
Calculi for Service-Oriented Computing⋆

Roberto Bruni

Dipartimento di Informatica, Università di Pisa
bruni@di.unipi.it

Abstract. It is widely recognised that process calculi stay to concurrent com-
puting as lambda-calculus stays to sequential computing; in fact, they lay ab-
stract, rigorous foundations for the analysis of interactive, communicating sys-
tems. Nowadays, the increasing popularity of Service-Oriented Computing (SOC)
challenges the quest for novel abstractions tailored to thewell-disciplined han-
dling of specific issues, like long running interactions, orchestration, and unex-
pected events. In fact, these features emerge neatly in mostSOC applications
and need to be studied as first-class aspects, whereas they would be obfuscated
if dealt with by sophisticated encoding in traditional process calculi. This paper
overviews some of the most recent proposals emerged in the literature, point-
ing out their main characteristics and presents in more detail one such proposal,
calledCaSPiS, by providing several examples to give evidence of its flexibility.
No prior acquaintance with process calculi is assumed, indeed a gentle introduc-
tion to their basics is provided before the more advanced material be presented.

1 Introduction

Service-oriented computing has been one of the latest trendin the IT community, find-
ing in Web Services (WS) technology its major realisation. Services are autonomous
computational entities, that are developed separately, loosely coupled, globally avail-
able over a widely distributed network in a platform-independent way, and not fully
reliable. Service computing consists of assembling services in well-engineered ways to
form complex open-ended applications, and this must be donein a highly dynamic way,
possibly on demand. To this aim, it is essential to find suitable abstractions to describe
services, the so-calledservice descriptors, to be published in public registries. Such
registries can be queried by other services and applications to locate those services that
best match certain requirements, yielding a brokering architecture. When satisfactory
matches are found, then the located services can be dynamically linked and invoked.
Therefore, service engineering has to do with the development of methodologies, tech-
niques, formal methods and tools able to guarantee a safe service composition, in the
sense of being able to provide some strong guarantees on suchdynamic, open-ended
applications by applying some static or semi-static analysis.

WS technology has establishedde factostandards for naming schemes and ser-
vice access (URI, URL), service descriptors (WSDL and BPEL in UDDI registries),

⋆ Research supported by the Project FET-GC II IST-2005-16004S and by the Italian
FIRB Project T..

communication protocols (SOAP over HTTP, TCP/IP and SMTP) and message for-
mat (XML) over the web. Existing infrastructures already enable providers to describe
web services in terms of their interfaces, access policies and behaviour, and to com-
bine simpler services into more structured and complex ones. However, some research
and solid foundations are still needed to move WS technologyfrom skilled handcraft-
ing to an engineered practice, a step where formal methods must play a fundamental
role. For example, it has been shown that the lack of unambiguous semantics of BPEL
has led different BPEL engines to exhibit different behaviours under the same circum-
stances [43].

Research on formal methods for SOC can be roughly separated in two main strands,
both equally worth the effort: one dedicated to establishing the missing theoreticalfoun-
dations of state-of-the-art technologies, so to fix rigorous semantic and logic frame-
works for the analysis and verification of SOC and WS systems;another one aimed to
rethink the design and development of next generation technology, by understanding
the key distinguishing features of SOC, assessing the necessary bits of theory for them
in technology agnostic terms, and paving the way to their well-disciplined engineering.
In both cases, the mathematical models and tools from the literature that seem to be
particularly suited are those coming from concurrency theory, ranging from workflow
like models like Petri nets, to Graph Transformation systems and process calculi.

As suggested by the title of this contribution, we shall focus on the use of process
calculi for modelling SOC systems. This choice is motivatedby the more natural way
in which process calculi can accommodate for SOC features such as open-endedness,
dynamicity, compositionality, interaction and event handling w.r.t. the other afore men-
tioned models. Moreover, we shall favour the second strand of research outlined above,
trying to distill some key aspects of SOC together with a small set of primitives associ-
ated with them and to expose some of the main causes (motivation) and consequences
(benefits) of our approach.

Due to the particular nature of this volume, which contains the proceedings of a
summer school, and the audience to which this paper is oriented, which for the most we
assume to consist of young computer science researchers, wehave decided to structure
this paper as a tutorial, so that no prior acquaintance with process calculi is assumed
on the reader. Being worried that the more expert readers canfind some arguments of
our survey not dealt with at the sufficient levels of details for their taste, we added,
whenever necessary, suitable links to the more advanced papers and texts where the
technicalities are exposed in their full glory. Furthermore, we have put some efforts
in trying to accompany each calculus by original examples and modelling puzzles in
the hope they will provide an enjoyable reading experience by themselves, possibly
reusable as course material.

1.1 What you will not find here

The level of abstraction at which we intend to model SOC systems disregards the tech-
nologies and the implementation details, hence we are to some extent disconnected
from current WS standards. More precisely, we disregards those aspects related to the
so-called semantic web, like ontologies for classifying services, XML coding and stan-

dardisation issues. In fact these aspects can be superimposed later, on the concrete real-
isation of our techniques.

For analogous reasons, we are not concerned with the exact ways in which services
and their descriptors are made public available, queried and located, even if some of
these issues can be reasonably encoded in the same formalisms we shall present. Instead
we handle service publication, discovery and linking in terms of name-handling á la pi-
calculus, i.e. the scope of certain service names can be restricted, new services can be
dynamically deployed and updated, their names can be communicated and extruded to
enlarge their scope, etc.

Moreover, we abstract away from non-functional aspects (like Quality of Service
and Service Level Agreement) and quantitative analysis, which also constitute them-
selves an active area of research. On the other hand, some preliminary ideas in this field
have already led to process calculi extensions that are compatible with the proposals
discussed here and we give relevant pointers to the related literature.

We also deliberately omit the exact formulation of many useful theorems (and any
proof sketch) from the literature, which we try to replace bymore intuitive descriptions
of their underlying properties and consequences, at the informal level.

1.2 Aspects of interest

The common trait of all issues we aim to encompass here is the handy, disciplined
composition of services. This includes: the possibility toextract service descriptors that
carry some behavioural information rather than mere syntactic information as those
found in WSDL documents; the possibility to carry long-running conversation between
the service caller and its callee, which are far more generalthan limited one-way and
request-response patterns of WS; suitable techniques for checking the behavioural con-
formance of the service to be invoked w.r.t. the applicationrequirements; the way in
which service invocations and their outcomes can be orchestrated; the way in which the
system can foresee at the design time the actions to undergo in case some unexpected
event will happen during a conversation, like a peer abandoning a business transaction.
More precisely, we briefly discuss below different alternatives proposed in the literature
on the above topics, and outline our preferred design choices.

Orchestration and choreography: The termsorchestrationandchoreographywere
coined to describe two different flavours of service compositions: orchestration is
about describing and executing a single view point model, while choreography is
about specifying and guiding a global model. Though the difference between the
two terms can be sometimes abused or blurred, substantiallyorchestration is usually
associated with an executable flavour, for which a centralised orchestration engine
is responsible (although distributed engines can be also considered), as opposed
to the fully distributed vision of choreography, usually associated with some sort
of protocol narration. Roughly, from a formal modelling viewpoint, orchestration
is mainly concerned with governing the control and data flow between services,
while choreography is concerned with interaction protocols between single and
composite autonomous services. Our presentation shall privilege orchestration, but
out approach is compatible with the choreography perspective, as the type systems

defined to check the conformance of services w.r.t. the requirements of the invoker
share some similarities with the use of so-calledcontractsto express choreogra-
phies.

Interaction: Process calculi can exploit different forms of interactions, ranging from
shared data-space, to event-based (subscribe-notify), and message passing. We shall
rely on synchronous message passing, that is best suited forthe level of abstraction
of this tutorial.

Sessions and correlation sets:When long-running conversation with services are es-
tablished, different instances of the same service can be running concurrently to
serve different requests. Therefore it is important to route interaction between the
correct pairs, avoiding any interference. Web service standards exploit the idea of
correlation sets, i.e., pre-defined subsets of the invocation parameters that are used
each time to choose the corresponding service instance (e.g., requests are routed
according to usernames). Though correlation sets offer a good expressiveness, we
argue that they might complicate static analysis, because all interactions rely on
data values. For example, applications can interfere with each other if they know (or
use by chance) the right values. A different school of thought advocates the notion
of a sessionas a more convenient abstraction mechanism for enclosing arbitrarily
complex interactions between peers. Session keys are data-independent and can be
created implicitly when the service is first invoked. This way, type systems can
be more easily developed to check properties like the presence of exactly one peer.
Session can come in different flavours: nested, interleaved, with delegation, usedre-
cursively, dyadic, multy-party, mergeable, closeable, permeable, etc. We shall focus
on primitives for a well-disciplined use of nested, dyadic and closeable sessions.

Compensations and session handlers:Each service has full autonomy in denying a
request or abandoning a pending interaction. It is then important to rely on standard
mechanisms for programming such decisions and to handle their consequences in
a safeway. For example, the classical travel agency scenario may involve a com-
plex interaction between the customer and the travel agent,to let the service learn
the customer preferences, let the customer select one amongavailable packages,
confirm or cancel the choice, and the service may need to invoke third-party ser-
vices to get, say, up-to-date flight or hotel information. Bysafe, we mean that, in
principle, the involved parties should always be able either to complete the inter-
action or to recover from errors that prevent its completion, like when a time-out
expires or when one of the third-party services unexpectedly abandon the conver-
sation because its server is overloaded. In the area of transactions, compensation
mechanisms have to do with the programming of suitable counter-actions that are
installed after a certain activity has been executed to compensate for its effects in
case the rest of the interaction cannot be completed successfully. Of course, it is of-
ten the case that the previous actions cannot be simply undone (e.g., a sent message
cannot disappear, booking cancellation can require some fees) hence full recovery
is simply not possible. In the case of sessions, we shall consider a simple built-in
mechanism for the graceful closure of nested sessions upon the abandon of a peer.

The outcome of the above consideration language was a new calculus, calledCaSPiS
(Calculus of Sessions and Pipelines) [8], which is the main objective of this tutorial.

1.3 Related work

CaSPiS has been developed inside the S project [57], as part of a larger research
effort aimed to developcore calculi for SOCat three different levels of abstraction: (i)
the service middleware level (close to current networking technologies to be directly
implementable, but sufficiently expressive to support service oriented applications), (ii)
the service description level (favouring more abstract formalisation of basic concepts
such as service definition, invocation, instantiation, andcommunication), and (iii) the
service composition level (with mechanisms for the modelling and analysis of qualita-
tive and quantitative aspects of multiparty service compositions).

At the middleware level we find, e.g., thesignal calculus(SC) [28]: it is based
on a flexible and dynamical reconfigurable network of components communicating via
the publish-subscribe message delivery paradigm. Sessions and message correlation are
supported through a type system [29]. This calculus revealed easily implementable (in
terms of a Java library) as well as expressive enough to support a high-level graphical
programming environment.

At the service composition level we find, e.g.,λreq [3] andconcurrent constraint
pi-calculus(cc-pi) [16]. The former has been exploited to support the development of
techniques for the analysis of service compositions (such as statical analysis of the
access to protected resources) within the so-called “call-by-contract” paradigm, while
the latter integrates name handling features with constraint semirings to deal more ef-
fectively with quantitative aspects of negotiations (suchas the so-called service level
agreement).

CaSPiS lies at the service description level, where several other interesting propos-
als are also present, which can roughly be divided in two families: correlation-based
and session-based.

The first group comprisesCOWS [42] (based on message-passing and stateless
components) andSOCK [17] (based on shared data spaces and stateful components).
The former can be seen as an extension of the pi-calculus withcorrelation-based com-
munication mechanism and primitives for activity cancellation and preservation, while
the latter is closer to WS standards like BPEL and it includesan explicit modelling of
processes obtained as service instantiations, process memory, etc..

The second group comprises the so-calledSCC-family of calculi [7, 39, 20, 8, 12],
spawned by a first proposal of a basic calculus with nested session, theService Centred
CalculusSCC, later enriched and refined with different mechanisms for inter-session
communication, likedata streaming[39], context-sensitive message passing[20], loca-
tionsanddynamic multiparty sessions[12], andpipelines[8].

While the above calculi are closer to the orchestration perspective, theglobal calcu-
lus [21] is closer to the choreography perspective and allows for static multiparty ses-
sions, where session identifiers are modelled just as pi-calculus channel names (freshly
created and distributed to participants during the initialisation phase of the service pro-
tocol). In [6] multiparty sessions are considered, but theyare required to include one
master endpoint and one or more slave endpoints, and direct communication is allowed
only between the master and any slave.

It is important to remark that communication mechanisms aresomehow orthog-
onal to sessions. In fact, while CCS-like communication [46] is the obvious choice

when only two-party sessions are considered, in the presence of multiparty sessions
a more natural and more sophisticated alternative would be some variant of multicast
(like broadcast [27] or CSP-like interaction [33], or even some combination of different
policies [11]).

Behavioural type systems can also play a crucial measure forevaluating the vari-
ous proposals, because they offer a mean to establish the compatibility of peers [34,
35, 21, 26, 30, 6, 36, 39, 1, 44, 15]. In this sense, it is interesting to relate behavioural
types and the language independent approach based on contracts [9, 22] along the ideas
in [40]. More generally, there are some interesting analogies between the way in which
behavioural types resemble orchestration mechanisms and contracts resemble choreog-
raphy descriptions.

1.4 Structure of the paper

Section 2 gives some background on the basics mathematical ingredients of process
calculi, like labelled transition systems, operational semantics, structural congruence,
reduction systems, bisimilarity equivalences. We illustrate such concepts by simple and
detailed presentation of the main sources of inspiration for CaSPiS. Step by step, we go
from the basic interaction primitives ofCCS, to the more advanced name handling fea-
tures of the pi-calculus, to the use of explicit sessions andto the orchestration primitives
of Orc. Section 3 introduces the main principles ofCaSPiS, its syntax and reduction
semantics and some modelling examples. Section 4 relatesCaSPiS with other well-
known formalisms by presenting several intuitive encoding. Some concluding remarks
are in Section 5

2 Setting the context on interactive and orchestrated systems

2.1 CCS, labelled transition systems and SOS rules

An elementaryactionof a system represents the atomic (i.e., that cannot be interrupted
at the given level of granularity) abstract step of a computation that is performed by a
system to move from one state to the other.

Ordinary computational models like Turing machines, register machines, several
kinds of automata, the lambda-calculus and many imperativeprogramming languages
all rely on basic activities like reading from or writing on some kind of (passive) storage
device or invoking a procedure with actual parameters.

Milner’s Calculus of Communicating Systems[46] (CCS) introduced a model whose
basic activities rely on some sort of handshake between two active, autonomouspro-
cesses. Hence, in the case of concurrent systems, actions represent activities such as
sending a message and receiving a message, exposing some alternatives and picking
one alternative, producing a resource and consuming a resource, etc. On the one hand,
when studying one process in separation from the others it isimportant to observe the
kind of handshake it is willing to perform with other processes. On the other hand,
when an handshake is performed between two entities, it constitutes a specialsilent
action that has no further interaction capability.

To convince yourself about the ease ofCCS in modelling concurrent systems and
communication protocols, try writing down the solution to the puzzle below, adapted
from [54], using first your favourite formalism, and then, after having learntCCS ba-
sics, usingCCS processes for modelling the various interacting entities (the light, the
special room, and the strategies followed by humans). We shall show later some bits of
the solution for the case where the light is initially on.

Exercise 1.50 young, bright computer scientists are kept in Bertinoro until all exams
will be completed, each locked in her/his own room. Their chance to be released is
as follows: from time to time, one of them will be carried in a special room (in no
particular order, possibly multiple times consecutively,but with a fair schedule to avoid
infinite wait) and then back to her/his room. The special room is completely empty
except for a switch that can turn the light either on or off (the light is not visible from
outside and cannot be broken). At any time, if one of them truthfully asserts that all of
them have already entered the special room at least once, then they all pass the exam
and are released, but if she/he is wrong, then the chance ends and they will never pass
the exam. Before the challenge starts, they have the possibility to discuss together some
“protocol” to follow. Can you find a winning strategy when theinitial state of the light
in the room is known? And if it is not?

In CCS, we assume given a setA of activities, ranged bya, and letA, {a | a∈A } be
the set of co-activities (disjoint fromA), with a= a. The set ofCCS labelsisL, A∪A,
ranged byλ, and the set ofCCS actionsis Act, L∪{ τ }, ranged byα, whereτ is the
specialsilent action. Then, aCCS processes Pis composed via a number of primitives,
that we sketch below in an incremental way. Though the syntaxmay slightly vary in the
literature, we letCCS processes generated by the grammar:

P F
∑

i∈I αi .Pi | P[φ] | P1 |P2 | (νa)P | X | recX.P

The meaning of each such process is given by a suitableLabelled Transition System
(LTS) defined by structural induction on the syntax of the process, following Plotkin’s
Structural Operational Semantics(SOS) scheme [51–53].

We recall that an LTST = (S,L,→) consists of: a setS of states, a setL of labels,
and atransition relation→ ⊆ S× L×S. Sometimes a distinguished initial states0 ∈ S

is also considered. As usual, we shall writes
λ
−−→ s′ instead of (s,λ, s′) ∈→, with the

meaning that there is a transition leading from states to states′ and exposing labelλ.
The label gives some abstract information about the nature of the evolution. For a given

labelλ we denote by
λ
−−→ the binary relation{ (s, s′) | s

λ
−−→ s′ } ⊆ S×S.

Formally, in the case ofCCS, the states of the LTS areCCS processes, the set of
labels is Act, and the transition relation is the least one satisfying all SOS inference
rules. When a particular processP is considered, then the initial states0 of its LTS isP
itself and the LTS can be restricted just to the states reachable fromP (after any number
of transitions). The elegance of SOS relies on the fact that few inference rules define
the LTS of any process that can ever be specified. Moreover, SOS rules allow for proofs
by structural induction, where the interaction of complex systems is defined in terms of

(the behaviour of) their components and proofs by rule induction, where a property can
be proved to hold true for the whole LTS if whenever it holds for the premises of each
rule, it holds also for the conclusions.

The simplest process is theinactiveprocess, written0 and callednil: it is not capable
of performing any action. Trailing0s are often omitted. No inference rule is needed for
0. Action prefix, writtenα.P, prefixes a processP by an actionα: the processα.P can
performα and then behave asP. The inference rule for action prefix is the axiom:

()
α.P

α
−−→ P

Non-deterministic choice, written P1+P2, composes two processes in mutual ex-
clusion: processP1+P2 can behave as eitherP1 or P2. The inference rules for choice
are:

()
P1

α
−−→ P′1

P1+P2
α
−−→ P′1

()
P2

α
−−→ P′2

P1+P2
α
−−→ P′2

Sometimesguarded summation
∑

i∈I αi .Pi is preferred to choice, prefix (single sum)
and nil (empty sum). The corresponding inference rule is:

()
j ∈ I

∑

i∈I αi .Pi
α j
−−−→ P j

Renaming, written P[φ], renames any actionα performed byP to φ(α), where
φ : Act→ Act is any renaming function such thatφ(λ) = φ(λ) andφ(τ) = τ. The cor-
responding inference rule is:

()
P

a
−−→ P′

P[φ]
φ(a)
−−−−→ P′[φ]

Parallel composition, writtenP1 |P2, composes two processes in parallel:P1 andP2

evolve autonomously by interleaving their actions, but with the possibility to handshake
on complementary actions, in which caseP1 |P2 performs aτ action. The corresponding
inference rules are:

()
P1

α
−−→ P′1

P1 |P2
α
−−→ P′1 |P2

()
P2

α
−−→ P′2

P1 |P2
α
−−→ P1 |P

′
2

()
P1

λ
−−→ P′1 P2

λ
−−→ P′2

P1|P2
τ
−−→ P′1 |P

′
2

Restriction, usually writtenP\a, but here written in pi-calculus style as (νa)P, re-
stricts the scope of activitya to processP: the process (νa)P is allowed to perform
neither actiona nor a; however, ifP comprises two parallel processesP1 andP2 that
can performa anda, respectively, then they can still handshake ona “under” the re-
striction. As usual, we abbreviate (νa1)(νa2)P by (νa1,a2)P (and similarly for three or
more consecutive restrictions). The corresponding inference rule is:

B1
0

in

;;
B1

1

out
{{

(a) LTS forB1
0

B2
0

in

;;
B2

1

in

;;

out
{{

B2
2

out
{{

(b) LTS for B2
0

B1,1
0,0 in

// B1,1
1,0

τ // B1,1
0,1

in
//

out

vv
B1,1

1,1

out

hh

(c) LTS for B1,1
0,0

Fig. 1. Labelled transition systems associated with some simple buffers

()
P
α
−−→ P′ α < { a,a }

(νa)P
α
−−→ (νa)P′

It should be obvious that the above operators can define only finite behaviours.
There are several ways to introduce some form of interation and recursion.Replication,
written !P or also∗P accounts for making an unlimited number of copies ofP available.
Sometimes it is restricted to some guarded form, like !α.P or !

∑

i∈I αi .Pi. The usual
inference rule for replication is:

()
P| !P

α
−−→ P′

!P
α
−−→ P′

However, () has a couple of drawbacks: 1) it makes the transition relation not
image-finite, i.e. there are processesP that can reach infinitely many syntactically dif-
ferent processes by performing the same actionα, 2) it disallows proofs by structural
induction, which is maybe a minor issue. If needed, rule () can be safely replaced
by the following two rules, that account for the possibilityof one copy ofP to evolve
alone, or for two copies ofP to handshake:

(1)
P
α
−−→ P′

!P
α
−−→ P′ | !P

(2)
P
λ
−−→ P1 P

λ
−−→ P2

!P
α
−−→ P1 |P2 | !P

A more flexible alternative to replication is given by therecursion operatorrecX.P,
whereX can appear as a constant inP. The corresponding rule is:

()
P{recX.P/X}

α
−−→ P′

recX.P
α
−−→ P′

where{t/x} stands for the substitution ofx by t. Alternatively, one can assume a set of
mutually recursive definitions∆ = { Ai , Pi }i is available, that defines suitable constants
Ai . The corresponding rule is:

()
Ai , Pi ∈ ∆ Pi

α
−−→ P′

Ai
α
−−→ P′

To acquire some confidence with the notation, let us considera classical and simple
example fromCCS textbooks, namely the modelling of buffers with limited capacities.

()

()

()

()

()
out.B1

0
out
−−−→ B1

0

B1
1

out
−−−→ B1

0

B1
1[φ1]

a
−−→ B1

0[φ1]
()

()

()
in.B1

1
in
−−→ B1

1

B1
0

in
−−→ B1

1

B1
0[φ2]

a
−−→ B1

1[φ2]

B1
1[φ1] |B1

0[φ2]
τ
−−→ B1

0[φ1] |B1
1[φ2]

(νa)
(

B1
1[φ1] |B1

0[φ2]
) τ
−−→ (νa)

(

B1
0[φ1] |B1

1[φ2]
)

Fig. 2. Proof of transitionB1,1
1,0

τ
−−→ B1,1

0,1

Example 1.A processBn modelling an initially empty buffer of capacityn can be de-
fined by letting:

Bn
0 , in.Bn

1

Bn
i , in.Bn

i+1+out.Bn
i−1 (0< i < n)

Bn
n , out.Bn

n−1

takingBn
, Bn

0. The LTS forB1 is in Fig. 1(a) and forB2 in Fig. 1(b). A processP put in

parallel withBn can handshake by performing actionsin andout. If renamingφ1 maps
out to a and renamingφ2 mapsin to a, then two buffersB1

0 could be composed in series

by writing the process (νa)
(

B1[φ1] |B1[φ2]
)

. The corresponding LTS is illustrated in

Fig. 1(c), where we writeBn,k
i, j = (νa)

(

Bn
i [φ1] |Bk

j [φ2]
)

for brevity. Figure 2 shows the

proof of transitionB1,1
1,0

τ
−−→ B1,1

0,1.

Exercise 2.Draw the LTS for the processesB1 |B1 andB2,2
0,0.

Coming back to the puzzle from Exercise 1, the light could be modelled as a buffer
of capacity one, where actionin corresponds to “switch the light off” (it is initially on)
and actionout to “switch the light off”. Then the scientists could agree to use the light as
a counter: 49 of them will switch the light on only the first time they enter the room and
find it off, while one distinguished scientist will count the number oftimes that she/he
finds the light on (and will switch it off). Since the light is initially on, the count can
start only after the distinguished scientist has switched the light off for the first time. A
first solution is therefore:

Bertinoro, (νswOff ,swOn) (LightON|C0 |S | · · · |S)

LightON, swOff .LightOFF

LightOFF , swOn.LightON

Ci , swOff .Ci+1+swOn.swOff .Ci (0≤ i < 50)

C50 , freeAll.0

S , swOn.0+swOff .swOn.S

whereC0 models the counting scientist andS any other scientist. Note that a scientist
can wish to perform two consecutive interactions with the light just to leave its state
unchanged. Unfortunately, this way there is no guarantee that consecutive interactions
like swOff .swOnare executed atomically, therefore it is better to modify the protocols in
order to constrain the scientists to access the light in mutual exclusion. This can be done
by modelling the special room as a one-capacity buffer, where actionin corresponds
to “enter the room” and actionout to “leave the room”: only after the room has been
entered it is possible to interact with the light. To make themodel more faithful, we also
introduce the process for representing a “waiting scientist”, i.e. a scientist who does not
need to interact any more with the light but can keep enteringand leaving the room.

Bertinoro, (ν in,out,swOff ,swOn) (Room|LightON|C0 |S | · · · |S)

Room, B1

LightON, swOff .LightOFF

LightOFF , swOn.LightON

Ci , in.
(

swOff .out.Ci+1+swOn.swOff .out.Ci

)

(0≤ i < 50)

C50 , freeAll.0

S , in.
(

swOn.out.WS+swOff .swOn.out.S
)

WS, in.τ.out.WS

We leave to the reader finding a solution for the case where theinitial state of the
light is not known in advance, e.g. when the light is modelledas the processτ.LightON+
τ.LightOFF.

A vast literature onCCS has established different criteria for when two processes
should be considered as “equivalent”. Without entering into the details, we mention
two of the most widely used notion of equivalence, namelystrong bisimilarityand
weak bisimilarity. Contrary to trace equivalence, bisimilarities can take into account the
branching structure of the transition systems, i.e. the points where choices are made. We
refer the interested reader to [31, 32] for a wider range of options.

Definition 1 (Strong Bisimilarity). A binary relationR over processes is astrong
bisimulationiff whenever(P,Q) ∈ R then for eachα ∈ Act:

– if P
α
−−→ P′ then Q

α
−−→ Q′ for some Q′ such that(P′,Q′) ∈ R

– if Q
α
−−→ Q′ then P

α
−−→ P′ for some P′ such that(P′,Q′) ∈ R.

Two processes P and Q arestrongly bisimilar, written P∼Q, iff there exists a strong
bisimulationR such that(P,Q) ∈ R, i.e.∼,

⋃

{ R | R is a strong bisimulation}.

Strong bisimilarity is an equivalence relation and it is a congruence w.r.t. allCCS
operators, meaning that if we replace any subtermP′of P with a strongly bisimilar
termQ′ then the result is guaranteed to be strongly bisimilar toP. Notably,∼ admits a
logical characterisation in terms of Hennessy-Milner logic, a modal logic of actions for
the analysis and verification of reactive systems [2].

Exercise 3.Prove thatB2 ∼ B1 |B1 andB2 / B1,1
0,0.

Strong bisimilarity is coarser than LTS isomorphism, but itstill distinguishes too
many processes that have essentially the same behaviour. Inparticular, it is often the
case that some additional silent transitions may arise or not depending on different
attitudes to modelling the same system. Weak bisimilarity,denoted by≈, relaxes the
notion of strong equivalence by allowing to simulate a move also performing additional
silent transitions beforehand and afterwards: roughly, letting→∗ denote the reflexive

and transitive closure of
τ
−−→ (i.e.→∗ is the relation such thatP→∗ P′ iff P′ is reachable

from P via any number of consecutive silent transitions, possiblynone), in the weak

case a stepP
λ
−−→ P′ can be simulated via a sequence of stepsQ→∗

λ
−−→→∗ Q′ and silent

transitionsP
τ
−−→ P′ can be simulated via a possible empty sequence of silent steps

Q→∗ Q′. For example,B2 ≈ B1,1
0,0. Weak bisimilarity is an equivalence relation that

includes strong bisimilarity (in the sense thatP∼ Q impliesP≈ Q for any processesP
andQ), but it is not a congruence (because it is not preserved by the choice operator).

2.2 Pi-calculus, structural congruence and reduction semantics

CCS is Turing powerful, and it can be used at several level of analysis, as a specification
language, as a programming language, as a description language, as a type language,
etc. However, when one wants to model interactive systems with dynamic changes in
connectivity, or networks where processes can move betweenphysical or virtual loca-
tions, then the representation distance is quite increasedand the modelling activity can
become cumbersome.

Milner, Parrow and Walker’sCalculus of Mobile Processes[49, 48, 56] (i.e., theπ-
calculus or also pi-calculus) introduces a key ingredient:the possibility to communicate
channel names. This way, a process can acquire new communication links, pass its own
private channels to other processes, create fresh channels, and much more. Even if the
required extension toCCS syntax is to some extent minimal, it opened a still flourishing
research thread. Nowadays, there are many variants ofπ-calculus (monadic, polyadic,
synchronous, asynchronous, with mixed choice, higher-order, to name a few) each with
a consolidated theory on its own. To appreciate the key difference w.r.t.CCS, let us
consider the following puzzle, adapted from [24].

Exercise 4.100 young, bright computer scientists are kept awake in Bertinoro until all
exams will be completed. Their chance to have some sleep is asfollows: first each of
them is assigned a different id from 1 to 100 and a different room (assume rooms are
also numbered from 1 to 100); then the ids are randomly distributed one per room;
each scientist is given the possibility to open 50 rooms of her/his choice and look at
the ids contained there; if all scientists are able to find their own id, then they are all
given access to the rooms, otherwise (even if only one of themis not able to find her/his
own id) they will not be able to sleep until all exams have beengiven. Each scientist
is not allowed to look at the ids found in the rooms by her/his colleagues, and they are
not allowed to speak to each other once the procedure is started. Before the challenge
starts, they have the possibility to discuss together some “protocol” to follow. Can you
find an optimal strategy to let them have some sleep with highest probability?

The best possible strategy leaves almost 1/3 of probability to get some sleep. It is
based on a simple protocol, equal for all participants: the first room opened by scientist
with id i must be roomi; at each stage, if an idk different from her/his own is found in a
room, then the next room to be opened is roomk. The idea is that rooms and the id they
contain define a set of permutation cycles: the strategy is “winning” iff all such cycles
have length less than or equal to 50. As there can be at most onecycle of length greater
than 50, the probability to win coincides with the probability that such a long cycle is not
present. If modelled inCCS, the protocol should consider 100 different continuations
for each room, one for each possible id contained therein. Using pi-calculus instead, the
next room to open can be just communicated.

From the point of view of the syntax, the only primitives to bechanged are action
prefixes. In the following we assume an infinite set of namesN, ranged byx,y,z, is
available. The action prefixes of the pi-calculus represents either the sendingx〈y〉 of a
namey alongx, or the receivingx(y) of a namey alongx, or the silent actionτ. Some-
times the matching prefixes [x = y] and mismatching [x, y] are also considered: they
represent ordinary test for equality and inequality of names, and can be used to follow
different alternatives depending on the received names. The useof mismatch prefixes is
discouraged because their presence can violate useful monotonicity properties of pro-
cesses, like the fact that name-substitution does not decrease action capabilities of a
process.

Unfortunately, the inference rules ofCCS cannot be smoothly extended to pi-
calculus and some additional care and machinery is needed. To see why, consider the
straight extensions of inference rules for action prefixes,where in the case of input one
simply guesses the namez that will be received:

()
x(y).P

xz
−−→ P{z/y}

()
x〈z〉.P

xz
−−→ P

Now we should decide which actions should be forbidden underrestriction. Take
the process (νn)P and supposeP

xz
−−→ P′:

– if n < { x,z } then we can let (νn)P
xz
−−→ (νn)P′;

– if n= x then we must forbid the move;
– if n= z, x then we must forbid the move, becausen is a private name that cannot

be received from the outside.

Now supposeP
xz
−−→ P′:

– if n < { x,z } then we can let (νn)P
xz
−−→ (νn)P′;

– if n= x then we must forbid the move;
– if n= z, x then what? If we forbid the move, then private names cannot beextruded

to other processes, which would be a severe limitation. If weallow the move, then
we would like to extrude the scope ofn only to the processes that handshake onxn,

hence we should have (νn)P
xz
−−→ P′, where the restriction disappears from the tar-

get. On the other hand, when handshake is accomplished, we would like to restore
the restriction.

S+0≡ S S1+S2 ≡ S2+S1 S1+ (S2+S3) ≡ (S1+S2)+S3 [a= a]π.P≡ π.P
P|0≡ P P1 |P2 ≡ P2 |P1 P1 | (P2 |P3) ≡ (P1 |P2) |P3 P≡ P | !P
(νa)0≡ 0 (νa)(νb)P≡ (νb)(νa)P P | (νa)Q≡ (νa)(P | Q) if a < fn(P)

Fig. 3. Structural congruence laws for the pi-calculus

The so-calledearly operational semanticssolves the problem by introducing dif-
ferent labels for the free outputxz and the bound outputx(z) (where the namez is
extruded). This in turn have several consequences on the rules for parallel composition:
some side conditions are needed in order to avoid that an extruded name captures a free
name of a process running in parallel, and two kinds of handshakes are possible, de-
pending on the kind of output that is considered: the handshake between actionsxzand
xz is the ordinary one (as inCCS); the handshake between actionsxzandx(z) move the
restriction (νz) on top of the parallel composition. In general, it emerges the necessity
to take into account which are the free names of a process (denoted by fn(P)) and which
are its bound names (denoted by bn(P)). In the case of pi-calculus, the only binders are
input prefix and restriction, i.e. in bothx(y).P and (νy)P the namey is bound and its
scope is restricted toP. There are further consequences also on the definition of strong
bisimilarity, when the actions to be simulated depend on thefree names of a process.
These caveats make the formal presentation of pi-calculus semantics more complicated
and less intuitive thanCCS one, when encountered for the first time.

For the above reasons, a different style of presentation is sometimes preferred for
pi-calculus (and for many other calculi with name-handlingfeatures). It has two main
ingredients: astructural congruencerelation, used to write processes in some canonical
form, easier to manipulate; areductionrelation that represents only completed interac-
tions, roughly theτmoves.

Let us consider the following syntax for pi-calculus processes:

(Processes) P F S | P1 |P2 | (ν x)P | !P

(Sums) S F 0 | π.P | S1+S2

(Prefixes) π F x〈y〉 | x(y) | τ | [x= y]π

The structural congruence≡ of pi-calculus is the least congruence relation that sat-
isfies the equalities in Fig. 3 plus alpha-conversion of bound names.1 The structural
congruence allows one to rearrange the syntax of processes so that any two possible
interacting entities can be put side by side (in parallel composition). Note in partic-
ular that: the order in which we compose processes in sums should not matter; the
order in which we compose processes in parallel should not matter; the order in which
we restrict names should not matter. Moreover, the scope extrusion law (the rightmost
equality in the bottom row of Fig. 3) can broaden the scope of arestricted name before
it is communicated. It is not difficult to see that eachπ-calculus processP can be put in

1 The laws for alpha-conversion allow for the arbitrary renaming of bound names, but avoiding
clashes with free names. In the case of pi-calculus, alpha-conversion means that for any process
P and any namesx,y,zwith z< fn(P) we havex(y).P≡ x(z).(P{z/y}) and (νy).P≡ (νz)(P{z/y}).

a canonical form likeP ≡ (νx1)...(νxk)
(

S1 | ... |Sn | !P1 | ... | !Pm
)

for some suitable names
x1, ..., xk, sumsS1, ...,Sn, and processesP1, ...,Pm in canonical forms. Thus, all inter-
actions can now be expressed by considering only a small number of reductions over
canonical forms. Essentially there are two rules for basic reductions:

(R)
τ.P+S

τ
−−→ P

(R)
(x(y).P1+S1) | (x〈z〉.P2+S2)

τ
−−→ P1{z/y} |P2

plus two rules for the so-called reactive contexts (restriction and parallel composition):

(R)
P1

τ
−−→ P′1

P1 |P2
τ
−−→ P′1 |P2

(R)
P
τ
−−→ P′

(ν x)P
τ
−−→ (ν x)P′

together with the (often implicit) rule for structural congruence:

(R)
P≡ Q Q

τ
−−→ Q′ Q′ ≡ P′

P
τ
−−→ P′

The version we have presented is the so-called (synchronous) monadic pi-calculus.
In the polyadic case, messages can consist of (possibly empty) name tuples~y and com-
munication requires the number of transmitted values to match exactly the number of
received ones. In the case of empty tuples, input and output prefixesx() and x〈〉 are
sometimes written more concisely inCCS-like notation asx andx.

Coming back to the puzzle (Exercise 4), we consider namesx1,..., x100, and model
the fact that roomk contains idn by writing the processRk ,!xk〈xn〉. Then the strategy
Si of playeri is defined as follows, where we use parametrised constants for simplicity:

Si , S50
i (xi) (1≤ i ≤ 100)

St
i (x) , x(y).

(

[y= xi]oki |S
t−1
i (y)

)

(1≤ i ≤ 100,1< t ≤ 50)

S1
i (x) , x(y).[y= xi]oki (1≤ i ≤ 100)

The guard for success can be written asG , ok1.ok2 . . .ok100.ok, and the whole
system as (ν x1, ..., x100,ok1, ...,ok100) (S1 | · · · |S100|R1 | · · · |R100|G): after finitely many
silent transitions the system will either be ready to handshake onok, or it will deadlock
because some scientists have not been able to find their ids.

From the operational point of view, reduction semantics canbe tightly reconciled
with LTS semantics, by the so-calledHarmony Lemma[56]. From the observational
point of view, the situation is more complicated, because reduction semantics provides
no meaningful “observables”. Then, a meaningful abstract equivalence can be defined
in terms of some simple predicates, calledbarbs, which express the capabilities to emit
and receive on a given channel (but notably, neither the sent/ received message nor
the target state are observed). By combining barbs and reductions (and closing under
contexts), we obtainstrongandweak barbed congruencesthat can be shown to coincide
with the analogous congruences originated from the LTS semantics.

~x�λ2πa , x〈a〉

~λx.M�λ2πa , a(x,m).~M�λ2πm

~M N�λ2πa , (νm)
(

~M�λ2πm | (νb)(!b(n).~N�λ2πn |m〈b,a〉)
)

for b < fv(N)

Fig. 4. Encoding ofλ-calculus in pi-calculus

Example 2.We now provide evidence of the expressiveness of pi-calculus by showing
that functional programming can be recovered as a special flavour of interactive system.
This is done by encodingλ-calculus in pi-calculus [47].

We recall thatλ-expressions M,N, ... can be either a variablex, theλ-abstraction
λx.M or theapplication M N, with obvious notions of free and bound variables. The
reduction rules (for the lazy semantics) are:

(β)
(λx.M)N→ M{N/x}

(µ)
M→ M′

M N→ M′N

Roughly, processes can represent both “functions” and “arguments” which are com-
posed in parallel and interact toβ-reduce. However, they interact by transmittingaccess
pointsto terms instead of terms themselves. The pi-calculus process that encodes aλ-
expressionM is parametric w.r.t. the access pointa for retrieving arguments, and it is
written ~M�λ2πa . The encoding is shown in Fig. 4.

In the case of a variablex, the corresponding processes sends the access pointa to
the function available atx. In the case of aλ-abstraction, the process is waiting to receive
on a the argumentx and the name of a further access pointm for further arguments,
needed when evaluatingM. In the case of application, a fresh serverb is installed for
handling the requests to the argumentN, together with a new access pointm for the
argument ofM, to whichb anda are sent. The correspondence can be formalised by
showing that~(λx.M)N�λ2π and~M{x/N}�λ2π are related by the weak equivalence≈.

Exercise 5.Write the pi-calculus processes~λx.x�λ2πa and~(λx.x)N�λ2πa . Then shows
that~(λx.x)N�λ2πa reduces after some steps to~N�λ2πa | (νb)!b(n).~N�λ2πn (which can be
shown strongly bisimilar to~N�λ2πa , as (νb)!b(n).P is clearly inert).

It is evident that pi-calculus provides a rather sophisticated framework for the study
of interaction. For example, Sangiorgi proved in his PhD thesis [55] that name mobility
can encode some sort of higher-order communication, in the sense of process mobility.
Nevertheless, the considered primitives and the overall framework are rather low-level.
As a main consequence, when the size of processes increases,it becomes harder to
acquire confidence in the correctness of the modelling. Thisfact opened a major re-
search strand on type systems for process calculi, where different kinds of types and
annotations are devised to offer static guarantees about the validity of certain proper-
ties, ranging from the absence of communication errors (e.g. receiving a message of
mismatched arity or type) to termination and deadlock avoidance. In particular, there
is now a renewed interest in the area of service oriented calculi around the notion of
session types, introduced about a decade ago by Honda, Kubo and Vasconcelos [35].

2.3 A session calculus

One of the problem with pi-calculus is that names are used to encode many different
behavioural aspects all in terms of communication. In principle, one should at least
distinguish between two different usages: the first one is concerned with some sort
of static sorting discipline, like establishing that all names transmitted onx must be
integers, or that all names transmitted ony must be names of channels where integers
can be sent, or thatzcan only be used for input; the second one has to do with dynamic
prescriptions, like protocol narrations for the peers of a session, establishing e.g. that
on channelz must first be sent an integer, then be received a name of a channel where
integers can be sent and finally be received another integer.

The idea in [35] is to structure the language so to guarantee that, at any time, each
session-like channel is shared between two peers only. Thisway, the protocol run on
one side can be more conveniently checked for compatibilityw.r.t. the protocol on the
other side, as the two must be related by some form of duality.The key idea is to impose
a symmetric form of communication for opening a session.

Example 3.To see how it works, consider the specification of a server that repeatedly
receives values, computes some heavy scientific calculation f on it and then returns the
result to the caller. If it is written asS ,!in(x).out〈 f (x)〉, then there is a big problem: if
two or more clients are around, they could intercept the result of other calculations. For
example:

S | in〈1〉.out(y1).P1 | in〈2〉.out(y2).P2
τ
−−→ S |out〈 f (1)〉 |out(y1).P1 | in〈2〉.out(y2).P2
τ
−−→ S |out〈 f (1)〉 |out〈 f (2)〉 |out(y1).P1 |out(y2).P2
τ
−−→ S |out〈 f (1)〉 |P1{ f (2)/y1} |out(y2).P2
τ
−−→ S |P1{ f (2)/y1} |P2{ f (1)/y2}

The typical way to solve this problem consists of receiving the result on a private
channel, freshly established at the moment of the call. The server is thus written like
S,!in(x,k).k〈 f (x)〉, so that each time the result will be sent to a channel specified by the
caller, which can, e.g., employ a fresh name for the goal, like in (νk)in〈1,k〉.k(y1).P1.
In the monadic case,k can be used both for sending the value and for receiving the
result: the server would becomeS ,!in(k).k(x).k〈 f (x)〉 and the client would become
(νk)in〈k〉.k〈1〉.k(y1).P1. It can be seen thatk plays the role of a session key, with dual
usages on the server and on the client. When the pattern (νk)in〈k〉.P is frequent, it can
be more conveniently written as a macroin(k).P, which is reminiscent of bound output
and is symmetric to ordinary input.

Conceptually, the calculus proposed in [35] exposes three different communication
pairs. The first consists of prefixes for session acceptancea(k) and session requesta(k).
The corresponding reduction rule is:

()
a(k).P|a(k).Q

τ
−−→ P|Q

(note that alpha-conversion is exploited to choose the samenamek on both sides before
applying the reduction).

Then there are ordinary inputk?(x) and outputk!〈x〉 on a sessionk (only the former
is a binder forx). The corresponding reduction rule is:

()
k?(x).P|k!〈y〉.Q

τ
−−→ P{y/x} |Q

Finally there are primitives for delegation of a session keyto a different process:
session receivingk?((k′)) and session sendingk!〈〈k′〉〉 (only the former is a binder for
k′). The corresponding reduction rule is:

()
k?((x)).P|k!〈〈k′〉〉.Q

τ
−−→ P{k

′
/x} |Q

Note that after having sentk′ onk, processQ is no longer allowed to mentionk′.
Sometimes a fourth communication pair is considered that involves label branching

over a finite set of predefined labels
∑

i k?l i .Pi on one side and label selectionk!l.P on
the opposite side. The corresponding reduction rule is:

()
j ∈ I

∑

i∈I k?l i .Pi |k!l j .Q
τ
−−→ P j |Q

The remaining rules are the ordinary ones for parallel composition, restriction,
structural congruence and recursion (considered in place of replication). Note that the
same sequential process can open different sessions and interleave activities within
them.

Exercise 6.One young, bright computer scientists is given the possibility to pass the
exam if she is able to play chess twice against the state-of-the-art computer player
available on the web, without loosing both games. She has never played chess before.
Which strategy can she take?

The idea is essentially to let the computer AI play against itself. We can model the
web site as follows:

Chess, start(k). (Chess|k?black.B(k)+k!white.W(k))

B(k) , recX.k?(m).k!〈m :: next(m)〉.X

W(k) , recX.k!〈next(ǫ)〉.k?(m).X

Thus, the web site let the human player choose the colour and then, depending on
such choice, either it waits for the first move of the human or it starts the game by
sending its first move. For simplicity we assume the game protocol consists of sending
and receiving the list of moves made so far. The AI will compute its best move by
exploiting some functionnextapplied on the history of moves. Note that each game
runs in its own sessionk, to avoid mixing the games of different players.

The best strategy would be to open two gaming sessions, choosing to play holding
black pieces in one and white pieces in the other, and then always send on one game the
latest move performed by the computer player in the other game.

Human, start(k1).k1!black.start(k2).k2!white.P(k1,k2)

P(k1,k2) , recX.k1?(m).k2!〈m〉.k2?(n).k1!〈n〉.X

The main advantage w.r.t. pi-calculus is that sophisticated typing disciplines can
now be defined by exploiting the different syntactic categories and primitives. To know
more on this topic see Vasconcelos’s contribution in this volume [58].

2.4 Orc

Quite independently from traditional process calculi asCCS and pi-calculus, where
control and data flow is always encoded in terms of interaction, Cook and Misra have
proposed a basic programming language for structured orchestration, calledOrc [50,
23, 37], whose primitives meet simplicity with yet great generality.Orc neatly separates
orchestration from computation:Orc expressionse should be considered as scripts to
be invoked, e.g., within imperative programming languagesusing assignments such as
z :∈ e, wherez is a variable and theOrc expressione can involve wide-area computa-
tion over multiple servers. The assignment symbol :∈ (due to Hoare) makes it explicit
thate can return zero or more results, one of which is assigned toz. Even if Orc looks
quite different from ordinary process calculi, it relies on hidden mechanisms for name
handling (creation and passing) and for atomic distributedtermination. We recapsOrc
basics, borrowing definitions from [50]. Apart from minor differences w.r.t. the litera-
ture, we letOrc expressions be defined by the following grammar:

(Expressions)e F 0 | b | e1 |e2 | e1 > x> e2 | e2 where x :∈ e1

(Basic expr.)b F 〈p〉 | x〈~p〉 | s〈~p〉 | E〈~p〉 | ?k

where we assume given the following (pairwise disjoint) sets: a setV of values, ranged
by v, a setX of variables, ranged byx, a setS of sites, ranged bys, a setE , { Ei (~x) ,
ei }i of defined expressions, ranged byE, and a setK of invocation keys, ranged byk.
Moreover, we let the set ofparametersP ,V∪S∪X, ranged byp. The expressions
e1 > x > e2 ande2 where x :∈ e1 bind the occurrences ofx in e2. The occurrences of
non-bound variables are free and the set of free variables ofan expressione is denoted
by fv(e). All defined expressionsE(~x) , eare well-formed, in the sense that fv(e) ⊆ ~x.

Orc semantics is defined in the LTS style, via SOS rules. The basicexpressions ?k
must be considered as run-time syntax: they denote responsehandlers for site invoca-
tions. The set of labels include actions〈~v〉@k for a site invocation toswith parameters
~v and invocation keyk, actionv@k for the receipt of the valuev in response to a site
invocation handled byk, action〈v〉 for the local publication of valuev, and the silent
actionτ. We leto range over labels.

The basic computational entities orchestrated byOrc expressions aresites: a site
call can be thought of as an RMI, a call to a monitor procedure,to a function or to a
(web) service. Each invocation to sites elicits at most one value published bys. (Note
instead that, in principle, anOrc expression can publish any number of values.) Values
are published locally using the primitivelet(v), here rendered just as〈v〉 for brevity.

()
k globally fresh

s〈~v〉
s〈~v〉@k
−−−−−−→?k

()
?k

v@k
−−−−→ 〈v〉

()
〈v〉

〈v〉
−−−→ 0

While site call is strict, in the sense that actual parameters are evaluated before the
call, the evaluation of defined expressions is non-strict. The corresponding inference
rule is:

()
Ei(~x) , ei ∈ E

Ei〈~p〉
τ
−−→ ei{~p/~x}

Orc has three composition principles. The first one is the ordinary parallel compo-
sition e1 |e2, here calledsymmetric parallel(e.g., the parallel composition of two site
calls can produce zero, one or many values). We remark that there is no interaction
betweene1 ande2. The corresponding inference rules are:

()
e1

o
−−→ e′1

e1 |e2
o
−−→ e′1 |e2

()
e2

o
−−→ e′2

e1 |e2
o
−−→ e1 |e

′
2

The second composition principle is calledsequencingand it takes inspiration from
universal quantification: in the sequential expressione1 > x > e2, a fresh copye2{v/x}
of e2 is spawned foranyvaluev published bye1, i.e., a sort of pipeline is established
betweene1 ande2. Whenx< fv(e2), then we writee1>> e2 as a shorthand fore1> x> e2

(becausex is inessential). The corresponding inference rules are:

()
e1

o
−−→ e′1 o, 〈v〉

e1 > x> e2
o
−−→ e′1 > x> e2

()
e1

〈v〉
−−−→ e′1

e1 > x> e2
〈v〉
−−−→ (e′1 > x> e2) |e2{v/x}

The third and last composition principle is calledasymmetric parallel composition
and takes inspiration from existential quantification. Theevaluation of the asymmetric
parallel expressione2 where x :∈ e1 (written ase2 < x< e1 in the latest papers onOrc)
is lazy:e1 ande2 start in parallel, but all sub-expressions ofe2 that depend on the value
of x must wait fore1 to publishonevalue. Whene1 produces a value it is assigned tox
and that side of the orchestration is cancelled. The corresponding inference rules are:

()
e2

o
−−→ e′2

e2 where x :∈ e1
o
−−→ e′2 where x :∈ e1

()
e1

o
−−→ e′1 o, 〈v〉

e2 where x :∈ e1
o
−−→ e2 where x :∈ e′1

()
e1

〈v〉
−−−→ e′1

e2 where x :∈ e1
o
−−→ e2{v/x}

Although not evident from the operational semantics, the running implementation
of Orc assumes that all concurrent invocations are executed instantaneously and that the
asymmetric parallel operator picks the first value available, i.e. rules () and ()
have higher priorities than the remaining ones). We refer the interested reader to [59]
for more details.

Example 4.We borrow from [50] some simple examples ofOrc declarations. In the
following we assume the existence of a sitetimer that receives an integert and return
a void datum〈〉 after t units of time, of two sitescnn andbbc to be invoked with a
dated as argument and that return selected news from dated, and of a siteemail that
requires two argumentsmanda and sends an email containing messagemto the address
a without returning any value. Moreover, we writev1 :: v2 to denote the concatenation
of two messages.

– DeclarationMailTwice(a,d) , (cnn〈d〉|bbc〈d〉) > x> email〈x,a〉 specifies a service
for notifying all news fromcnn and bbcin two different emails.

– DeclarationMailOnce(a,d), email〈x,a〉wherex :∈ (cnn〈d〉|bbc〈d〉) specifies a ser-
vice that notifies addressa with only one of the news selected either fromcnnor
from bbc.

– Declaration

MailBoth(a,d) , (〈x1 :: x2〉 > x> email〈x,a〉) where x1 :∈ cnn〈d〉

where x2 :∈ bbc〈d〉

specifies a service that notifies addressa with both news selected fromcnn and
from bbc in a unique message.

– DeclarationDelay(s,d, t) , timer〈t〉 >> 〈x〉 where x :∈ s〈d〉 specifies a service that
contact siteswith argumentd but delays the response up tot time units, in the sense
that even if the response is available beforet time units then it will be published
only after the timer expires, while if it is available after the timer already expired,
then it is readily published. Note that the timer invocationdoes not depend onx and
therefore it is activated concurrently with the invocationto s.

– DeclarationUnfairPick(s1, s2,d, t) , 〈x〉 where x :∈ (s1〈d〉 |Delay〈s2,d, t〉) speci-
fies a service that contact both sitess1 ands2 with argumentd but privileges the
response from sites1, in the sense that if it arrives beforet time units then the
response ofs2, if any, is ignored. For example

UnfairMail(a,d) , UnfairPick〈cnn,bbc,d,20〉 > x> email〈x,a〉

specifies a service that notifies addressa with only one of the news selected either
from cnnor frombbc, but preferably fromcnn(that has 20 time units of advantage).

Exercise 7.A classic problem in non-strict evaluation is the so-calledparallel-or. Sup-
pose there are two sitess1 ands2 that publish some booleans. Write anOrc expression
PORthat publishes the valuefalseonly if both sites returnfalse, the valuetrue as soon
as either site returnstrue, and otherwise it never publishes a value. In the solution itcan
be assumed: (1) the existence of a siteift(b) that receives a boolean value and returns

e1 | (e2 |e3) ∼ (e1 |e2) |e3 e1 > x> (e2 > y> e3) ∼ (e1 > x> e2) > y> e3 if x< fv(e3)
e1 |e2 ∼ e2 |e1 0> x> e∼ 0 (e1 |e2) > x> e∼ (e1 > x> e) | (e2 > x> e)
e|0∼ e 0 wherex :∈ 0∼ 0 (e2 |e3) where x :∈ e1 ∼ (e2 where x :∈ e1) |e3 if x< fv(e3)
(e3 wherey :∈ e2) where x :∈ e1 ∼ (e3 where x :∈ e1) wherey :∈ e2 if x< fv(e2) andy < fv(e1)

(e2 > y> e3) where x :∈ e1 ∼ (e2 where x :∈ e1) > y> e3 if x< fv(e3)

Fig. 5.Some strongly bisimilarOrc expressions

true if b is true, and otherwise it does not respond; (2) the existence of a site or(b1,b2)
that return the inclusive logical or of the two booleans received as arguments. Note that
PORmust publish one result at most.

The abstract semantics ofOrc can be defined in terms of strong and weak bisimi-
larities and gives rise to interesting equivalences, some of which are in Fig. 5.

3 A Calculus of Sessions and Pipelines

In the previous section we have seen different frameworks for the modelling of inter-
action, sessions, orchestration and cancellation of activities, each offering elegant and
flexible solutions to tackle specific issues. Starting from these premises, the objective
of a coordinated effort within the EU funded project S [57] was to synthesise
so-calledcore calculi for SOC, where all the above aspects are dealt with in a uniform
and structured way. One of the outcomes of the project isCaSPiS [8], a Calculus of
Sessions and Pipelines, which evolved as an improved refinement ofSCC [7] (Service
Centred Calculus). CaSPiS exploitsnested sessionsandpipelinesas natural tools for
structuring client-service communication and orchestration, respectively. Activity can-
cellation is built around the ability of peers to leave sessions and to program suitable
handlers for such cases. We discuss below the essential guidelines around the design of
CaSPiS, emphasising the differences w.r.t. the calculi in Section 2:

Interaction: Contrary toCCS and pi-calculus where the same form of communication
is used for different purposes, inCaSPiS a few forms of basic interactions are dis-
tinguished and regulated on their own. For example, services are globally available
and can be invoked independently from the surrounding context, while ordinary
input-output communication is context sensitive and implicitly driven.

Sessions:WhenCaSPiS is viewed as a programmable abstraction of SOC, the idea
is to relieve programmers from the burden of dealing with session keys. There-
fore the choice made inCaSPiS is to handle sessions as an implicit mechanism
for enclosing the communications between a caller and its callee, avoiding external
interferences. Like in Section 2.3, a name-scoping mechanism is used to handle
sessions, but contrary to the calculus in [35], eachCaSPiS process has its own
implicit current session and it is possible neither to program interleaved commu-
nications in different sessions, nor session delegation. However, sessionscan be
nested (e.g. when calling a service within a session, the interaction will take place
in a dedicated subsession) and it is allowed to pass values from nested sessions up.

Orchestration: As in Orc, orchestration is kept separate from interaction and pipelines
are seen as a convenient mechanism for modelling the flow of data between local
processes: it is more general than sequential composition,better suited w.r.t. con-
currency and does not require the explicit and improper use of channels for orches-
tration tasks. Here a more sophisticated form of pipeline isintroduced, which is
well-integrated with the other features ofCaSPiS, not considered inOrc.

Cancellation: Orc’s asymmetric parallel operator provides a convenient formof can-
cellation for pending activities, but whose effect is purely local: the operational
semantics is designed in such a way that if a site has been invoked, but the local
handler for its response is cancelled, then the response cannot show up. This is
maybe fine if only one-way or request-response interactionsare considered, but not
in CaSPiS, where the cancellation of activities could leave some pending peers in
the middle of long-running interactions. Likewise signinga contract implies some
obligations, opening a session implies notifying the peer when leaving the session
before its conclusion. Also inspired by some recent work on process calculi for
modelling transactions [13, 14, 41, 19, 18],CaSPiS comprises a novel mechanism
for ensuring the notification of any activity cancellation,for which we are not aware
of any similar counterpart in the literature on process calculi.

Readability and typeability: To tackle the complexity of SOC systems, it should be
possible to structure complex processes in smaller parts tailored to specific issues
and it should be possible to guarantee the compliance of the whole process by
checking the compliance of its parts. Moreover, type checking and type inference
systems should be available that automatically detect protocol inconsistencies and
communication errors. For type systems to be effective, it is important that the ab-
straction distance w.r.t. the concrete formalism is not toolarge, so that any detected
type problem can be immediately explained, tracked and understood over the un-
derlying processes. Some preliminary investigation has shown that quite simple
type systems can be developed forCaSPiS that guarantee nice properties (com-
munication safety, client progress and deadlock freedom).A prototype tool, called
TypeSes2 for type inference is also available (see [45]).

3.1 A CaSPiS walk-through

We introduceCaSPiS primitives in an incremental way. LetNsrv andNsessbe two
disjoint countable sets, respectively ofservicenames, ranged bysand ofsessionnames,
ranged byr. We assumeNsrv andNsessare included in a larger set ofnamesN, ranged
by n, and letx,y, ...,u,v... range overN \Nsess.

In the following we shall exploit the notion of acontext, writtenC~ ·�, i.e. a pro-
cess term with one hole~ ·�. We writeC~P� for the process where the hole is textually
replaced by processP. The contexts we are interested in are calledstatic, and charac-
terised by the fact that the hole occurs in an actively running position and it is ready to
interact (e.g. it is not under a prefix). See Section 3.2 for the exact definition.

2 http://www.di.unipi.it/mezzina

Service definition and invocation.Service definitions and invocations resembleCCS
prefixes. Thuss.P defines a services and we writes.Q for invoking s. The similarity
with CCS is merely syntactical, because after the handshakeP and Q are not quite
separate continuations, but rather protocols that will interact in a fresh, private session.
The name of the session is not to be mentioned inP andQ, and therefore it is handled
implicitly by the operational semantics rules. Each protocol can contain other service
definitions and invocations, which in turn can establish nested sessions with other peers.
Services are typically one-shot, in the sense that when invoked, a new instance serving
the request is created, but the service in no longer available. This choice facilitates
service updates. Replication (or recursion) can be used to specify persistent services,
like !s.P. Moreover, it is possible to have different definitionss.P1 ands.P2 available at
the same time for the same service names.

Session sides.The handshake betweens.P and s.Q leads to the creation of a fresh
session namer that can be viewed as a private, synchronous channel bindingcaller
and callee. Since client and service may be far apart, a session naturally comes with
two sides, writtenr ⊲ P andr ⊲Q, with r bound somewhere above them. For example,
starting fromR|C1~ s.P� |C2~ s.Q� we can arrive toR| (ν r)(C1~ r ⊲ P� |C2~ r ⊲ Q�).
Similarly, starting fromC1~ s1.(P1 | s2.P2)� |C2~ s1.Q� |C3~ s2.R� we can arrive in two
steps to (ν r1, r2)(C1~ r1⊲ (P1 | r2⊲ P2)� |C2~ r1⊲Q� |C3~ r2⊲R�), whereP1 interacts
with Q andP2 interacts withR. Sometimes, especially when type systems are consid-
ered,polarities+ and− are attached to session sides in order to mark the caller and the
callee. In the example above, we should have written, e.g., (ν r1, r2)(C1~ r+1 ⊲ (P1 | r−2 ⊲
P2)� |C2~ r−1 ⊲Q� |C3~ r+2 ⊲R�)

Intra-session communication.Two peersP andQ running on opposite session sides
of r can exchange messages. Since the peer is uniquely determined, input and output
primitives are, respectively, abstraction prefixes (?~x)P or concretion prefixes〈~v〉Q. For
example,C1~ r ⊲ 〈5〉P� |C2~ r ⊲ (?x)Q� can evolve toC1~ r ⊲ P� |C2~ r ⊲Q{5/x}�.

If we now reconsider the service for scientific calculationsfrom Example 3, then we
can write it just asS,!in.(?x)〈 f (x)〉. Then if two clientsin.〈1〉(?y1)P1 andin.〈2〉(?y2)P2

are present, there is no risk of interference, because the two interactions are served
separately.

S | in.〈1〉(?y1)P1 | in.〈2〉(?y2)P2
τ
−−→ (ν r1)(S | r1⊲ (?x)〈 f (x)〉 | r1⊲ 〈1〉(?y1)P1 | in.〈2〉(?y2)P2)
τ
−−→ (ν r1, r2)(S | r1⊲ (?x)〈 f (x)〉 | r2⊲ (?x)〈 f (x)〉 | r1⊲ 〈1〉(?y1)P1 | r2⊲ 〈2〉(?y2)P2)
τ
−−→ (ν r1, r2)(S | r1⊲ 〈 f (1)〉 | r2⊲ (?x)〈 f (x)〉 | r1⊲ (?y1)P1 | r2⊲ 〈2〉(?y2)P2)
τ
−−→ (ν r1, r2)(S | r1⊲ 〈 f (1)〉 | r2⊲ 〈 f (2)〉 | r1⊲ (?y1)P1 | r2⊲ (?y2)P2)
τ
−−→ (ν r1, r2)(S | r1⊲ 0| r2⊲ 〈 f (2)〉 | r1⊲ P1{ f (1)/y1} | r2⊲ (?y2)P2)
τ
−−→ (ν r1, r2)(S | r1⊲ 0| r2⊲ 0| r1⊲ P1{ f (1)/y1} | r2⊲ P2{ f (2)/y2})

Note that the initial processes are much simpler than those considered in Example 3,
where session identifiersk should appear explicitly. Moreover, the session side construct

must be considered as run-time syntax, as all the more complex processes traversed by
the above computation.

Inter-session communication.It is quite useful to have the possibility to make the re-
sponses obtained upon some service invocation available tothe parent session, e.g. to
collect the fares offered from different providers and compare them to choose the best
one. To this purpose, another prefix is available inCaSPiS, calledreturn prefix, writ-
ten 〈~v〉↑P, which can be seen as a concretion at the level of the parent session, i.e.
r ⊲ 〈~v〉↑P can be read as〈~v〉 | r ⊲ P, except for the fact thatP cannot execute until~v has
been consumed.

Pipelining. CaSPiS exploits a generalised form ofOrc sequencing operator, called
pipelineand writtenP > Q, which allows to feedQ with all values produced byP:
for each value, a fresh instance ofQ will be activated, running in parallel withP> Q.
A pipeline can be seen as some sort of redirection for the concretions available inP:
instead of being available to the peer of the current session, they are given in input to
Q, which is typically guarded by some abstraction prefix. For example,Orc sequencing
operator can be written asP> (?x)Q.

Note that in a term like (r ⊲ (P> Q)) | r ⊲R, processP can input fromR and output
to Q. This is clearly different from ((r ⊲ P) > Q) | r ⊲ R, whereP can input fromR
and output toR, but can pass values toQ using return prefixes. In combination with
the return operator, pipeline allows to make the responses obtained upon some service
invocation available locally, to some suitable continuation. In the example of the service
for scientific calculations, a client such asin.〈1〉(?y1)P1 would run P1 in the session
established withS, i.e. it will reduce after some steps tor1⊲ P1{ f (1)/y1}. Instead the
client (in.〈1〉(?y1)〈y1 〉

↑) > (?y1)P1 will reduce, after some further steps, to (r1⊲ 0 >
(?y1)P1) |P1{ f (1)/y1}, which can be read asP1{ f (1)/y1}, because (r1⊲ 0 > (?y1)P1) is a
terminated process.

Cancellation. Processes must be able to abandon their current sessions in full auton-
omy. The commandclose is used to terminate the enclosing session side. A terminated
session enters the special state◮ P that recursively terminates any other session side
nested inP. Note that the execution of aclose can depend on some local choice as well
as be guarded by the input of some data from the opposite session side.

Closure notification.The distinguishing feature ofCaSPiS is the presence of novel
primitives to handle (unexpected or programmed) session termination. In fact, even if
processes can abandon their current sessions, we would likesessions units to represent
a controlled and safe form interactions, and therefore their peers should be somehow
notified. The idea is that upon termination of a session side,the opposite session side
will be informed and take some proper counteraction, if needed. To this purpose, the
more general syntax for invocation issk.Q: it mentions a namek at which the handler of
the client-side is listening. Symmetrically, the more general syntax for service definition
is sk.P, which mentions a namek at which the handler of the service-side is listening.
Upon creation of a session, the pair of names (k1,k2) is thus associated with the fresh
sessionr, identifying a pair oftermination handlers, one for each side. The more general

syntax for sessions is thusr ⊲k P where the subscriptk refers to the termination handler
of the opposite side.

Then, after aclose is executed, a notification†(k) is sent to the termination-handler
servicek listening at theoppositeside of the session to manage the appropriate actions.

The final ingredient is the possibility to define suitabletermination listeners k·P
that are used to handle termination signals†(k).

To sum up the above discussion:sk1 .P| sk2 .Q can evolve to (ν r)(r ⊲k2 P| r ⊲k1 Q).
(Note that the handlers have been exchanged between the peers.) Then, if sayP executes
close , the termination handlerk2 of the caller will be activated, and vice versa, ifQ
terminates, thenk1 will be activated. For example:r ⊲k2 (close |P) | r ⊲k1 (Q|k2 · close)
can evolve to◮ P| †(k2) | r ⊲k1 (Q|k2 · close), then to◮ P| r ⊲k1 (Q|close) and finally to
◮ P| ◮Q| †(k1). Note that the emitted notification†(k) is essentiallyasynchronous, i.e.,
we have no guarantee as to when the listener at the opposite side will catch†(k). For
example, before†(k) reaches its destination, the other side might in turn have entered
a closing state◮ Q on its own, or be closed right away, as a result of the closing of a
parent session. While dangling†(k) cannot be avoided in general, simple patterns can
avoid the even worst situation of dangling session sides pending forever.

Pattern matching and guarded choice.Last but not least,CaSPiS interactions is em-
powered by pattern-matching facilities that can be suited,e.g., to deal with XML-like
data typical of web service scenarios. Roughly, this is obtained by allowing: 1) out-
put and return prefixes whose values are structured, exploiting a signatureΣ of con-
structors, ranged byf (each coming with a fixed arity); 2) input prefixes where plain
input variables ?x are generalised bypatternsthat exploit the constructors inΣ. To-
gether with ordinary prefix-guarded choices, the presence of patterns makes it possible
to manage and route messages on the basis of their contents. For example, a pipeline
like P> (pdf(?x))Q+ (ps(?x))R can be used to handle in different ways the documents
produced byP depending on whether they are in PDF (Portable Document Format) or
PS (PostScript) format.

3.2 Close-free fragment

We start presenting the fragment ofCaSPiS without cancellation and closure notifica-
tion, whose syntax is in Fig. 6. The operators are listed in decreasing order of prece-
dence. Service definitions.~ ·� and invocations.~ ·�, prefix πi~ ·�, left-sided pipeline
P> ~ ·� and replication !~ ·� are calleddynamicoperators, while the remaining opera-
tors arestatic.

As expected, in (νn)P, the restriction (νn) binds free occurrences ofn in P, while in
(F)P any ?x in the patternF binds the free occurrences of namex in P. We denote by
bn(F) the set of namesx such that ?x occurs inF. The empty sum is denoted0. Trailing
0’s will often be omitted. When the arguments of prefixes are void or inessential, we
abbreviate them as ()P, 〈〉P and〈〉↑P.

The structural congruence relation≡ is defined as the least congruence that includes
alpha-equivalence and the laws in Fig. 7. This set of laws comprises the structural rules
for parallel composition and restriction, plus the obviousextension of restriction’s scope
extrusion law to pipelines and sessions.

P,Q ::=
∑

i∈I πi Pi Guarded Sum π ::= (F) Abstraction

| u.P Service Definition | 〈V〉 Concretion

| u.P Service Invocation | 〈V〉↑ Return

| r ⊲ P Session

| P> Q Pipeline V ::= u | f (Ṽ) Value (f ∈ Σ)

| P|Q Parallel Composition

| (νn)P Restriction F ::= u | ?x | f (F̃) Pattern (f ∈ Σ)

| !P Replication

Fig. 6. Syntax of close-freeCaSPiS

P|0 ≡ P (νn)0 ≡ 0 ((νn)P) > Q ≡ (νn)(P> Q) if n < fn(Q)
P|Q ≡ Q|P (νn)(νm)P ≡ (νm)(νn)P ((νn)P) |Q ≡ (νn)(P|Q) if n < fn(Q)

(P|Q) |R ≡ P| (Q|R) !P ≡ P| !P r⊲ (νn)P ≡ (νn)(r ⊲ P) if r , n

Fig. 7. Structural congruence laws

The reduction semantics is given by exploiting suitable contexts surrounding the
active redexes. A context isstatic if its hole does not occur under a dynamic opera-
tor. Moreover, we say that a context issession-immuneif its hole does not occur un-
der a session operator, andpipeline-immuneif its hole does not occur under a right-
sided pipeline operator. In the following we letC~ ·� range over static contexts,S~ ·�
over static session-immune contexts, andP~ ·� over contexts that are static, session-
immune and pipeline-immune. Roughly, a static session-immune contextS~ ·� cannot
“intercept” abstraction and return prefixes, while a static, session-immune and pipeline-
immune contextP~ ·� cannot “intercept” concretion prefixes. Analogous definitions ap-
ply to the case of two-holes contextsC~ ·, ·�.

The first reduction regards the handshake between a service definition and a service
invocation.

()
r fresh for C~ ·, ·�,P,Q

C~ s.P, s.Q�
τ
−−→ (ν r)C~ r ⊲ P, r ⊲Q�

The second reduction regards intra-session communication. Below we letCr~ ·, ·�

be a context of the formC~ r ⊲ P~ ·�, r ⊲ S~ ·�� (for someP~ ·� andS~ ·�), which cap-
tures the most general situation in which intra-session communication can happen.
Pattern-matching is accounted for by a substitutionσ = match(F,V), defined as the
(only) substitution such that dom(σ) = bn(F) and Fσ = V. Moreover, we implicitly
require that names inF andV are not bound byCr~ ·, ·�

(S)
σ =match(F,V)

Cr~ 〈V〉P+
∑

i πiPi , (F)Q+
∑

j π jQi �
τ
−−→ Cr~P,Qσ�

Intra-session communication can be triggered also by a return prefix in a subsession
of r. The corresponding rule is:

(SR)
σ =match(F,V)

Cr~ r1⊲ S1~ 〈V〉↑P+
∑

i πiPi �, (F)Q+
∑

j π jQi �
τ
−−→ Cr~ r1⊲ S1~P�,Qσ�

Finally, there are two more rules for pipeline orchestration, handling the “redirec-
tion” of concretions and returns.

(P)
Q≡ S~ (F)Q′+

∑

j π jQi � σ =match(F,V)

C~P~ 〈V〉P+
∑

i πiPi � > Q�
τ
−−→ C~S~Q′σ� | (P~P� > Q)�

(PR)
Q≡ S~ (F)Q′+

∑

j π jQi � σ =match(F,V)

C~P~ r ⊲ S1~ 〈V〉↑P+
∑

i πiPi �� > Q�
τ
−−→ C~S~Q′σ� | (P~ r ⊲ S1~P�� > Q)�

The presence of contexts in the reduction rules accounts forthe execution of silent
transitions under restriction, parallel composition, etc, while we omit deliberately the
obvious rule for structural congruence, which is the same asthe rule (R) of pi-
calculus (see Section 2.2). The LTS semantics and the Lemma that reconciles the silent
transitions of the two semantics can be found in [8].

Example 5.The one-way and request-response invocation patterns fromweb services
(to services with argumentV) can be easily encoded ass.〈V〉〈〉↑ and s.〈V〉(?x)〈x〉↑,
respectively. Note that in both cases a value is returned (possibly void) that can be used
to activate a suitable continuation, if any. The one-way pattern can also be rendered in
a fully asynchronous fashion by writings.(〈V〉 | 〈〉↑).

The following e-shop example is adapted from [5], where it isused to illustrate a
static analysis machinery for the detection of logic flaws inservice applications, i.e.
to prevent the so-calledapplication logic attacksthat exploit the vulnerabilities of the
specific functionality of the application (e.g., by violating the business logic) rather than
the ones of the underlying platform.

Example 6.We model a simple e-shop applicationS that exchanges information with
customersC and the data baseD that stores item prices. The serviceprice to retrieve
item prices is private toS andD. Essentially, a honest customer invokes servicebuy,
chooses an item, receives its price inside an order form and if interested in finalising the
order, must fill in a payment form with personal data and credit card information. In the
same form are reported: the transaction code, the chosen item, and the received price of
the purchase.

HC , buy.〈itemk〉(orderForm(?xcode, itemk,?xpricek))〈payForm(xcode, itemk, xpricek ,name,cc)〉

However, a malicious user may try to finalise the transactionsending a forged copy
of the payment form, where the price field has been abusively discounted (like when
downloading a web order form associated with an e-shopping cart, editing some hidden
field outside the browser and resubmitting it in place of the original one).

MC , buy.〈itemk〉(orderForm(?xcode, itemk,?xpricek))〈payForm(xcode, itemk,5cents,name,cc)〉

In the specification shown below, the applicationS exploits, for each item, two con-
current processesOFi andPFi , respectively for sending the order form to the customer
and for receiving the cancellation or the payment of the order. This way it cannot check
if the form sent by the costumer contains the right price.

ESHOP, (νprice)(D |S)

D , !price.
∑

i (itemi)〈pricei〉)

S , !buy.
∑

i(itemi)(νcode)(OFi |PFi)

OFi , price.〈itemi〉 (?xpricei
)〈orderForm(code, itemi , xpricei

)〉↑

PFi , (cancel)0+ (payForm(code, itemi ,?ypricei ,?yname,?ycc))PAY

Then both the honest customerHC and the malicious customerMC shown above
are capable to interact with the application, each fulfilling their purposes.

Exercise 8.Redesign the e-shop applicationS in such a way that the price indicated by
the customer in the payment form is matched against the one provided by the data base.

We conclude by hinting at two important properties ofCaSPiS processesP that do
not contain the session operatorr ⊲ ~ ·�. Let Q be any process reachable fromP via any
number of reductions and letr any session inQ, then: 1) there are exactly two session
sides forr in Q (dyadic session), 2) it is never the case that one of the session side forr
is nested into the other (session acyclicity). We refer to [8] for the formal presentation
of such properties.

3.3 Full calculus

We can now present the full syntax and semantics ofCaSPiS. In what follows, we
assume a new countable setK of signal names, ranged byk, disjoint from session and
service names. The syntax of fullCaSPiS is reported in Fig. 8. The difference w.r.t.
Fig. 6 is given by the extended primitivessk.P, sk.P andr ⊲k P and the new primitives
close , †(k),◮ P andk·P. Like in the case ofr⊲P, we reserver⊲k P and◮ P as run-time
syntax. When the handlerk in sk.P is vacuous or inessential then we can safely omit it,
and the same forsk.P andr ⊲k P.

The structural rules listed in Fig. 9 enrich the set of rules already introduced for
the close-free fragment. The law◮ †(k) ≡ †(k) is motivated by subtle race conditions
on the order of closings due to the nesting of sessions (see [8] for an example). The
remaining rules serve the purpose of letting signals†(k) freely move within a term to
reach the corresponding listeners, and distributing the terminated session◮ over static
operators. Note that, as usual, structural congruence can be exploited to move to top
level all restrictions that are not in the scope of a dynamic operator.

P,Q ::=
∑

i∈I πi Pi Guarded Sum

| sk.P Service Definition

| sk.P Service Invocation

| P> Q Pipeline

| close Close

| k ·P Listener

| †(k) Signal

| r ⊲k P Session

| ◮ P Terminated Session

| P|Q Parallel Composition

| (νn)P Restriction

| !P Replication

Fig. 8. Syntax of fullCaSPiS.

r ⊲k′ (†(k)|P) ≡ †(k)|r ⊲k′ P (†(k)|P) > Q ≡ †(k)|(P> Q) ◮ †(k) ≡ †(k)
◮ r ⊲k P ≡ ◮ r⊲k ◮ P ◮ (P> Q) ≡ (◮ P) > Q ◮◮ P ≡ ◮ P
◮ P|Q ≡ ◮ P| ◮ Q ◮ (νx)P ≡ (νx) ◮ P ◮ 0 ≡ 0

Fig. 9.Structural congruence rules for†(k) and◮ .

The reductions must be updated to take into account termination handlers. The only
significant change regards the handshake between a service definition and a service
invocation, where termination handlers must be annotated in the freshly created session
sides.

()
r fresh for C~ ·, ·�,P,Q

C~ sk1 .P, sk2 .Q�
τ
−−→ (ν r)C~ r ⊲k2 P, r ⊲k1 Q�

Rule (P) is left unchanged, while we need to annotate the sessions appearing
in rules (S), (SR) and (PR) (and in the notationCr~ ·, ·�) with suitable
termination handlersk andk1.

Three new rules are needed to handle session cancellation. Two of them regards the
generation of notifications to be delivered on the opposite side, which may be due to
the execution of theclose primitive

(S)
C~ r ⊲kS~close ��

τ
−−→ C~†(k) | ◮ S~0��

or to the termination of an enclosing session:

(T)
C~◮ (r ⊲k P)�

τ
−−→ C~◮ P| †(k)�

The last rule models the handshake between a notification signal and its handler:

(T)
C~†(k) |k ·P�

τ
−−→ C~P�

The session closing primitives do not guaranteeper sethat forever-dangling, one-
sided sessions never arise, in the same way as deadlock can arise in pi-calculus pro-
cesses or sequential programs may diverge. However, many situations can be handled
satisfactorily just by installing suitable termination handlers of the formk·C~close � in
the bodies of client invocations and service definitions. Moreover, we can allow rather

liberal choices ofC~ ·�, that may contain extra actions the termination handler may
wish to take upon invocation, e.g., further signalling to other listeners (a sort of com-
pensation, in the language of long-running transactions).

Again, the full technical details can be found in [8], here wejust mention the main
constraints overCaSPiS processes that can guarantee the so-calledgraceful termina-
tion property. Informally, the key concept is that of abalancedterm, roughly, a term
with only pairs of session-sides that balance with each other. Termination of one side
may lead to unbalanced terms. The graceful property guarantees thatany possibly un-
balanced term reachable from a balanced term can get balanced in a finite number of
reductions.

For a processP that contains no session constructs, we require e.g. that for any
Q ≡ P and for eachs and k: (a) sk. may only occur inQ in subterms of the form
sk.S1~k ·S2~close �� and analogously forsk.; (b) in Q there is at most one occurrence
of the listener fork.

For example, obvious “graceful” usages for service invocation and service defini-
tion are (νk1)sk1.(P1|k1 · close) and (νk2)sk2.(P2|k2 · close), respectively. The process
Newsfrom next example (adapted from [8]) also fits the requirements for the graceful
property.

Example 7.Let BBCandCNN be services that, upon invocation, return a possibly in-
finite sequence of values representing pieces of news (disregarding the identity of these
news, these services resemble !BBC.!(νn)〈n〉, etc.). Let us consider the processNews
below that exposes anews collectorservicecollect:

News, !(νk)collectk.
(

k · close | (νk1)BBCk1.(!(?x)〈x〉↑ | k1 · (close | †(k)))

| (νk2)CNNk2 .(!(?x)〈x〉↑ | k2 · (close | †(k)))
)

The established session can be closed: either (i) by the client-side, when an actionclose
on the client’s side is performed, as this will yield a signal†(k) able to activate the cor-
responding service-side listenerk · close ; or, (ii) when any of the three nested sessions
used for interacting with the news services is closed by peer, yielding the signal†(ki)
and hence†(k). The termination of the topmost session will in turn cause the termina-
tion of all (not yet terminated) nested news clients.

For example, after invokingcollect, the client below receives all the news produced
by BBCandCNN (in some interleaved order):

HeavyReader, (νk′)collectk′ .(!(?y)〈y〉↑ |k′ · close)

Instead the client below receives only the first news produced either byBBCor CNN
and then abandons the session:

EasyReader, (νk′)collectk′ .((?y)〈y〉↑close |k′ · close)

It is worth mentioning that there are at least two obvious alternatives to the mecha-
nism we have chosen. One would be to useclose as a primitive for terminating instan-
taneouslyboth the client-side and service-side sessions. But this strategy violates the

principle that each party is in charge for the closing of its own session side. A second
alternative would be to useclose as a synchronisation primitive, so that the client-side
and service-side sessions are terminated whenclose is encountered on one side and
close on the other side. This strategy conflicts with parties beingable to decide au-
tonomously when to end their own sessions. The use of termination handlers looks a
reasonable compromise: each party can exit a session autonomously but it is obliged to
inform the other party.

3.4 Other variants

Some variants ofCaSPiS have been recently considered in recent literature, that intro-
duce suitable restrictions to favour analysis and verification of processes. We mention
a few significant works.

In [15], it is assumed that: (1) service definitions can only be present at the top level
and cannot dynamically deployed, (2) label-guarded sums and label-choice are consid-
ered instead of guarded sums and pattern-matching, (3) the pipeline is restricted to the
form P > (?~x)Q, i.e. toOrc sequencing, (4) conditional statements are introduced, (5)
session sides are polarised, (6) services are persistent and can be invoked recursively, but
general replication is not allowed. Under these requirements, a type system is developed
that guarantees that all session protocols are deadlock free, in the sense that well-typed
processes either reach a normal form or diverge by opening new nested sessions. In [1],
under similar restrictions, it is shown that session names can be disregarded and a type
system is provided that guarantees client-progress property (i.e., client-side protocols
will not deadlock). The above results have then been extended in [45] by introducing
general recursion at the level of session protocols and using the type system to prevent
communication errors.

In [38] a security-oriented extension of the work in [15] is presented, where secu-
rity levels can be assigned to service definitions, clients and data. In order to invoke a
service, a client must be endowed with an appropriate clearance, and once the service
and client agree on the security level, the data exchanged inthe initiated session will
not exceed this level. The main result is a type system that guarantees these security
properties.

Besides qualitative aspects, in SOC it is also important to consider phenomena re-
lated to performance and dependability to deal with issues related to Quality of Service.
They are particularly relevant for services running over congestioned networks, where
unpredictable delays and failures are more likely. In [25] aMarkovian extension of
CaSPiS, calledMarCaSPiS, has been studied, where: output activities are enriched
with rates (characterising random variables with exponential distributions) and input
activities are equipped with weights (characterising the relative selection probability).
Then continuous time Markov chains can be obtained fromMarCaSPiS specifications
to perform quantitative analysis.

Some prototype implementations ofCaSPiS have been proposed in [4, 10].

~x�λ2c
a , x.〈a〉

~λx.M�λ2c
a , a.(?x)(?m)~M�λ2c

m

~M N�λ2c
a , (νm)

(

~M�λ2c
m | (νb)(!b.(?n)~N�λ2c

n |m.〈b〉〈a〉)
)

for b < fv(N)

Fig. 10.Encoding ofλ-calculus inCaSPiS

4 Application examples

In this section we show a few intuitive encoding of paradigmatic calculi inCaSPiS and
of a simple fragment ofCaSPiS in pi-calculus, but without proving any strong formal
correspondence.

4.1 From lambda-calculus to CaSPiS

We start by showing that the close-free fragment ofCaSPiS is expressive enough to
encodeλ-calculus, in a similar way as done, e.g., in pi-calculus (see Example 2).

The encoding is summarised in Fig. 10, where~M�λ2c
a denotes theCaSPiS process

modelling theλ-expressionM with arguments retrieved through the servicea. Notably
the encoding uses just monadic messaging without exploiting pipelines, choices, return
prefixes and pattern matching.

From the point of view of syntax, the main differences w.r.t. the pi-calculus encoding
are: (i) service definitions replace input prefixes; (ii) service invocations replace output
prefixes. From the point of view of semantics, the more important differences are: (i)
each service invocation opens a new session where the computation can progress; (ii)
the session can be nested at different levels of depth and are never closed.

Exercise 9.Write the CaSPiS processes~λx.x�λ2c
a and~(λx.x)N�λ2c

a . Then write all
reduction steps of~(λx.x)N�λ2c

a .

4.2 From pi-calculus to CaSPiS

Quite interestingly, choice-free pi-calculus can be encoded in the close-free fragment
of CaSPiS. In fact, pi-calculus communication primitives can be seenas services with
minimal protocols. Note however that encoding the pi-calculus processa(x).P as the
CaSPiS processa.(?x)C (for C the encoding ofP) would unnecessarily runC in a
nested session. To avoid this problem, and to make the encoding more elegant, it suffices
to exploit pipelines and pattern-matching. For simplicitywe focus on the monadic pi-
calculus without sum. The problem with choices is due to the fact thatCaSPiS sums
can be applied only to abstraction, concretion and return prefixes, but not to service
definition and invocations.

The encoding of pi-calculus processes is defined rather straightforwardly in Fig. 11.

~0�π2c
, 0

~x(y).P�π2c
, x.(?y)〈y〉↑ > (?y)~P�π2c

~x〈y〉.P�π2c
, x.〈y〉〈〉↑ > ()~P�π2c

~τ.P�π2c
, 〈〉 > ()~P�π2c

~[x= y]π.P�π2c
, 〈x〉 > (y)~π.P�π2c

~P1 |P2�
π2c
, ~P1�

π2c |~P2�
π2c

~(ν x)P�π2c
, (ν x)~P�π2c

~!P�π2c
, !~P�π2c

Fig. 11.Encoding ofπ-calculus inCaSPiS

~E(x) , e�o2c
, E.(?x)~e�o2c

~0�o2c
, 0

~〈p〉�o2c
, ~p�v

~E(p)�o2c
, E.〈p〉!(?xr)〈xr 〉

↑

~s(p)�o2c
, ~p�v > (?xp)s.〈xp〉(?xr)〈xr 〉

↑

~x(p)�o2c
, ~x�v > (?s)~s(p)�o2c

~e1 |e2�
o2c
, ~e1�

o2c |~e2�
o2c

~e1 > x> e2�
o2c
, ~e1�

o2c > (?x)~e2�
o2c

~e2 where x :∈ e1�
o2c
, (νwh, re,k)(whk.(~e1�

o2c > (?x1)re.〈x1〉〈〉
↑ |k ·close) |

wh.()close | (ν x)(~e2�
o2c | re.(?x1)!x.〈x1〉))

Fig. 12.Encoding ofOrc in CaSPiS

Exercise 10.The encoding ofλ-calculus in pi-calculus~M�λ2πa can be combined with
the above encoding of pi-calculus inCaSPiS to obtain an encoding~M�λ2π2c

a of λ-
calculus inCaSPiS. After giving the explicit definition of~x�λ2π2c

a , ~λx.M�λ2π2c
a and

~MN�λ2π2c
a , compare the encoding with the one defined in Fig. 10 and explain the main

differences, if any.
Then, write theCaSPiS processes~λx.x�λ2π2c

a and~(λx.x)N�λ2π2c
a , together with

all reduction steps of~(λx.x)N�λ2π2c
a .

4.3 From Orc to CaSPiS

In [7] it was shown how to encodeOrc in CaSPiS. Here we essentially rephrase (and
simplify) the translation usingCaSPiS syntax. AnOrc expression may depend on a
set of expression definitions, hence the encoding of anOrc expression comprises the
encoding of all expression definitions (as processes composed in parallel).

The encoding ofOrc expressions is detailed in Fig. 12. A few points are worth some
comments. While the call of a site is strict (and thus the actual parameters must have

been evaluated), the evaluation of defined expressions is non-strict (and thus parameters
can be passed by name). Correspondingly, we define the call byvalue by letting:

~s�v , 〈s〉 ~v�v , 〈v〉 ~x�v , x.(?xr)〈xr〉
↑

Note that the evaluation of a variablex is encoded as a request for the current value
to the variable manager ofx. Variable managers are created by both sequential compo-
sition and asymmetric parallel composition.

The most interesting part of the encoding regards the asymmetric parallel compo-
sition. Two fresh serviceswh andre are used, respectively, to enclose the evaluation of
e1 in a session that can be terminated and to receive the first value provided bye1 and
install the manager for variablex with that value. This is exemplified below, where we
omit all restriction to improve readability and writeP1 andP2 in place of~e1�

o2c and
~e2�

o2c, respectively.

whk.(P1 > (?x1)re.〈x1〉〈〉
↑ |k · close) |wh.()close |P2 | re.(?x1)!x.〈x1〉

τ
−−→ rw⊲ (P1 > (?x1)re.〈x1〉〈〉

↑ |k · close) | rw⊲k ()close |P2 | re.(?x1)!x.〈x1〉

Note that~e2�
o2c is executed concurrently, but may rely on value requests to the

manager forx. When~e1�
o2c produces a concretion, it flows through the pipeline and

activates the invocation tore.

rw⊲ (P1 > (?x1)re.〈x1〉〈〉
↑ |k · close) | rw⊲k ()close |P2 | re.(?x1)!x.〈x1〉

τ
−−→ rw⊲ (re.〈8〉〈〉↑ | (P′1 > (?x1)re.〈x1〉〈〉

↑ |k · close)) | rw⊲k ()close |P2 | re.(?x1)!x.〈x1〉
τ
−−→ rw⊲ (r ⊲ 〈8〉〈〉↑ | (P′1 > (?x1)re.〈x1〉〈〉

↑ |k · close)) | rw⊲k ()close |P2 | r ⊲ (?x1)!x.〈x1〉

Note that the service definition forre is not replicated and thus only one request may
be issued. The value produced by~e1�

o2c is communicated by the client session side
of re to its peer session side, which in turn can install a persistent service definition for
variablex (its manager w.r.t. requests in~e2�

o2c). The void return prefix on the client
side instance orre is now available and can handshake with the void abstractionon the
service side instance ofwh, enabling the execution ofclose .

rw⊲ (r ⊲ 〈8〉〈〉↑ | (P′1 > (?x1)re.〈x1〉〈〉
↑ |k · close)) | rw⊲k ()close |P2 | r ⊲ (?x1)!x.〈x1〉

τ
−−→ rw⊲ (r ⊲ 〈〉↑ | (P′1 > (?x1)re.〈x1〉〈〉

↑ |k · close)) | rw⊲k ()close |P2 | r⊲!x.〈8〉
τ
−−→ rw⊲ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉

↑ |k · close)) | rw⊲k close |P2 | r⊲!x.〈8〉

The effect ofclose is to terminate the enclosing session side and to notify the lis-
tenerk (within the client side instance ofwh), which in turn will terminate the enclosing
session side.

rw⊲ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉
↑ |k · close)) | rw⊲k close |P2 | r⊲!x.〈8〉

τ
−−→ rw⊲ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉

↑ |k · close)) | †(k) | ◮ 0|P2 | r⊲!x.〈8〉
≡ rw⊲ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉

↑ | †(k) |k · close)) |P2 | r⊲!x.〈8〉
τ
−−→ rw⊲ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉

↑ |close)) |P2 | r⊲!x.〈8〉
τ
−−→ ◮ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉

↑)) |P2 | r⊲!x.〈8〉

Consequently, the nested session side ofre is also terminated, but not its peer (be-
cause no termination handler was exchanged when the sessionwas created). In fact the
manager forx is running inside that peer and we cannot terminate it.

◮ (r ⊲ 0| (P′1 > (?x1)re.〈x1〉〈〉
↑)) |P2 | r⊲!x.〈8〉

≡ (◮ P′1 > (?x1)re.〈x1〉〈〉
↑) |P2 | r⊲!x.〈8〉

→∗ (◮ 0> (?x1)re.〈x1〉〈〉
↑) |P2 | r⊲!x.〈8〉

≡ (0> (?x1)re.〈x1〉〈〉
↑) |P2 | r⊲!x.〈8〉

Note that this makes the process not well-balanced, as it contains a dangling session
side that cannot terminate, i.e., the encoding we have provided does not satisfy the
graceful closure property.

Exercise 11.Write theCaSPiS processes that encodes theOrc expressions〈1〉 | 〈2〉 >
x > 〈x〉 and〈x〉 where x :∈ 〈1〉 | 〈2〉. Then write all theCaSPiS processes that can be
reached from them via any number of reductions.

Exercise 12.Write theCaSPiS processes that encodes theOrc expressionPORfor the
parallel-or (see Exercise 7).

Exercise 13.Modify the encoding shown in Fig. 12 to guarantee the graceful termi-
nation property. Start by changing the way in which the manager of x is installed in
the encoding of asymmetric parallel composition. Then, remind that~e1�

o2c could have
opened many other session sides before cancellation occursand hence find suitable
policies for invoking sites, expression definitions and local services.

4.4 From close-free CaSPiS to pi-calculus

We conclude by sketching an encoding of a fragment ofCaSPiS in pi-calculus. In par-
ticular we restrict to consider the close-free fragment, without pattern matching and
with a limited form of pipeline (which essentially coincides with Orc sequencing oper-
ator). Moreover we assume session sides are polarisedr+ ⊲ P andr− ⊲Q.

The encoding of aCaSPiS process is dependent on its context. In particular, one
can imagine that eachCaSPiS process has three dedicated channels: one for the in-
put associated with abstraction prefixes, one for output associated with concretion pre-
fixes and one for output associated with return prefixes. Correspondingly, our encoding
~P�c2π

in,out,ret is parametric w.r.t. three namesin, out andret. The encoding is shown in

Fig. 13, where we writer p to denote the dual session ofr p.
The most interesting part of the encoding is concerned with service definition, ser-

vice invocation, session siding and pipeline. A service invocation is encoded by creating
two fresh namesr+ andr− that will be used for intra-session communication: the ser-
vice side will use them for input and output, respectively; vice versa the client side will
use them for output and input, respectively. The presence oftwo names instead of just
one guarantees that two concurrent processes running on thesame session side cannot
interact. Consequently, a session sider p uses the namer p for input andr p for output.
Note also the name for return in the nested session coincideswith the name used for
output by its parent. Finally, a pipelineP> (?x)Q must intercept the output ofP and use

~
∑

i πiPi�
c2π
in,out,ret ,

∑

i~πiPi�
c2π
in,out,ret

~(?x)P�c2π
in,out,ret , in(x).~P�c2π

in,out,ret

~〈v〉P�c2π
in,out,ret , out〈v〉.~P�c2π

in,out,ret

~〈v〉↑P�c2π
in,out,ret , ret〈v〉.~P�c2π

in,out,ret

~u.P�c2π
in,out,ret , u(r p, rq).~P�c2π

r p,rq,out

~u.P�c2π
in,out,ret , (ν r+, r−)u〈r+, r−〉.~P�c2π

r−,r+,out

~r p
⊲ P�c2π

in,out,ret , ~P�
c2π
r p,r p,out

~P> (?x)Q�c2π
in,out,ret , (ν p)(~P�c2π

in,p,ret | !p(x).~Q�c2π
in,out,ret) for p< fn(P|Q)

~P1 |P2�
c2π
in,out,ret , ~P1�

c2π
in,out,ret |~P2�

c2π
in,out,ret

~(νn)P�c2π
in,out,ret , (νn)~P�c2π

in,out,ret

~!P�c2π
in,out,ret , !~P�c2π

in,out,ret

Fig. 13.Encoding ofCaSPiS in pi-calculus

it to spawn fresh copies ofQ. This is achieved by creating a fresh namep that is used
for output by the encoding ofP and that is used as input guard of a replicated process
that spawns the copies of (the encoding of)Q.

Exercise 14.The encoding ofλ-calculus inCaSPiS ~M�λ2c
a can be combined with

the above encoding ofCaSPiS in pi-calculus to obtain an encoding~M�λ2c2π
a of λ-

calculus in pi-calculus. After giving the explicit definition of ~x�λ2c2π
a , ~λx.M�λ2c2π

a
and~MN�λ2c2π

a , compare the encoding with the one defined in Fig. 4 and explain the
main differences, if any.

Then, write the pi-calculus processes~λx.x�λ2c2π
a and~(λx.x)N�λ2c2π

a , together with
all reduction steps of~(λx.x)N�λ2c2π

a .

A type preserving encoding of (a variant of)CaSPiS in (a variant of) Honda, Vas-
concelos and Kubo’s session calculus has been recently defined in Leonardo Mezzina’s
PhD thesis [45].

5 Conclusion and future perspectives

In this tutorial we have tried to contribute along the following directions: (1) to outline
several key characteristics of Service-Oriented Computing systems, (2) to sketch the
basic principles, techniques and formal tools offered by the theory of process calculi,
(3) to show that process calculi can likely offer a convenient formalism for represent-
ing SOC systems, but they need to be empowered by novel modelling approaches, de-
veloped at the right level of abstraction, (4) to overview some existing proposals and
the different guidelines they are driven by, (5) to present in detailone such proposal,
namelyCaSPiS, and explain the rationale around its design choices, (6) toshow how

CaSPiS can be related w.r.t. other well-established formalisms, so that readers more
familiar with them can catch similarities and get a better understand ofCaSPiS seman-
tics, (7) to show thatCaSPiS mechanism of termination handlers is very expressive,
disciplined and flexible: even if it may look overcomplicated to use, we emphasise that,
up to our knowledge, this is the only proposal able to guarantee a disciplined termina-
tion of nested sessions. We conjecture that any mechanism ofthis kind would be very
complicated to handle in say pi-calculus.

We hope the quite informal level of presentation has been appreciated by readers
not familiar with process calculi and may serve as a valid basis to learn more, possibly
with the help of the many simple exercises populating the technical sections.

Regarding future work, there is still quite a lot of researchto be done for refining and
consolidating the different process calculi proposed for SOC, for integrating them with
other more advanced aspects, like transactions and qualityof service, for comparing
them and relating them in a formal way. In particular, forCaSPiS, the overall objective
is to have a rigorous theoretical framework, with some automatic tools available for
type checking, type inference, quantitative analysis and rapid prototyping. We would
like also to integrate other techniques, like those based onchoreography, contracts, cor-
relation sets, and multiparty sessions, withinCaSPiS, possibly finding seamless ways
to support such concepts on the existing machinery. Currentwork is also concerned
with graphical encoding and concurrent semantics for SOC calculi, using models based
on hierarchical graphs (that best reflect the nesting of sessions and the possibility to op-
erate on the nested session sides as a whole, like when terminating atomically a session
side and all its descendants).

References

1. L. Acciai and M. Boreale. A type system for client progressin a service-oriented calculus.
In Festschrift in Honour of Ugo Montanari, on the Occasion of His 65th Birthday, volume
5065 ofLect. Notes in Comput. Sci.Springer Verlag, 2008. To appear.

2. L. Aceto, A. Ingólfsdóttir, K. Larsen, and J. Srba.Reactive Systems: Modelling, Specification
and Verification. Cambridge University Press, 2007.

3. M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino. Typesand effects for Resource Usage
Analysis. InFoundations of Software Science and Computation Structures, FOSSACS’07,
volume 4423 ofLect. Notes in Comput. Sci., pages 32–47. Springer Verlag, 2007.

4. L. Bettini, R. De Nicola, and M. Loreti. Implementing Session Centered Calculi. In D. Lea
and G. Zavattaro, editors,Coordination Models and Languages (COORDINATION2008),
volume 5052 ofLect. Notes in Comput. Sci., pages 17–32. Springer Verlag, 2008.

5. C. Bodei, L. Brodo, and R. Bruni. Static detection of logicflaws in service applications.
In Proceedings of ARSPA-WITS 2009, Joint Workshop on Automated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security, Lect. Notes in Comput. Sci. Springer
Verlag, 2009. To appear.

6. E. Bonelli and A. Compagnoni. Multisession session typesfor a distributed calculus. In
Proc. of TGC’07, volume 4912 ofLect. Notes in Comput. Sci., pages 240–256. Springer
Verlag, 2008.

7. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M.Loreti, F. Martins, U. Montanari,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavattaro. SCC: a service centered calculus.
In Proc. of WS-FM 2006, volume 4184 ofLect. Notes in Comput. Sci., pages 38–57. Springer
Verlag, 2006.

8. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessionsand pipelines for structured
service programming. InProc. of FMOODS’08, volume 5051 ofLect. Notes in Comput.
Sci., pages 19–38. Springer Verlag, 2008.

9. M. Bravetti and G. Zavattaro. A Foundational Theory of Contracts for Multi-party Service
Composition.Fundamenta Informaticae, 2009. To appear.

10. R. Bruni, R. De Nicola, M. Loreti, and L. Mezzina. Provably correct implementations of
services. InProceedings of TGC 2008, 4th Symposium on Trustworthy Global Computing,
Lect. Notes in Comput. Sci. Springer Verlag, 2009. To Appear.

11. R. Bruni and I. Lanese. Parametric synchronizations in mobile nominal calculi.Theoretical
Computer Science, 402(2-3):102–119, 2008.

12. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in SOC. In D. Lea and
G. Zavattaro, editors,Proceedings of COORDINATION 2008, 10th International Conference
on Coordination Models and Languages, volume 5052 ofLect. Notes in Comput. Sci., pages
67–82. Springer Verlag, 2008.

13. R. Bruni, H. Melgratti, and U. Montanari. Nested commitsfor mobile calculi: extending Join.
In J.-J. Lévy, E. Mayr, and J. Mitchell, editors,Proceedings of the 3rd IFIP-TCS 2004, 3rd
IFIP Intl. Conference on Theoretical Computer Science, pages 569–582. Kluwer Academic
Publishers, 2004.

14. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow
composition languages. InPOPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
sysposium on Principles of programming languages, pages 209–220. ACM Press, 2005.

15. R. Bruni and L. Mezzina. Types and deadlock freedom in a calculus of services, sessions
and pipelines. In G. Rosu and J. Meseguer, editors,Proceedings of AMAST 2008, 12th
International Conference on Algebraic Methodology and Software Technology, volume 5140
of Lect. Notes in Comput. Sci., pages 100–115. Springer Verlag, 2008.

16. M. Buscemi and U. Montanari. CC-Pi: A Constraint-Based Language for Specifying Service
Level Agreements. In R. D. Nicola, editor,Proc. of the 16th European Symposium on Pro-
gramming (ESOP 2007), volume 4421 ofLect. Notes in Comput. Sci., pages 18–32. Springer
Verlag, 2007.

17. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. InProc. of COORDINATION’06, volume 4038 ofLect.
Notes in Comput. Sci., pages 63–81. Springer Verlag, 2006.

18. M. Butler, R. Bruni, C. Ferreira, T. Hoare, H. Melgratti,and U. Montanari. Comparing
two approaches to compensable flow composition. In M. Abadi and L. de Alfaro, editors,
Proceedings of Concur 2005, volume 3653 ofLect. Notes in Comput. Sci., pages 383–397.
Springer Verlag, 2005.

19. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. In
A. Abdallah and J. Sanders, editors,Proceedings of 25 Years of CSP, volume 3525 ofLect.
Notes in Comput. Sci., pages 133–150. Springer Verlag, 2005.

20. L. Caires, H. T. Vieira, and J. C. Seco. The conversation calculus: A model of service
oriented computation. In S. Drossopoulou, editor,Programming Languages and Systems,
17th European Symposium on Programming, ESOP 2008, volume 4960 ofLect. Notes in
Comput. Sci., pages 269–283. Springer Verlag, 2008.

21. M. Carbone, K. Honda, and N. Yoshida. Structured communication-centred programming
for web services. InProc. of ESOP’07, volume 4421 ofLect. Notes in Comput. Sci., pages
2–17. Springer Verlag, 2007.

22. G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web services. In
Proceedings of POPL’08, pages 261–272, New York, NY, USA, 2008. ACM.

23. W. R. Cook, S. Patwardhan, and J. Misra. Workflow patternsin Orc. In Proc. of COOR-
DINATION’06, volume 4038 ofLect. Notes in Comput. Sci., pages 82–96. Springer Verlag,
2006.

24. E. Curtin and M. Warshauer. The locker puzzle.The Mathematical Intelligencer, 28(1):28–
31, 2006.

25. R. De Nicola, D. Latella, M. Loreti, and M. Massink. MarCaSPiS: a markovian extension of
a calculus for services. InProceedings of SOS 2008, Elect. Notes in Th. Comput. Sci., 2008.
To appear.

26. M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopoulou. A distributed object-
oriented language with session types. InProc. of TGC’05, volume 3705 ofLect. Notes in
Comput. Sci., pages 299–318. Springer Verlag, 2007.

27. C. Ene and T. Muntean. A broadcast-based calculus for communicating systems. InProc. of
IPDPS’01. IEEE Computer Society, 2001.

28. G. Ferrari, R. Guanciale, and D. Strollo. JSCL: A Middleware for Service Coordination.
In Proceedings of FORTE 2006, 26th IFIP WG 6.1 International Conference on Formal
Methods for Networked and Distributed Systems, volume 4229 ofLect. Notes in Comput.
Sci., pages 46–60. Springer Verlag, 2006.

29. G. Ferrari, R. Guanciale, D. Strollo, and E. Tuosto. Coordination via types in an event-
based framework. InProc. of FORTE’07, volume 4574 ofLect. Notes in Comput. Sci., pages
66–80, 2007.

30. S. Gay and M. Hole. Types and subtypes for client-server interactions. InProc. of ESOP’99,
volume 1576 ofLect. Notes in Comput. Sci., pages 74–90. Springer Verlag, 1999.

31. R. v. Glabbeek. The linear time – branching time spectrumII; the semantics of sequential
systems with silent moves (extended abstract). In E. Best, editor, ProceedingsCONCUR’93,
4th International Conference onConcurrency Theory, Hildesheim, Germany, August 1993,
volume 715 ofLect. Notes in Comput. Sci., pages 66–81. Springer Verlag, 1993.

32. R. v. Glabbeek. The linear time – branching time spectrumI; the semantics of concrete,
sequential processes. In J. Bergstra, A. Ponse, and S. Smolka, editors,Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001.

33. C. Hoare. A model for communicating sequential processes. In On the Construction of
Programs. Cambridge University Press, 1980.

34. K. Honda. Types for dyadic interaction. InProc. of CONCUR’93, volume 4421 ofLect.
Notes in Comput. Sci., pages 509–523. Springer Verlag, 1993.

35. K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disciplines for
structured communication-based programming. InProc. of ESOP’98, volume 1381 ofLect.
Notes in Comput. Sci., pages 22–138. Springer Verlag, 1998.

36. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. In
POPL’08, pages 273–284, 2008.

37. D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and its seman-
tic properties. InCONCUR, volume 4137 ofLect. Notes in Comput. Sci., pages 477–491.
Springer Verlag, 2006.

38. M. Kolundzija. Security types for sessions and pipelines. In R. Bruni and K. Wolf, editors,
Proc. of WS-FM 2008, volume 5387 ofLect. Notes in Comput. Sci., pages 176–190. Springer
Verlag, 2009.

39. I. Lanese, V. Vasconcelos, F. Martins, and A. Ravara. Disciplining orchestration and conver-
sation in service-oriented computing. InProc. of SEFM’07, pages 305–314. IEEE Computer
Society Press, 2007.

40. C. Laneve and L. Padovani. The pairing of contracts and session types. InConcurrency,
Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birth-
day, volume 5065 ofLect. Notes in Comput. Sci., pages 681–700. Springer Verlag, 2008.

41. C. Laneve and G. Zavattaro. Foundations of web transactions. In V. Sassone, editor,FOS-
SACS 2005, volume 3441 ofLect. Notes in Comput. Sci., pages 282–298. Springer Verlag,
2005.

42. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. InProc.
of ESOP’07, volume 4421 ofLect. Notes in Comput. Sci., pages 33–47. Springer Verlag,
2007.

43. A. Lapadula, R. Pugliese, and F. Tiezzi. A formal accountof WS-BPEL. In D. Lea and
G. Zavattaro, editors,Proc. of the 10th International Conference on CoordinationModels
and Languages, volume 5052 ofLect. Notes in Comput. Sci., pages 199–215. Springer Ver-
lag, 2008.

44. L. Mezzina. How to infer finite session types in a calculusof services and sessions. In
Proc. of COORDINATION’08, volume 5052 ofLect. Notes in Comput. Sci., pages 216–231.
Springer Verlag, 2008.

45. L. Mezzina.Typing Services. PhD in Computer Science and Engineering, IMT Institute for
Advanced Studies, Lucca, 2009.

46. R. Milner.A Calculus of Communicating Systems, volume 92 ofLect. Notes in Comput. Sci.
Springer Verlag, 1980.

47. R. Milner. Functions as processes.Math. Struct. in Comput. Sci., 2(2):119–141, 1992.
48. R. Milner. Communicating and Mobile Systems: The pi-calculus. Cambridge University

Press, 1997.
49. R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and II.Inform. and

Comput., 100(1):1–40,41–77, 1992.
50. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.

Journal of Software and Systems Modeling, 2006. To appear. A preliminary version of this
paper appeared in the Lecture Notes for NATO summer school, held at Marktoberdorf in
August 2004.

51. G. Plotkin. A structural approach to operational semantics. Technical Report DAIMI FN-19,
Aarhus University, Computer Science Department, 1981.

52. G. D. Plotkin. The origins of structural operational semantics. Journal of Logic and Alge-
braic Programming, 60-61:3–15, 2004.

53. G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Alge-
braic Programming, 60-61:17–139, 2004.

54. L. Rosaz. Puzzle corner #70: The 50 prisoners.Bulletin of the European Association for
Theoretical Computer Science (EATCS), 86:229, 2005.

55. D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order
Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993. CST-99-93 (also published
as ECS-LFCS-93-266).

56. D. Sangiorgi and D. Walker.The pi-calculus: a theory of mobile processes. Cambridge
University Press, 2001.

57. Sensoria Project. Software Engineering for Service-Oriented Overlay Computers. Public
Web Site. http://sensoria.fast.de/.

58. V. Vasconcelos. Fundamentals of session types. In G. Z. Marco Bernardo, Luca Padovani,
editor,Formal Methods for Web Services, Lect. Notes in Comput. Sci. Springer Verlag, 2009.
This volume.

59. I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timed semantics of Orc.Theoretical
Computer Science, 402(2-3):234–248, August 2008. DOI: 10.1016/j.tcs.2008.04.037.

