Calculi for Service-Oriented Computing*

Roberto Bruni

Dipartimento di Informatica, Universita di Pisa
bruni@di.unipi.it

Abstract. It is widely recognised that process calculi stay to corenircom-
puting as lambda-calculus stays to sequential computmdgdt, they lay ab-
stract, rigorous foundations for the analysis of interagticommunicating sys-
tems. Nowadays, the increasing popularity of Service-@ee Computing (SOC)
challenges the quest for novel abstractions tailored toatbie-disciplined han-
dling of specific issues, like long running interactions;hastration, and unex-
pected events. In fact, these features emerge neatly in 806t applications
and need to be studied as first-class aspects, whereas thdy beoobfuscated
if dealt with by sophisticated encoding in traditional pees calculi. This paper
overviews some of the most recent proposals emerged in tématlire, point-
ing out their main characteristics and presents in moreildata such proposal,
calledCaSPiS, by providing several examples to give evidence of its fliikjb
No prior acquaintance with process calculi is assumed eda@egentle introduc-
tion to their basics is provided before the more advancee@nahbe presented.

1 Introduction

Service-oriented computing has been one of the latest tretié IT community, find-
ing in Web Services (WS) technology its major realisatioerv&es are autonomous
computational entities, that are developed separatebgely coupled, globally avail-
able over a widely distributed network in a platform-indegent way, and not fully
reliable. Service computing consists of assembling sesiic well-engineered ways to
form complex open-ended applications, and this must be thombaighly dynamic way,
possibly on demand. To this aim, it is essential to find sigtabstractions to describe
services, the so-calleskervice descriptotsto be published in public registries. Such
registries can be queried by other services and applicaitmtocate those services that
best match certain requirements, yielding a brokeringigecture. When satisfactory
matches are found, then the located services can be dyrijniicked and invoked.
Therefore, service engineering has to do with the developwfenethodologies, tech-
niques, formal methods and tools able to guarantee a safies@ompaosition, in the
sense of being able to provide some strong guarantees ordguelmic, open-ended
applications by applying some static or semi-static ariglys

WS technology has establisheéle factostandards for naming schemes and ser-
vice access (URI, URL), service descriptors (WSDL and BPEIUDDI registries),

* Research supported by the Project FET-GC Il IST-2005-168040r1a and by the Italian
FIRB Project Dcarir.



communication protocols (SOAP over HTTP, TPand SMTP) and message for-
mat (XML) over the web. Existing infrastructures alreadyble providers to describe
web services in terms of their interfaces, access poliareskeehaviour, and to com-
bine simpler services into more structured and complex.ddesever, some research
and solid foundations are still needed to move WS technolamy skilled handcraft-
ing to an engineered practice, a step where formal methods ptay a fundamental
role. For example, it has been shown that the lack of unanabiggemantics of BPEL
has led diferent BPEL engines to exhibitfierent behaviours under the same circum-
stances [43].

Research on formal methods for SOC can be roughly separatet imain strands,
both equally worth theféort: one dedicated to establishing the missing theordticai-
dations of state-of-the-art technologies, so to fix riggree@mantic and logic frame-
works for the analysis and verification of SOC and WS systemether one aimed to
rethink the design and development of next generation t@olyy, by understanding
the key distinguishing features of SOC, assessing the sagekits of theory for them
in technology agnostic terms, and paving the way to theit-distiplined engineering.
In both cases, the mathematical models and tools from theatitre that seem to be
particularly suited are those coming from concurrency the@nging from workflow
like models like Petri nets, to Graph Transformation systemd process calculi.

As suggested by the title of this contribution, we shall fom the use of process
calculi for modelling SOC systems. This choice is motivatgdhe more natural way
in which process calculi can accommodate for SOC featurels as open-endedness,
dynamicity, compositionality, interaction and event hiamgiw.r.t. the other afore men-
tioned models. Moreover, we shall favour the second strénelsearch outlined above,
trying to distill some key aspects of SOC together with a $s®tlof primitives associ-
ated with them and to expose some of the main causes (motiyatnd consequences
(benefits) of our approach.

Due to the particular nature of this volume, which contaims proceedings of a
summer school, and the audience to which this paper is edemnthich for the most we
assume to consist of young computer science researchermweedecided to structure
this paper as a tutorial, so that no prior acquaintance witltgss calculi is assumed
on the reader. Being worried that the more expert readerdicdrsome arguments of
our survey not dealt with at the ficient levels of details for their taste, we added,
whenever necessary, suitable links to the more advanceetpapd texts where the
technicalities are exposed in their full glory. Furthermowe have put somefferts
in trying to accompany each calculus by original examples modelling puzzles in
the hope they will provide an enjoyable reading experiencéhlemselves, possibly
reusable as course material.

1.1 What you will not find here

The level of abstraction at which we intend to model SOC sgstdisregards the tech-
nologies and the implementation details, hence we are tae sxtent disconnected
from current WS standards. More precisely, we disregardsetaspects related to the
so-called semantic web, like ontologies for classifyingy&es, XML coding and stan-



dardisation issues. In fact these aspects can be supegchfadsr, on the concrete real-
isation of our techniques.

For analogous reasons, we are not concerned with the exgstimavhich services
and their descriptors are made public available, queriebtlacated, even if some of
these issues can be reasonably encoded in the same formaldéessmall present. Instead
we handle service publication, discovery and linking imteiof name-handling a la pi-
calculus, i.e. the scope of certain service names can hécted{ new services can be
dynamically deployed and updated, their names can be concated and extruded to
enlarge their scope, etc.

Moreover, we abstract away from non-functional aspecke (Quality of Service
and Service Level Agreement) and quantitative analysis¢hvhlso constitute them-
selves an active area of research. On the other hand, sotimeipagy ideas in this field
have already led to process calculi extensions that are atibig with the proposals
discussed here and we give relevant pointers to the relig¢edtlire.

We also deliberately omit the exact formulation of many ust#feorems (and any
proof sketch) from the literature, which we try to replacerbgre intuitive descriptions
of their underlying properties and consequences, at ttoerimdl level.

1.2 Aspects of interest

The common trait of all issues we aim to encompass here is dhéyh disciplined
composition of services. This includes: the possibilitgxdract service descriptors that
carry some behavioural information rather than mere syittagformation as those
found in WSDL documents; the possibility to carry long-rimmconversation between
the service caller and its callee, which are far more gertbeal limited one-way and
request-response patterns of WS; suitable techniquesémking the behavioural con-
formance of the service to be invoked w.r.t. the applicatiequirements; the way in
which service invocations and their outcomes can be orcitest, the way in which the
system can foresee at the design time the actions to undegse some unexpected
event will happen during a conversation, like a peer abaimgdpa business transaction.
More precisely, we briefly discuss belowfidirent alternatives proposed in the literature
on the above topics, and outline our preferred design ckoice

Orchestration and choreography: The termsorchestrationand choreographywere
coined to describe two flerent flavours of service compositions: orchestration is
about describing and executing a single view point modelleadhoreography is
about specifying and guiding a global model. Though tHeedénce between the
two terms can be sometimes abused or blurred, substardiatestration is usually
associated with an executable flavour, for which a cenadlchestration engine
is responsible (although distributed engines can be alssidered), as opposed
to the fully distributed vision of choreography, usuallysasiated with some sort
of protocol narration. Roughly, from a formal modelling wigoint, orchestration
is mainly concerned with governing the control and data fle@tmkeen services,
while choreography is concerned with interaction protedeétween single and
composite autonomous services. Our presentation shaillgy® orchestration, but
out approach is compatible with the choreography persgedis the type systems



defined to check the conformance of services w.r.t. the reqents of the invoker
share some similarities with the use of so-caltehtractsto express choreogra-
phies.

Interaction: Process calculi can exploitféierent forms of interactions, ranging from
shared data-space, to event-based (subscribe-notifyjnassage passing. We shall
rely on synchronous message passing, that is best suitéueftevel of abstraction
of this tutorial.

Sessions and correlation setsWhen long-running conversation with services are es-
tablished, dterent instances of the same service can be running condyrten
serve diferent requests. Therefore it is important to route intéoachetween the
correct pairs, avoiding any interference. Web servicedsaas exploit the idea of
correlation setsi.e., pre-defined subsets of the invocation parametetatkaised
each time to choose the corresponding service instance (eqiests are routed
according to usernames). Though correlation séer @ good expressiveness, we
argue that they might complicate static analysis, becallgetaractions rely on
data values. For example, applications can interfere veith®ther if they know (or
use by chance) the right values. Afdrent school of thought advocates the notion
of asessioras a more convenient abstraction mechanism for encloshityaaily
complex interactions between peers. Session keys arardigpendent and can be
created implicitly when the service is first invoked. Thisywéype systems can
be more easily developed to check properties like the poesehexactly one peer.
Session can come inftierent flavours: nested, interleaved, with delegation, vsed
cursively, dyadic, multy-party, mergeable, closeablenpeable, etc. We shall focus
on primitives for a well-disciplined use of nested, dyadid &loseable sessions.

Compensations and session handlersEach service has full autonomy in denying a
request or abandoning a pending interaction. It is then mapbto rely on standard
mechanisms for programming such decisions and to handlediresequences in
a safeway. For example, the classical travel agency scenario maghie a com-
plex interaction between the customer and the travel agetdt the service learn
the customer preferences, let the customer select one aavailgble packages,
confirm or cancel the choice, and the service may need to etokd-party ser-
vices to get, say, up-to-date flight or hotel information. &fe we mean that, in
principle, the involved parties should always be able eitbecomplete the inter-
action or to recover from errors that prevent its completidee when a time-out
expires or when one of the third-party services unexpegtalddndon the conver-
sation because its server is overloaded. In the area ofattinas, compensation
mechanisms have to do with the programming of suitable @stattions that are
installed after a certain activity has been executed to emsate for its fects in
case the rest of the interaction cannot be completed suolgsSf course, it is of-
ten the case that the previous actions cannot be simply en@og., a sent message
cannot disappear, booking cancellation can require sor® feence full recovery
is simply not possible. In the case of sessions, we shallidena simple built-in
mechanism for the graceful closure of nested sessions ingcatbiandon of a peer.

The outcome of the above consideration language was a newlgs|calledCaSPiS
(Calculus of Sessions and Pipeling8], which is the main objective of this tutorial.



1.3 Related work

CaSPiS has been developed inside thavria project [57], as part of a larger research
effort aimed to developore calculi for SOGat three diferent levels of abstraction: (i)
the service middleware level (close to current networkieghhologies to be directly
implementable, but sticiently expressive to support service oriented appliceso(ii)
the service description level (favouring more abstracirfalisation of basic concepts
such as service definition, invocation, instantiation, aacthmunication), and (iii) the
service composition level (with mechanisms for the modgland analysis of qualita-
tive and quantitative aspects of multiparty service contjmrss).

At the middleware level we find, e.g., tteégnal calculus(SC) [28]: it is based
on a flexible and dynamical reconfigurable network of compd®meommunicating via
the publish-subscribe message delivery paradigm. Sesaimhmessage correlation are
supported through a type system [29]. This calculus redeadsily implementable (in
terms of a Java library) as well as expressive enough to stipgugh-level graphical
programming environment.

At the service composition level we find, e.greq [3] andconcurrent constraint
pi-calculus(cc-pi) [16]. The former has been exploited to support theettgpment of
techniques for the analysis of service compositions (sucktatical analysis of the
access to protected resources) within the so-called fgattontract” paradigm, while
the latter integrates name handling features with comgtsgmirings to deal more ef-
fectively with quantitative aspects of negotiations (sashthe so-called service level
agreement).

CaSPiS lies at the service description level, where several othterésting propos-
als are also present, which can roughly be divided in two liamicorrelation-based
and session-based.

The first group comprise€OWS [42] (based on message-passing and stateless
components) an8OCK [17] (based on shared data spaces and stateful components).
The former can be seen as an extension of the pi-calculusoeitielation-based com-
munication mechanism and primitives for activity candiédla and preservation, while
the latter is closer to WS standards like BPEL and it inclualeexplicit modelling of
processes obtained as service instantiations, processmestc..

The second group comprises the so-cal&iC-family of calculi [7, 39, 20, 8, 12],
spawned by a first proposal of a basic calculus with nestesiegheService Centred
CalculusSCC, later enriched and refined withfBrent mechanisms for inter-session
communication, likelata streaming39], context-sensitive message pas$j, loca-
tionsanddynamic multiparty sessioii$2], andpipelineg8].

While the above calculi are closer to the orchestrationgestve, theglobal calcu-
lus[21] is closer to the choreography perspective and allowstatic multiparty ses-
sions, where session identifiers are modelled just as pistted channel names (freshly
created and distributed to participants during the ingé&tlon phase of the service pro-
tocol). In [6] multiparty sessions are considered, but they required to include one
master endpoint and one or more slave endpoints, and doeuhcinication is allowed
only between the master and any slave.

It is important to remark that communication mechanismssanaehow orthog-
onal to sessions. In fact, while CCS-like communication] [46the obvious choice



when only two-party sessions are considered, in the presehmultiparty sessions
a more natural and more sophisticated alternative wouldbbgesvariant of multicast
(like broadcast [27] or CSP-like interaction [33], or evemee combination of dierent
policies [11]).

Behavioural type systems can also play a crucial measureviduating the vari-
ous proposals, because thefeo a mean to establish the compatibility of peers [34,
35,21, 26, 30,6, 36,39, 1,44, 15]. In this sense, it is isténg to relate behavioural
types and the language independent approach based onatef@&@2] along the ideas
in [40]. More generally, there are some interesting ana@sgietween the way in which
behavioural types resemble orchestration mechanismsarichcts resemble choreog-
raphy descriptions.

1.4 Structure of the paper

Section 2 gives some background on the basics mathematigpadients of process
calculi, like labelled transition systems, operationahaetics, structural congruence,
reduction systems, bisimilarity equivalences. We illatrsuch concepts by simple and
detailed presentation of the main sources of inspiratio€&SPiS. Step by step, we go
from the basic interaction primitives @CS, to the more advanced name handling fea-
tures of the pi-calculus, to the use of explicit sessionstaride orchestration primitives
of Orc. Section 3 introduces the main principles@dSPiS, its syntax and reduction
semantics and some modelling examples. Section 4 reGa8®iS with other well-
known formalisms by presenting several intuitive encod®gme concluding remarks
are in Section 5

2 Setting the context on interactive and orchestrated systas

2.1 CCS, labelled transition systems and SOS rules

An elementanactionof a system represents the atomic (i.e., that cannot beumted
at the given level of granularity) abstract step of a compatethat is performed by a
system to move from one state to the other.

Ordinary computational models like Turing machines, regisnachines, several
kinds of automata, the lambda-calculus and many imperatiwgramming languages
all rely on basic activities like reading from or writing oarse kind of (passive) storage
device or invoking a procedure with actual parameters.

Milner’s Calculus of Communicating Systef6] (CCS) introduced a model whose
basic activities rely on some sort of handshake between titreea autonomougro-
cessesHence, in the case of concurrent systems, actions regrasvities such as
sending a message and receiving a message, exposing semmatales and picking
one alternative, producing a resource and consuming amescetc. On the one hand,
when studying one process in separation from the othersripertant to observe the
kind of handshake it is willing to perform with other processOn the other hand,
when an handshake is performed between two entities, ittitaies a speciasilent
action that has no further interaction capability.



To convince yourself about the ease@ES in modelling concurrent systems and
communication protocols, try writing down the solution tetpuzzle below, adapted
from [54], using first your favourite formalism, and thenteafhaving learnCCS ba-
sics, usingCCS processes for modelling the various interacting entitthe (ight, the
special room, and the strategies followed by humans). W staw later some bits of
the solution for the case where the light is initially on.

Exercise 1.50 young, bright computer scientists are kept in Bertinantl@ll exams
will be completed, each locked in Kbis own room. Their chance to be released is
as follows: from time to time, one of them will be carried in jpesial room (in no
particular order, possibly multiple times consecutivelyt with a fair schedule to avoid
infinite wait) and then back to h#tis room. The special room is completely empty
except for a switch that can turn the light either on @ (the light is not visible from
outside and cannot be broken). At any time, if one of thermhfully asserts that all of
them have already entered the special room at least onaethbg all pass the exam
and are released, but if she is wrong, then the chance ends and they will never pass
the exam. Before the challenge starts, they have the pliysibidiscuss together some
“protocol” to follow. Can you find a winning strategy when timitial state of the light

in the room is known? And if it is not?

In CCS, we assume given a s&bf activities, ranged by, and lefA2 {@ | ac A} be
the set of co-activities (disjoint from), with a = a. The set ofCCS labelsis £ = AUA,
ranged byi, and the set o€CS actionsis Act= LU{ 7 }, ranged by, wherer is the
specialsilent action Then, aCCS processes s composed via a number of primitives,
that we sketch below in an incremental way. Though the symi@x slightly vary in the
literature, we leCCS processes generated by the grammar:

P = YaaPi | Plg] | P1IP2 | (vaP | X | recXP

The meaning of each such process is given by a suitatilelled Transition System
(LTS) defined by structural induction on the syntax of thegess, following Plotkin's
Structural Operational Semanti¢SOS) scheme [51-53].

We recall that an LTS = (S, L, —) consists of: a s&b of states a setL of labels
and atransition relation— C Sx L x S. Sometimes a distinguished initial statee S

. . A . .
is also considered. As usual, we shall write— s instead of § 1,5) €e—, with the
meaning that there is a transition leading from stte states’ and exposing label.
The label gives some abstract information about the nafitreecevolution. For a given

labelA we denote byi> the binary relatiorf (s,s) | si> S }CSxS.

Formally, in the case o€CS, the states of the LTS aeCS processes, the set of
labels is Act, and the transition relation is the least onesfyéang all SOS inference
rules. When a particular proceBds considered, then the initial stadgof its LTS isP
itself and the LTS can be restricted just to the states rédeli@m P (after any number
of transitions). The elegance of SOS relies on the fact thatihference rules define
the LTS of any process that can ever be specified. Moreoves,r8i@s allow for proofs
by structural induction, where the interaction of complggtems is defined in terms of



(the behaviour of) their components and proofs by rule itidn¢cwhere a property can
be proved to hold true for the whole LTS if whenever it holdstfoe premises of each
rule, it holds also for the conclusions.

The simplest process is tieactiveprocess, writte® and calledil: itis not capable
of performing any action. Trailin@s are often omitted. No inference rule is needed for
0. Action prefix written «.P, prefixes a procesB by an actiornr: the process.P can
performa and then behave & The inference rule for action prefix is the axiom:

(act) -

aP—P
Non-deterministic choicewritten P, + P2, composes two processes in mutual ex-
clusion: proces®; + P, can behave as eithéy or P,. The inference rules for choice
are:

a

P15 P, P, P,
1 (rsum) 272

(Lsum) ~ S
P1+P,— P Pi+P,— P,

Sometimeguarded summatiopy;. «;.P; is preferred to choice, prefix (single sum)
and nil (empty sum). The corresponding inference rule is:

jel

(er) ————
Yiel @i.Pi— P;j

Renaming written P[¢], renames any action performed byP to ¢(a), where
¢ : Act — Act is any renaming function such thaf) = ¢(1) and¢(r) = 7. The cor-
responding inference rule is:

PL P
@ _,
Pl¢] — P'[¢]

Parallel compositionwritten P1| P2, composes two processes in parallglandP,
evolve autonomously by interleaving their actions, butwtiite possibility to handshake
on complementary actions, in which cdg P, performs ar action. The corresponding
inference rules are:

(rREN)

P15 P P, -5 P, N NS
(LPaR) LT S (rPAR) 22 (comm) I L

P1IP; 5 PP, P1IP; 5 Py | P P1IP2 5 P[P,

Restriction usually writtenP\a, but here written in pi-calculus style agg)P, re-
stricts the scope of activita to processP: the processya)P is allowed to perform
neither actiora nor @, however, ifP comprises two parallel processes and P, that
can performa and@, respectively, then they can still handshakeaotunder” the re-
striction. As usual, we abbreviated;)(vap)P by (vai,ap)P (and similarly for three or
more consecutive restrictions). The corresponding imfeegule is:



out out out out

LN TN TN T T '
B Bl B Bl B BB B —=Bp
(a) LTS forB} (b) LTS for B3 (c) LTS forBLY

Fig. 1. Labelled transition systems associated with some simpfetsu

PLP a¢faa)
(va)P 5 (va)P’
It should be obvious that the above operators can define amitg fbehaviours.
There are several ways to introduce some form of interatimhracursionReplication
written !P or alsoxP accounts for making an unlimited number of copie®aivailable.

Sometimes it is restricted to some guarded form, li&eP!or ! i «i.P;. The usual
inference rule for replication is:

PIPS P
(REP) ——
IP— P

However, gep) has a couple of drawbacks: 1) it makes the transition watiot
image-finite i.e. there are processshat can reach infinitely many syntactically dif-
ferent processes by performing the same actip8) it disallows proofs by structural
induction, which is maybe a minor issue. If needed, ral) can be safely replaced
by the following two rules, that account for the possibilitiyone copy ofP to evolve
alone, or for two copies dP to handshake:

PP PLP PSP,

(REPL) ——— (reP2) -
IP— P|IP IP— P1|P2|!P

A more flexible alternative to replication is given by tteeursion operatorecX. P,
whereX can appear as a constantinThe corresponding rule is:

p{recX.P/x} = p’

recX.P 2 P/
where{Y/x} stands for the substitution ofby t. Alternatively, one can assume a set of
mutually recursive definitions = { A; = P; }; is available, that defines suitable constants
Ai. The corresponding rule is:

(rEC)

AtPed PSP
(DEF)

AP

To acquire some confidence with the notation, let us consigtassical and simple
example fromCCS textbooks, namely the modelling of fbars with limited capacities.



(acT) ——— (act)

ey = o T
(per) o_u(: — 0 (DEF)%
B% S B(l) B(l) — B%
(REN) - (REN) - T
(comm) B%Ml] - B%)Ml] Byl¢2] — Bile2l
(rEs) Bi[¢1]1B3¢2] > BYl41]1B]l¢2]

(va)( Bil¢]|B3[¢2] ) — (va)( BYleal|Bil42] )

11

Fig. 2. Proof of transitionB’, 5 B(l)’i

Example 1.A processB" modelling an initially empty bfiier of capacityn can be de-
fined by letting:

Bf = in.B]

B £in.B],, +outB' (0<i<n)
Bp = outB]_;

takingB" 2 BY. The LTS forB' is in Fig. 1(a) and foB? in Fig. 1(b). A proces® putin
parallel withB" can handshake by performing actidnsindout If renamingg; maps
outto aand renaming, mapsin to a, then two blﬂfersBé could be composed in series

by writing the pI’OCGSSV(a)( B[¢1] | BY[¢2] ) The corresponding LTS is illustrated in
Fig. 1(c), where we WriteBE’jk = (va)( Bl'[¢4] B‘J?[qbz] ) for brevity. Figure 2 shows the

proof of transitionBl g — BL 1.
Exercise 2.Draw the LTS for the process@|B* andBZ5.

Coming back to the puzzle from Exercise 1, the light could loelelled as a hitier
of capacity one, where action corresponds to “switch the light® (it is initially on)
and actioroutto “switch the light df”. Then the scientists could agree to use the light as
a counter: 49 of them will switch the light on only the first grthey enter the room and
find it off, while one distinguished scientist will count the numbetinfes that shée
finds the light on (and will switch it ). Since the light is initially on, the count can
start only after the distinguished scientist has switctedight df for the first time. A
first solution is therefore:

Bertinoro= (vswQf,swOn ( LightON|Cp|S]|---|S)
LightON = swQf .LightOFF
LightOFF £ swOnLightON
Ci £ swQf.Ci;1 +swOnswQf.C; (0<i<50)
Cso 2 freeAllO
S £ swOn0+ swQf.swOnS




whereCy models the counting scientist adany other scientist. Note that a scientist
can wish to perform two consecutive interactions with tlyhtijust to leave its state
unchanged. Unfortunately, this way there is ho guarantaedbnsecutive interactions
like swQf.swOnare executed atomically, therefore it is better to modifyphotocols in
order to constrain the scientists to access the light in ad@xclusion. This can be done
by modelling the special room as a one-capacitffdsuwhere actionn corresponds
to “enter the room” and actioout to “leave the room”: only after the room has been
entered it is possible to interact with the light. To makertieedel more faithful, we also
introduce the process for representing a “waiting sci€hiie. a scientist who does not
need to interact any more with the light but can keep entaijleaving the room.

Bertinoro = (vin,out swQf,swOn ( RoonjLightON|Cp|S]| -+ |S)
Roomz B!
LightON £ swQf . LightOFF
LightOFF = swOnLightON
Ci 2 in.(SwQf .outCi.1 + SwOnswQf .outCi)  (0<i <50)

Csgo = freeAllO
S £ in.(SwOnoutWs+ swQf.swonoutSs )

WS 2 in.z.outWs

We leave to the reader finding a solution for the case whernttial state of the
lightis notknown in advance, e.g. when the light is modedlsthe processLightON+
7.LightOFF.

A vast literature orCCS has established fiierent criteria for when two processes
should be considered as “equivalent”. Without entering ithte details, we mention
two of the most widely used notion of equivalence, namsthlpng bisimilarity and
weak bisimilarity Contrary to trace equivalence, bisimilarities can talte account the
branching structure of the transition systems, i.e. thatsavhere choices are made. We
refer the interested reader to [31, 32] for a wider range dioms.

Definition 1 (Strong Bisimilarity). A binary relation’R over processes is atrong
bisimulationiff wheneve(P, Q) € R then for eachr € Act:

—ifP L P then QL Q' for some Qsuch thatP’,Q") e R
- ifQ = Q then P-5 P’ for some Psuch that(P’, Q) € R.

Two processes P and Q astrongly bisimilay written P~ Q, iffthere exists a strong
bisimulationR such thatP,Q) e R, i.e.~2 [ J{ R | R is a strong bisimulation.

Strong bisimilarity is an equivalence relation and it is agmence w.r.t. alCCS
operators, meaning that if we replace any subt&iof P with a strongly bisimilar
term @’ then the result is guaranteed to be strongly bisimilae.tdlotably,~ admits a
logical characterisation in terms of Hennessy-Milner &9@i modal logic of actions for
the analysis and verification of reactive systems [2].



Exercise 3.Prove thaB? ~ B|B! andB? Bé’é-

Strong bisimilarity is coarser than LTS isomorphism, bustitl distinguishes too
many processes that have essentially the same behaviquartioular, it is often the
case that some additional silent transitions may arise vrdepending on dierent
attitudes to modelling the same system. Weak bisimiladgnoted by~, relaxes the
notion of strong equivalence by allowing to simulate a mdsge performing additional
silent transitions beforehand and afterwards: roughlyinig —* denote the reflexive

and transitive closure of> (i.e.—* is the relation such tha —* P’ iff P’ is reachable
from P via any number of consecutive silent transitions, possitage), in the weak

P . . P .
case a step — P’ can be simulated via a sequence of st@ps*——* Q' and silent

transitionsP — P’ can be simulated via a possible empty sequence of silens step
Q —* Q. For exampleB? ~ Bé’é. Weak bisimilarity is an equivalence relation that
includes strong bisimilarity (in the sense that Q impliesP ~ Q for any processeB
andQ), but it is not a congruence (because it is not preservedédyglibice operator).

2.2 Pi-calculus, structural congruence and reduction senrdics

CCSiis Turing powerful, and it can be used at several level ofysis) as a specification
language, as a programming language, as a descriptiondgegas a type language,
etc. However, when one wants to model interactive systertis dyinamic changes in
connectivity, or networks where processes can move betwkgsical or virtual loca-
tions, then the representation distance is quite increasddhe modelling activity can
become cumbersome.

Milner, Parrow and Walker'€alculus of Mobile Process¢49, 48, 56] (i.e., ther-
calculus or also pi-calculus) introduces a key ingredigr@possibility to communicate
channel names. This way, a process can acquire new comrtioniliaks, pass its own
private channels to other processes, create fresh chaanelsnuch more. Even if the
required extension t6CS syntax is to some extent minimal, it opened a still flourighin
research thread. Nowadays, there are many variantscalculus (monadic, polyadic,
synchronous, asynchronous, with mixed choice, higheemptd name a few) each with
a consolidated theory on its own. To appreciate the kégidince w.r.tCCS, let us
consider the following puzzle, adapted from [24].

Exercise 4.100 young, bright computer scientists are kept awake inifzd until all
exams will be completed. Their chance to have some sleepfalaws: first each of
them is assigned aftierent id from 1 to 100 and afliérent room (assume rooms are
also numbered from 1 to 100); then the ids are randomly Oigieid one per room;
each scientist is given the possibility to open 50 rooms afhtie choice and look at
the ids contained there; if all scientists are able to findrtben id, then they are all
given access to the rooms, otherwise (even if only one of flserat able to find hehis
own id) they will not be able to sleep until all exams have bgien. Each scientist
is not allowed to look at the ids found in the rooms by/hi&x colleagues, and they are
not allowed to speak to each other once the procedure igdtdefore the challenge
starts, they have the possibility to discuss together sqgpmadcol” to follow. Can you
find an optimal strategy to let them have some sleep with ligh@bability?



The best possible strategy leaves almg@8tdf probability to get some sleep. It is
based on a simple protocol, equal for all participants: ttst foom opened by scientist
with id i must be rooni; at each stage, if an iddifferent from hethis own is found in a
room, then the next room to be opened is rdarhe idea is that rooms and the id they
contain define a set of permutation cycles: the strategy isrfing” iff all such cycles
have length less than or equal to 50. As there can be at mostyoteeof length greater
than 50, the probability to win coincides with the probalithat such a long cycle is not
present. If modelled il€CS, the protocol should consider 100f@irent continuations
for each room, one for each possible id contained thereimgd s-calculus instead, the
next room to open can be just communicated.

From the point of view of the syntax, the only primitives to dleanged are action
prefixes. In the following we assume an infinite set of namveganged byx,y, z, is
available. The action prefixes of the pi-calculus represeither the sending(y) of a
namey alongx, or the receiving«(y) of a namey alongx, or the silent actionr. Some-
times the matching prefixes E y] and mismatchingX # y] are also considered: they
represent ordinary test for equality and inequality of napaend can be used to follow
different alternatives depending on the received names. Thef agsmatch prefixes is
discouraged because their presence can violate usefultordoity properties of pro-
cesses, like the fact that name-substitution does not dseraction capabilities of a
process.

Unfortunately, the inference rules @CS cannot be smoothly extended to pi-
calculus and some additional care and machinery is needesed why, consider the
straight extensions of inference rules for action prefixdsere in the case of input one
simply guesses the nama¢hat will be received:

(NP) ———— (our) ——8@8 —
x(y).P — P{Zy} X(2).P = P

Now we should decide Whicxt; actions should be forbidden uneigriction. Take
the processyn)P and suppos — P’:

— if n¢ { x,z} then we can letyn)P =, (vn)P;

— if n=xthen we must forbid the move;

— if n=z+# xthen we must forbid the move, becausis a private name that cannot
be received from the outside.

Now supposd& =, P

— if n¢ { x,z} then we can letyn)P = (vn)P’;

— if n= xthen we must forbid the move;

— if n=z# xthen what? If we forbid the move, then private names cannextreded
to other processes, which would be a severe limitation. I&lkav the move, then
we would like to extrude the scopebnly to the processes that handshake&mnn

hence we should havef)P =, P’, where the restriction disappears from the tar-
get. On the other hand, when handshake is accomplished, wiel Vike to restore
the restriction.



S+0=S S+S,=S,+S; Sl+(Sg+Sg)E(Sl+Sg)+Sg [aza]ﬂ'.PEﬂ'.P
PIO=P P1|P2 = P3Py P1](P2|P3) = (P1|P2)|P3 P=P|IP
(va0=0 (va)(vb)P=(vb)(va)P  P|(va)Q= (va)(P| Q) if a¢fn(P)

Fig. 3. Structural congruence laws for the pi-calculus

The so-calleckarly operational semanticsolves the problem by introducing dif-
ferent labels for the free outpiz and the bound outpui(z) (where the name is
extruded). This in turn have several consequences on the foil parallel composition:
some side conditions are needed in order to avoid that andedrname captures a free
name of a process running in parallel, and two kinds of haakist are possible, de-
pending on the kind of output that is considered: the harldshatween actionszand
Xzis the ordinary one (as i@BCS); the handshake between actiotzandX(z) move the
restriction §2) on top of the parallel composition. In general, it emerdesnecessity
to take into account which are the free names of a processieeby fn@)) and which
are its bound names (denoted by B))( In the case of pi-calculus, the only binders are
input prefix and restriction, i.e. in botk(y).P and ¢y)P the namey is bound and its
scope is restricted tB. There are further consequences also on the definitionafigtr
bisimilarity, when the actions to be simulated depend onftbe names of a process.
These caveats make the formal presentation of pi-calcelusstics more complicated
and less intuitive tha@CS one, when encountered for the first time.

For the above reasons, df@rent style of presentation is sometimes preferred for
pi-calculus (and for many other calculi with name-handliegtures). It has two main
ingredients: atructural congruenceelation, used to write processes in some canonical
form, easier to manipulate;raductionrelation that represents only completed interac-
tions, roughly ther moves.

Let us consider the following syntax for pi-calculus proses

(Processes) P
(Sums) S
(Prefixes) =«

S | PP, | (vXP | P
0 | nP | Si+S,
Xy | xy) | v | [x=Ylx

The structural congruenceof pi-calculus is the least congruence relation that sat-
isfies the equalities in Fig. 3 plus alpha-conversion of lbonames- The structural
congruence allows one to rearrange the syntax of processtsmtany two possible
interacting entities can be put side by side (in parallel position). Note in partic-
ular that: the order in which we compose processes in sumglégimt matter; the
order in which we compose processes in parallel should nttemé#he order in which
we restrict names should not matter. Moreover, the scopesah law (the rightmost
equality in the bottom row of Fig. 3) can broaden the scoperektricted name before
it is communicated. It is not dicult to see that eactrcalculus procesB can be putin

1 The laws for alpha-conversion allow for the arbitrary refagrof bound names, but avoiding
clashes with free names. In the case of pi-calculus, alphaersion means that for any process
P and any names, y, zwith z ¢ fn(P) we havex(y).P = x(2).(P{%y}) and ¢y).P = (v2)(P{%y}).



a canonical form likd® = (vxa)...(vx«)(S1]...|Sn|'P1]...|!'Pm) for some suitable names
X1, ..., Xk, SUMSSy, ..., Sp, and processeBy, ..., Py in canonical forms. Thus, all inter-
actions can now be expressed by considering only a small auoftreductions over

canonical forms. Essentially there are two rules for basituctions:

(Rrav) —— (Rcom)

T

TP+S—P (X()-P1+S1)|(X(2).P2 + S2) — P1{#y}| P
plus two rules for the so-called reactive contexts (restnicand parallel composition):
P15 P PSP
% (RrEs) T’—
P1IP2 — P} IP2 (vX)P — (vx)P’
together with the (often implicit) rule for structural cangnce:

(Rear)

P=Q Q5 Q Q=P
PSP

The version we have presented is the so-called (synchrpnousadic pi-calculus.
In the polyadic case, messages can consist of (possiblyyg¢mgne tuple§ and com-
munication requires the number of transmitted values tacmekactly the number of
received ones. In the case of empty tuples, input and outgdikps x() andX() are
sometimes written more concisely @CS-like notation as< andx.

Coming back to the puzzle (Exercise 4), we consider naxpes, X100, and model
the fact that roonk contains idn by writing the proces& =!%(xn). Then the strategy
S; of playeri is defined as follows, where we use parametrised constargafiplicity:

(RsTR)

Si 2 S7%(x) (L<i<100)
SI9 = x(y). ([y=x10kIS! ™ (y)) (1=i<1001<t<50)
SH(X) £ x(y).ly= x]ok (1 <i<100)

The guard for success can be written@s: ok;.oko...0ki0o.0k, and the whole
system asyxa, ..., X100, 0K, ..., Ok100) (S1| - - | S100| R1| - - - |R100| G): after finitely many
silent transitions the system will either be ready to haaétstonok, or it will deadlock
because some scientists have not been able to find their ids.

From the operational point of view, reduction semantics lsartightly reconciled
with LTS semantics, by the so-calléthrmony Lemmd56]. From the observational
point of view, the situation is more complicated, becauskeiction semantics provides
no meaningful “observables”. Then, a meaningful abstrgoivalence can be defined
in terms of some simple predicates, calibs which express the capabilities to emit
and receive on a given channel (but notably, neither the sertteived message nor
the target state are observed). By combining barbs and tiedsqand closing under
contexts), we obtaistrongandweak barbed congruenctsat can be shown to coincide
with the analogous congruences originated from the LTS séing



X2 = X(@)
[AXM]22" £ a(x, m).[M]2"
IMNJZ2* = (vm) ([MIE2" | (vb)( b(n).INTA2" [(b.a) ) ) for b fv(N)

Fig. 4. Encoding ofi-calculus in pi-calculus

Example 2.We now provide evidence of the expressiveness of pi-casdmjushowing
that functional programming can be recovered as a specialitaf interactive system.
This is done by encodingrcalculus in pi-calculus [47].

We recall that1-expressions MN,... can be either a variable, the A-abstraction
AX.M or theapplication M N with obvious notions of free and bound variables. The
reduction rules (for the lazy semantics) are:

M- M
MN — M’N

B) (1)

(AX.M)N > M{N/x}

Roughly, processes can represent both “functions” andifaents” which are com-
posed in parallel and interactareduce. However, they interact by transmittaccess
pointsto terms instead of terms themselves. The pi-calculus potteat encodes &
expressiorM is parametric w.r.t. the access poafor retrieving arguments, and it is
written [M]42*. The encoding is shown in Fig. 4.

In the case of a variabbe the corresponding processes sends the accessgmint
the function available at Inthe case of d-abstraction, the process is waiting to receive
on a the argumenk and the name of a further access paimfor further arguments,
needed when evaluatirlg. In the case of application, a fresh serbes installed for
handling the requests to the arguméhttogether with a new access pomtfor the
argument ofM, to whichb anda are sent. The correspondence can be formalised by
showing thaf[(Ax.M)N]*?* and[M{¥N}]'?" are related by the weak equivalenee

Exercise 5.Write the pi-calculus process@six.x]]élz’r and [[(/lx.x)N]]gz’f. Then shows
that [(Ax.X)N]4?" reduces after some steps[d]42" | (vb)!b(n).[N]*>* (which can be
shown strongly bisimilar tgN]4?%, as ¢b)!b(n).Pis clearly inert).

Itis evident that pi-calculus provides a rather sophiséiddramework for the study
of interaction. For example, Sangiorgi proved in his PhBsth§s5] that name mobility
can encode some sort of higher-order communication, inghsesof process mobility.
Nevertheless, the considered primitives and the ovemathéwork are rather low-level.
As a main consequence, when the size of processes incritasespmes harder to
acquire confidence in the correctness of the modelling. Tdds opened a major re-
search strand on type systems for process calculi, whéierelt kinds of types and
annotations are devised tdfer static guarantees about the validity of certain proper-
ties, ranging from the absence of communication errors (eggiving a message of
mismatched arity or type) to termination and deadlock aao@k. In particular, there
is now a renewed interest in the area of service orienteduttaloound the notion of
session typesntroduced about a decade ago by Honda, Kubo and Vasca{&&pb



2.3 A session calculus

One of the problem with pi-calculus is that names are usedaht¢ode many dierent
behavioural aspects all in terms of communication. In pple; one should at least
distinguish between two flerent usages: the first one is concerned with some sort
of static sorting discipline, like establishing that allnmas transmitted ox must be
integers, or that all names transmittedyomust be names of channels where integers
can be sent, or thatcan only be used for input; the second one has to do with dymami
prescriptions, like protocol narrations for the peers okasion, establishing e.g. that
on channek must first be sent an integer, then be received a name of a ehahere
integers can be sent and finally be received another integer.

The idea in [35] is to structure the language so to guarathigte &t any time, each
session-like channel is shared between two peers only.Wdns the protocol run on
one side can be more conveniently checked for compatihility. the protocol on the
other side, as the two must be related by some form of dudlity.key idea is to impose
a symmetric form of communication for opening a session.

Example 3.To see how it works, consider the specification of a serverrépeatedly
receives values, computes some heavy scientific calcnl&tom it and then returns the
result to the caller. If it is written a8 2!in(x).out f (X)), then there is a big problem: if
two or more clients are around, they could intercept theltegwther calculations. For
example:

S|in(1).out(y1).P1 [in¢2).out(y>).P>
— S|oui f(1))|outlys).P1in(2).0ut(y2).P2
— S|ouk f(1))|0Uk f(2)) | out(y1).P1 | out(y2).P2
= S[ouk f (1)) P1{ T ()1} | outly2).P2
5 S|P T @y} [P T (D)y,)

The typical way to solve this problem consists of receiving tesult on a private
channel, freshly established at the moment of the call. Binees is thus written like
S 2lin(x, k).k(f(x)), so that each time the result will be sent to a channel spddifi¢he
caller, which can, e.g., employ a fresh name for the goa, ilik(vk)in(1, k).k(y1).P1.
In the monadic casé can be used both for sending the value and for receiving the
result: the server would becong=2!in(k).k(x).k(f (X)) and the client would become
(vK)in¢k).k(1y.k(y1).P1. It can be seen thét plays the role of a session key, with dual
usages on the server and on the client. When the patté&m(k).P is frequent, it can
be more conveniently written as a maéngk).P, which is reminiscent of bound output
and is symmetric to ordinary input.

Conceptually, the calculus proposed in [35] exposes thiféerdnt communication
pairs. The first consists of prefixes for session acceptafigand session requea(k).
The corresponding reduction rule is:

(LINK)

a(k).P1ak).Q — P|Q



(note that alpha-conversion is exploited to choose the semek on both sides before
applying the reduction).

Then there are ordinary inpk®(x) and outpuk!(x) on a sessiok (only the former
is a binder forx). The corresponding reduction rule is:

(comm) =
k?(x).P|kI(y).Q — P{¥/x}|Q
Finally there are primitives for delegation of a session t@w diferent process:

session receiving?((k’)) and session sendirigi((k’)) (only the former is a binder for
k’). The corresponding reduction rule is:

(Pass)

k2((9)-PIKI((K)).Q — PK/x1Q
Note that after having sekt onk, process) is no longer allowed to mentioki.
Sometimes a fourth communication pair is considered thatves label branching
over a finite set of predefined lab€gls k?;.P; on one side and label selecti&h.P on
the opposite side. The corresponding reduction rule is:

jel
Yie K2ALPiKI.Q 5 PjIQ

The remaining rules are the ordinary ones for parallel cositjpm, restriction,
structural congruence and recursion (considered in placeptication). Note that the
same sequential process can opeffiedent sessions and interleave activities within
them.

(LaB)

Exercise 6.0ne young, bright computer scientists is given the possitiib pass the
exam if she is able to play chess twice against the stathesfitt computer player
available on the web, without loosing both games. She hasrneayed chess before.
Which strategy can she take?

The idea is essentially to let the computer Al play agairsstiit We can model the
web site as follows:

Chesst start(k). (Chesgk?black.B(K) + k!white. W(k))
B(K) £ recX.k?(m).kI{m:: nex{m)).X
W(K) £ recX. kl{nex{e)).k?(m).X

Thus, the web site let the human player choose the colourteerd tepending on
such choice, either it waits for the first move of the humantatarts the game by
sending its first move. For simplicity we assume the gameogaitconsists of sending
and receiving the list of moves made so far. The Al will congpils best move by
exploiting some functiomextapplied on the history of moves. Note that each game
runs in its own sessiok, to avoid mixing the games of lierent players.



The best strategy would be to open two gaming sessions, itigpimsplay holding
black pieces in one and white pieces in the other, and thesyalgend on one game the
latest move performed by the computer player in the otherggam

Humanz start(ki).ki!black.start(kp).kz!white.P(ky, k)
P(k1,kz) = recX. ky?(m).ko!(m).k>?(n).ky!(n)y.X

The main advantage w.r.t. pi-calculus is that sophistitayping disciplines can
now be defined by exploiting theftigrent syntactic categories and primitives. To know
more on this topic see Vasconcelos’s contribution in thisivee [58].

2.4 Orc

Quite independently from traditional process calculiGBS and pi-calculus, where
control and data flow is always encoded in terms of interacti@ook and Misra have
proposed a basic programming language for structured etctten, calledOrc [50,
23, 37], whose primitives meet simplicity with yet great geadity. Orc neatly separates
orchestration from computatiorc expressiong should be considered as scripts to
be invoked, e.g., within imperative programming languaggag assignments such as
z:€ e, wherez is a variable and th®rc expressiore can involve wide-area computa-
tion over multiple servers. The assignment symkd|due to Hoare) makes it explicit
thate can return zero or more results, one of which is assignedEwen if Orc looks
quite diferent from ordinary process calculi, it relies on hidden hedsms for name
handling (creation and passing) and for atomic distribwggthination. We recapSrc
basics, borrowing definitions from [50]. Apart from minotigirences w.r.t. the litera-
ture, we letOrc expressions be defined by the following grammar:

(Expressionse == 0 | b | ele | e>x>e | ewherexieeg
(Basicexpr)b == (py | xXp | Py | Ep | %k

where we assume given the following (pairwise disjointysetsetV of values ranged
by v, a setX of variables ranged byx, a setS of sites ranged bys, a set& = { Ej(X) =
g }; of defined expressionsanged byE, and a sefK of invocation keysranged byk.
Moreover, we let the set gfarameters? = YV USU X, ranged byp. The expressions
e > X> & ande; where X :€ e; bind the occurrences of in e. The occurrences of
non-bound variables are free and the set of free variablas ekpressioe is denoted
by fv(e). All defined expressiong(X) = e are well-formed, in the sense that&y€ X.
Orc semantics is defined in the LTS style, via SOS rules. The lagitessionsk
must be considered as run-time syntax: they denote resgamgbers for site invoca-
tions. The set of labels include actis(V)@k for a site invocation te with parameters
Vv and invocation ke, actionv@k for the receipt of the valug in response to a site
invocation handled bk, action(v) for the local publication of valug, and the silent
actiont. We leto range over labels.



The basic computational entities orchestratedCoy expressions arsites a site
call can be thought of as an RMI, a call to a monitor procediar@, function or to a
(web) service. Each invocation to sieelicits at most one value published by(Note
instead that, in principle, abrc expression can publish any number of values.) Values
are published locally using the primitivet(v), here rendered just &s) for brevity.

k globally fresh
— ok (rRESP) = (LET) m
SV —— % & — (V) (V)= 0

While site call is strict, in the sense that actual paransedes evaluated before the
call, the evaluation of defined expressions is non-stribie Torresponding inference
rule is:

(cALL)

E0=acé
Ei(B) — a{P/x)

Orc has three composition principles. The first one is the orgiparallel compo-
sition e1 | e, here calledsymmetric paralle(e.g., the parallel composition of two site

calls can produce zero, one or many values). We remark tlea¢ is no interaction
betweere; ande,. The corresponding inference rules are:

(DEF)

26
0] o
ellex —€le ellex — ell€
The second composition principle is callgequencingnd it takes inspiration from
universal quantification: in the sequential expresgpn x > e, a fresh copyex{V/x}
of e is spawned foanyvaluev published bye, i.e., a sort of pipeline is established

betweere; andey. Whenx ¢ fv(ey), then we writee; >> e, as a shorthand fag > x> e
(becauseis inessential). The corresponding inference rules are:

o /
el—>el

(Lsym) (RsYM)

eli>e'1 0# (V) elﬂe'l
(sEQ) o (P1PE) @
er>X>e— € >x>e e > X>e — (6] > x> e)|exfV/x

The third and last composition principle is callagymmetric parallel composition
and takes inspiration from existential quantification. Eivaluation of the asymmetric
parallel expressior, where x :€ e (written ase; < X < e; in the latest papers ddrc)
is lazy:e; ande, start in parallel, but all sub-expressionssfthat depend on the value
of x must wait fore; to publishonevalue. Where; produces a value it is assignedxo
and that side of the orchestration is cancelled. The cooredipg inference rules are:

o /
& —6
ezwherex:eelge’zwherex:eel

(LAsYM)

X

e ->€ 0% e~ €

(RaSYM) (Pick)

e wherex:eg N e wherex € €] e wherex:e g 2 e{V/x}



Although not evident from the operational semantics, thenilng implementation
of Orc assumes that all concurrentinvocations are executedi@steously and that the
asymmetric parallel operator picks the first value avadabk. rules ¢arL) and fick)
have higher priorities than the remaining ones). We referititerested reader to [59]
for more details.

Example 4.We borrow from [50] some simple examples Ofc declarations. In the
following we assume the existence of a giteer that receives an integérand return
a void datum() aftert units of time, of two sitexnnandbbcto be invoked with a
dated as argument and that return selected news from dadd of a siteemail that
requires two argumentsanda and sends an email containing message the address
a without returning any value. Moreover, we writg :: v» to denote the concatenation
of two messages.

— DeclarationMailTwice(a, d) 2 (cnrd)|bbdd)) > x > emaikx, a) specifies a service
for notifying all news fromcnn and bbdn two different emails.

— DeclaratiorMailOncga, d) £ emaik’x,a) where x :€ (cnn(d)|bbgd)) specifies a ser-
vice that notifies addresswith only one of the news selected either framn or
from bbc

— Declaration

MailBoth(a,d) £ ((x1:: X2) > x> emaikx,a)) where x; :€ cnrXd)
where x, :€ bbgd)

specifies a service that notifies addreswith both news selected frorenn and
from bbcin a unique message.

— DeclarationDelay(s,d,t) = timert) >> (x) where x :€ d) specifies a service that
contact siteswith argument but delays the response upttiime units, in the sense
that even if the response is available befbtame units then it will be published
only after the timer expires, while if it is available aftérettimer already expired,
then it is readily published. Note that the timer invocatitmes not depend onand
therefore it is activated concurrently with the invocattors.

— DeclarationUnfairPick(s;, s, d,t) = (X) where x :e (s1(d)|Delays,,d,t)) speci-
fies a service that contact both sitgsands, with argumentd but privileges the
response from sit&;, in the sense that if it arrives befotdime units then the
response ofy, if any, is ignored. For example

UnfairMail(a,d) £ UnfairPickcnn bbg d, 20) > x > emaikx, a)

specifies a service that notifies addrassith only one of the news selected either
from cnnor frombbg but preferably frontnn(that has 20 time units of advantage).

Exercise 7.A classic problem in non-strict evaluation is the so-cafladallel-or. Sup-
pose there are two sitess ands, that publish some booleans. Write @nc expression
PORthat publishes the valdalseonly if both sites returtialse the valuetrue as soon
as either site returrtsue, and otherwise it never publishes a value. In the soluticarit
be assumed: (1) the existence of a #itfh) that receives a boolean value and returns



ell(ezles) ~ (e1ler)les e >X> (e >y>e3)~(er>x>e)>y>es if x¢fv(e)
elle ~exle 0>x>e~0 (e1le2) > x>e~ (e > x>e)|(e2>x>¢)
el0~e O wherex:e0~0 (e2]ez) wherex:e e ~ (ep wherex:eey)|es if x¢ fv(es)

(e3wherey:€ ey) where x :€ e; ~ (e3 where x:€ e1) wherey i€ & if x¢ fv(ey) andy ¢ fv(e;)
(e2>y>e3)wherex:ce; ~(e;wherex:ce) >y> ez if x¢fv(es)

Fig. 5. Some strongly bisimila©rc expressions

trueif b is true, and otherwise it does not respond; (2) the existence ota@dib;, by)
that return the inclusive logical or of the two booleans ree@ as arguments. Note that
PORmMust publish one result at most.

The abstract semantics @frc can be defined in terms of strong and weak bisimi-
larities and gives rise to interesting equivalences, sofmeénach are in Fig. 5.

3 A Calculus of Sessions and Pipelines

In the previous section we have seeffatient frameworks for the modelling of inter-
action, sessions, orchestration and cancellation ofitie8y each €ering elegant and
flexible solutions to tackle specific issues. Starting frévase premises, the objective
of a coordinated fort within the EU funded projectessoria [57] was to synthesise
so-calledcore calculi for SOCwhere all the above aspects are dealt with in a uniform
and structured way. One of the outcomes of the proje€aSPiS [8], a Calculus of
Sessions and Pipelineshich evolved as an improved refinement3g€C [7] (Service
Centred Calculus CaSPiS exploitsnested sessiorendpipelinesas natural tools for
structuring client-service communication and orchegiratrespectively. Activity can-
cellation is built around the ability of peers to leave sessiand to program suitable
handlers for such cases. We discuss below the essentialiggisl around the design of
CaSPiS, emphasising the fferences w.r.t. the calculi in Section 2:

Interaction: Contrary toCCS and pi-calculus where the same form of communication
is used for diferent purposes, i6aSPiS a few forms of basic interactions are dis-
tinguished and regulated on their own. For example, ses\ace globally available
and can be invoked independently from the surrounding aoniehile ordinary
input-output communication is context sensitive and igifhi driven.

Sessions:WhenCaSPiS is viewed as a programmable abstraction of SOC, the idea
is to relieve programmers from the burden of dealing withse®s keys. There-
fore the choice made i@aSPiS is to handle sessions as an implicit mechanism
for enclosing the communications between a caller and itlseavoiding external
interferences. Like in Section 2.3, a hame-scoping meshaims used to handle
sessions, but contrary to the calculus in [35], e®&a$PiS process has its own
implicit current session and it is possible neither to pesgrinterleaved commu-
nications in dfferent sessions, nor session delegation. However, sessionke
nested (e.g. when calling a service within a session, tleedntion will take place
in a dedicated subsession) and it is allowed to pass valogsriested sessions up.



Orchestration: As in Orc, orchestration is kept separate from interaction and pipsl
are seen as a convenient mechanism for modelling the flowtaflzktween local
processes: it is more general than sequential composhigtter suited w.r.t. con-
currency and does not require the explicit and improper fisbannels for orches-
tration tasks. Here a more sophisticated form of pipelinmtioduced, which is
well-integrated with the other features G&SPiS, not considered iOrc.

Cancellation: Orc’'s asymmetric parallel operator provides a convenient fofroan-
cellation for pending activities, but whosé&ect is purely local: the operational
semantics is designed in such a way that if a site has beekddybut the local
handler for its response is cancelled, then the responsgotahow up. This is
maybe fine if only one-way or request-response interactio@sonsidered, but not
in CaSPiS, where the cancellation of activities could leave some panpeers in
the middle of long-running interactions. Likewise signimgontract implies some
obligations, opening a session implies notifying the peleemvieaving the session
before its conclusion. Also inspired by some recent work oocess calculi for
modelling transactions [13, 14,41, 19, 18RSPiS comprises a novel mechanism
for ensuring the natification of any activity cancellatiéor, which we are not aware
of any similar counterpart in the literature on processuialc

Readability and typeability: To tackle the complexity of SOC systems, it should be
possible to structure complex processes in smaller pdltsdd to specific issues
and it should be possible to guarantee the compliance of ti@eaprocess by
checking the compliance of its parts. Moreover, type chagkind type inference
systems should be available that automatically detecbpabinconsistencies and
communication errors. For type systems to fedtive, it is important that the ab-
straction distance w.r.t. the concrete formalism is notéwge, so that any detected
type problem can be immediately explained, tracked and ngiwted over the un-
derlying processes. Some preliminary investigation hasvshthat quite simple
type systems can be developed @aSPiS that guarantee nice properties (com-
munication safety, client progress and deadlock freedénpyototype tool, called
TypeSes$ for type inference is also available (see [45]).

3.1 A CaSPiS walk-through

We introduceCaSPiS primitives in an incremental way. Le¥sn, and Nsessbe two
disjoint countable sets, respectivelysafrvicenames, ranged byand ofsessiomames,
ranged byr. We assumeVs, and Nsessare included in a larger set abmesV, ranged
by n, and letx,y, ..., u, V... range ovewV \ Nsess

In the following we shall exploit the notion of @ontext written C[ -, i.e. a pro-
cess term with one holg J. We writeC[[ P] for the process where the hole is textually
replaced by proced8. The contexts we are interested in are caBéatic and charac-
terised by the fact that the hole occurs in an actively rugmiasition and it is ready to
interact (e.g. it is not under a prefix). See Section 3.2 fergkact definition.

2 httpy/www.di.unipi.ity mezzina



Service definition and invocatiorService definitions and invocations resem6ies
prefixes. Thus.P defines a service and we writes.Q for invoking s. The similarity
with CCS is merely syntactical, because after the handshlemd Q are not quite
separate continuations, but rather protocols that wiériatt in a fresh, private session.
The name of the session is not to be mentioneld andQ, and therefore it is handled
implicitly by the operational semantics rules. Each protaran contain other service
definitions and invocations, which in turn can establisheesessions with other peers.
Services are typically one-shot, in the sense that wherketoa new instance serving
the request is created, but the service in no longer availakiis choice facilitates
service updates. Replication (or recursion) can be usegddoify persistent services,
like !'s.P. Moreover, it is possible to haveftirent definitions.P; ands.P; available at
the same time for the same service nane

Session sidesThe handshake betweexrP ands.Q leads to the creation of a fresh
session name that can be viewed as a private, synchronous channel biradiher
and callee. Since client and service may be far apart, acsessiturally comes with
two sides, writterr > P andr > Q, with r bound somewhere above them. For example,
starting fromR|C1[ s.P]|C2[S.Q] we can arrive taR|(vr)(Cy[r > P]|Cao[[r > Q).
Similarly, starting fromC1[[ s1.(P1/S2.P2) 11 C2[[ 51.Q11Cs[[ 2.R] we can arrive in two
steps to(ri,r2)(Caf[ri> (P1lr2>P2)11Col[r1> QI Csl[r2> R]), whereP; interacts
with Q andP; interacts withR. Sometimes, especially when type systems are consid-
ered,polarities+ and— are attached to session sides in order to mark the callefand t
callee. In the example above, we should have written, e:g:,1)(C1[ ] > (P1|r; >

P2) 11C2l[r7 > QICsl 13 = R1)

Intra-session communicationfwo peersP and Q running on opposite session sides
of r can exchange messages. Since the peer is uniquely detdrritipat and output
primitives are, respectively, abstraction prefixeg)P?or concretion prefixeé)Q. For
exampleC1[r > (5)P]|Col r > (?X)Q] can evolve taC1 [ r > P]|Coll 1 > Q{3/x} 1.

If we now reconsider the service for scientific calculatifnasn Example 3, then we
can write it just asS 2!in.(?x)( f (x)). Then if two clientsn.(1)(?y1)P1 andin.(2)(?y,) P>
are present, there is no risk of interference, because tbertteractions are served
separately.

S[in.(1)(AY1)P1in(2)(?y2) P2
= (rra)(Slrae (2)(F () Ir1> (L)1) P1[TN(2)(A2) P2)
= (vr,12)(SIres (X)CF (X)) r2> (X)CF (X)) 11> (D(AY2)Pelr2 > (2)(Y2)P2)
= (11, 12)(SIree (FADIras ()P 11> () Palr2e (2)(A2)P2)
5 (v, r2)(SIrs (FADIr2> (FR)Ir > (Y1)Pilr2> (¥2)P2)
=5 (1, r2)(SIr1m 0lr2> (F(2) Ire > Po{T Wy} 20 (2y2)P2)
55 (vr1,12)(SIra> 0lr2> 0r1 > Po{f Wy} r2 > Pof F)y,))

Note that the initial processes are much simpler than thossidered in Example 3,
where session identifieksshould appear explicitly. Moreover, the session side canst



must be considered as run-time syntax, as all the more corppbeesses traversed by
the above computation.

Inter-session communicatiorit is quite useful to have the possibility to make the re-
sponses obtained upon some service invocation availaltletparent session, e.g. to
collect the fares fiered from diferent providers and compare them to choose the best
one. To this purpose, another prefix is availabl€asPiS, calledreturn prefix writ-

ten (V)TP, which can be seen as a concretion at the level of the paresiose i.e.
r>(V)TP can be read a&/)|r > P, except for the fact tha® cannot execute until has
been consumed.

Pipelining. CaSPiS exploits a generalised form d@rc sequencing operator, called
pipelineand writtenP > Q, which allows to feedQ with all values produced b¥:
for each value, a fresh instance @fwill be activated, running in parallel witR > Q.

A pipeline can be seen as some sort of redirection for theretions available irP:
instead of being available to the peer of the current ses#i@y are given in input to
Q, which is typically guarded by some abstraction prefix. Ba@reple,Orc sequencing
operator can be written &> (?X)Q.

Note that in a term liker(> (P > Q))|r > R, process can input fromR and output
to Q. This is clearly diferent from (¢ > P) > Q)|r > R, whereP can input fromR
and output toR, but can pass values @ using return prefixes. In combination with
the return operator, pipeline allows to make the responbtsmed upon some service
invocation available locally, to some suitable continoatin the example of the service
for scientific calculations, a client such as(1)(?y;)P; would runP; in the session
established wit8, i.e. it will reduce after some steps to> P1{f(L)y,}. Instead the
client (n.(1y(1)(y1)") > (?y1)P1 will reduce, after some further steps, to ¢ 0 >
(Y1) P1) | P1{f (D1}, which can be read a,{f(1)y,}, becauserg > 0> (?y1)P1) is a
terminated process.

Cancellation. Processes must be able to abandon their current sessionl auton-
omy. The commandlose is used to terminate the enclosing session side. A terndnate
session enters the special stat® that recursively terminates any other session side
nested irP. Note that the execution ofdose can depend on some local choice as well
as be guarded by the input of some data from the oppositesesisie.

Closure notification. The distinguishing feature a£aSPiS is the presence of novel
primitives to handle (unexpected or programmed) sessionit@tion. In fact, even if
processes can abandon their current sessions, we woulsk#iggons units to represent
a controlled and safe form interactions, and therefore the¢rs should be somehow
notified. The idea is that upon termination of a session sl ppposite session side
will be informed and take some proper counteraction, if mekedo this purpose, the
more general syntax for invocation3g Q: it mentions a namk at which the handler of
the client-side is listening. Symmetrically, the more gahsyntax for service definition
is «.P, which mentions a namleat which the handler of the service-side is listening.
Upon creation of a session, the pair of namgsk}) is thus associated with the fresh
sessiom, identifying a pair otermination handlersone for each side. The more general



syntax for sessions is thus-x P where the subscritrefers to the termination handler
of the opposite side.

Then, after alose is executed, a notificatioh(k) is sent to the termination-handler
servicek listening at theoppositeside of the session to manage the appropriate actions.

The final ingredient is the possibility to define suitabdemination listeners kP
that are used to handle termination signigls.

To sum up the above discussiag;.P|S,.Q can evolve to{r)(r >, P|r >k, Q).
(Note that the handlers have been exchanged between tre)Jdesn, if sayP executes
close, the termination handldr, of the caller will be activated, and vice versaQf
terminates, theky will be activated. For exampl@>y, (close |P)|r >, (Q|kz - close)
can evolve to- P| (ko) |r >k, (Qlkz - close), then to» P|r >k, (Q|close) and finally to
» P| » Q| f(ky). Note that the emitted notificatioi{k) is essentialasynchronous.e.,
we have no guarantee as to when the listener at the oppas@tendi catch (k). For
example, before (k) reaches its destination, the other side might in turn haxered
a closing state- Q on its own, or be closed right away, as a result of the closing o
parent session. While danglirigk) cannot be avoided in general, simple patterns can
avoid the even worst situation of dangling session sidedipgrforever.

Pattern matching and guarded choickast but not leastCaSPiS interactions is em-
powered by pattern-matching facilities that can be suiegl,, to deal with XML-like
data typical of web service scenarios. Roughly, this is iobth by allowing: 1) out-
put and return prefixes whose values are structured, exmcét signatureX’ of con-
structors ranged byf (each coming with a fixed arity); 2) input prefixes where plain
input variables R are generalised bpatternsthat exploit the constructors . To-
gether with ordinary prefix-guarded choices, the presefpatterns makes it possible
to manage and route messages on the basis of their contenexdmple, a pipeline
like P> (pdf(?x))Q+ (ps(?X))R can be used to handle inftérent ways the documents
produced byP depending on whether they are in PDF (Portable Document &ron
PS (PostScript) format.

3.2 Close-free fragment

We start presenting the fragment@&SPiS without cancellation and closure notifica-
tion, whose syntax is in Fig. 6. The operators are listed icresing order of prece-
dence. Service definitior[[ -] and invocatiors.[ -], prefix z;[ - ], left-sided pipeline
P> [ -] and replication[ - ] are calleddynamicoperators, while the remaining opera-
tors arestatic

As expected, inn)P, the restriction ¥n) binds free occurrences afin P, while in
(F)P any X in the patterr binds the free occurrences of name P. We denote by
bn(F) the set of names such that ® occurs inF. The empty sum is denot&d Trailing
0's will often be omitted. When the arguments of prefixes ari \ay inessential, we
abbreviate them asR) ()P and()P.

The structural congruence relatieris defined as the least congruence that includes
alpha-equivalence and the laws in Fig. 7. This set of lawsprames the structural rules
for parallel composition and restriction, plus the obviexgension of restriction’s scope
extrusion law to pipelines and sessions.



P,Q ::= Y 7Py Guarded Sum m = (F) Abstraction

| u.P Service Definition | (V) Concretion

| O.P Service Invocation | (V) Return

| r>P Session

| P>Q  Pipeline V= u| f(V) Value (f € %)
| PIQ Parallel Composition

| (vn)P Restriction F = u| ?| f(F) Pattern )
| 1P Replication

Fig. 6. Syntax of close-fre€aSPiS

PO = P o = 0 (*MP)>Q = (P> Q) if n¢n(Q)
PIQ = QIP (vnNmP = vmEnP  ((vn)P)IQ = (vn)(PIQ) if n¢M(Q)
(PIQIR = PI(QIR IP = P|IP r>(nP = (vn)(re>P)ifr+n

Fig. 7. Structural congruence laws

The reduction semantics is given by exploiting suitabletexts surrounding the
active redexes. A context ®atic if its hole does not occur under a dynamic opera-
tor. Moreover, we say that a contextssssion-immuni its hole does not occur un-
der a session operator, apieline-immunef its hole does not occur under a right-
sided pipeline operator. In the following we I€f -] range over static contextS[ - ]
over static session-immune contexts, d&jd] over contexts that are static, session-
immune and pipeline-immune. Roughly, a static sessiontimgrcontexs[ -] cannot
“intercept” abstraction and return prefixes, while a sta@ssion-immune and pipeline-
immune contexP[ - ]| cannot “intercept” concretion prefixes. Analogous defaniti ap-
ply to the case of two-holes contexd§ -, - ]

The first reduction regards the handshake between a sewiitétibn and a service
invocation.

r freshforC[-,-1,P,.Q
CIsP3Q] > (v)C[r>Pr> Q]

The second reduction regards intra-session communica@ielow we letC, [ -,-]
be a context of the forr€[[r > P[-],r > S[- 1] (for someP[ -] andS[ -]), which cap-
tures the most general situation in which intra-sessionmanication can happen.
Pattern-matching is accounted for by a substitutios match§, V), defined as the
(only) substitution such that dom] = bn(F) and Fo- = V. Moreover, we implicitly
require that names iR andV are not bound by, [ -,- ]

(sYnc)

o = matchg, V)
CrI(V)P+Si7iPi, (F)Q+ X 7jQi 1 — C[P.Qo ]

Intra-session communication can be triggered also by arrgefix in a subsession
of r. The corresponding rule is:

(Ssync)



o = match{, V)
Crlr1e S1VTP+ 7P 1, (F)Q+ X7 Q 1 — Cr[ 11> S1[ P1, Qo 1l

Finally, there are two more rules for pipeline orchestnatibandling the “redirec-
tion” of concretions and returns.

Q=S[(F) Q' +XjmjQi] o =matchF,V)
CIBI(V)P+ 3 7iPi 1> Q] — CIS[ Qo TI(PIPT > Q)1

(SRsync)

(Psync)

Q=S[(F)Q +X;njQ] o =matchf,V)
CIPLr > S1[(V)'P+ YiziPi 11> Q1 — CIS[ Qo TI(BIr > S1[P11> Q)]

The presence of contexts in the reduction rules accounthéoexecution of silent
transitions under restriction, parallel composition,, etbile we omit deliberately the
obvious rule for structural congruence, which is the same¢hasrule (R1r) of pi-
calculus (see Section 2.2). The LTS semantics and the Lelmahagticonciles the silent
transitions of the two semantics can be found in [8].

(PRsynNc)

Example 5.The one-way and request-response invocation patternsvrelnservices
(to services with argumentV) can be easily encoded 83V)()T and s.(V)(?X)(x)T,
respectively. Note that in both cases a value is returness{ply void) that can be used
to activate a suitable continuation, if any. The one-wayegpatcan also be rendered in
a fully asynchronous fashion by writirg((V)| (7).

The following e-shop example is adapted from [5], where iised to illustrate a
static analysis machinery for the detection of logic flawsénvice applications, i.e.
to prevent the so-calledpplication logic attackshat exploit the vulnerabilities of the
specific functionality of the application (e.qg., by violagithe business logic) rather than
the ones of the underlying platform.

Example 6.We model a simple e-shop applicatiSrthat exchanges information with
customer<C and the data bade that stores item prices. The serviggce to retrieve
item prices is private t& andD. Essentially, a honest customer invokes serticg
chooses an item, receives its price inside an order formfantkrested in finalising the
order, must fill in a payment form with personal data and dreatid information. In the
same form are reported: the transaction code, the chosanated the received price of
the purchase.

HC 2 buy.(itemy)(orderForm(?Xcode iteMk, PXprice,)){PayFOrm(Xcode iteM, Xprice,, NAmMe, cc))

However, a malicious user may try to finalise the transac@mding a forged copy
of the payment form, where the price field has been abusivisjodnted (like when
downloading a web order form associated with an e-shoppngediting some hidden
field outside the browser and resubmitting it in place of thiginal one).



MC = b_uy.<itemk>(orderForm(?xcodeitemk,?xprica())(payForm(xcodeitemk,5cents,name,cc)>

In the specification shown below, the applicat®exploits, for each item, two con-
current processddF; andPF;, respectively for sending the order form to the customer
and for receiving the cancellation or the payment of the nrHleis way it cannot check
if the form sent by the costumer contains the right price.

ESHOP= (vprice)(D|S)
D £ Iprice Y;;(item;){price;))
S £ lbuy. Y i(item;)(vcodg(OF; | PF;)
OF; 2 price.(item;) (PXprice ){0rderForm(codeitemi, Xprice )}’
PF; = (cancel)0+ (payForm(codeitem;, Aprice » Yname Ycc)) PAY

Then both the honest customd€ and the malicious custom&C shown above
are capable to interact with the application, each fulfjitheir purposes.

Exercise 8.Redesign the e-shop applicatiBnn such a way that the price indicated by
the customer in the payment form is matched against the avéded by the data base.

We conclude by hinting at two important propertiesSG#SPiS processe® that do
not contain the session operator [ - ]. Let Q be any process reachable frédhvia any
number of reductions and letany session i, then: 1) there are exactly two session
sides forr in Q (dyadic session 2) it is never the case that one of the session side for
is nested into the otheséssion acyclicify We refer to [8] for the formal presentation
of such properties.

3.3 Full calculus

We can now present the full syntax and semantic€a$8PiS. In what follows, we
assume a new countable g€tof signal namesranged byk, disjoint from session and
service names. The syntax of fl@aSPiS is reported in Fig. 8. The fierence w.r.t.
Fig. 6 is given by the extended primitiveg P, 5.P andr ¢ P and the new primitives
close, 1(k), » P andk-P. Like in the case of > P, we reserve > P and» P as run-time
syntax. When the handl&rin s.P is vacuous or inessential then we can safely omit it,
and the same faog.P andr > P.

The structural rules listed in Fig. 9 enrich the set of ruleeady introduced for
the close-free fragment. The law(k) = 1(k) is motivated by subtle race conditions
on the order of closings due to the nesting of sessions (§derf@&n example). The
remaining rules serve the purpose of letting sigridlg freely move within a term to
reach the corresponding listeners, and distributing thaiteated sessiom over static
operators. Note that, as usual, structural congruence eaxploited to move to top
level all restrictions that are not in the scope of a dynamierator.



P,Q ::= Yjq #iP; Guarded Sum | (k) Signal

| P Service Definition | r >, P Session

| &.P Service Invocation| » P Terminated Session
| P>Q  Pipeline | PIQ Parallel Composition
| close Close | (vn)P Restriction

| k-P Listener | 'P Replication

Fig. 8. Syntax of fullCaSPiS.

rew (FKIP) = f(K)irew P (tMIP)>Q = 7(KI(P>Q) >k = T(k)
»r>kP = »rog» P »(P>Q) = (»P)>Q »»P = »P
»PIQ = »P»Q »(vP = (vwx)»P »0 = 0

Fig. 9. Structural congruence rules fotk) and» .

The reductions must be updated to take into account teriainaandlers. The only
significant change regards the handshake between a sewmficétidn and a service
invocation, where termination handlers must be annotatéus freshly created session
sides.

r freshforC[-,-1,P.Q

CllSq-P36.Q1 — ()Tl T >k, Pr oy Q1

Rule (Rync) is left unchanged, while we need to annotate the sessiqresaapg
in rules (Sync), (SRyne) and (PRync) (and in the notatiorC, [ -,- ) with suitable
termination handlerk andk;.

Three new rules are needed to handle session cancellationofthem regards the
generation of notifications to be delivered on the opposite,svhich may be due to
the execution of thelose primitive

(sync)

(Senp) T
C[rkS[close 11— CIT(k)| » S[O]]

or to the termination of an enclosing session:

(Tenp) -
Cl» (rekP)1 — Cl» PI1(K) 1

The last rule models the handshake between a natificatiomlsiond its handler:

(Tsync)

Cl+(K)k-P] = CIP]

The session closing primitives do not guarantee sethat forever-dangling, one-
sided sessions never arise, in the same way as deadlockisarimapi-calculus pro-
cesses or sequential programs may diverge. However, margtisns can be handled
satisfactorily just by installing suitable terminationmuers of the fornk- C[[ close ] in
the bodies of client invocations and service definitionsrédwer, we can allow rather



liberal choices ofC[ -], that may contain extra actions the termination handler may
wish to take upon invocation, e.qg., further signalling thestlisteners (a sort of com-
pensation, in the language of long-running transactions).

Again, the full technical details can be found in [8], herejust mention the main
constraints ove€aSPiS processes that can guarantee the so-cagtadeful termina-
tion property Informally, the key concept is that oftzalancedterm, roughly, a term
with only pairs of session-sides that balance with eachroffeemination of one side
may lead to unbalanced terms. The graceful property gueearihatiny possibly un-
balanced term reachable from a balanced term can get bathnta finite number of
reductions

For a procesd$ that contains no session constructs, we require e.g. thatrfp
Q = P and for eachs andk: (a) s. may only occur inQ in subterms of the form
s-S1[k-So[ close ] ] and analogously fog.; (b) in Q there is at most one occurrence
of the listener fok.

For example, obvious “graceful” usages for service invimeatind service defini-
tion are ¢ki)S,.(P1lke - close) and ¢ ko)s,.(P2lko - close), respectively. The process
Newsfrom next example (adapted from [8]) also fits the requiretséor the graceful
property.

Example 7.Let BBC andCNN be services that, upon invocation, return a possibly in-
finite sequence of values representing pieces of news @distang the identity of these
news, these services resemBBLC.!(vn)(n), etc.). Let us consider the procddsws
below that exposesrgews collectoservicecollect

News= !(vk)colleck. (k-close | (vk1)BBGq.({(?X)(x)" | ki - (close | 1(K)))
| (vk2)CNN,.((?X)(0T | ka2~ (close | 7(K))) )

The established session can be closed: either (i) by th&t-dide, when an actioeiose
on the client’s side is performed, as this will yield a sigh@) able to activate the cor-
responding service-side listenerclose ; or, (ii) when any of the three nested sessions
used for interacting with the news services is closed by,peelding the signalf(k;)
and hence (k). The termination of the topmost session will in turn cadsetermina-
tion of all (not yet terminated) nested news clients.

For example, after invokingollect the client below receives all the news produced
by BBCandCNN (in some interleaved order):

HeavyReadet (vk')collecie.(!(?y)(y)'|K - close)

Instead the client below receives only the first news prodedther byBBCor CNN
and then abandons the session:

EasyReadet: (vk')collect .((?)(y)'close |K - close)

It is worth mentioning that there are at least two obviousralitives to the mecha-
nism we have chosen. One would be to clese as a primitive for terminating instan-
taneouslyboththe client-side and service-side sessions. But this glyat®lates the



principle that each party is in charge for the closing of itncsession side. A second
alternative would be to usgose as a synchronisation primitive, so that the client-side
and service-side sessions are terminated wiese is encountered on one side and
close on the other side. This strategy conflicts with parties beibte to decide au-
tonomously when to end their own sessions. The use of tetrmmbaandlers looks a
reasonable compromise: each party can exit a session amtarsty but it is obliged to
inform the other party.

3.4 Other variants

Some variants o€aSPiS have been recently considered in recent literature, thiad-in
duce suitable restrictions to favour analysis and verificabf processes. We mention
a few significant works.

In [15], itis assumed that: (1) service definitions can ordypbesent at the top level
and cannot dynamically deployed, (2) label-guarded surddabel-choice are consid-
ered instead of guarded sums and pattern-matching, (3)ipledirge is restricted to the
form P > (?X)Q, i.e. toOrc sequencing, (4) conditional statements are introducéd, (5
session sides are polarised, (6) services are persistgobarbe invoked recursively, but
general replication is not allowed. Under these requirdsiertype system is developed
that guarantees that all session protocols are deadloekifr¢he sense that well-typed
processes either reach a normal form or diverge by openiwgiested sessions. In [1],
under similar restrictions, it is shown that session nanagste disregarded and a type
system is provided that guarantees client-progress pipfieg., client-side protocols
will not deadlock). The above results have then been exterdgl5] by introducing
general recursion at the level of session protocols andjubimtype system to prevent
communication errors.

In [38] a security-oriented extension of the work in [15] iepented, where secu-
rity levels can be assigned to service definitions, client @data. In order to invoke a
service, a client must be endowed with an appropriate aleareand once the service
and client agree on the security level, the data exchang#tkimitiated session will
not exceed this level. The main result is a type system thataguees these security
properties.

Besides qualitative aspects, in SOC it is also importanbttsiler phenomena re-
lated to performance and dependability to deal with isseakeged to Quality of Service.
They are particularly relevant for services running ovemgestioned networks, where
unpredictable delays and failures are more likely. In [25}larkovian extension of
CaSPiS, called MarCaSPiS, has been studied, where: output activities are enriched
with rates (characterising random variables with expoiaéxistributions) and input
activities are equipped with weights (characterising #lative selection probability).
Then continuous time Markov chains can be obtained fktemCaSPiS specifications
to perform quantitative analysis.

Some prototype implementations ©ASPiS have been proposed in [4, 10].



X147 £ %.(a)
[AXM]2%¢ £ a (2x)(2m)[M]2€
IM NI £ (vm) ( IMT°] (vb)( 1b.()INTA*|Ti(b)(a) ) ) for b ¢ fu(N)

Fig. 10. Encoding of1-calculus inCaSPiS

4 Application examples

In this section we show a few intuitive encoding of paradigimealculi in CaSPiS and
of a simple fragment o€aSPiS in pi-calculus, but without proving any strong formal
correspondence.

4.1 From lambda-calculus to CaSPiS

We start by showing that the close-free fragmentCafSPiS is expressive enough to
encodel-calculus, in a similar way as done, e.g., in pi-calculug Sgample 2).

The encoding is summarised in Fig. 10, whigh&] 42 denotes th€aSPiS process
modelling thed-expressiorM with arguments retrieved through the servicéNotably
the encoding uses just monadic messaging without expigitipelines, choices, return
prefixes and pattern matching.

From the point of view of syntax, the mainflirences w.r.t. the pi-calculus encoding
are: (i) service definitions replace input prefixes; (ii)\dee invocations replace output
prefixes. From the point of view of semantics, the more imprdiferences are: (i)
each service invocation opens a new session where the catigputan progress; (i)
the session can be nested dfatient levels of depth and are never closed.

Exercise 9.Write the CaSPiS processegAx.x]22° and [(1x.X)N]4%. Then write all
reduction steps df(Ax.X)NJ4%¢.

4.2 From pi-calculus to CaSPiS

Quite interestingly, choice-free pi-calculus can be emcbih the close-free fragment
of CaSPiS. In fact, pi-calculus communication primitives can be sasservices with
minimal protocols. Note however that encoding the pi-clisyprocess(x).P as the
CaSPiS processa.(?X)C (for C the encoding of) would unnecessarily rug in a
nested session. To avoid this problem, and to make the emgodire elegant, it hices
to exploit pipelines and pattern-matching. For simplicitg focus on the monadic pi-
calculus without sum. The problem with choices is due to #w thatCaSPiS sums
can be applied only to abstraction, concretion and retuefixgs, but not to service
definition and invocations.

The encoding of pi-calculus processes is defined ratheghktfarwardly in Fig. 11.



|[0]]7r2(: )

[X(y).PI% 2 x.(y)y)! > (A)[PI™*°
[Xy).PI™ = % OT > OIPI™°

[=.PI™° £ () > O[PI™*°

I[x = yl7.PI™ £ (x) > (y)[x. P

[P11P2I™° £ [P11™°|[P21"™°
[(vX)PI™ 2 (vX)[PI™

[[!P]]ITZC A ![P]]HZC

Fig. 11. Encoding ofr-calculus inCaSPiS

[E(X) £ e]°® £ E.(2x)[e]*°
[0]]02c )
Kp1°% = [pl,
[E(P)1°% = E(p)(2x)(%)]
[S(P)T = [plly > (PXp)S(Xp) (2% )(Xr)]
[X(P)1°% 2 X1, > (?9)[S(p)1°%
[e1]€21°% = [e1]°%|[e,]°%
[er > x> &]°% 2 [e]°% > () []°%
[e; where x ;€ €1]1°% £ (vwh, re, K)( Whe.([e11°% > (?x)Te.(x1)()T k- close)|
wh.()close | (v X)([e21°% [re.(?x)! x.(X1)) )

Fig. 12.Encoding ofOrc in CaSPiS

Exercise 10.The encoding oft-calculus in pi-calculu§M]4?* can be combined with
the above encoding of pi-calculus @aSPiS to obtain an encodingM]:%*¢ of A-
calculus inCaSPiS. After giving the explicit definition of[x]22*%¢, [Ax.M]4%*%¢ and
[MN]#2%%¢, compare the encoding with the one defined in Fig. 10 and ex{ila main
differences, if any.

Then, write theCaSPiS processegAx.x]22*¢ and [(Ax.X)N]4%7%°, together with
all reduction steps df(Ax.x)N]4272¢,

4.3 From Orc to CaSPiS

In [7] it was shown how to encoderc in CaSPiS. Here we essentially rephrase (and
simplify) the translation usin@€aSPiS syntax. AnOrc expression may depend on a
set of expression definitions, hence the encoding obenexpression comprises the
encoding of all expression definitions (as processes coetpiogarallel).

The encoding 0Drc expressions is detailed in Fig. 12. A few points are wortheom
comments. While the call of a site is strict (and thus the @gharameters must have



been evaluated), the evaluation of defined expressionsistitt (and thus parameters
can be passed by name). Correspondingly, we define the ceadllbg by letting:
[sly (9 IVl 2V [xl 2X(%)060)!

Note that the evaluation of a variabtés encoded as a request for the current value
to the variable manager of Variable managers are created by both sequential compo-
sition and asymmetric parallel composition.

The most interesting part of the encoding regards the asyrimparallel compo-
sition. Two fresh servicesh andre are used, respectively, to enclose the evaluation of
e1 in a session that can be terminated and to receive the finsé yabvided bye; and
install the manager for variabbewith that value. This is exemplified below, where we
omit all restriction to improve readability and wrie, andP5 in place of[e;]°% and
[e21°%°, respectively.

whe.(P1 > (2x0)re.(x)()T |k- close ) |wh.()close | P |re.(?xq)! X.(X1)
5 rws (Pr> ()80 T K- close) [y Bk ()close | Po | re.(?x1)! X.(X1)
Note that[e>]°% is executed concurrently, but may rely on value requestbeo t

manager fox. When[e;]°% produces a concretion, it flows through the pipeline and
activates the invocation te.

rwi> (P1 > (2x)T.(x1)()T |- close) | rw >k ()close | Pz | re.(?x1)! X.(X1)

5 rwt> (FE.(8)()T| (P} > (?x)TE.(x1){)T |k- close)) | rw >k ()close | P2 |re.(?x1)! X.(X1)

= rw (> BYOTI(Py > (x)e(x)) )T k- close)) | rw >k ()close | P2 | r > (Px1)! x.(X1)
Note that the service definition foe is not replicated and thus only one request may

be issued. The value produced p$1]°% is communicated by the client session side

of re to its peer session side, which in turn can install a penrsistervice definition for

variablex (its manager w.r.t. requests i®]°%). The void return prefix on the client

side instance ore is now available and can handshake with the void abstraoticihe

service side instance @fh, enabling the execution afose.

rwt> (r > (8)()T| (P} > (Px))Fe.(x1)()" [k-close)) [rwk ()close [ P2|r > (Pxq)! X.(X1)
St (> O (P} > (2x)Fe.(x1)()" [k-close)) [rwik ()close | P2|r>1x.(8)
N rwe (re>0[(Py > (?x)Te.(x1){)T |k- close))|ry >k close | Pz |r>!x.(8)

The dfect ofclose is to terminate the enclosing session side and to notifyithe |

tenerk (within the client side instance @fh), which in turn will terminate the enclosing
session side.

rwe (re>0[ (P > (2x)TE.(x1)()T|K- close))|rw >k close | P2 |r>!x.(8)
N rwe (re>0[(P; > (?x)Te.(x1)()T |k-close)) | (k)| » O] P2|r>!x.(8)
= ry>(r>0[(P;> (2x)TE(x1)()T | 1(K)|K- close)) | P2 |r>!x.(8)

N rwe (re>0[(Py > (?x)Te.(x1)()T |close)) | P2|r>!x.(8)

= > (r>0[(P} > (x)TB(x1)()1)) | P2 11 x.(8)



Consequently, the nested session sidee@$ also terminated, but not its peer (be-
cause no termination handler was exchanged when the segafocreated). In fact the
manager fox is running inside that peer and we cannot terminate it.

> (r>0[(Py > (x0)Te.(x))()")) | P2 r>!x.(8)
= (> P> (20)Te(x))T) | P2|r>1x.(8)
—* (» 0> (x)E(x)()T) | P2|r>!X(8)

= (0> ()TE(x)OT)[P2|r>!x.(8)

Note that this makes the process not well-balanced, astiaoma dangling session
side that cannot terminate, i.e., the encoding we have geovidoes not satisfy the
graceful closure property.

Exercise 11.Write the CaSPiS processes that encodes e expressiongl)|(2) >
x> (x) and({x) where x :€ (1)|(2). Then write all theCaSPiS processes that can be
reached from them via any number of reductions.

Exercise 12.Write theCaSPiS processes that encodes the expressiorlPORfor the
parallel-or (see Exercise 7).

Exercise 13.Modify the encoding shown in Fig. 12 to guarantee the grddefuni-
nation property. Start by changing the way in which the manaxd x is installed in
the encoding of asymmetric parallel composition. Then,inerthat[e;°% could have
opened many other session sides before cancellation oaocdrience find suitable
policies for invoking sites, expression definitions andilegervices.

4.4 From close-free CaSPiS to pi-calculus

We conclude by sketching an encoding of a fragmer@a$PiS in pi-calculus. In par-
ticular we restrict to consider the close-free fragmenthaut pattern matching and
with a limited form of pipeline (which essentially coinceleith Orc sequencing oper-
ator). Moreover we assume session sides are polarised andr~ > Q.

The encoding of &£aSPiS process is dependent on its context. In particular, one
can imagine that eaciaSPiS process has three dedicated channels: one for the in-
put associated with abstraction prefixes, one for outputa@ated with concretion pre-
fixes and one for output associated with return prefixes.&3pandingly, our encoding

[[P]]icnzcr)ut,ret is parametric w.r.t. three namés, out andret. The encoding is shown in

Fig. 13, where we writeP to denote the dual sessionrdt

The most interesting part of the encoding is concerned veithise definition, ser-
vice invocation, session siding and pipeline. A serviceaation is encoded by creating
two fresh names* andr~ that will be used for intra-session communication: the ser-
vice side will use them for input and output, respectiveigewersa the client side will
use them for output and input, respectively. The presente@hames instead of just
one guarantees that two concurrent processes running aathe session side cannot
interact. Consequently, a session siflaises the name® for input andrP for output.
Note also the name for return in the nested session coinaiidethe name used for
output by its parent. Finally, a pipelirie> (?x)Q must intercept the output &fand use



L7 PSS et 2 Sl PIEES ey
[[('7X)P]]m outret in(x). [[P]]In outret
[WPIET utret = OUKV). [P outret
L' P]]In outret = TEKV). [[P]]In T utret
U PISZS et = U(r P r ). IPTEq o
[u. P]]In outret = 2 (vt ) wrt,ro). [[P]]r t+out
[rP> PIES Joutret — [[P]],p 1P out
[P > (P QU5 utrer 2 (7 PYIPIon et PO)-TIQISZ5 1 et ) fOr P& M(PIQ)
[P1IP2IE% outret = 2 [P “outret! [P21E% outret

[[(V n) P]]In outret — (V n)[P]]In ,outret

|[ P]]m out,ret |[P]]In ,outret

II'>

Fig. 13.Encoding ofCaSPiS in pi-calculus

it to spawn fresh copies d). This is achieved by creating a fresh namthat is used
for output by the encoding d? and that is used as input guard of a replicated process
that spawns the copies of (the encoding@f)

Exercise 14.The encoding ofi-calculus inCaSPiS [[M]]g12C can be combined with
the above encoding ataSPiS in pi-calculus to obtain an encodirfgV 42%>* of A-
calculus in pi-calculus. After giving the explicit defirgti of [x]J42°%%, [Ax.M]i2>
and[MN]42¢?r, compare the encoding with the one defined in Fig. 4 and exii
main diferences, if any.

Then, write the pi-calculus procesgesx. x]|22%* and[[(1x.x)N]42°?%, together with
all reduction steps df(Ax.x)N]22¢% .

A type preserving encoding of (a variant @aSPiS in (a variant of) Honda, Vas-
concelos and Kubo's session calculus has been recentlyedeéfih.eonardo Mezzina’s
PhD thesis [45].

5 Conclusion and future perspectives

In this tutorial we have tried to contribute along the foliag directions: (1) to outline
several key characteristics of Service-Oriented Comgusiystems, (2) to sketch the
basic principles, techniques and formal toofieced by the theory of process calculi,
(3) to show that process calculi can likelffer a convenient formalism for represent-
ing SOC systems, but they need to be empowered by novel nmaglappproaches, de-
veloped at the right level of abstraction, (4) to overviewnsoexisting proposals and
the diferent guidelines they are driven by, (5) to present in detad such proposal,
namelyCaSPiS, and explain the rationale around its design choices, (6htw how



CaSPiS can be related w.r.t. other well-established formalismosthat readers more
familiar with them can catch similarities and get a bettedenstand ofCaSPiS seman-
tics, (7) to show thaCaSPiS mechanism of termination handlers is very expressive,
disciplined and flexible: even if it may look overcomplicdte use, we emphasise that,
up to our knowledge, this is the only proposal able to guamatdisciplined termina-
tion of nested sessions. We conjecture that any mechanishisdfind would be very
complicated to handle in say pi-calculus.

We hope the quite informal level of presentation has beemempted by readers
not familiar with process calculi and may serve as a validsi@slearn more, possibly
with the help of the many simple exercises populating thbri@al sections.

Regarding future work, there is still quite a lot of reseaxche done for refining and
consolidating the dierent process calculi proposed for SOC, for integratingithéth
other more advanced aspects, like transactions and qudlggrvice, for comparing
them and relating them in a formal way. In particular, @aSPiS, the overall objective
is to have a rigorous theoretical framework, with some auattiertools available for
type checking, type inference, quantitative analysis amidr prototyping. We would
like also to integrate other techniques, like those basethoreography, contracts, cor-
relation sets, and multiparty sessions, witliaSPiS, possibly finding seamless ways
to support such concepts on the existing machinery. Cumenk is also concerned
with graphical encoding and concurrent semantics for SO€utausing models based
on hierarchical graphs (that best reflect the nesting of@essand the possibility to op-
erate on the nested session sides as a whole, like when tgmgjatomically a session
side and all its descendants).

References

1. L. Acciai and M. Boreale. A type system for client prograsa service-oriented calculus.
In Festschrift in Honour of Ugo Montanari, on the Occasion o§l8bth Birthday volume
5065 ofLect. Notes in Comput. S@pringer Verlag, 2008. To appear.

2. L.Aceto, A. Ingolfsdéttir, K. Larsen, and J. SriiReactive Systems: Modelling, Specification
and Verification Cambridge University Press, 2007.

3. M. Bartoletti, P. Degano, G. Ferrari, and R. Zunino. Typed dfects for Resource Usage
Analysis. InFoundations of Software Science and Computation StrustlH®SSACS’'Q7
volume 4423 oL ect. Notes in Comput. Scpages 32—47. Springer Verlag, 2007.

4. L. Bettini, R. De Nicola, and M. Loreti. Implementing SiessCentered Calculi. In D. Lea
and G. Zavattaro, editor€oordination Models and Languages (COORDINATION2008)
volume 5052 oL ect. Notes in Comput. Scpages 17-32. Springer Verlag, 2008.

5. C. Bodei, L. Brodo, and R. Bruni. Static detection of lof@wvs in service applications.
In Proceedings of ARSPA-WITS 2009, Joint Workshop on AutdrRaasoning for Security
Protocol Analysis and Issues in the Theory of Secpkiget. Notes in Comput. Sci. Springer
Verlag, 2009. To appear.

6. E. Bonelli and A. Compagnoni. Multisession session tyjpes distributed calculus. In
Proc. of TGC'07 volume 4912 ofLect. Notes in Comput. Scpages 240-256. Springer
Verlag, 2008.

7. M. Boreale, R. Bruni, L. Caires, R. De Nicola, |. Lanese Mdteti, F. Martins, U. Montanatri,
A. Ravara, D. Sangiorgi, V. Vasconcelos, and G. Zavatta®C S service centered calculus.
In Proc. of WS-FM 20086/0lume 4184 of_ect. Notes in Comput. Sgpages 38-57. Springer
Verlag, 2006.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessiamnsl pipelines for structured

service programming. IProc. of FMOODS'08 volume 5051 ofLect. Notes in Comput.
Sci, pages 19-38. Springer Verlag, 2008.

. M. Bravetti and G. Zavattaro. A Foundational Theory of @aats for Multi-party Service

Composition.Fundamenta Informatica®009. To appear.

R. Bruni, R. De Nicola, M. Loreti, and L. Mezzina. Prowalglorrect implementations of
services. InProceedings of TGC 2008, 4th Symposium on Trustworthy Globaputing
Lect. Notes in Comput. Sci. Springer Verlag, 2009. To Appear

R. Bruni and I. Lanese. Parametric synchronizationsahite nominal calculi.Theoretical
Computer Sciencel02(2-3):102-119, 2008.

R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multigesessions in SOC. In D. Lea and
G. Zavattaro, editorRroceedings of COORDINATION 2008, 10th International @cerfice
on Coordination Models and Language®lume 5052 of_ect. Notes in Comput. Scpages
67-82. Springer Verlag, 2008.

R. Bruni, H. Melgratti, and U. Montanari. Nested comnfatsmobile calculi: extending Join.
In J.-J. Lévy, E. Mayr, and J. Mitchell, editoroceedings of the 3rd IFIP-TCS 2004, 3rd
IFIP Intl. Conference on Theoretical Computer Sciemquages 569-582. Kluwer Academic
Publishers, 2004.

R. Bruni, H. Melgratti, and U. Montanari. Theoreticalifwations for compensations in flow
composition languages. IROPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
sysposium on Principles of programming languagesmes 209-220. ACM Press, 2005.

R. Bruni and L. Mezzina. Types and deadlock freedom inleutzs of services, sessions
and pipelines. In G. Rosu and J. Meseguer, editBreceedings of AMAST 2008, 12th
International Conference on Algebraic Methodology and\8afe Technologywolume 5140
of Lect. Notes in Comput. Scpages 100-115. Springer Verlag, 2008.

M. Buscemi and U. Montanari. CC-Pi: A Constraint-Basadduage for Specifying Service
Level Agreements. In R. D. Nicola, editd®roc. of the 16th European Symposium on Pro-
gramming (ESOP 2007yolume 4421 ot ect. Notes in Comput. Scpages 18-32. Springer
Verlag, 2007.

N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavatta€Choreography and orchestration
conformance for system design. Rroc. of COORDINATION’06volume 4038 ofLect.
Notes in Comput. S¢ipages 63-81. Springer Verlag, 2006.

M. Butler, R. Bruni, C. Ferreira, T. Hoare, H. Melgratiind U. Montanari. Comparing
two approaches to compensable flow composition. In M. Abadila de Alfaro, editors,
Proceedings of Concur 2005olume 3653 ofect. Notes in Comput. Scpages 383—397.
Springer Verlag, 2005.

M. Butler, T. Hoare, and C. Ferreira. A trace semanticddng-running transactions. In
A. Abdallah and J. Sanders, editoRrpceedings of 25 Years of CS®lume 3525 ol ect.
Notes in Comput. S¢ipages 133—-150. Springer Verlag, 2005.

L. Caires, H. T. Vieira, and J. C. Seco. The conversataiouwius: A model of service
oriented computation. In S. Drossopoulou, edirpgramming Languages and Systems,
17th European Symposium on Programming, ESOP 206ime 4960 ofLect. Notes in
Comput. Scj.pages 269-283. Springer Verlag, 2008.

M. Carbone, K. Honda, and N. Yoshida. Structured comoaiitin-centred programming
for web services. IfProc. of ESOP’07volume 4421 ol ect. Notes in Comput. Scpages
2-17. Springer Verlag, 2007.

G. Castagna, N. Gesbert, and L. Padovani. A theory ofractst for web services. In
Proceedings of POPL'Q§ages 261-272, New York, NY, USA, 2008. ACM.

W. R. Cook, S. Patwardhan, and J. Misra. Workflow pattérr@rc. In Proc. of COOR-
DINATION’06 volume 4038 of_ect. Notes in Comput. Scpages 82—96. Springer Verlag,
2006.



24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

E. Curtin and M. Warshauer. The locker puzZlbe Mathematical Intelligence8(1):28—
31, 2006.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. Mai€RiS: a markovian extension of
a calculus for services. IRroceedings of SOS 200Blect. Notes in Th. Comput. Sci., 2008.
To appear.

M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Basoulou. A distributed object-
oriented language with session types. Piroc. of TGC’05 volume 3705 ofLect. Notes in
Comput. Scj.pages 299-318. Springer Verlag, 2007.

C. Ene and T. Muntean. A broadcast-based calculus fomaeitating systems. IRroc. of
IPDPS’01 IEEE Computer Society, 2001.

G. Ferrari, R. Guanciale, and D. Strollo. JSCL: A Middiees for Service Coordination.
In Proceedings of FORTE 2006, 26th IFIP WG 6.1 Internationahfécence on Formal
Methods for Networked and Distributed Systermdume 4229 ofLect. Notes in Comput.
Sci, pages 46—-60. Springer Verlag, 2006.

G. Ferrari, R. Guanciale, D. Strollo, and E. Tuosto. @omtion via types in an event-
based framework. IRroc. of FORTE'07volume 4574 of_ect. Notes in Comput. Scpages
66—80, 2007.

S. Gay and M. Hole. Types and subtypes for client-senteractions. IiProc. of ESOP’99
volume 1576 oL ect. Notes in Comput. Scpages 74-90. Springer Verlag, 1999.

R. v. Glabbeek. The linear time — branching time spectiumime semantics of sequential
systems with silent moves (extended abstract). In E. BdigreProceeding€ONCUR’93,
4" |nternational Conference dBoncurrency TheoryHildesheim, Germany, August 1993,
volume 715 ofLect. Notes in Comput. Scpages 66—81. Springer Verlag, 1993.

R. v. Glabbeek. The linear time — branching time spectituthe semantics of concrete,
sequential processes. In J. Bergstra, A. Ponse, and S. §neadlitorsHandbook of Process
Algebrg chapter 1, pages 3-99. Elsevier, 2001.

C. Hoare. A model for communicating sequential procesda On the Construction of
Programs Cambridge University Press, 1980.

K. Honda. Types for dyadic interaction. Rroc. of CONCUR’93volume 4421 of_ect.
Notes in Comput. S¢ipages 509-523. Springer Verlag, 1993.

K. Honda, V. Vasconcelos, and M. Kubo. Language primdtiand type disciplines for
structured communication-based programmingPtac. of ESOP’98volume 1381 ot ect.
Notes in Comput. S¢ipages 22—138. Springer Verlag, 1998.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynoous session types. In
POPL'08 pages 273-284, 2008.

D. Kitchin, W. R. Cook, and J. Misra. A language for taskhastration and its seman-
tic properties. INCONCUR volume 4137 ofLect. Notes in Comput. Scpages 477-491.
Springer Verlag, 2006.

M. Kolundzija. Security types for sessions and pipain@ R. Bruni and K. Wolf, editors,
Proc. of WS-FM 2008/0lume 5387 of ect. Notes in Comput. Sgpages 176—190. Springer
Verlag, 2009.

I. Lanese, V. Vasconcelos, F. Martins, and A. Ravaraciplising orchestration and conver-
sation in service-oriented computing. Pnoc. of SEFM’07 pages 305-314. IEEE Computer
Society Press, 2007.

C. Laneve and L. Padovani. The pairing of contracts asdi®e types. InConcurrency,
Graphs and Models: Essays Dedicated to Ugo Montanari on tteasion of His 65th Birth-
day, volume 5065 ot ect. Notes in Comput. Scpages 681-700. Springer Verlag, 2008.
C. Laneve and G. Zavattaro. Foundations of web tramsatiln V. Sassone, editdfOS-
SACS 2005volume 3441 of_ect. Notes in Comput. Scpages 282-298. Springer Verlag,
2005.



42.

43.

44.

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus fahestration of web services. Rroc.

of ESOP’07 volume 4421 ofLect. Notes in Comput. Scpages 33-47. Springer Verlag,
2007.

A. Lapadula, R. Pugliese, and F. Tiezzi. A formal accafitVS-BPEL. In D. Lea and
G. Zavattaro, editorsProc. of the 10th International Conference on CoordinatMndels
and Languagesvolume 5052 of_ect. Notes in Comput. Scpages 199-215. Springer Ver-
lag, 2008.

L. Mezzina. How to infer finite session types in a calcudfiservices and sessions. In
Proc. of COORDINATION’08volume 5052 of ect. Notes in Comput. Scpages 216—231.
Springer Verlag, 2008.

L. Mezzina.Typing ServicesPhD in Computer Science and Engineering, IMT Institute for
Advanced Studies, Lucca, 2009.

R. Milner. A Calculus of Communicating Systemslume 92 ofLect. Notes in Comput. Sci.
Springer Verlag, 1980.

R. Milner. Functions as process®ath. Struct. in Comput. S¢i2(2):119-141, 1992.

R. Milner. Communicating and Mobile Systems: The pi-calcul@mbridge University
Press, 1997.

R. Milner, J. Parrow, and J. Walker. A calculus of mobitegesses, | and llinform. and
Comput, 100(1):1-40,41-77, 1992.

J. Misra and W. R. Cook. Computation orchestration: Aisbém wide-area computing.
Journal of Software and Systems Mode]iB§06. To appear. A preliminary version of this
paper appeared in the Lecture Notes for NATO summer schedd, &t Marktoberdorf in
August 2004.

G. Plotkin. A structural approach to operational semsanfechnical Report DAIMI FN-19,
Aarhus University, Computer Science Department, 1981.

G. D. Plotkin. The origins of structural operational semics. Journal of Logic and Alge-
braic Programming60-61:3—15, 2004.

G. D. Plotkin. A structural approach to operational setica. Journal of Logic and Alge-
braic Programming60-61:17-139, 2004.

L. Rosaz. Puzzle corner #70: The 50 prisoneBslletin of the European Association for
Theoretical Computer Science (EATCE):229, 2005.

D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order andghir-Order
Paradigms PhD thesis, LFCS, University of Edinburgh, 1993. CST-39%&Iso published
as ECS-LFCS-93-266).

D. Sangiorgi and D. WalkerThe pi-calculus: a theory of mobile processeSambridge
University Press, 2001.

Sensoria Project. Software Engineering for Serviciei@ed Overlay Computers. Public
Web Site. http/sensoria.fast.de

V. Vasconcelos. Fundamentals of session types. In G.aZcd/Bernardo, Luca Padovani,
editor, Formal Methods for Web Servigdsect. Notes in Comput. Sci. Springer Verlag, 2009.
This volume.

I. Wehrman, D. Kitchin, W. R. Cook, and J. Misra. A timednsetics of Orc.Theoretical
Computer Sciencel02(2-3):234-248, August 2008. DOI: 10.1016s.2008.04.037.



