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Motivation

® Orchestration of multi-party negotiations

® Participants cannot be fixed statically

® Participants have a partial view of the whole set of
parties

® To develop a coordination pattern that exploits
the D2PC protocol for orchestrating
agreements

® To build a prototype application
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Scenario: Rescue teams
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We need an agreement mechanism!




Agreements

® The structure of agreements depends on the
interactions among the different parties.

® Participants can dynamically join a
negotiation.

Operators and leaders are getting involved in a
negotiation during the execution of the
agreement.

Neither the number nor the identity of parties are
know statically.

® Asynchronous communication.




Coordination Pattern

® We rely on the Distributed Two Phase Commit
(D2PC) of [BLM2002]:

A variant of the decentralized 2PC.

Finite but unknown number of participants.

A participant P ready to commit has a partial view
of the set of participants

Only those who directly cooperated with P

P contacts all known partners and learns the
identity of other participants from them.




D2PC: Initial state
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About the D2PC
® It has been specified in the Join Calculus.

® [t was proposed to encode zero-safe nets in
Join.

® It has been proved to be correct when there are
no failures.




Coordination Pattern
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Coordination Pattern

1. Initialization:

m’fz Any participant creates a
@ ‘ coordinator to handle the
agreement
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| 2. Application Logic:
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2. Application Logic:
Participants interact and
exchange the identities of
their coordinators




Coordination Pattern
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3. Start of the D2PC:

Participants start the
commit protocol either
voting commit or abort




Coordination Pattern
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Execution of D2PC:

Coordinators eventually
arrive to an agreement




Coordination Pattern
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5. Communication of the

result:

Coordinators notifies the
application with the result
of the agreement

'
540




Implementation (1)

® A prototype implementation for a minimal set
of functionalities:

Users exchange textual messages.
Users can decide either to commit or to abort.
Users see the outcome decision.

® Parties have been developed in:
Jocaml + Perl running on Linux.
Polyphonic C# (or Comega) running on .Net.

They can interact, i.e., participate in a
negotiation.




Implementation (2)

® Any party is identified with a unique ID
(provided when the application is launched).

® A configuration file associates IDs to IP
addresses.

® The ports in which parties communicate
depend exclusively on the ID.




Implementation (3)

® Parties communicate through TCP sockets
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Implementation (3)

® Parties communicate through TCP sockets
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Perl+Jocaml Components

® Three-Layer Architecture
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Perl+Jocaml Components

® Three-Layer Architecture
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Jocaml Coordinators

® Jocaml is an extension of Ocaml with:
Processes: Expressions + Async Messages.
Channels, i.e., join ports

Join patterns

let def a! h | b! () =
if h < 5 then c() else d();;




Jocaml Coordinators

let
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let def d2pc () =

def
state! h | abt! () = failed() | fwdabt [h]
failed!() | abt! () = failed ()
failed!() | lock! (11,1,a) = failed () | fwdabt [a]
failed!() | put!(l,a,c) = failed () | fwdabt a
commit!(1l,11,12,c,a) | abt!() = failed() | fwdabt a
commitO!(1l,11,12,c,a) =
match 1 with
[] —> if (equiv 11 12) then fwdcmt [c]
else commit(l,11,12,c,a)
t::ts -> fwdlock(t,11) | commitO(ts,11,12,c,a)
commit!(l,11,12,c,a) | lock!(13,11,f) =
commitO (difference 13 11, union 11 13,
union 12 [11],c,union a [f])
state! h | put! (l,a,c) =
commitO (del lock 1, 1, [lock], c,union a h)

in reply lock,put,commit,state;;




Polyphonic C# Components

® Polyphonic C# extends C# with:

Asynchronous methods: any call is guaranteed to
complete almost immediately.

Chords defined by:

A header: a set of method declarations separated by &.

A body, which is executed only once all the methods in
the header have been called.




Polyphonic C# Components (2)

® Polyphonic C# class for the D2PC

public class D2PC{
public async put (listhost 1, port a, port c);
public async abt();
public async mlock(listhost 11, port 1, port a);

private async state(port h);
private async failed();

when state(port h) & abt(){failed ();...}

when failed() & abt(){failed();}

when failed() & mlock(listhost 11, port a, portl){
failed();}




Polyphonic C# Components (3)

® Class Diagram (partial view).
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Demo ...




Future work

® Extending the D2PC for handling failures.

® Combining the D2PC with the standard 2PC
protocol.

® Adding a mechanism for the dynamic discovery
of participants (instead of using a
configuration file).

® Implementing all the functionalities of the
rescue team scenario.




