
28-29 March 2009 WITS’09 - York, UK 1

Workshop in Issues in the Theory of
Security

Static Detection of Logic Flaws
in Service Applications

C. Bodei1, L. Brodo2,, R. Bruni1

1 Dipartimento di Informatica, Università di Pisa

2 Dipartimento di Scienze dei Linguaggi,
Università di Sassari

28-29 March 2009 WITS’09 - York, UK 2

Web services scenario

Customers are supposed to precisely follow the intended order
of the transaction steps

28-29 March 2009 WITS’09 - York, UK 3

Web services
A claimed service

Opening a session

Executing the steps

28-29 March 2009 WITS’09 - York, UK 4

Web services

A new kind of attacker, different from the Dolev-Yao: the malicious costumer

A claimed service

Opening a session

Executing the steps

28-29 March 2009 WITS’09 - York, UK 5

Web services

Nested web service calls are usual: the API mechanism

28-29 March 2009 WITS’09 - York, UK 6

Web service logics

There is a claimed goal, but
there could be other hidden functionalities !

Intuitive Idea

[cryptography is perfect]

Semantic Security Attacks : Crypto-protocols

=
Application Logic Attaks : Service Specifications

[underlying protocols are perfect]

28-29 March 2009 WITS’09 - York, UK 8

A language for web service:
CaSPiS

P ::=
s.P service definition

v.P service invocation

Σπ.P guarded sum

rp P run-time session

P > (?x) Q pipeline

(ν n) P restriction

P|Q parallel

!P replication

p, q ::=
 + | － session polarities

π, π′::=
 (?x) input

 <v> output

 <v>↑ session return

28-29 March 2009 WITS’09 - York, UK 9

A language for web service:
CaSPiS

s.P
s.Q

PQ

Ex. of service invocation a run time : s.P | s.Q → (ν r) r- P | r+ Q

28-29 March 2009 WITS’09 - York, UK 10

A language for web service:
CaSPiS

(?x)P〈v〉Q P[v/x]Q

〈v〉↑Q
〈v〉

Q

28-29 March 2009 WITS’09 - York, UK 11

Bank Credit Request example
S = Bank | Controller | Client

Bank = req.(?yba) chk.<yba>(?wans).<wans>↑

Controller = chk.(?zba)<ans>

Client = req. <ba>(?xans)<ans>↑

• req is the service definition of the Bank;
• bank invokes the chk service offered by the Controller to check the

client balance asset

28-29 March 2009 WITS’09 - York, UK 12

BCR example
 S= Bank | Controller | Client

Bank = req.(?yba) chk.<yba>(?wans).<wans>↑

Controller = chk.(?zba)<ans>

Client = req. <ba>(?xans)<ans>↑

req

chk

S (ν rreq) (rreq + (? yba) … | rreq
- <ba>…) | Contr= S’

(ν rreq) (rreq + chk.<ba> … | rreq
- (?zba)…) | Contr

 S’

28-29 March 2009 WITS’09 - York, UK 13

Static analysis, framework

web service
specification

Control Flow
Analysis

All kind of
custumersCaspis

28-29 March 2009 WITS’09 - York, UK 14

CFA analysis
I records which action and service prefixes are included in

the scope due to services, sessions and pipelines
R maps a variable to the set of names it can be bound to
σ records the actual position in the nested structure of

sessions and pipelines

I,R P

In two steps:
1. analysing the nested structure
2. approximating the execution

σ

28-29 March 2009 WITS’09 - York, UK 15

BCR example
S= Bank | Controller | Client

Bank = req.(?yba) chk.<yba>(?wans).<wans>↑

Controller = chk.(?zba)<ans>

Client = req. <ba>(?xans)<ans>↑

S (ν rreq) (rreq + (? yba) … | rreq
- <ba>…) | Contr = S’

(ν rreq) (rreq + chk.<ba> … | rreq
- (?zba)…) | ContrS’

28-29 March 2009 WITS’09 - York, UK 16

CFA at work
First step:

 I,R Bank | Controller |Client

 I,R describes the initial process

Second step of the analysis:

 I,R takes the possible dynamics

 into account

σ
I(*) ∋ req,req, …
I(req) ∋ (? yba), chk
R = ∅

I(*) ∋ rreq + rreq -
I(rreq +) ∋ (? yba), chk
I(rreq -) ∋ <ba>
R(yba) ∋ ba

28-29 March 2009 WITS’09 - York, UK 17

On-line shop service
example

sell

chk

 pricei

S = (Shop | Price_chk) | Client

• the client invokes sell and chooses an item
• sell is the service definition of the Shop
• Shop invokes chk service offered by the
Price_checker for the price of the item
• Price_checker comunicates the price
directly to the client
• Shop does not check the price

28-29 March 2009 WITS’09 - York, UK 18

On-line shop service
example

S = (Shop | Price_chk) | Client
Shop = sell.Σi ((itemi)

(chk.<item>(xprice).<item, xprice>↑

 |
 (ok).(PAY, yprice) +
 (ko)))
Price_chk = chk. Σi ((itemi) <price>)

Client = sell. <itemi>(itemi,xprice).
 <ok, xprice > + <ko>

• the client invokes sell and chooses an item
• sell is the service definition of the Shop
• Shop invokes chk service offered by the
Price_checker for the price of the item
• Price_checker comunicates the amount ot
payment directly to the client
•Shop does not check the price

28-29 March 2009 WITS’09 - York, UK 19

The attacker … at work
 (Shop | Price_chk) | Client

sell

chk

 pricei

faked_price

•Shop does not check the price
• the maliciuos customer alters
the price field, using a faked price

28-29 March 2009 WITS’09 - York, UK 20

Which kind of attacker?

Different from Dolev-Yao attacker !

28-29 March 2009 WITS’09 - York, UK 21

Modeling the attacker

Synchronization in session r
<v> ∈ I(r) ∧ (?x) ∈ I(r)

 If malicious customer is executing input:
 v ∈ K
 If malicious customer is executing output:
 V v’ : v’ ∈ K v’ ∈ R(x)

(Knowledge Rule 1) v ∈ N v ∈ K
(Knowledge Rule 2) v1,...,vn ∈ K <v1,...,vn>∈ K
(Knowledge Rule 3) <v1,...,vn> ∈ K v1,...,vn ∈ K

Malicious customer's knowledge:

v ∈ R(x)

28-29 March 2009 WITS’09 - York, UK 22

The attacker … at work
 I,R,K (Shop | Price_chk) | Client

σ

K ∋pricei,faked_price
R(yprice) ∋ pricei,faked_price

sell

chk

 pricei

faked_price

28-29 March 2009 WITS’09 - York, UK 23

CFA results: a fault in business
logic

web service
specification

Control Flow
Analysis

All kind of
custumersCaspis

phishing

data validations

cr
os

s
da

ta
ch

ec
ks

Conclusion

• We focus on the right level of
abstraction to describe service
application design (e.g. CaSPiS)

• We distil automatic techniques to
detect logic flaws at design time:
– Control Flow Analysis

28-29 March 2009 WITS’09 - York, UK 25

Thank you.

28-29 March 2009 WITS’09 - York, UK 26

On-line shop service
example

S = (Shop | Price_chk) | Client
Shop = sell.Σi ((itemi)

(chk.<item>(xprice).<item, xprice>↑

 |
 (ok).PAY

 +
 (ko)))
Price_chk = chk. Σi ((itemi) <price>)

Client = sell. <itemi>(itemi,xprice).
 <ok, xprice > + <ko>

•sell is the service definition of the Shop;
• Shop invokes chk service offered by the
Price_checker
• Price_checker comunicates the amount ot
payment directly to the client.

28-29 March 2009 WITS’09 - York, UK 27

CFA at work
First step:

 I,R (Shop | Price_chk) |
Client

Second step of the analysis:

 I,R S’

σ I(*) ∋ sell,sell,
chk
I(sell) ∋ chk
R = ∅

I(*) ∋ r-sell, r-chk

I(r+sell) ∋ r-chk

R = …..
σ

28-29 March 2009 WITS’09 - York, UK 28

Stopping the attacker

Shop = sell.Σi ((itemi)
 (chk.<item>(xprice).<xprice>↑ > (yprice) <item, yprice>

 ((ok, yprice).PAY
 +

 (ko)))

Price_chk = chk. Σi ((itemi) <price>)

Client = sell. <itemi>(itemi,xprice).
 <ok, xprice > + <ko>

