Prototype Platforms for
Distributed Agreements

Dipartimento di Informatica
Universita di Pisa

Alberto Baragatti, Roberto Bruni, Hernan Melgratti,
Ugo Montanari and Giorgio Spagnolo

Motivation

® Orchestration of multi-party negotiations

® Participants cannot be fixed statically

® Participants have a partial view of the whole set of
parties

® To develop a coordination pattern that exploits
the D2PC protocol for orchestrating
agreements

® To build a prototype application

Scenario: Rescue teams

ﬁ?fz

o
@ s

Scenario: Rescue teams

L e

Central

Base ,

v
@ - j Leader_2 Op_1

e

Leader_1 j

P
@ Op_2

Op_3

Scenario: Rescue teams

Scenario: Rescue teams

e
mf' ----------------- Perform A_1

Central \\
Base , \
\
1
]
v

y— f ~,
@ é;)p_z

v
@ - j Leader_2 Op_1

/ e

Op_3

Scenario: Rescue teams

e -
-———
-

v
j ““““ -, Perform
& T~

Scenario: Rescue teams

ﬂ*@ ----------------- \

Central \\
Base , \
\
1
]
v

Leader_1 j -------- >
@ /v:,,vf \\, k\:\f‘*

Op_3 v
¢ U —

@ - jLeader_Z Op_1
D e

Scenario: Rescue teams

ﬂ*@ ----------------- \

Central \\\
Base , \
v

Leader_1 j .
@ DR f il .
v : ,// T L

-
@ - j Leader_2 Op_1

/ e

Op_3

Scenario: Rescue teams

Scenario: Rescue teams

L \

] ~
Central N
\

Base , \

\

1

]

v

Scenario: Rescue teams

(i

[/
Central
Base ,

v @’//'
@ - j Leader_2 Op_1

p

Scenario: Rescue teams

ﬁ?ﬁ"’ ________________ :
o S Exceptions:
\ ; ®The realizes that
j \ is not longer needed
A’;/y; v N \ ‘\
——————— \\\ ‘\ +
f PN - @ @®The prefers to

@ s execute another activity
R

/ \ @ is unable to do

Scenario: Rescue teams

L —

Coppra OB Exceptions:
Base , N
Ll ®The Central realizes that
i j A 1 is not longer needed
g -f’v ,f . k\\‘*
Op_3 A/ ®The Leader 1 prefers to
@ g Op_2 execute another activity
@ - j Leader_2 Op_1
/ \ ®0Op 2isunabletodo A 1

We need an agreement mechanism!

Agreements

® The structure of agreements depends on the
interactions among the different parties.

® Participants can dynamically join a
negotiation.

Operators and leaders are getting involved in a
negotiation during the execution of the
agreement.

Neither the number nor the identity of parties are
know statically.

® Asynchronous communication.

Coordination Pattern

® We rely on the Distributed Two Phase Commit
(D2PC) of [BLM2002]:

A variant of the decentralized 2PC.

Finite but unknown number of participants.

A participant P ready to commit has a partial view
of the set of participants

Only those who directly cooperated with P

P contacts all known partners and learns the
identity of other participants from them.

D2PC: Initial state

D2PC: Initial state

D2PC: Initial state

D2PC: Running

D,B,C

D2PC: Running

D2PC: Running

D2PC: Running

D2PC: Running

D2PC: Running

About the D2PC
® It has been specified in the Join Calculus.

® [t was proposed to encode zero-safe nets in
Join.

® It has been proved to be correct when there are
no failures.

Coordination Pattern

ﬂ?‘fz

Central

Base

Leader_1

g g

Op_3
Op_2

Op_1

Coordination Pattern

1. Initialization:

m’fz Any participant creates a
@ ‘ coordinator to handle the
agreement

a®
® 7©

Coordination Pattern

| 2. Application Logic:
ﬁ?‘fz Participants interact and
@ & exchange the identities of
'\ their coordinators

® ’©

Coordination Pattern

2. Application Logic:

ﬁ?‘f)ﬂ Participants interact and
exchange the identities of
== Central \ . .
| ﬂ Base ‘-, their coordinators
0
Y Jich
Leader_1

0{;@3 7 @©
I®

Coordination Pattern

@9
@ Cer:&t;al

i A I Base

- o

Op_3

2. Application Logic:
Participants interact and
exchange the identities of
their coordinators

Coordination Pattern

Leader_ll
Op_3
put - A

3. Start of the D2PC:

Participants start the
commit protocol either
voting commit or abort

Coordination Pattern

@9
@ Cer:&t;al
Base

Leader_1

Op_3

2®

4.

Op_2

Execution of D2PC:

Coordinators eventually
arrive to an agreement

Coordination Pattern

Op_3

o

Central

[

&

5. Communication of the

result:

Coordinators notifies the
application with the result
of the agreement

'
540

Implementation (1)

® A prototype implementation for a minimal set
of functionalities:

Users exchange textual messages.
Users can decide either to commit or to abort.
Users see the outcome decision.

® Parties have been developed in:
Jocaml + Perl running on Linux.
Polyphonic C# (or Comega) running on .Net.

They can interact, i.e., participate in a
negotiation.

Implementation (2)

® Any party is identified with a unique ID
(provided when the application is launched).

® A configuration file associates IDs to IP
addresses.

® The ports in which parties communicate
depend exclusively on the ID.

Implementation (3)

® Parties communicate through TCP sockets

Implementation (3)

® Parties communicate through TCP sockets

|free text] from
User<ID>

‘ Application l
‘Coordinator'

" Application l
Coordinatorl

Implementation (3)

® Parties communicate through TCP sockets

LOCK-L1;..;ILn-L1-al-
ABORT-

‘ Application l
‘Coordinatorl

‘ Application l
Coordinatorl

Perl+Jocaml Components

® Three-Layer Architecture

Coordinator

Perl+Jocaml Components

® Three-Layer Architecture

PUT-11;..;Ln-L1-al-
ABORT-

Coordinator

Perl+Jocaml Components

® Three-Layer Architecture

PUT-11;..;Ln-
ABORT-
LOCK-11;..;:In-11-al-

Coordinator

Perl+Jocaml Components

® Three-Layer Architecture

Coordinator

FWLOCK-Li-L1;..;Ln-
FWCOMMIT-COMMIT-
FWABT-ABORT-
FWABT-al

Perl+Jocaml Components

® Three-Layer Architecture

COMMIT-
ABORT-

Coordinator

Jocaml Coordinators

® Jocaml is an extension of Ocaml with:
Processes: Expressions + Async Messages.
Channels, i.e., join ports

Join patterns

let def a! h | b! () =
if h < 5 then c() else d();;

Jocaml Coordinators

let

or
or
or
or
or

or

or

let def d2pc () =

def
state! h | abt! () = failed() | fwdabt [h]
failed!() | abt! () = failed ()
failed!() | lock! (11,1,a) = failed () | fwdabt [a]
failed!() | put!(l,a,c) = failed () | fwdabt a
commit!(1l,11,12,c,a) | abt!() = failed() | fwdabt a
commitO!(1l,11,12,c,a) =
match 1 with
[] —> if (equiv 11 12) then fwdcmt [c]
else commit(l,11,12,c,a)
t::ts -> fwdlock(t,11) | commitO(ts,11,12,c,a)
commit!(l,11,12,c,a) | lock!(13,11,f) =
commitO (difference 13 11, union 11 13,
union 12 [11],c,union a [f])
state! h | put! (l,a,c) =
commitO (del lock 1, 1, [lock], c,union a h)

in reply lock,put,commit,state;;

Polyphonic C# Components

® Polyphonic C# extends C# with:

Asynchronous methods: any call is guaranteed to
complete almost immediately.

Chords defined by:

A header: a set of method declarations separated by &.

A body, which is executed only once all the methods in
the header have been called.

Polyphonic C# Components (2)

® Polyphonic C# class for the D2PC

public class D2PC{
public async put (listhost 1, port a, port c);
public async abt();
public async mlock(listhost 11, port 1, port a);

private async state(port h);
private async failed();

when state(port h) & abt(){failed ();...}

when failed() & abt(){failed();}

when failed() & mlock(listhost 11, port a, portl){
failed();}

Polyphonic C# Components (3)

® Class Diagram (partial view).

’
K

(Receiver

W

Lstatic async listen(.. .)J

L Participant JC

0
" é D2pPC A
async put(...)
async abt(...)
_async mlock(...) Y.

[e J
.

(Sender W

Lstatic async sendMsg(.. .)J

A4
.,

Demo ...

Future work

® Extending the D2PC for handling failures.

® Combining the D2PC with the standard 2PC
protocol.

® Adding a mechanism for the dynamic discovery
of participants (instead of using a
configuration file).

® Implementing all the functionalities of the
rescue team scenario.

