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INTRODUCTION



SENSORIA’s Development Process



UML4SOA

UML4SOA [KMH+07] offers a visual modelling language for
Service-Oriented Applications:

I high-level front-end based on de-facto standards (UML2);

I minimalist extension of UML2 (as profiles);

I (model driven) transformations into formal languages.

I (model driven) transformations implementation languages.



UML4SOA Profiles

Profiles for domain specific aspects:

I behaviour;

I non-functional properties;

I reconfiguration;

I policies;

I requirements;

. . . and style-driven reconfigurations (this talk).



UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on

I graphs as a model of architectural configuration;

I term rewriting as a model of reconfiguration.

Why graphs?

I long tradition as a mathematical object for diagrams.

Why term rewriting?

I long tradition as a model for system dynamics.
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Reconfiguration Features of Services

Usually, service descriptions regard functional or QoS aspects.

We focus on architectural reconfiguration features:

I to require services to be able to react to certain events with
well-studied reconfigurations;

I to require services to have a certain well-studied shape which
will drive the reconfiguration.



A simple example of style: filter chains

”filter services that can be combined as a linear chain”



Filter chains: UML-like approach

”A Chain is an instance of the below diagram ...”

”... and further (OCL/SOL/. . . ) constraints: connected, no cycle,
no branching, . . . ”

connected ≡ ∀a, b.∀X .((∀x , y(y ∈ X ∧ z ∈ R(y , z)→ z ∈ X
∧∀y .R(a, y)→ y ∈ X ))→ b ∈ X )



Filter chains: Generative approach

”A Chain can be refined as two concatenated Chains”

Architectural style as context-free (graph) grammar (e.g. [Le 98])

I Non-terminals play the role of styles (e.g. Chain);

I Grammar productions define the language of conformant
architectures (e.g. Chain ::= Chain ; Chain).



Filter chains: Another generative approach

”The concatenation of two Chains forms a Chain”

Architectural style as (graph) algebra (e.g. [BLMT08])

I Sorts play the role of styles (e.g. Chain);

I Operations represent the way of composing conformant
architectures (e.g. A; B : Chain× Chain→ Chain).



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.
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Some advantages of the operational approach

Design of style-conformant architectures

I Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.

I alternative to
I drop&bind components, check&correct: tedious, error prone;
I model finding (à la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

I Style preservation immediate with rule l : T → r : T .
I alternative to

I prove theorems: ad-hoc, manual, limited re-use;
I model checking: inefficient, undecidable in general;
I monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

I membership to determine style conformance;

I exploration algorithms to find or check reconfiguration plans.

There are of course other pros and cons (see [BBGL08]).
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I model finding (à la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

I Style preservation immediate with rule l : T → r : T .
I alternative to

I prove theorems: ad-hoc, manual, limited re-use;
I model checking: inefficient, undecidable in general;
I monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

I membership to determine style conformance;

I exploration algorithms to find or check reconfiguration plans.

There are of course other pros and cons (see [BBGL08]).



UML4SOA PROFILE



UML4SOA’s profile main ingredients

I Fragment: a kind of internal structure diagram that describes
an architectural configuration;

I Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

I Reconfiguration package: diagrams that specify
reconfiguration rules.
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Configurations: Diagrams

Extended �fragment� internal structure diagrams:
I Define the internal structure of a (sub)system using

I components (services);
I �service� ports (required/provided service descriptions);
I connectors (service references);

I �delegate� dependencies denote which internal ports play
the role of external ports.



Configurations: Underlying Model

Configurations as Designs

I Types 7→ Types

I Sub-comps 7→ Edges

I Ports 7→ Tentacles

I Connectors 7→ Edges

I Delegates 7→ Interface



Configurations: Analysis

Does my architecture satisfy some given property?

I Structural property expressed with some logic-based
mechanism (OCL,MSO);

I . . . or an ad-hoc spatial logic: the dual of the algebra.

Example: ”My Chain is made of two concatenated chains
satisfying φ and ψ, respectively.” is expressed by φ ;ψ.
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Architectural Styles: Underlying Model

Architectural Styles

I Production
7→ Operation

I �refinable� component
7→ variables

I Substitution
7→ hyper-edge replacement



Architectural Styles: Analysis

Does my style T satisfy some given property φ?

I Property φ expressed in some logical language.

I Proof by structural induction: check φ on productions for T .
I Example: ”Chains are connected”

I Check that φ holds for production Single;
I Assume φ holds and check that it holds for a chain built with

Sequence.



Reconfigurations: Diagrams

I �transformation� packages define system reconfigurations;
I �pattern� diagrams are system templates specifying the

system structure before and after the transformation;
I �transforms� dependencies define the direction of the

reconfiguration.



Reconfigurations: Underlying Model

Reconfigurations

I transformation 7→
rewrite rule

I pre 7→ lhs

I post 7→ rhs



Reconfigurations: Analysis

Do all reconfigurations satisfy some linear property?

I Standard exploration algorithms of rewrite engines (e.g. LTL
model checking) or semi-automatic verification on rewrite
rules.

I Example: ”Filter chains do not grow or decrease”



CONCLUSION



Concluding Remarks

We have developed an extension of a UML4SOA profile:

I Focus on architectural style-driven reconfiguration of SOA;

I Our formal approach gains a friendly, standard front-end;

I Our UML approach gains formal analysis machinery.

Current and future work:

I Integrate the approach in the UML4SOA Tools;

I Concilitate the approach with UML4SOA-R;

I Conciliate with algebraic semantics of MOF.
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