
A Graph Syntax for Processes and Services

Alberto Lluch Lafuente
(joint-work with Roberto Bruni and Fabio Gadducci)

Department of Computer Science, University of Pisa
Software Engineering for Service-Oriented Overlay Computers

6th Int’l Workshop on Web Services and Formal Methods
Bologna, September 4-5, 2009

Goal statement

The spirit of our research is

”to conciliate algebraic and graph-based specifications”

In this work we propose a graph syntax to

”Equip algebraic specifications with a graphical
representation that is

I Intuitive
I Easy to define
I Easy to prove correct

Goal statement

The spirit of our research is

”to conciliate algebraic and graph-based specifications”

In this work we propose a graph syntax to

”Equip algebraic specifications with a graphical
representation that is

I Intuitive
I Easy to define
I Easy to prove correct

Running Example: Sagas

We shall consider a simple language for transactions with

I sequential composition;

I parallel (split-join) composition;

I compensations;

I saga scoping.

This example is inspired by the Nested Sagas of [BMM05].

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

compensation saga

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

compensation saga

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

compensation

saga

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

compensation saga

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow
%compensation flow

[flow]

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow
%compensation flow

[flow]

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow
%compensation flow

[flow]

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

task1 | task2 | task3

ordinary flow
%compensation flow

[flow]

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Calculi vs Graphs

Algebraic

I Terms
a | b

I Operations
·|· : W× W→ W

I Axioms
x | y ≡ y | x

I Rewrite rules
a −→ b

elements

vocabulary

equivalence

dynamics

Graph-based

I Graphs (diagrams)
flat, hierarchical, etc.

I Graph compositions
Union, tensor, etc.

I Homomorphisms
isomorphism, etc.

I Transformation rules

Main technical goal: mapping coherent wrt. equivalence

flow1

a
| b
| [c % d]

flow2

b
| [c % d]
| a

graphterm1

Bus[p .
host(p,a)
| host(p)
...
]

graphterm2

Bus[p .
host(p)
...
| host(p,a)
]

graph1

graph2

Main technical goal: mapping coherent wrt. equivalence

flow1

a
| b
| [c % d]

flow2

b
| [c % d]
| a

graphterm1

Bus[p .
host(p,a)
| host(p)
...
]

graphterm2

Bus[p .
host(p)
...
| host(p,a)
]

graph1

graph2

Main technical goal: mapping coherent wrt. equivalence

flow1

a
| b
| [c % d]

flow2

b
| [c % d]
| a

graphterm1

Bus[p .
host(p,a)
| host(p)
...
]

graphterm2

Bus[p .
host(p)
...
| host(p,a)
]

graph1

graph2

congruent

Main technical goal: mapping coherent wrt. equivalence

flow1

a
| b
| [c % d]

flow2

b
| [c % d]
| a

graphterm1

Bus[p .
host(p,a)
| host(p)
...
]

graphterm2

Bus[p .
host(p)
...
| host(p,a)
]

graph1

graph2

congruent

Main technical goal: mapping coherent wrt. equivalence

flow1

a
| b
| [c % d]

flow2

b
| [c % d]
| a

graphterm1

Bus[p .
host(p,a)
| host(p)
...
]

graphterm2

Bus[p .
host(p)
...
| host(p,a)
]

graph1

graph2

congruent isomorphic

Main technical problem: representation distance

grammar, structural
congruence, etc.

adjacency matrix,
tuples, sets,
morphisms

solution: graph algebras

very different syntax!

Main technical problem: representation distance

solution: graph algebras

similar syntax

similar syntax

Main application: encodings are facilitated

flow1

a
| b
| [c % d]

flow2

textttb
| [c % d]
| a

graphterm1

W[p q .
b(p)
| a(p)
...
]

graphterm2

W[p q.
b(p)
...
| a(p)
]

graph1

graph2

congruent isomorphic

Main application: encodings are facilitated

flow1

a
| b
| [c % d]

flow2

textttb
| [c % d]
| a

graphterm1

W[p q .
b(p)
| a(p)
...
]

graphterm2

W[p q.
b(p)
...
| a(p)
]

graph1

graph2

congruent congruent isomorphic

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0

| x | t(x) | G|H | (νx)G | D〈y〉

the empty graph

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0 | x

| t(x) | G|H | (νx)G | D〈y〉

a node called x

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0 | x | t(x)

| G|H | (νx)G | D〈y〉

an (hyper)edge labelled with t attached to x

for instance, a(p,q,r)

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0 | x | t(x) | G|H

| (νx)G | D〈y〉

parallel composition: disjoint union up to common nodes

for instance, a(p,q,r) | a(p,q,r)

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0 | x | t(x) | G|H

| (νx)G | D〈y〉

parallel composition: disjoint union up to common nodes

for instance, a(p,q,r) | a(p,q,r)

The syntax of the graph algebra

D ::= Tx [G]

G,H ::= 0 | x | t(x) | G|H | (νx)G

| D〈y〉

declaration of a new node x

for instance, (νs) (a(p,s,r) | b(s,q,r))

The syntax of the graph algebra

D ::= Tx [G]
G,H ::= 0 | x | t(x) | G|H | (νx)G

| D〈y〉

graph G with interface of type T exposing x

for instance, Sp,q,s[(νr)flow(p, q, r, q, s)]

The syntax of the graph algebra

D ::= Tx [G]
G,H ::= 0 | x | t(x) | G|H | (νx)G | D〈y〉

a nested graph attached to y

for instance, D〈a,b,c〉

The syntax of the graph algebra

D ::= Tx [G]
G,H ::= 0 | x | t(x) | G|H | (νx)G | D〈y〉

a nested graph attached to y

for instance, D〈a,b,c〉, with D=Sp,q,s[(νr)flow(p, q, r, q, s)]

Identifying equivalent graphs

The actual model of hierarchical graphs has some notion of
hierarchical isomorphism.

Identifying equivalent graphs

The actual model of hierarchical graphs has some notion of
hierarchical isomorphism.

Identifying equivalent graphs

Isomorphism is elegantly captured by structural axioms.

G || H ≡ H || G (PARALLEL1)
G || (H || I) ≡ (G || H) || I (PARALLEL2)

is equivalent to

Identifying equivalent graphs

Isomorphism is elegantly captured by structural axioms.

G || H ≡ H || G (PARALLEL1)
G || (H || I) ≡ (G || H) || I (PARALLEL2)

G || 0 ≡ G (NODES1)
(νx)(νy)G ≡ (νy)(νx)G (NODES2)

(νx)0 ≡ 0 (NODES5)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (NODES3)
Lx [G] ≡ Ly [G{y/x}] if |y | ∩ fn(G) = ∅ (NODES4)

G || (νx)H ≡ (νx)(G || H) if x 6∈ fn(G) (NODES5)
Lx [(νy)G](z) ≡ (νy)Lx [G](z) if y 6∈ |x | ∪ |z | (NODES6)

x || G ≡ G if x ∈ fn(G) (NODES7)

These axioms are rather standard and thus intuitive to those
familiar with algebraic specifications.

Sagas encoding: sagas as calculus

Let us assume the following syntax for our sagas language

S ::= a | S; S | S|S | [P] (sagas)
P ::= S%S | P; P | P|P (processes)

with the usual following axioms holding

I associativity for sequential composition;

I associativity and commutativity for parallel composition.

Sagas encoding: key ideas I

1. Algebraic reading of the calculus

I Syntactical categories as Sorts
I Productions as Operators

for instance
S ::= S ; S ====> ; : S× S→ S

2. Each sort becomes a design label

Sagas sort S Process sort P

Sagas encoding: key ideas II

3. Each production becomes a derived operator

X ; Y def= Sp,q,r[(νs)(X〈p, s, r〉 | Y〈s, q, r〉)]

4. Some symbols should be material, i.e. represented by graph
items like edges

for instance, an activity

Sagas encoding: key ideas III
5. Some symbols should be immaterial. For instance, a material

parallel operator yields non isomorphic graphs

(a | b) | c a | (b | c)

To capture associativity with iso we need something like

Sagas encoding: key ideas IV

6. Flattening dissolves composition frames.
For instance, without flattening associativity is not captured
by isomorphism

(a ; b) ; c a ; (b ; c)

With flattening of sagas we get

in both cases.

Sagas encoding: main productions

X ; Y def=
Sp,q,r[(νs)(X〈p, s, r〉 | Y〈s, q, r〉)]

X | Y def=
Sp,q,r[X〈p, q, r〉 | Y〈p, q, r〉]

X % Y def=
Pp,q,r,s,t[X〈p, q, s〉 | Y〈r, s, t〉]

[X] def=
Sp,q,r[(νs)X〈p, q, s, q, r〉]

Sagas encoding: main productions

X ; Y def=
Sp,q,r[(νs)(X〈p, s, r〉 | Y〈s, q, r〉)] X | Y def=

Sp,q,r[X〈p, q, r〉 | Y〈p, q, r〉]

X % Y def=
Pp,q,r,s,t[X〈p, q, s〉 | Y〈r, s, t〉]

[X] def=
Sp,q,r[(νs)X〈p, q, s, q, r〉]

Sagas encoding: main productions

X ; Y def=
Sp,q,r[(νs)(X〈p, s, r〉 | Y〈s, q, r〉)] X | Y def=

Sp,q,r[X〈p, q, r〉 | Y〈p, q, r〉]

X % Y def=
Pp,q,r,s,t[X〈p, q, s〉 | Y〈r, s, t〉]

[X] def=
Sp,q,r[(νs)X〈p, q, s, q, r〉]

Sagas encoding: main productions

X ; Y def=
Sp,q,r[(νs)(X〈p, s, r〉 | Y〈s, q, r〉)] X | Y def=

Sp,q,r[X〈p, q, r〉 | Y〈p, q, r〉]

X % Y def=
Pp,q,r,s,t[X〈p, q, s〉 | Y〈r, s, t〉]

[X] def=
Sp,q,r[(νs)X〈p, q, s, q, r〉]

Sagas encoding: coherence proof

At the end we point at a result like

Theorem

Two sagas S and R are congruent exactly when they are isomorphic.

I The proof of soundness is reduced to show that in each axiom
of the structural congruence the lhs and rhs are isomorphic,
which is facilitated by the similarity of the axioms.

For instance,

X | Y def= Sp,q,r[X〈p, q, r〉 | Y〈p, q, r〉]
par1
= Sp,q,r[Y〈p, q, r〉 | X〈p, q, r〉]
def= Y | X

I The proof of completeness is done as usual by structural
induction on the normal form of sagas terms. Still not easy,
but at least we deal with similar notations.

Outline

Introduction
A simple scenario
Goal statement

An algebra of hierarchical graphs
A syntax for hierarchical graphs
Identifying equivalent graphs
Example encoding

Conclusion

Possible scenario where the graph syntax could live

sagas

pi-calculus

caspis

etc.

graph
algebra

graph
logic?

graphs

bigraphs?

Possible scenario where the graph syntax could live

sagas

pi-calculus

caspis

etc.

graph
algebra

graph
logic?

graphs

bigraphs?

Implementation snapshot (a simple visualiser)

I Available at www.albertolluch.com/adr2graphs

http://www.albertolluch.com/adr.html

One further goal
Our hope is to find a notion of graph rewriting such that graph
transformations are directly inferred from

I the original semantic rules of the calculus

I the graphical encoding of terms.

Concluding remarks

The graphical syntax . . .

I Grounds on widely-accepted models;

I Simplifies the graphical representation of process calculi;

I Hides the complexity of hierarchical graphs;

I Enables proofs by structural induction;

I Has been evaluated on various calculi;

I Nesting and sharing features suitable for modelling soc
features such as transactions or sessions.

I Natural implementation in RL/Maude (support for theorem
proving, model checking, simulation, etc.)

I Offers a technique for complementing textual and visual
notations in formal tools;

Credits and references I

[BGL09] Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente.
A graph syntax for processes and services.
In WS-FM’09, 2009.
To appear.

[BL09] Roberto Bruni and Alberto Lluch Lafuente.
Ten virtues of structured graphs.
In Invited paper at the 8th International Workshop on Graph Transformation and Visual Modeling
Techniques (GT-VMT’09), Electronic Communications of the EASST, 2009.
To appear.

[BLM08] Roberto Bruni, Alberto Lluch Lafuente, and Ugo Montanari.
Hierarchical Design Rewriting with Maude.
In Proceedings of the 7th International Workshop on Rewriting Logic and its Applications (WRLA’08),
Electronic Notes in Theoretical Computer Science. Elsevier, 2008.
To appear.

[BLME07] Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tuosto.
Service Oriented Architectural Design.
In Proceedings of the 3rd International Symposium on Trustworthy Global Computing (TGC’07),
volume 4912 of Lecture Notes in Computer Science, pages 186–203. Springer, 2007.

[BMM05] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari.
Theoretical foundations for compensations in flow composition languages.
In Jens Palsberg and Mart́ın Abadi, editors, POPL, pages 209–220. ACM, 2005.

[CG99] Andrea Corradini and Fabio Gadducci.
An algebraic presentation of term graphs, via gs-monoidal categories. applied categorical structures.
Applied Categorical Structures, 7:7–299, 1999.

[CMR94] Andrea Corradini, Ugo Montanari, and Francesca Rossi.
An abstract machine for concurrent modular systems: CHARM.
Theoretical Compututer Science, 122(1&2):165–200, 1994.

Credits and references II

[DHP02] Frank Drewes, Berthold Hoffmann, and Detlef Plump.
Hierarchical graph transformation.
Journal on Computer and System Sciences, 64(2):249–283, 2002.

[Gad03] Fabio Gadducci.
Term graph rewriting for the pi-calculus.
In Atsushi Ohori, editor, Proceedings of the 1st Asian Symposium on Programming Languages and
Systems, volume 2895 of Lecture Notes in Computer Science, pages 37–54. Springer, 2003.

[JM03] O. H. Jensen and R. Milner.
Bigraphs and mobile processes.
Technical Report 570, Computer Laboratory, University of Cambridge, 2003.

Note: Some figures have been borrowed from the referred papers.

Related work

GS-Graphs [CG99]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related work

GS-Graphs [CG99]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related work

GS-Graphs [CG99]

I syntactical structure, algebraic
presentation

I flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

I node sharing, calculi encoding

I no composition interface, flat

Hierarchical Graphs [DHP02]

I basic model, composition
interface

I no node sharing, no algebraic
syntax

Related Work

Bigraphs [JM03]

I nesting + linking

I 2 overlapping structures,
complex syntax, no composition
interface, flat

Graph Algebra, SHR [CMR94]

I basic algebra

I flat, no composition interface

Related Work

Bigraphs [JM03]

I nesting + linking

I 2 overlapping structures,
complex syntax, no composition
interface, flat

Graph Algebra, SHR [CMR94]

I basic algebra

I flat, no composition interface

	Introduction
	A simple scenario
	Goal statement

	An algebra of hierarchical graphs
	A syntax for hierarchical graphs
	Identifying equivalent graphs
	Example encoding

	Conclusion

