
An Algebra of Hierarchical Graphs

Roberto Bruni
(joint-work with Fabio Gadducci and Alberto Lluch)

Department of Computer Science, University of Pisa
Software Engineering for Service-Oriented Overlay Computers

TGC 2010
5th Symposium on Trustworthy Global Computing

Munich (Germany), February 24-26, 2010.

Outline

Introduction

A Running Example

Hierarchical Graphs

An Algebra of Hierarchical Graphs

Conclusion

Graphs are pervasive to Computer Science

Some advantages of graphs (up to isomorphism):

I names are helpful but inessential;

I element placement is helpful but inessential;

I connections between elements are essential

Algebras vs Graphs in distributed systems

Goal

Flexible Graph-based representation of Service oriented systems

Mobile systems (names in π-calculus vs nodes in graphs)

Service oriented systems

sessions, transactions, ambients: which graphs for containment?

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Which graphs?

Which graphs?

Which graphs?

Which graphs?

Main technical problem: representation distance

grammar, structural
congruence, etc.

adjacency matrix,
tuples, sets,
morphisms

solution: graph algebras

Main technical problem: representation distance

solution: graph algebras

Main result: a flexible, general intermediate language

workflow

language

process

calculus

architecture

description

language

etc.

suitable

graph

algebra

nested

graphs

gs-graphs

bigraphs

etc.

Main result: a flexible, general intermediate language

workflow

language

process

calculus

architecture

description

language

etc.

suitable

graph

algebra

nested

graphs

gs-graphs

bigraphs

etc.

Outline

Introduction

A Running Example

Hierarchical Graphs

An Algebra of Hierarchical Graphs

Conclusion

Running Example: Long running transactions

We shall consider a simple language for transactions with

I sequential composition;

I parallel (split-join) composition;

I compensating activity;

I scope of compensation.

Analogous to the Nested Sagas of [BMM05].

Process terms and their graphical representations

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow %

compensation flow
[nested flow]

Process terms and their graphical representations

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow %

compensation flow
[nested flow]

Process terms and their graphical representations

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow %

compensation flow

[nested flow]

Process terms and their graphical representations

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow %

compensation flow
[nested flow]

Main technical goal: mapping coherent wrt. equivalence

flow1

a

| b

| [c % d]

flow2

b

| [c % d]

| a

graphterm1

Bus[p .

host(p,a)

| host(p)

...

]

graphterm2

Bus[p .

host(p)

...

| host(p,a)

]

graph1

graph2

Main technical goal: mapping coherent wrt. equivalence

flow1

a

| b

| [c % d]

flow2

b

| [c % d]

| a

graphterm1

Bus[p .

host(p,a)

| host(p)

...

]

graphterm2

Bus[p .

host(p)

...

| host(p,a)

]

graph1

graph2

Main technical goal: mapping coherent wrt. equivalence

flow1

a

| b

| [c % d]

flow2

b

| [c % d]

| a

graphterm1

Bus[p .

host(p,a)

| host(p)

...

]

graphterm2

Bus[p .

host(p)

...

| host(p,a)

]

graph1

graph2

Outline

Introduction

A Running Example

Hierarchical Graphs

An Algebra of Hierarchical Graphs

Conclusion

Graph layers

N universe of nodes
A = AE] AD universe of edges

The set L of graph layers is the set of tuples G = 〈NG ,EG , tG ,FG 〉
where

1. EG ⊆ A is a (finite) set of edges,

2. NG ⊆ N a (finite) set of nodes,

3. tG : EG → N∗G a tentacle function, and

4. FG ⊆ NG a set of free nodes.

The set P ⊆ L of plain graphs contains those graph layers G such
that EG ⊆ AE .
(standard notion of hypergraph plus a chosen set of free nodes)

Hierarchical graphs

The set H of hierarchical graphs is the least set containing all the
tuples G = 〈NG ,EG , tG , iG , xG , rG ,FG 〉 where

1. 〈NG ,EG , tG ,FG 〉 is a graph layer;

2. iG : EG ∩ AD → H (embedding function);

3. xG : EG ∩ AD → N ∗ (exposure function), s.t. for all
e ∈ EG ∩ AD
3.1 bxG (e)c ⊆ NiG (e) \ FiG (e), (free nodes of inner graphs not

exposed)
3.2 |xG (e)| = |tG (e)|, (same arity for exposure and tentacle func.)
3.3 ∀n,m ∈ N, xG (e)[n] = xG (e)[m] iff tG (e)[n] = tG (e)[m];

4. rG : EG ∩ AD → (NG ↪→ N) is a renaming function, s.t. for
all e ∈ EG ∩ AD, rG (e)(NG) = FiG (e).

(for this talk, we can assume rG (e) is the ordinary inclusion)

A hierarchical graph and its simplified representation

a graph layer (free nodes x and y)

A hierarchical graph and its simplified representation

embedding function iG

A hierarchical graph and its simplified representation

exposure function xG

A hierarchical graph and its simplified representation

renaming function rG

A hierarchical graph and its simplified representation

informal notation (free nodes x and y)

Hierarchical graph isomorphism

The actual model of hierarchical graphs has a suitable notion of
isomorphism.

Hierarchical graph isomorphism

The actual model of hierarchical graphs has a suitable notion of
isomorphism.

Hierarchical graph morphism (formally)

Let G , H be graphs such that FG ⊆ FH .
A graph morphism φ : G−→H is a tuple 〈φN , φE , φI 〉 where

1. φN : NG → NH is a node morphism,

2. φE : EG → EH an edge morphism, and

3. φI = {φe | e ∈ EG ∩ AD} a family of graph morphisms
φe : iG (e)−→iH(φE (e)) such that

3.1 ∀e ∈ EG , φN(tG (e)) = tH(φE (e)), i.e. the tentacle function is
respected;

3.2 ∀e ∈ EG ∩ AD, φeN(xG (e)) = xH(φE (e)), i.e. the exposure
function is respected;

3.3 ∀e ∈ EG ∩ AD, ∀n ∈ NG , φeN(rG (e)(n)) = rH(φE (e))(φN(n)),
i.e. the renaming function is respected;

3.4 ∀n ∈ FG , φN(n) = n, i.e. the free nodes are preserved.

Outline

Introduction

A Running Example

Hierarchical Graphs

An Algebra of Hierarchical Graphs

Conclusion

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0

| x | l〈x〉 | G|H | (νx)G | D〈y〉

the empty graph

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0 | x

| l〈x〉 | G|H | (νx)G | D〈y〉

a node called x

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0 | x | l〈x〉

| G|H | (νx)G | D〈y〉

an (hyper)edge labelled with l attached to x

for instance, a〈p,q,r〉

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0 | x | l〈x〉 | G|H

| (νx)G | D〈y〉

parallel composition: disjoint union up to common nodes

for instance, a〈p,q,r〉 | a〈p,q,r〉

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0 | x | l〈x〉 | G|H

| (νx)G | D〈y〉

parallel composition: disjoint union up to common nodes

for instance, a〈p,q,r〉 | a〈p,q,r〉

The syntax of the graph algebra

D ::= Lx [G]

G,H ::= 0 | x | l〈x〉 | G|H | (νx)G

| D〈y〉

declaration of a new node x

for instance, (νs) (a〈p,s,r〉 | b〈s,q,r〉)

The syntax of the graph algebra

D ::= Lx [G]
G,H ::= 0 | x | l〈x〉 | G|H | (νx)G

| D〈y〉

graph G with interface of type L exposing x

for instance, Sp,q,s[(νr)flow〈p, q, r, q, s〉]

The syntax of the graph algebra

D ::= Lx [G]
G,H ::= 0 | x | l〈x〉 | G|H | (νx)G | D〈y〉

a nested graph attached to y

for instance, D〈a,b,c〉

The syntax of the graph algebra

D ::= Lx [G]
G,H ::= 0 | x | l〈x〉 | G|H | (νx)G | D〈y〉

a nested graph attached to y

for instance, D〈a,b,c〉, with D=Sp,q,s[(νr)flow〈p, q, r, q, s〉]

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)

(νx)(νy)G ≡ (νy)(νx)G (DA4)
(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx [G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x | G ≡ G if x ∈ fn(G) (DA9)
Lx [z | G]〈y〉 ≡ z | Lx [G]〈y〉 if z 6∈ bxc (DA10)

Axioms DA1–DA8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)

(νx)(νy)G ≡ (νy)(νx)G (DA4)
(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx [G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x | G ≡ G if x ∈ fn(G) (DA9)
Lx [z | G]〈y〉 ≡ z | Lx [G]〈y〉 if z 6∈ bxc (DA10)

Axioms DA1–DA8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)

(νx)(νy)G ≡ (νy)(νx)G (DA4)
(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx [G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x | G ≡ G if x ∈ fn(G) (DA9)
Lx [z | G]〈y〉 ≡ z | Lx [G]〈y〉 if z 6∈ bxc (DA10)

Axioms DA1–DA8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)

(νx)(νy)G ≡ (νy)(νx)G (DA4)
(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx [G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x | G ≡ G if x ∈ fn(G) (DA9)
Lx [z | G]〈y〉 ≡ z | Lx [G]〈y〉 if z 6∈ bxc (DA10)

Axioms DA1–DA8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G | H ≡ H | G (DA1)
G | (H | I) ≡ (G | H) | I (DA2)

G | 0 ≡ G (DA3)

(νx)(νy)G ≡ (νy)(νx)G (DA4)
(νx)0 ≡ 0 (DA5)

G | (νx)H ≡ (νx)(G | H) if x 6∈ fn(G) (DA6)

Lx [G] ≡ Ly [G{y/x}] if byc ∩ fn(G) = ∅ (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x | G ≡ G if x ∈ fn(G) (DA9)
Lx [z | G]〈y〉 ≡ z | Lx [G]〈y〉 if z 6∈ bxc (DA10)

Axioms DA1–DA8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Encoding

The encoding J·K, mapping (well-formed) terms into graphs, is the
function inductively defined as (letting
JGK = 〈NG,EG, tG, iG, xG, rG,FG〉)

J0K = 〈∅, ∅,⊥,⊥,⊥,⊥, ∅〉
JxK = 〈{x}, ∅,⊥,⊥,⊥,⊥, {x}〉

Jl〈x〉K = 〈bxc, {e}, e 7→ x ,⊥,⊥,⊥, bxc〉
JG | HK = JGK⊕ JHK
J(νx)GK = 〈NG,EG, tG, iG, xG, rG,FG \ x〉

JLx [G]〈y〉K = 〈NG, {e′}, e′ 7→ y , e′ 7→ JGK⊕ JbycK, e′ 7→ x ,
e′ 7→ idNG , (FG \ bxc) ∪ byc〉

where e ∈ Al and e ′ ∈ AL.

Main Result

It is worth to remark that the encoding is surjective, i.e. every
graph can be denoted by a term of the algebra.

Theorem

Let G be a graph. Then, there exists a well-formed term G
generated by the design algebra such that G is isomorphic to JGK.

Moreover, our encoding is sound and complete, meaning that
equivalent terms are mapped to isomorphic graphs and vice versa.

Theorem

Let G1, G2 be well-formed terms generated by the design algebra.
Then, G1 ≡ G2 if and only if JG1K is isomorphic to JG2K.

Outline

Introduction

A Running Example

Hierarchical Graphs

An Algebra of Hierarchical Graphs

Conclusion

Concluding remarks

The approach. . .

I Grounds on widely-accepted models;

I Simplifies the graphical representation of complex systems;

I Hides the complexity of hierarchical graphs;

I Enables proofs by structural induction;

I Has been evaluated on various kinds of languages;

I Nesting and sharing features suitable for modelling SOC
features such as transactions or sessions;

I Experimental implementation in RL/Maude (support for
theorem proving, model checking, simulation, etc.);

I Offers a technique for complementing textual and visual
notations in formal tools.

Visualizer: adr2graphs

Related work

GS-Graphs [CG99, FM00]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related work

GS-Graphs [CG99, FM00]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related work

GS-Graphs [CG99, FM00]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related Work

Bigraphs [JM03]

I nesting + linking

I 2 overlapping structures,
complex syntax, no composition
interface, flat

Graph Algebra, SHR [CMR94]

I basic algebra

I flat, no composition interface

Related Work

Bigraphs [JM03]

I nesting + linking

I 2 overlapping structures,
complex syntax, no composition
interface, flat

Graph Algebra, SHR [CMR94]

I basic algebra

I flat, no composition interface

Credits and references I

[BMM05] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari.
Theoretical foundations for compensations in flow composition languages.
In Jens Palsberg and Mart́ın Abadi, editors, POPL, pages 209–220. ACM, 2005.

[CG99] Andrea Corradini and Fabio Gadducci.
An algebraic presentation of term graphs, via gs-monoidal categories. applied categorical structures.
Applied Categorical Structures, 7:7–299, 1999.

[CMR94] Andrea Corradini, Ugo Montanari, and Francesca Rossi.
An abstract machine for concurrent modular systems: CHARM.
Theoretical Compututer Science, 122(1&2):165–200, 1994.

[DHP02] Frank Drewes, Berthold Hoffmann, and Detlef Plump.
Hierarchical graph transformation.
Journal on Computer and System Sciences, 64(2):249–283, 2002.

[FM00] G.L. Ferrari and U. Montanari.
Tile formats for located and mobile systems.
Inform. and Comput., 156(1-2):173–235, 2000.

[Gad03] Fabio Gadducci.
Term graph rewriting for the pi-calculus.
In Atsushi Ohori, editor, Proceedings of the 1st Asian Symposium on Programming Languages and
Systems, volume 2895 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

[JM03] O. H. Jensen and R. Milner.
Bigraphs and mobile processes.
Technical Report 570, Computer Laboratory, University of Cambridge, 2003.

Note: Some figures have been borrowed from the referred papers.

	Introduction
	A Running Example
	Hierarchical Graphs
	An Algebra of Hierarchical Graphs
	Conclusion

