
A service-oriented UML profile with formal support

Roberto Bruni1 Matthias Hölzl3 Nora Koch2,3

Alberto Lluch Lafuente1 Philip Mayer3 Ugo Montanari1

Andreas Schroeder3 Martin Wirsing2

1Dipartimento di Informatica, Università di Pisa
2Cirquent GmbH 3Ludwig-Maximilians-Universität München

Software Engineering for Service-Oriented Overlay Computers (SENSORIA)

7th Int’l Joint Conference on Service Oriented Computing
Stockholm, November 23-27, 2009



INTRODUCTION



SENSORIA’s Development Process



UML4SOA

UML4SOA [KMH+07] offers a visual modelling language for
Service-Oriented Applications:

I high-level front-end based on de-facto standards (UML2);

I minimalist extension of UML2 (as profiles);

I (model driven) transformations into formal languages.

I (model driven) transformations implementation languages.



UML4SOA Profiles

Profiles for domain specific aspects:

I behaviour;

I non-functional properties;

I reconfiguration;

I policies;

I requirements;

. . . and style-driven reconfigurations (this talk).



UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on

I graphs as a model of architectural configuration;

I term rewriting as a model of reconfiguration.

Why graphs?

I long tradition as a mathematical object for diagrams.

Why term rewriting?

I long tradition as a model for system dynamics.



UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on

I graphs as a model of architectural configuration;

I term rewriting as a model of reconfiguration.

Why graphs?

I long tradition as a mathematical object for diagrams.

Why term rewriting?

I long tradition as a model for system dynamics.



UML4SOA profile for style-driven reconfiguration

UML notation for a formal approach based on

I graphs as a model of architectural configuration;

I term rewriting as a model of reconfiguration.

Why graphs?

I long tradition as a mathematical object for diagrams.

Why term rewriting?

I long tradition as a model for system dynamics.



Reconfiguration Features of Services

Usually, service descriptions regard functional or QoS aspects.

We focus on architectural reconfiguration features:

I to require services to be able to react to certain events with
well-studied reconfigurations;

I to require services to have a certain well-studied shape which
will drive the reconfiguration.



A simple example of style: filter chains

”filter services that can be combined as a linear chain”



Filter chains: UML-like approach

”A Chain is an instance of the below diagram ...”

”... and further (OCL/SOL/. . . ) constraints: connected, no cycle,
no branching, . . . ”

connected ≡ ∀a, b.∀X .((∀x , y(y ∈ X ∧ z ∈ R(y , z)→ z ∈ X
∧∀y .R(a, y)→ y ∈ X ))→ b ∈ X )



Filter chains: Generative approach

”A Chain can be refined as two concatenated Chains”

Architectural style as context-free (graph) grammar (e.g. [Le 98])

I Non-terminals play the role of styles (e.g. Chain);

I Grammar productions define the language of conformant
architectures (e.g. Chain ::= Chain ; Chain).



Filter chains: Another generative approach

”The concatenation of two Chains forms a Chain”

Architectural style as (graph) algebra (e.g. [BLMT08])

I Sorts play the role of styles (e.g. Chain);

I Operations represent the way of composing conformant
architectures (e.g. A; B : Chain× Chain→ Chain).



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.



Architectural reconfiguration as rewrite rules

A simple rule for ”swapping” chains: x ; y → y ; x

This rule

1. matches any (sub)chain s ′ of a chain s ;

2. divides s ′ in any two (sub)chains x ; y ;

3. builds s ′′ as y ; x ;

4. replaces s ′ by s ′′ in s.



Some advantages of the operational approach

Design of style-conformant architectures

I Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.

I alternative to
I drop&bind components, check&correct: tedious, error prone;
I model finding (à la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

I Style preservation immediate with rule l : T → r : T .
I alternative to

I prove theorems: ad-hoc, manual, limited re-use;
I model checking: inefficient, undecidable in general;
I monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

I membership to determine style conformance;

I exploration algorithms to find or check reconfiguration plans.

There are of course other pros and cons (see [BBGL08]).



Some advantages of the operational approach

Design of style-conformant architectures

I Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.

I alternative to
I drop&bind components, check&correct: tedious, error prone;
I model finding (à la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

I Style preservation immediate with rule l : T → r : T .
I alternative to

I prove theorems: ad-hoc, manual, limited re-use;
I model checking: inefficient, undecidable in general;
I monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

I membership to determine style conformance;

I exploration algorithms to find or check reconfiguration plans.

There are of course other pros and cons (see [BBGL08]).



Some advantages of the operational approach

Design of style-conformant architectures

I Style-driven design-by-refinement: replace a variable
(unspecified sub-component) by a term of the same type.

I alternative to
I drop&bind components, check&correct: tedious, error prone;
I model finding (à la Alloy): trial & error, no guidance.

Style-preserving reconfigurations

I Style preservation immediate with rule l : T → r : T .
I alternative to

I prove theorems: ad-hoc, manual, limited re-use;
I model checking: inefficient, undecidable in general;
I monitor & repair: no guarantees at design-time;

Rewrite engines support analysis

I membership to determine style conformance;

I exploration algorithms to find or check reconfiguration plans.

There are of course other pros and cons (see [BBGL08]).



UML4SOA PROFILE



UML4SOA’s profile main ingredients

I Fragment: a kind of internal structure diagram that describes
an architectural configuration;

I Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

I Reconfiguration package: diagrams that specify
reconfiguration rules.



UML4SOA’s profile main ingredients

I Fragment: a kind of internal structure diagram that describes
an architectural configuration;

I Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

I Reconfiguration package: diagrams that specify
reconfiguration rules.



UML4SOA’s profile main ingredients

I Fragment: a kind of internal structure diagram that describes
an architectural configuration;

I Patterns: a kind of class diagrams that define an architectural
style in an inductive manner;

I Reconfiguration package: diagrams that specify
reconfiguration rules.



Configurations: Diagrams

Extended �fragment� internal structure diagrams:
I Define the internal structure of a (sub)system using

I components (services);
I �service� ports (required/provided service descriptions);
I connectors (service references);

I �delegate� dependencies denote which internal ports play
the role of external ports.



Configurations: Underlying Model

Configurations as Designs

I Types 7→ Types

I Sub-comps 7→ Edges

I Ports 7→ Tentacles

I Connectors 7→ Edges

I Delegates 7→ Interface



Configurations: Analysis

Does my architecture satisfy some given property?

I Structural property expressed with some logic-based
mechanism (OCL,MSO);

I . . . or an ad-hoc spatial logic: the dual of the algebra.

Example: ”My Chain is made of two concatenated chains
satisfying φ and ψ, respectively.” is expressed by φ ;ψ.



Configurations: Analysis

Does my architecture satisfy some given property?

I Structural property expressed with some logic-based
mechanism (OCL,MSO);

I . . . or an ad-hoc spatial logic: the dual of the algebra.

Example: ”My Chain is made of two concatenated chains
satisfying φ and ψ, respectively.” is expressed by φ ;ψ.



Architectural Styles: Diagrams

Patterns determine the style-conformant compositions:

I �refineable� component: an architectural type.

I �production� component: style conformant templates to an
architectural type.



Architectural Styles: Diagrams

Patterns determine the style-conformant compositions:

I �refineable� component: an architectural type.

I �production� component: style conformant templates to an
architectural type.



Architectural Styles: Underlying Model

Architectural Styles

I Production
7→ Operation

I �refinable� component
7→ variables

I Substitution
7→ hyper-edge replacement



Architectural Styles: Analysis

Does my style T satisfy some given property φ?

I Property φ expressed in some logical language.

I Proof by structural induction: check φ on productions for T .
I Example: ”Chains are connected”

I Check that φ holds for production Single;
I Assume φ holds and check that it holds for a chain built with

Sequence.



Reconfigurations: Diagrams

I �transformation� packages define system reconfigurations;
I �pattern� diagrams are system templates specifying the

system structure before and after the transformation;
I �transforms� dependencies define the direction of the

reconfiguration.



Reconfigurations: Underlying Model

Reconfigurations

I transformation 7→
rewrite rule

I pre 7→ lhs

I post 7→ rhs



Reconfigurations: Analysis

Do all reconfigurations satisfy some linear property?

I Standard exploration algorithms of rewrite engines (e.g. LTL
model checking) or semi-automatic verification on rewrite
rules.

I Example: ”Filter chains do not grow or decrease”



CONCLUSION



Concluding Remarks

We have developed an extension of a UML4SOA profile:

I Focus on architectural style-driven reconfiguration of SOA;

I Our formal approach gains a friendly, standard front-end;

I Our UML approach gains formal analysis machinery.

Current and future work:

I Integrate the approach in the UML4SOA Tools;

I Concilitate the approach with UML4SOA-R;

I Conciliate with algebraic semantics of MOF.



Concluding Remarks

We have developed an extension of a UML4SOA profile:

I Focus on architectural style-driven reconfiguration of SOA;

I Our formal approach gains a friendly, standard front-end;

I Our UML approach gains formal analysis machinery.

Current and future work:

I Integrate the approach in the UML4SOA Tools;

I Concilitate the approach with UML4SOA-R;

I Conciliate with algebraic semantics of MOF.



Credits and Pointers I

Papers
Antonio Bucchiarone, Roberto Bruni, Stefania Gnesi, and Alberto Lluch Lafuente.

Graph-Based Design and Analysis of Dynamic Software Architectures.
In Concurrency, Graph and Models, volume 5065 of LNCS. Springer Verlag, 2008.

Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tuosto.

Style Based Architectural Reconfigurations.
Bulletin of the European Association for Theoretical Computer Science (EATCS), 94:161–180, 2008.

Nora Koch, Philip Mayer, Reiko Heckel, László Gönczy, and Carlo Montangero.

D1.4a: UML for Service-Oriented Systems.
Specification, SENSORIA Project 016004, 2007.

Daniel Le Métayer.

Describing software architecture styles using graph grammars.
IEEE Transactions on Software Engineering, 24(7):521–533, 1998.

Links

I http://www.sensoria-ist.eu/

I http://www.uml4soa.eu/profile/

I http://www.albertolluch.com/adr

http://www.sensoria-ist.eu/
http://www.uml4soa.eu/profile/
http://www.albertolluch.com/adr


THANKS!


	Introduction
	UML4SOA
	Configurations
	Architectural Styles
	Reconfigurations

	Conclusion

