An Algebra of Hierarchical Graphs

Roberto Bruni
(joint-work with Fabio Gadducci and Alberto Lluch)

Department of Computer Science, University of Pisa
Software Engineering for Service-Oriented Overlay Computers

TGC 2010
5th Symposium on Trustworthy Global Computing
Munich (Germany), February 24-26, 2010.

Outline

Introduction

Graphs are pervasive to Computer Science

Some advantages of graphs (up to isomorphism):
» names are helpful but inessential;
> element placement is helpful but inessential;

» connections between elements are essential

Algebras vs Graphs in distributed systems

Goal

Flexible Graph-based representation of Service oriented systems

Mobile systems (names in 7-calculus vs nodes in graphs)

#(2).Z0.0 | Tw.0 (va)(vy)x(z).Zy.0

Service oriented systems

sessions, transactions, ambients: which graphs for containment?

Calculi vs Graphs

Algebraic

» Terms
alb

elements

Graph-based

» Graphs (diagrams)
flat, hierarchical, etc.

Calculi vs Graphs

Algebraic Graph-based
» Terms elements » Graphs (diagrams)
alb flat, hierarchical, etc.
» Operations vocabulary » Graph compositions
L WX W W

Union, tensor, etc.

Calculi vs Graphs

Algebraic
» Terms
alb
» Operations
i Wx W= W
» Axioms
x|y=ylx

Graph-based

elements » Graphs (diagrams)
flat, hierarchical, etc.

vocabulary » Graph compositions
Union, tensor, etc.

equivalence » Homomorphisms

isomorphism, etc.

Calculi vs Graphs

Algebraic

» Terms
alb

» Operations
i Wx W= W

» Axioms
x|y=ylx

» Rewrite rules
a—b

elements

vocabulary

equivalence

dynamics

Graph-based
» Graphs (diagrams)
flat, hierarchical, etc.

» Graph compositions
Union, tensor, etc.

» Homomorphisms
isomorphism, etc.

» Transformation rules

S —

- \\
ol o N
\ d)
Nt

Which graphs?

Which graphs?

Which graphs?

=] Seq

= Seq

Which graphs?

[=] Seq

Main technical problem: representation distance

Definition 15 (processes). Let U be a set of names. A process P is a term
generated by the syntaz

P =0 | M | (waP | PP
M oi= M+M | AP

Definition 15 (processes). Let i be a set of names. A process P is a term
generated by

grammar, structural
congruence, etc.

where a,b € ¢

where a,b e

Definition 22 (bigraph) adjacency matrlx, 3= (Vietrd,GT,GM) : I—J

vhere: T = . X) and 3y bini idth (a fini

:[:;re {m. an tU ples SetS ch con:n ining a width (a finite :
cach | Definition % rphisms). A hypergraph G is
and3 a triple (Eq. morphlsms f edges, N¢ is the set of nodes,

and tg : Eq —
Let G, H be thMﬂup/Ls A (111/1)97(/7/1])11) morphism f: G — H is a pair of

functions fr: E¢ — En. fn : No — Ny preserving the tentacle function.

Main technical problem: representation distance

Definition 15 (processes). Let U be a set of names. A process P is a term
generated by the syntaz

P
Moz

0 | M | (va)P
M+M | AP

PP

Definition 17

«eniei s sOlution: graph algebras

where a,b e

) P|_U1' _ {ul"ﬂ, if a € fn(P)
idy ® ve ®idp) o [[P{*/a}llcyor otherwise
L2 |Qlr = LPlr « 1Qlr [la(®)-Plr = (ina.c @ idr) o [P{*/o}l{eyor
lollr =o0p®or [[@.Plir = (outap @idr)o | Plr

where a,b el

[Olx =1AX [PIQlx =[PIx A[Qlx [(*)P]x = 4.0 ﬂP]],\u{ﬂ,

[z2.P]x = get™ o [P]x [z2.P]x = send™ o [P]x
WWa)Fjp = niden(4" “/at]pqn) [t)-£7J5 = OuTijnl|L]
[P | QI = par, ([PI5, [Q1) [i(y)-Pl;, = iny, n([P{"“/ H,LH)
[0];, = nil, [M + NJ3 = choicen([M]5, [N]5)
Definition 22 (bigraph)
where: I = (m,X) and J
ordin

cach | Definition 7

and3 a triple (Ec, Na.ta) such that E¢ is the set of edges, N¢ is the set of nodes,
and te : Eq — N§ is the tentacle function.

Let G, H be hypergraphs. A (hypergraph) morphism f : G — H is a pair of
functions fr: E¢ — En. fn : No — Ny preserving the tentacle function.

Main result: a flexible, general intermediate language

workflow
1anguage nested
) graphs
_—
process
calculus gs-graphs
- —_—
architecture bigraphs
description
language
’ etc.
_
etc.

Main result: a flexible, general intermediate language

workflow
1anguage nested
) graphs
_
process
calculus s-graphs
v suitable gsTerep
> R —
graph
algebra
architecture bigraphs
description
language
’ etc.
_
etc.

Outline

A Running Example

Running Example: Long running transactions

We shall consider a simple language for transactions with

> sequential composition;

v

parallel (split-join) composition;

» compensating activity;

v

scope of compensation.

Analogous to the Nested Sagas of [BMMO5].

Process terms and their graphical representations

taskl ; task2 ; task3

Process terms and their graphical representations

O—Pp taskl ——PpO—Pp 1ask2 ——PpO—P 1aska —PO

Py

taskl ; task2 ; task3

taskl | task2 | task3

Process terms and their graphical representations

O—Pp taskl ——PpO—Pp 1ask2 ——PpO—P 1aska —PO

Py

taskl ; task2 ; task3

taskl | task2 | task3

|
|
|
f
o compensation

flow

ordinary flow Y%
compensation flow

Process terms and their graphical representations

taskil

; task2 ; task3

taskl

| task2

| task3

ordinary flow Y%
compensation flow

Main technical goal: mapping coherent wrt. equivalence

graphl
a
| b
I [

Main technical goal: mapping coherent wrt. equivalence

graphl
a
| b
I [

| [chdl

| a

Main technical goal: mapping coherent wrt. equivalence

graphl
a
| b
I [

| [chdl

| a

Outline

Hierarchical Graphs

Graph layers

N universe of nodes
A = Ag W Ap universe of edges

The set £ of graph layers is the set of tuples G = (Ng, Eg, tg, Fg)
where

1. Eg C Ais a (finite) set of edges,

2. Ng C N a (finite) set of nodes,

3. tg : Ec — N¢ a tentacle function, and

4. Fc C Ng a set of free nodes.

The set P C L of plain graphs contains those graph layers G such
that Eg C Ag.
(standard notion of hypergraph plus a chosen set of free nodes)

Hierarchical graphs

The set H of hierarchical graphs is the least set containing all the
tuples G = (Ng, Eg, tg, ic, XG, G, FG) where

1. (Ng, Eg, tg, Fg) is a graph layer;

2. i : Eg N Ap — H (embedding function);

3. xg : Ec N Ap — N™ (exposure function), s.t. for all

ec EcNAp

3.1 |xc(e)] € Nig(e) \ Fic(e), (free nodes of inner graphs not
exposed)

3.2 |xg(e)| = |tc(€)|, (same arity for exposure and tentacle func.)

33 Vn,meN, xg(e)[n] = xg(e)[m] iff teg(e)[n] = tec(e)[m];

4. rg: EgcNAp — (Ng <= N) is a renaming function, s.t. for
all e € Eg N Ap, rg(e)(Ng) = Fi(;(e)-

(for this talk, we can assume rg(e) is the ordinary inclusion)

A hierarchical graph and its simplified representation

1eDI1] webi2]

£ Ow 1\/
El e2iA
el

1(22)(2]]

a graph layer (free nodes x and y)

A hierarchical graph and its simplified representation

1e1)(1] v wel)z]

El e2iA

o Yo

X el
Eo 3

e2)(2])

embedding function ig

A hierarchical graph and its simplified representation

e[l

e2)(2]

E

x(el)[1]
u

3 XeD)[2]
©

O x

v

el:A

v

ow
= e2:A
Yo
X
x(e2)[2] O u u
O . O
®(e2)[1.

exposure function xg

t(21)(2]

te2)[1]

A hierarchical graph and its simplified representation

= el:A
eyl x(El)lllU v tely[2]
P
ey,
[QDA e
N Ire2)
\ V¥
Y, ! 1e2)1]
e [0« z] v
O O
w2l " X)L

renaming function r¢g

A hierarchical graph and its simplified representation

= eliA E A

eyl x(El)lllU v tely[2]
. oG] (B,
s, v 5 \;<
i E] €A eh)
3 r(e2) vz [l AY
. J o e
e [0« z] v - &
O O
w2l " X)L

informal notation (free nodes x and y)

Hierarchical graph isomorphism

The actual model of hierarchical graphs has a suitable notion of
isomorphism.

Hierarchical graph isomorphism

The actual model of hierarchical graphs has a suitable notion of
isomorphism.

Hierarchical graph morphism (formally)

Let G, H be graphs such that Fg C Fp.
A graph morphism ¢ : G—H is a tuple (¢n, ¢, ¢;) where
1. ¢n : Ng¢ — Np is a node morphism,
2. ¢ : E¢ — Ey an edge morphism, and
3. ¢y ={¢°| e € Ec N Ap} a family of graph morphisms
¢° 1 ig(e)=in(pe(e)) such that

3.1 Ve € Eg, ¢n(tc(e)) = tn(pe(e)), i.e. the tentacle function is
respected;

3.2 Ve € Ec N Ap, ¢x(xc(€)) = xu(pe(e)), i.e. the exposure
function is respected;

33 Vee€ EcNAp, Vn € Ng, ¢o3(re(e)(n)) = ru(de(e))(on(n)),
i.e. the renaming function is respected;

3.4 Vn € Fg, ¢n(n) = n, i.e. the free nodes are preserved.

Outline

An Algebra of Hierarchical Graphs

The syntax of the graph algebra

GH == 0

the empty graph

The syntax of the graph algebra

G,H == 0 |x

a node called x

X

o

The syntax of the graph algebra

GH == 0 |x |/(x)
an (hyper)edge labelled with / attached to X
R q
o—>d—*°

:

r

for instance, a(p,q,r)

The syntax of the graph algebra

GH == 0 |x |/{(x) |GH

parallel composition: disjoint union up to common nodes

for instance, a(p,q,r) | a(p,q,r)

The syntax of the graph algebra

GH == 0 |x |/{(x) |GH
parallel composition: disjoint union up to common nodes

d

d

for instance, a(p,q,r) | a(p,q,r)

The syntax of the graph algebra

GH == 0 |x |I{(x) |GH | (vx)G

declaration of a new node x
LY

.‘-_.\. meEEEEy .
. ~— "y
v —~ e,

for instance, (vs) (a(p,s,r) | b(s,q,r))

The syntax of the graph algebra

D

G,H

Lx[G]

0 |x |I{x) |GH | (vx)G

graph G with interface of type L exposing X

for instance, Sy qs[(vr)flow(p,q,r,q,s)]

[m]

=

The syntax of the graph algebra

D = L%[G]
GH == 0 |x |[I{x) |GH |(vx)G |D(y)

a nested graph attached to y
a E S b

Q\t —>°
D

:

C

for instance, D(a,b,c)

The syntax of the graph algebra

D = Lx[G]
GH == 0 |x [Ix) |GH | ()G |D(y)
a nested graph attached to y
= s
a b

for instance, D(a,b,c), with D=S; o s[(vr)flow(p,q,r,q,s)]

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G|H = H|G (DA1)
G|H|I) = (G|H)|I (DA2)
G|0 = G (DA3)

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G|H
G| (H|I)
G|o

(vx)(vy)G
(vx)0
G | (vx)H

H|G
(G|H)|I
G

(vy)(vx)G
0
(vx)(G | H)

if x € fn(G)

(DA1)
(DA2)
(DA3)

(DA4)
(DA5)
(DA6)

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G|H
G| (H|I)
G|o

(vx)(vy)G
(vx)0
G | (vx)H

L<[G]
(vx)G

H|G
(G|H)|I
G

(vy)(vx)G
0
(vx)(G | H)

Ly[G{”/}]
(vy)G{"/x}

if x € fn(G)

if |[y] Nm(G)=10
if y & fn(G)

(DA1)
(DA2)
(DA3)

(DA4)
(DA5)
(DA6)

(DAT)
(DA8)

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G|H
G| (H|I)
G|o

(vx)(vy)G
(vx)0
G | (vx)H

L<[G]
(vx)G

x| G
Lx[z | G](y)

H|G
(G|H)|I
G

(vy)(vx)G
0
(vx)(G | H)

Ly[G{”/}]
(vy)G{"/x}

G
z | Lx[G](y)

if x € fn(G)

if |[y] Nm(G)=10
if y & fn(G)

if x € fn(G)
if z¢ |X]

(DA1)
(DA2)
(DA3)

(DA4)
(DA5)
(DA6)

(DAT)
(DA8)

(DA9)
(DA10)

Structural congruence axioms

Isomorphism is elegantly captured by structural axioms.

G|H = H|G (DA1)
G|(H|I) = (G|H)|T (DA2)
G|0 = G (DA3)
vx)(vy)G = (vy)(vx)G (DA4)
(¥x)0 = 0 (DA5)
G|l(wx)H = (vx)(G|H) ifx¢ (G) (DAG)
I[C] = LAG{"/x}] if [y]nfn(G)=0 (DAT7)
(vx)G = (vy)G{’/x} ify & Mm(G) (DAB8)
x|G = G if x € fn(G) (DA9)
L[z |Glly) = z|L[GKy) ifz¢|[x] (DA10)

Axioms DA1-DAS8 are rather standard and thus intuitive to those
familiar with (nominal) process calculi.

Encoding

The encoding [-], mapping (well-formed) terms into graphs, is the
function inductively defined as (letting
[[G]] = <NG7 Eg, tg, Ic, XG, 1G> FG))

[0 = (0,0,L,1,1, 1, 0)
IxI = {x},0,L,L, 1,1 {x})
[[/<Y>]] = <LYJ7{e}7e’—>77J-’J-»J-7 I_YD
[G|H = [G]o[H]
[[(VX)G]] = (N@,E@J@,i@X@,r&F@\x)
[GIF)] = (Ne,{e'}, e =y, = [Gla[y]],e —%,

e idng, (Fe \ [X]) U 7))
where e € Ajand €' € A;.

Main Result

It is worth to remark that the encoding is surjective, i.e. every
graph can be denoted by a term of the algebra.

Theorem

Let G be a graph. Then, there exists a well-formed term G
generated by the design algebra such that G is isomorphic to [G].

Moreover, our encoding is sound and complete, meaning that
equivalent terms are mapped to isomorphic graphs and vice versa.

Theorem

Let G1, Gy be well-formed terms generated by the design algebra.
Then, Gy = Gy if and only if [G1] is isomorphic to [G2].

Outline

Conclusion

Concluding remarks

The

approach. ..

Grounds on widely-accepted models;

Simplifies the graphical representation of complex systems;
Hides the complexity of hierarchical graphs;

Enables proofs by structural induction;

Has been evaluated on various kinds of languages;

Nesting and sharing features suitable for modelling SOC
features such as transactions or sessions;

Experimental implementation in RL/Maude (support for
theorem proving, model checking, simulation, etc.);

Offers a technique for complementing textual and visual
notations in formal tools.

Visualizer: adr2graphs

Corewddbid (e
(o) adr2graphs: a simple visuali... 3 |
adr2graphs

a simple visualiser of algebraic specifications

1) Choose the input language?: [network topologies (alpha)
2) Choose the ouput format: | formal hierarchical graph | ¢

3) Enter a term in the box below.
~view!->

host
| < host % host(*a") ; host >
| < host % { host ; host("a") } >

El

1Use the following syntax (blanks are mandatory)

where x is a channel name given as a doubly-quoted string
example:

Done

SubLine

Related work

GS-Graphs [CG99, FMO00]

» syntactical structure, algebraic
presentation

» flat (hierarchy-as-tree)

Related work

GS-Graphs [CG99, FMO00]

» syntactical structure, algebraic
presentation

» flat (hierarchy-as-tree)
Ranked Graphs [Gad03]

» node sharing, calculi encoding

» no composition interface, flat

Related work

GS-Graphs [CG99, FMO00]
» syntactical structure, algebraic
presentation

» flat (hierarchy-as-tree)
Ranked Graphs [Gad03]

» node sharing, calculi encoding
» no composition interface, flat
Hierarchical Graphs [DHP02]
» basic model, composition
interface

» no node sharing, no algebraic
syntax

S VD SEN S

A B0 |

Related Work

Bigraphs [JM03]
» nesting + linking

» 2 overlapping structures,
complex syntax, no composition
interface, flat

Related Work

Bigraphs [JM03]

» nesting + linking

» 2 overlapping structures,
complex syntax, no composition
interface, flat

Graph Algebra, SHR [CMR94]

» basic algebra

» flat, no composition interface

Credits and references |

[BMMO05]

[CGo9]

[CMR94]

[DHPO2]

[FM00]

[Gado3]

[JMo3]

Roberto Bruni, Hernan C. Melgratti, and Ugo Montanari.
Theoretical foundations for compensations in flow composition languages.
In Jens Palsberg and Martin Abadi, editors, POPL, pages 209-220. ACM, 2005.

Andrea Corradini and Fabio Gadducci.
An algebraic presentation of term graphs, via gs-monoidal categories. applied categorical structures.
Applied Categorical Structures, 7:7-299, 1999.

Andrea Corradini, Ugo Montanari, and Francesca Rossi.
An abstract machine for concurrent modular systems: CHARM.
Theoretical Compututer Science, 122(1&2):165-200, 1994.

Frank Drewes, Berthold Hoffmann, and Detlef Plump.
Hierarchical graph transformation.
Journal on Computer and System Sciences, 64(2):249-283, 2002.

G.L. Ferrari and U. Montanari.
Tile formats for located and mobile systems.
Inform. and Comput., 156(1-2):173-235, 2000.

Fabio Gadducci.

Term graph rewriting for the pi-calculus.

In Atsushi Ohori, editor, Proceedings of the 1st Asian Symposium on Programming Languages and
Systems, volume 2895 of Lecture Notes in Computer Science, pages 37-54. Springer, 2003

O. H. Jensen and R. Milner.
Bigraphs and mobile processes.
Technical Report 570, Computer Laboratory, University of Cambridge, 2003.

Note: Some figures have been borrowed from the referred papers.

	Introduction
	A Running Example
	Hierarchical Graphs
	An Algebra of Hierarchical Graphs
	Conclusion

