A service-oriented UML profile with formal support

Roberto Bruni! ~ Matthias HolzI* Nora Koch?3
Alberto Lluch Lafuente! Philip Mayer? Ugo Montanarit
Andreas Schroeder® Martin Wirsing?

1Dipartimentcr di Informatica, Universita di Pisa
2Cirquent GmbH 3Ludwig—MaximiIians—Universitét Miinchen
Software Engineering for Service-Oriented Overlay Computers (SENSORIA)

7th Int'l Joint Conference on Service Oriented Computing
Stockholm, November 23-27, 2009

INTRODUCTION

SENSORIA’s Development Process

Improvement

Transformation

Business Modelling m I Code Generation

SENSORIA Development Environment

UML4SOA

UML4SOA [KMH™T07] offers a visual modelling language for
Service-Oriented Applications:

» high-level front-end based on de-facto standards (UML2);
» minimalist extension of UML2 (as profiles);
» (model driven) transformations into formal languages.

> (model driven) transformations implementation languages.

UML4SOA Profiles

Profiles for domain specific aspects:
» behaviour;

non-functional properties;

reconfiguration;

policies;

vV v v VY

requirements;

...and style-driven reconfigurations (this talk).

UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on
» graphs as a model of architectural configuration;

» term rewriting as a model of reconfiguration.

UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on
» graphs as a model of architectural configuration;

» term rewriting as a model of reconfiguration.

Why graphs?
» long tradition as a mathematical object for diagrams.

UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on
» graphs as a model of architectural configuration;

> term rewriting as a model of reconfiguration.

Why graphs?
» long tradition as a mathematical object for diagrams.

Why term rewriting?

» long tradition as a model for system dynamics.

Reconfiguration Features of Services

Usually, service descriptions regard functional or QoS aspects.

We focus on architectural reconfiguration features:

» to require services to be able to react to certain events with
well-studied reconfigurations;

» to require services to have a certain well-studied shape which
will drive the reconfiguration.

A simple example of style: filter chains

"filter services that can be combined as a linear chain”

Filter chains: UML-like approach

"A Chain is an instance of the below diagram ...”

Wire

"... and further (OCL/SOL/...) constraints: connected, no cycle,
no branching, ..."

connected = Va, b.VX.((Vx,y(y e XANze€ R(y,z) -z X
AYy.R(a,y) = y € X)) — b e X)

Filter chains: Generative approach

”A Chain can be refined as two concatenated Chains”

Architectural style as context-free (graph) grammar (e.g. [Le 98])
» Non-terminals play the role of styles (e.g. Chain);

» Grammar productions define the language of conformant
architectures (e.g. Chain ::= Chain ; Chain).

Filter chains: Another generative approach

" The concatenation of two Chains forms a Chain”

>

Architectural style as (graph) algebra (e.g. [BLMTO08])
» Sorts play the role of styles (e.g. Chain);

» Operations represent the way of composing conformant
architectures (e.g. A; B : Chain x Chain — Chain).

Architectural reconfiguration as rewrite rules

A simple rule for "swapping” chains: x;y — y; x

PN

This rule

Architectural reconfiguration as rewrite rules

A simple rule for "swapping” chains: x;y — y; x

. ass =

1. matches any (sub)chain s’ of a chain s ;

Architectural reconfiguration as rewrite rules

A simple rule for "swapping” chains: x;y — y; x

This rule

1. matches any (sub)chain s’ of a chain s ;

2. divides s" in any two (sub)chains x; y;

Architectural reconfiguration as rewrite rules

A simple rule for "swapping” chains: x;y — y; x

s S8 =

This rule

1. matches any (sub)chain s’ of a chain s ;

2. divides s" in any two (sub)chains x; y;
3. builds s” as y; x;

Architectural reconfiguration as rewrite rules

A simple rule for "swapping” chains: x;y — y; x

s sse 8

This rule
1. matches any (sub)chain s’ of a chain s ;
2. divides s" in any two (sub)chains x; y;
3. builds s” as y; x;

4. replaces s’ by s” in s.

Some advantages of the operational approach

Design of style-conformant architectures
» Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.
» alternative to

» drop&bind components, check&correct: tedious, error prone;
» model finding (a la Alloy): trial & error, no guidance.

Some advantages of the operational approach

Design of style-conformant architectures
» Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.
» alternative to
» drop&bind components, check&correct: tedious, error prone;
» model finding (a la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

» Style preservation immediate with rule / : T — r: T.
» alternative to

» prove theorems: ad-hoc, manual, limited re-use;
» model checking: inefficient, undecidable in general;
» monitor & repair: no guarantees at design-time;

Some advantages of the operational approach

Design of style-conformant architectures
» Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.
» alternative to

» drop&bind components, check&correct: tedious, error prone;
» model finding (a la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

> Style preservation immediate with rule / : T — r: T.
» alternative to

» prove theorems: ad-hoc, manual, limited re-use;
» model checking: inefficient, undecidable in general;
» monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

» membership to determine style conformance;

» exploration algorithms to find or check reconfiguration plans.
There are of course other pros and cons (see [BBGLO0S]).

UML4SOA PROFILE

UML4SOA's profile main ingredients

» Fragment: a kind of internal structure diagram that describes
an architectural configuration;

UML4SOA's profile main ingredients

<<refinables>>

Chain 2]

<<production> >

Sequence &

<<production>>

single 2]

» Fragment: a kind of internal structure diagram that describes
an architectural configuration;

» Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

UML4SOA's profile main ingredients

<<refinables>>

Chain 2]

<<production>>

single 2]

<<production> >

Sequence &

» Fragment: a kind of internal structure diagram that describes
an architectural configuration;

» Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

» Reconfiguration package: diagrams that specify
reconfiguration rules.

Configurations: Diagrams

< <refinables >

Chain E

i

<<fragment>>
ExampleChain

< <dalagatas >f . < <clelegates >
“ﬂ‘;’p‘”‘;” j-——--? SpantFilter H Virus:Filter T—E‘E\Malware:ﬁuerﬂf ————— — ‘és‘r;”u‘f”

Extended < fragment>> internal structure diagrams:
» Define the internal structure of a (sub)system using
» components (services);
> <service>> ports (required/provided service descriptions);
» connectors (service references);
> < delegate>> dependencies denote which internal ports play
the role of external ports.

Configurations: Underlying Model

< <refinables >

Chain 21

[T

ExampleChain / Configurations as Designs

< <delegate>

< <delegate> > > TypeS > TypeS

SpanxFilter Virus:Filter

Sub-comps — Edges

Ports — Tentacles

>
>
» Connectors — Edges
>

Delegates — Interface

[=| Example Chjn:Ch i

SpanxFilter
O‘—(--—CM—

Virus:Filter

Configurations: Analysis

Does my architecture satisfy some given property?

» Structural property expressed with some logic-based
mechanism (OCL,MSO);

Configurations: Analysis

Does my architecture satisfy some given property?

» Structural property expressed with some logic-based
mechanism (OCL,MSO);

» ...or an ad-hoc spatial logic: the dual of the algebra.

Example: "My Chain is made of two concatenated chains
satisfying ¢ and 1, respectively.” is expressed by ¢ ;).

<<property>>
ExamplePropery

< <delegate > >| < <property>> < <propertys> < <delegate> >
phi & psi

Architectural Styles: Diagrams

<<refinable>>

Chain .

<<production>>

single 8]

<<production> >

sequence 3]

Patterns determine the style-conformant compositions:

» <refineable>> component: an architectural type.

Architectural Styles: Diagrams

<<=production>>
Sequence

< <delegates > < <refinable> > < <refinables > < <delegate> >
[———— _ E“L'pj _ o e s s s e
Chain Chain

Patterns determine the style-conformant compositions:

» <refineable>> component: an architectural type.

» << production>> component: style conformant templates to an
architectural type.

Architectural Styles: Underlying Model

<delegate > >

Sequence

Architectural Styles

< <refinable= >

Chain

\

=T Sequence : C7{nxChain = — hyper-edge replacement

» Production
— Operation

> <refinable>> component
— variables

/ » Substitution

- =0

Cl:Chain

e DRI

C3:Chain

—»O— 4

Architectural Styles: Analysis

Does my style T satisfy some given property ¢?
> Property ¢ expressed in some logical language.
» Proof by structural induction: check ¢ on productions for T.

» Example: "Chains are connected”

» Check that ¢ holds for production Single;
» Assume ¢ holds and check that it holds for a chain built with
Sequence.

Reconfigurations: Diagrams

< <transformation> >

Swap

<<pattern>:
Pre

< <delegate> >| < <refinables > < <refinables> > <<delegate> >
OF————) E i — = —— —{]
x:Chain y:Chain

| < <transforms> >

<<pauern>:
Post

< <delegate > > < <refinables > < «<refinable> > < <delegate> >
[F=———— i {l . —_——————]
y:Chain x:Chain

» <transformation>> packages define system reconfigurations;

> < pattern>> diagrams are system templates specifying the
system structure before and after the transformation;

» <transforms>> dependencies define the direction of the
reconfiguration.

Reconfigurations: Underlying Model

< <transformation= =

Swap
{{pattern}:»
Pre
< <delegate> > el & SIEl Reconflguratlons
x:Chain E y:C
» transformation —

rewrite rule

I
| < <transforms> > pre — lhs

¥

<<pattern=:

Post

< <delegate

“1

» post — rhs

< <refinable> > < <refinable > > < <delegate > >
y:Chain E x:Chain

Reconfigurations: Analysis

Do all reconfigurations satisfy some linear property?

» Standard exploration algorithms of rewrite engines (e.g. LTL
model checking) or semi-automatic verification on rewrite
rules.

» Example: "Filter chains do not grow or decrease”

CONCLUSION

Concluding Remarks

We have developed an extension of a UML4SOA profile:
» Focus on architectural style-driven reconfiguration of SOA;
» Qur formal approach gains a friendly, standard front-end;

» Our UML approach gains formal analysis machinery.

Concluding Remarks

We have developed an extension of a UML4SOA profile:
» Focus on architectural style-driven reconfiguration of SOA;
» Qur formal approach gains a friendly, standard front-end;

» Our UML approach gains formal analysis machinery.

Current and future work:
» Integrate the approach in the UML4SOA Tools;
» Concilitate the approach with UML4SOA-R;

» Conciliate with algebraic semantics of MOF.

Credits and Pointers |

Papers

B Antonio Bucchiarone, Roberto Bruni, Stefania Gnesi, and Alberto Lluch Lafuente.
Graph-Based Design and Analysis of Dynamic Software Architectures.
In Concurrency, Graph and Models, volume 5065 of LNCS. Springer Verlag, 2008.

@ Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tuosto.
Style Based Architectural Reconfigurations.
Bulletin of the European Association for Theoretical Computer Science (EATCS), 94:161-180, 2008

@ Nora Koch, Philip Mayer, Reiko Heckel, LaszI6 Génczy, and Carlo Montangero.
D1.4a: UML for Service-Oriented Systems.
Specification, SENSORIA Project 016004, 2007

ﬁ Daniel Le Métayer.
Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7):521-533, 1998

Links
» http://www.sensoria-ist.eu/
» http://www.uml4soa.eu/profile/
» http://www.albertolluch.com/adr

http://www.sensoria-ist.eu/
http://www.uml4soa.eu/profile/
http://www.albertolluch.com/adr

THANKS!

	Introduction
	UML4SOA
	Configurations
	Architectural Styles
	Reconfigurations

	Conclusion

