with the representation of a transition getCon-
textData of the business role Orchestrator (to retrieves the data of the driver,
for example from InterfaceManager) as a rule in SHR style (see Fig. 10): the
transition label witnesses that the component is ready to receive (?) a reply
event (B) on interaction askUsrDetails (aUD) and simultaneously send (!) an
initiation event (
) on interaction bookGarage (bG), while changing state from
FD (FAILURE DETECTED) to CR (CONTEXT RECEIVED).

Note that the graphical representation of the rules is simplified for the sake
of readability. For instance, not all interactions (represented here as labelled
tentacles) are drawn. We put state information (local state, variables) as edge
labels in tuples, and we neglect some of the parameters of the interactions.
The type of interactions is drawn using different node types, so to forbid any
mismatched connection: e.g. we use • for s&r and ◦ for r&s.

Observe that the various events involved in the transition (i.e. the trigger
and the events to be sent) are put on the rule label. In this particular case
the transition guard is implicit in the edge label (containing the state of the



component). In general, guards are modelled as side conditions. Effects, instead,
are just the resulting edge label. Transitions are thus given an atomic semantics:
trigger, effects and sends are executed simultaneously.

SHR rules can be synchronised together using different styles. In our case, we
follow the Milner style, where rule synchronisation requires an action being sent
on a node to be synchronised with a corresponding co-action on the same node.
Note that since a rule can involve actions of more than one node among those
attached to an edge, multiple synchronisations are possible. In our example, rule
getContextData can only be fired if the surrounding connectors are able to
perform the corresponding co-actions.

For instance, in the surroundings of the orchestrator component we find
two connectors involved in transition getContextData, namely OG and OI.
The binding is such that the bookGarage and askUserDetails interactions of the
orchestrator are assigned to roles S of connectors OG and IM, respectively.

All the rules that we need are such that the left-hand side and the right-
hand side differ only in the label of the edge, meaning that only the state is
changed, but neither the interface nor its bindings, i.e. the type is preserved.
This condition is enough to guarantee that the overall design term is not affected
by the application of operational rules. Part of the behaviour of the connectors
include rules to buffer and unbuffer events (see Fig. 10). For instance, consider
the rule to buffer the init event: it changes the state of the connector from Idle
to Busy (buffered), and the received parameter l is enqueued (it is just part of
the edge label).

A straightforward ternary synchronisation allow us to derive the rewrite

−→

out from rules getContextData, IO-UnBuffer and OG-Buffer. Such
derivation synchronises a component with two of its attached connectors. In
some cases, connectors might synchronise with both parties such that complex
synchronisations involving multiple components and connectors are possible.

4.3 Software Modes

In this section, we consider the ADR modelling of Software Architecture Modes,
as presented in [9]. There, a mode abstracts a specific set of services that must
interact for the completion of a specific subsystem task. Modes are first-class archi-
tectural ingredients that govern the architecural constraints and reconfiguration
mechanisms of a software system.



Fig. 11. The RPS subsytem production

Fig. 12. Building detour convoy groups

Service Modes extend the concept of Software Architecture Modes with
that of behaviour and policy specifications for service adaptation and dynamic
reconfiguration. Service Modes are specifically aimed at specifying “operational
adaptation” for a service-oriented system. They are based upon an evolving set of
scenarios describing service component architecture, behaviour and events which
trigger reconfiguration, whilst upholding quiescence in service operation.

We illustrate the ADR formalisation of modes with a road assistance scenario
of the automotive case study. In the scenario, cars are equipped with navigation
systems connected to a road assistance service platform. The focus of our example
is on the Route Planning Subsystem (RPS) which is in charge of providing guiding
indications to the driver. The RPS has three modes of operation: Autonomous, i.e.
connected to the GPS to establish the route, Convoy, i.e. following another car,
Detour, i.e. following indications from the Highway Emergency system (HES).

The components that form the RPS subsystem are the Global Positioning
System (GPS) the Highway Emergency System (HES), the Route Planning
Subsystem (RPS), the Planner (P), the User Interface (UI), and the User Prompt
(UP). Some of these (sub)components can be in a different mode. For instance,
P can be in modes P-Master or P-Slave, while the user interface UI and prompt
UP can be in modes Enable or Disable.

Informally, the main architectural constraints require that an RPS must be
composed of a P, an UI and an UP. The mode of the RPS depends on the modes



Fig. 13. Building RPSs in various modes

of its constituents. Convoys are formed by a leader RPS followed by RPSs in
convoy mode. Leaders can be either in autonomous or detour mode. Autonomous
RPSs are connected to the GPS. Detour RPSs are connected to the HES.

The main idea of the formalisation with ADR is to encode a software class
as a type T and its various modes as subsorts T-M of T. Additional types can
stand for complex constructions (shapes, styles, patterns) such as sequences, sets
or trees. Such types can be used to define composition operations that determine
the valid configurations. Mode types play a relevant role in reconfigurations.

Structural constraints are captured by a set of ADR design productions
that build conformant configurations. For instance, we use productions to build
systems (see Fig. 11) and Detour Convoy Groups (DCG) either as a single
RPS in detour mode followed by a sequence of RPSs in convoy mode (Fig. 12,
left) or two DCGs (Fig. 12, right). Dotted lines between ports denote interface
exposure and not binding of actual ports (denoted by straight lines). The figures
are drawn according to Darwin notation, but the correspondence with our
designs is immediate (ports are nodes, boxes are edges and the flattening axioms
apply if the contour of a box is dotted), except for the fact that each port
binding actually corresponds to a terminal edge b. Whenever necessary (i.e.,
not implied by flattening axioms), we assume the expected properties for the
operations to hold (commutativity, associativity, etc.). Similar operations are
used to build Autonomous Convoy Groups (ACG): they can be built from an
RPS in autonomous mode (RPS-autonomous) followed by a sequence of RPSs in
convoy mode (CS) or from two ACGs. Productions are also used to build a CS as
single RPS in convoy mode or as the concatenation of CSs.



There are also productions to build RPSs in various modes (see Fig. 13 for
the productions needed in the examples that concludes this section). An RPS
in autonomous mode is a composite component with a P in master mode, an
UP in enable mode and an UI in enabled mode. An RPS in detour mode is a
composite component with a P in master mode, an UP in disable mode and an
UI in enabled mode. An RPS in convoy mode is a composite component with a
P in slave mode, an UP in enable mode and an UI in enabled mode. Basically,
each pair (component type,mode) has a corresponding constructor and ADR
type. Constructors for HES and GPS are similar.

The allowed RPS reconfigurations are from Detour to Autonomous mode (and
back) and from Convoy to Autonomous and Detour mode (and back). However,
RPS components should not reconfigure independently: their constituents and
contexts should reconfigure such that architectural constraints are respected.

For instance, a single RPS in detour mode is moved from the group of RPSs
in detour mode to the group of convoys if that RPS reconfigures itself from mode
detour to mode autonomous, i.e. if its UP reconfigures from disable to enable
mode. Exploiting our design algebra, the corresponding rules can be written as
the following (labelled) conditional term rewrite rules:

upd
d2e−→ upe

Xupd
d2e−→ Xupe

rpsd(Xpm,Xupd ,Xuie)
d2a−→ rpsa(Xpm,Xupe,Xuie)

Xrpsd
d2a−→ Xrpsa

system(Xgps,Xhes,Xacg , group(single(Xrpsd ,Xcs),Xdcg))

−→ system(Xgps,Xhes, group(Xacg , single(Xrpsd ,Xcs)),Xdcg)

5 Conclusion

This chapter collects results from [1, 3–6]. In particular, we have provided an
overview of main ADR features and the ADR representation of UML4SOA, SRML
and Software Modes; the latter being original to this contribution. The formal
semantics prepares the ground towards tool support for analysis and verification
from the very early stages of modeling. Thus, ADR offers a comprehensive and
pragmatic yet theoretically well founded approach to software engineering for
service-oriented systems. Our current efforts are aimed at completing our tool
support. First, by automatising the translation of high-level specifications in the
considered languages, possibly by means of Maude-supported, MOF-based model
transformations. Second, by upgrading the prototypical implementation of ADR
into a tool that can be used to formally analyse ADR models either specified
directly or transformed from other models.

In fact, ADR specifications can be exploited to perform formal specification
and verification based on techniques developed, e.g. for term rewrite systems and
graph transformation systems. For instance, ADR specifications can be encoded
into Rewriting Logic [10] and benefit from Maude’s built-in tools.



References

1. R. Bruni, M. Hölzl, N. Koch, A. Lluch Lafuente, P. Mayer, U. Montanari,
A. Schroeder, and M. Wirsing. A service-oriented UML profile with formal support.
In ICSOC/ServiceWave’09, volume 5900 of Lecture Notes in Computer Science,
pages 455–469. Springer Verlag, 2009.

2. R. Bruni and A. Lluch Lafuente. Ten virtues of structured graphs. In Proceedings
of the 8th International Workhshop on Graph Transformation and Visual Modeling
Technique (GT-VMT’09), volume 18 of Electronic Communications of the EASST.
EASST, 2009.

3. R. Bruni, A. Lluch Lafuente, and U. Montanari. Hierarchical design rewriting
with Maude. In G. Rosu, editor, Proceedings of the 7th International Workshop
on Rewriting Logic and its Applications (WRLA’08), volume 238 (3) of Electronic
Notes in Theoretical Computer Science, pages 45–62. Elsevier, 2009.

4. R. Bruni, A. Lluch Lafuente, U. Montanari, and Emilio Tuosto. Service-oriented
architectural design. In Proceedings of the 2nd International Symposium on Trust-
worthy Global Computing (TGC’07), volume 4912 of Lecture Notes in Computer
Science, pages 186–203. Springer Verlag, 2007.

5. R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS), 94:161–180, February 2008.

6. A. Bucchiarone, R. Bruni, S. Gnesi, and A. Lluch Lafuente. Graph-Based Design
and Analysis of Dynamic Software Architectures. In Concurrency, Graph and
Models. Festschrift in honor of Ugo Montanari, volume 5065 of Lecture Notes in
Computer Science, pages 37–56. Springer Verlag, 2008.

7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout
Approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, pages 163–246. World Scientific, 1997.

8. G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised
hyperedge replacement as a model for service-oriented computing. In F. S. de Boer,
M. M. Bonsangue, S. Graf, and W. P. de Roever, editors, Proceedings of the
4th International Symposium on Formal Methods for Components and Objects
(FMCO’05), volume 4111 of LNCS, pages 22–43. Springer, 2006.

9. D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software architectures.
In V. Gruhn and F. Oquendo, editors, Proceedings of the 3rd European Workshop
on Software Architecture (EWSA’06), volume 4344 of Lecture Notes in Computer
Science, pages 113–126. Springer Verlag, 2006.

10. J. Meseguer and G. Rosu. The rewriting logic semantics project. Theoretical
Computer Science, 373(3):213–237, 2007.

11. Service Component Architecture. http://osoa.org.
12. M. Shaw and D. Garlan. Software architecture: Perspectives on an emerging

discipline. In Prentice Hall, NJ. USA, 1996.


