Workshop in Issues in the Theory of
Security

Static Detection of Logic Flaws
in Service Applications

C. Bodeil, L. Brodo?, R. Brunil
! Dipartimento di Informatica, Universita di Pisa

2 Dipartimento di Scienze dei Linguaggi,
Universita di Sassari

28-29 March 2009 WITS'09 - York, UK

Web services scenario

@) ==
W
On-line shopping,
information services,
bank operations,
etc.. [Personal Information|
0 o i

P07 | EHA
325 o R
“mo3 Ey-

Customers are supposed to precisely follow the intended order
of the transaction steps

28-29 March 2009 WITS'09 - York, UK 2

Web services

W A claimed service

=
I B

= Opening a session

3 >
Step 1
ST;p n

Executing the steps

28-29 March 2009 WITS'09 - York, UK

Web services

W A claimed service

W] 0® 1w T
g << L

= Opening a session

I Step 1 ’
Stepn Executing the steps
A new kind of attacker, different from the Dolev-Yao: the malicious costumer

28-29 March 2009 WITS'09 - York, UK 4

W b .

L
Lo N ect Value -1
Ewven Longer Labe
One More Label: - Value 1
Label:
Longer bel: Select Value -] —

=l Ewven Longer Labe

q‘\? Primary Action / / \.

___ c®—§:_1_

Nested web service calls are usual: the API mechanism

28-29 March 2009 WITS'09 - York, UK

Web service logics

There is a claimed goal, but
there could be other hidden functionalities !

28-29 March 2009 WITS'09 - York, UK

Intuitive Idea

[cryptography is perfect]
Semantic Security Attacks ¢ Crypto-protocols

Application Logic Attaks : Service Specifications
[underlying protocols are perfect]

A language for web service:
CaSPiS

P:= p,q =
s.P service definition + | — session polarities
v.P service invocation
>mP guarded sum T s
rPp P run-time session
b (?x) input
P>(?x) Q pipeline
<V> output
(V n) P restriction N
<V> session return
P|Q parallel
P replication

28-29 March 2009 WITS'09 - York, UK 8

A language for web service:
CaSPiS

|

Ex. of service invocationarun time:sP|sQ = (vr)r>P | rd>Q

— \ T

Q P

28-29 March 2009 WITS'09 - York, UK 9

A language for web service:

CaSPiS

_ N\
| [
(v)'Q Q

28-29 March 2009 WITS'09 - York, UK 10

Bank Credit Request example
S = Bank | Controller | Client

Bank = r'eq~(?Yba) Ch—k°<Yba>(?\'vcms)°<Wcms>T
Controller = chk.(?z,,)<ans>

Client = req. <ba>(?x,,¢)<ans>"

* req is the service definition of the Bank;
* bank invokes the chk service offered by the Controller to check the

client balance asset

28-29 March 2009 WITS'09 - York, UK 11

BCR example

S= Bank | Controller | Client

Bank = req.(?y,,) c_hk.<yba>(?wans).<wans>T

Controller = chk.(?z,)<ans>

o

Client = req. <ba>(?x,,)<ans> '

S—» (VFreg) (Freg DYoo) - | Preq b <ba>.) | Contr='§'

ST (V) (Mg ™D chk<ba> .. | Preq > (?Zb0)-.) | Contr

28-29 March 2009 WITS'09 - York, UK 12

Static analysis, framework

web service

All kind of
custumers

Coe

specification

Control Flow

Q Analysis

Dangerl

28-29 March 2009 WITS'09 - York, UK 13

CFA analysis

I records which action and service prefixes are included in
the scope due to services, sessions and pipelines

R maps a variable to the set of names it can be bound to

o records the actual position in the nested structure of
sessions and pipelines

IR— P

In two steps:
1. analysing the nested structure
2. approximating the execution

28-29 March 2009 WITS’09 - York, UK 14

Bank

BCR example

S= Bank | Controller | Client

= req.(?Ype) ChK<yp > (PWgng) Wy !

Controller = chk.(?z,)<ans>

Clien

1 = req. <ba>(?x,,)<ans> '

S—» (VFreg) (Preg D@ Yoo - | Fegd <ba>.) | Contr = &

S' T (V rugg) (Peeq > chksba> | r o> (224,)..) | Contr

28-29 March 2009 WITS'09 - York, UK

15

CFA at work

First step:
IR — Bank | Controller |Client

I,R describes the initial process

Second step of the analysis:

IR takes the possible dynamics
intfo account

28-29 March 2009 WITS'09 - York, UK

I(*) S req,req, ..
I(PQQ) =] (7 YbG)I Chk
R =

I(*) D Py I

req ' req —

I(r‘r'e,q +) => (7 Yba)z Chk
I(reeq) 2 <ba>
R(Yba) = bCl

16

On-line shop service
example

S = (Shop | Price_chk) | Client

* the client invokes sell and chooses an item
» sell is the service definition of the Shop

* Shop invokes chk service offered by the
—_ Price_checker for the price of the item

* Price_checker comunicates the price
directly to the client

 Shop does not check the price

price,

s{
s \‘@
W

28-29 March 2009 WITS'09 - York, UK 17

On-line shop service
example

S = (Shop | Price_chk) | Client

Shop = sell.Z; ((item))

(m<.<i-|-em>(xpri e)<item, Xppice” 1

|
(Ok).(PAY, Ypr'ice) *
(ko)))

Price_chk = chk. Z; ((item;) <price>)

Client = sell. <itemp(item;,x,.;..).

<ok, Xopice > * <ko>

* the client invokes sell and chooses an item
» sell is the service definition of the Shop

« Shop invokes chk service offered by the
Price_checker for the price of the item

* Price_checker comunicates the amount ot
payment directly to the client

*Shop does not check the price

28-29 March 2009 WITS'09 - York, UK 18

The attacker ... at work

(Shop | Price_chk) | Client

*Shop does not check the price
* the maliciuos customer alters
the price field, using a faked price

sell E B!
| / o
.,El] faked_price chk
price,
\@‘

28-29 March 2009 WITS’09 - York, UK 19

Which kind of attacker?

Different from Dolev-Yao attacker |

28-29 March 2009 WITS'09 - York, UK

20

Modeling the attacker

Malicious customer's knowledge:

Synchronization in session r
«wv> € I(r) N P?x) € I(r)—> v € R(X)
If malicious customer is executing input:

veK

If malicious customer is executing output:

V¥ Vv:ivVeKkK — Vv € R(x)

(Knowledge Rule 1) v €N — » VEK
(Knowledge Rule 2) ViV, € K VL VPE K
(Knowledge Rule 3) Vv,..V> € K — V,.v, €K

28-29 March 2009 WITS'09 - York, UK

21

The attacker ... at work

IRK M (Shop|Price_chk)| Client

K Sprice, faked_price

faked_price R(Y,rice) 2 price;, faked_price

price,

(1
oy
()i

28-29 March 2009 WITS'09 - York, UK 22

CFA results: a fault in business

All kind of

28-29 March 2009 WITS'09 - York, UK 23

Conclusion

+ We focus on the right level of
abstraction to describe service
application design (e.g. CaSPiS)

* We distil automatic techniques to
detect logic flaws at design time:

- Control Flow Analysis

28-29 March 2009

WITS’09 - York, UK

25

On-line shop service
example

S = (Shop | Price_chk) | Client
Shop = sell.Z; ((item))
(chk<item>(Xppice) <item, X, pice> !

|
(ok).PAY

+

(ko)))

Price_chk = chk. %; ((item;) <price>) | «sell is the service definition of the Shop;
- * Shop invokes chk service offered by the
Client = sell. <item>(item; X, pice)- Price_checker .
e Price_checker comunicates the amount ot

<K, Xprice > + <ko> payment directly to the client.

28-29 March 2009 WITS'09 - York, UK 26

CFA at work

First step: B
IR’ (Shop | Price_chk) | I(*) >.sellgsell,
Client chk
I(sell) > chk
R =

Second step of the analysis:
I*) = Psell, " chk

IR — S L(r+sn) 3 r-an

28-29 March 2009 WITS'09 - York, UK 27

Stopping the attacker

Shop = sell.Z; ((item))
(Chk.<iTem>(Xprice).<Xprice>T > (yPrice) <iTeml Ypr‘ice>

((O k, YPrice)'PAy

+

(ko)))
Price_chk = chk. Z; ((item;) <price>)
Client = sell. <item>(item; X,pice)-

<ok, Xorice > + <ko>

28-29 March 2009 WITS'09 - York, UK

28

