A Graph Syntax for Processes and Services

Alberto Lluch Lafuente
(joint-work with Roberto Bruni and Fabio Gadducci)
Department of Computer Science, University of Pisa
Software Engineering for Service-Oriented Overlay Computers

6th Int'I Workshop on Web Services and Formal Methods
Bologna, September 4-5, 2009

Goal statement

The spirit of our research is
"to conciliate algebraic and graph-based specifications"

Goal statement

The spirit of our research is
"to conciliate algebraic and graph-based specifications"
In this work we propose a graph syntax to
"Equip algebraic specifications with a graphical representation that is

- Intuitive
- Easy to define
- Easy to prove correct

Running Example: Sagas

We shall consider a simple language for transactions with

- sequential composition;
- parallel (split-join) composition;
- compensations;
- saga scoping.

This example is inspired by the Nested Sagas of [BMM05].

Modelling Sagas with Graphs (sketch)

sequential composition

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

Modelling Sagas with Graphs (sketch)

sequential composition

parallel composition

compensation

Modelling Sagas with Graphs (sketch)

parallel composition

compensation

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

task1 | task2 | task3

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

ordinary flow
\%compensation flow

Modelling Sagas with a Process Calculus (sketch)

task1 ; task2 ; task3

ordinary flow
\%compensation flow

task1 | task2 | task3

[flow]

Calculi vs Graphs

Algebraic
 - Terms
 $\mathrm{a} \mid \mathrm{b}$

Calculi vs Graphs

Algebraic

- Terms
a | b
- Operations
$\cdot \cdot: W \times W \rightarrow W$

$$
\begin{array}{lc}
& \text { Graph-based } \\
\text { elements } & \text { Graphs (diagrams) } \\
& \text { flat, hierarchical, etc. } \\
\text { vocabulary } & \text { Graph compositions } \\
& \text { Union, tensor, etc. }
\end{array}
$$

Calculi vs Graphs

Algebraic

- Terms
a | b
- Operations
$\cdot \cdot: \mathrm{W} \times \mathrm{W} \rightarrow \mathrm{W}$
- Axioms
$x|y \equiv y| x$

	Graph-based
elements	Graphs (diagrams) flat, hierarchical, etc
vocabulary	Graph compositions Union, tensor, etc.
equivalence	Homomorphisms isomorphism, etc.

Graph-based

- Graphs (diagrams) flat, hierarchical, etc.
- Graph compositions Union, tensor, etc. isomorphism, etc.

Calculi vs Graphs

Algebraic

- Terms
$\mathrm{a} \mid \mathrm{b}$
- Operations
$\cdot \cdot: W \times W \rightarrow W$
- Axioms
$x|y \equiv y| x$
- Rewrite rules
$\mathrm{a} \longrightarrow \mathrm{b}$

Graph-based

- Graphs (diagrams) flat, hierarchical, etc.
- Graph compositions Union, tensor, etc.
- Homomorphisms isomorphism, etc.
- Transformation rules

Main technical goal: mapping coherent wrt. equivalence
flow1
a
1 b
| [$\mathrm{c} \% \mathrm{~d}$]
graph1

Main technical goal: mapping coherent wrt. equivalence

Main technical goal: mapping coherent wrt. equivalence

Main technical goal: mapping coherent wrt. equivalence

congruent
flow2 \longleftrightarrow graph2
b
| [c \% d]
| a

Main technical goal: mapping coherent wrt. equivalence

Main technical problem: representation distance

Definition 15 (processes). Let \mathcal{U} be a set of names. A process P is a term generated by the syntax

Definition 15 (processes). Let \mathcal{U} be a set of names. A process P is a term generated by
grammar, structural congruence, etc.
where $a, b \in c$.
个 very different syntax!

Definition 22 (bigraph) where: $I=\langle m, X\rangle$ and ordin
each

Definition ? | each | |
| :--- | :--- |
| and 3 | Definition |
| a triple $\left\langle E_{G}\right.$, | |

adjacency matrix, tuples, sets, morphisms and $t_{G}: E_{G} \rightarrow$

Let G, H be hypergraphs. A (hypergraph) morphism $f: G \rightarrow H$ is a pair of functions $f_{E}: E_{G} \rightarrow E_{H}, f_{N}: N_{G} \rightarrow N_{H}$ preserving the tentacle function.

Main technical problem: representation distance

Definition 15 (processes). Let \mathcal{U} be a set of names. A process P is a term generated by the syntax

```
P::= 0 M M N (\nua)P | P|P
M ::=M+M | A.P
```

Definition 1
generated by

solution: graph algebras

$$
\begin{aligned}
& \|(\nu a) P\|_{\Gamma}= \begin{cases}\left\lfloor P \|_{\Gamma}\right. & \text { if a } \notin \mathbf{f n}(P) \\
\left(i d_{p} \otimes \nu_{c} \otimes i d_{\Gamma}\right) \circ \llbracket P\left\{{ }^{c} / a\right\} \|_{\{c\} \uplus \Gamma} & \text { otheruise }\end{cases} \\
& \llbracket P \mid Q \rrbracket_{\Gamma}=\llbracket P \rrbracket_{\Gamma} \otimes\left\|Q \rrbracket_{\Gamma} \quad \llbracket a(b) \cdot P \rrbracket_{\Gamma}=\left(i n_{a, c} \otimes i d_{\Gamma}\right) \circ \llbracket P\{c / b\}\right\|_{\{c\} \uplus \Gamma} \\
& \llbracket 0 \rrbracket_{\Gamma}=0_{p} \otimes 0_{\Gamma} \quad \llbracket \bar{a} b . P \rrbracket_{\Gamma}=\left(o u t_{a, b} \otimes i d_{\Gamma}\right) \circ \llbracket P \rrbracket_{\Gamma}
\end{aligned}
$$

$$
\begin{gathered}
\llbracket \mathbf{0} \rrbracket_{X}=1 \text { 人 } X \quad \llbracket P \mid Q \rrbracket_{X}=\llbracket P \rrbracket_{X} \gamma \llbracket Q \rrbracket_{X} \quad \llbracket(x) P \rrbracket_{X}=\mathbf{\Lambda}_{x} \circ \llbracket P \rrbracket_{X \uplus\{x\}} \\
\llbracket z x \cdot P \rrbracket_{X}=\operatorname{get}^{x, z} \circ \llbracket P \rrbracket_{X} \quad \llbracket \bar{z} x \cdot P \rrbracket_{X}=\operatorname{send}^{x, z} \circ \llbracket P \rrbracket_{X} \quad \text { where } x, z \in X
\end{gathered}
$$

Definition 22 (bigraph)

where: $I=\langle m, X\rangle$ and j ordin

Definition 7
each
a triple $\left\langle E_{G}, N_{G}, t_{G}\right\rangle$ such that E_{G} is the set of edges, N_{G} is the set of nodes, and $t_{G}: E_{G} \rightarrow N_{G}^{*}$ is the tentacle function.

Let G, H be hypergraphs. A (hypergraph) morphism $f: G \rightarrow H$ is a pair of functions $f_{E}: E_{G} \rightarrow E_{H}, f_{N}: N_{G} \rightarrow N_{H}$ preserving the tentacle function.

Main application: encodings are facilitated

Main application: encodings are facilitated

The syntax of the graph algebra

$\mathbb{G}, \mathbb{H} \quad:=0$
the empty graph

The syntax of the graph algebra

$\mathbb{G}, \mathbb{H}::=\mathbf{0} \mid x$
a node called x

${ }_{0}^{x}$

The syntax of the graph algebra

$\mathbb{G}, \mathbb{H} \quad:=\mathbf{0}|x| t(\bar{x})$
an (hyper)edge labelled with t attached to \bar{x}

for instance, $a(p, q, r)$

The syntax of the graph algebra

$$
\mathbb{G}, \mathbb{H}::=\mathbf{0}|x| t(\bar{x})|\mathbb{G}| \mathbb{H}
$$

parallel composition: disjoint union up to common nodes

for instance, $a(p, q, r) \mid a(p, q, r)$

The syntax of the graph algebra

$$
\mathbb{G}, \mathbb{H}::=\mathbf{0}|x| t(\bar{x})|\mathbb{G}| \mathbb{H}
$$

parallel composition: disjoint union up to common nodes

for instance, $a(p, q, r) \mid a(p, q, r)$

The syntax of the graph algebra
$\mathbb{G}, \mathbb{H} \quad::=\mathbf{0}|x| t(\bar{x})|\mathbb{G}| \mathbb{H} \mid(\nu x) \mathbb{G}$
declaration of a new node x

for instance, (νs) (a(p,s,r) | b(s,q,r))

The syntax of the graph algebra

$$
\begin{aligned}
\mathbb{D} & ::=T_{\bar{x}}[\mathbb{G}] \\
\mathbb{G}, \mathbb{H} & ::=\mathbf{0}|x| t(\bar{x})|\mathbb{G}| \mathbb{H} \mid(\nu x) \mathbb{G}
\end{aligned}
$$

graph G with interface of type T exposing \bar{x}

for instance, $\mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{s}}[(\nu \mathrm{r}) \mathrm{flow}(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{q}, \mathrm{s})]$

The syntax of the graph algebra

for instance, $D\langle a, b, c\rangle$

The syntax of the graph algebra

$$
\begin{aligned}
& \mathbb{D} \quad::=\quad T_{\bar{x}}[\mathbb{G}] \\
& \mathbb{G}, \mathbb{H} \quad::=\mathbf{0}|x| t(\bar{x})|\mathbb{G}| \mathbb{H}|(\nu x) \mathbb{G}| \mathbb{D}\langle\bar{y}\rangle \\
& \text { a nested graph attached to } \bar{y}
\end{aligned}
$$

for instance, $\mathrm{D}\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$, with $\mathrm{D}=\mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{s}}[(\nu \mathrm{r}) \mathrm{flow}(\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{q}, \mathrm{s})]$

Identifying equivalent graphs

The actual model of hierarchical graphs has some notion of hierarchical isomorphism.

Identifying equivalent graphs

The actual model of hierarchical graphs has some notion of hierarchical isomorphism.

Identifying equivalent graphs

Isomorphism is elegantly captured by structural axioms.

$$
\begin{aligned}
\mathbb{G} \| \mathbb{H} & \equiv \mathbb{H} \| \mathbb{G} \\
\mathbb{G} \|(\mathbb{H} \| \mathbb{I}) & \equiv(\mathbb{G} \| \mathbb{H}) \| \mathbb{I}
\end{aligned}
$$

is equivalent to

Identifying equivalent graphs

Isomorphism is elegantly captured by structural axioms.

$$
\begin{array}{rlrlr}
\mathbb{G} \| \mathbb{H} & \equiv \mathbb{H} \| \mathbb{G} & & \text { (PARALLEL1) } \tag{PARALLEL1}\\
\mathbb{G} \|(\mathbb{H} \| \mathbb{I}) & \equiv(\mathbb{G} \| \mathbb{H}) \| \mathbb{I} & & \\
& & & \\
\mathbb{G} \| \mathbf{0} & \equiv \mathbb{G} & & \text { (NARALLELE) } \\
(\nu x)(\nu y) \mathbb{G} & \equiv(\nu y)(\nu x) \mathbb{G} & & \text { (NODES2) } \\
(\nu x) \mathbf{0} & \equiv \mathbf{0} & & \text { (NODES5) } \\
(\nu x) \mathbb{G} & \equiv(\nu y) \mathbb{G}\{y / x\} & \text { if } y \notin f n(\mathbb{G}) & \text { (NODES3) } \\
L_{\bar{x}}[\mathbb{G}] & \equiv L_{\bar{y}}[\mathbb{G}\{\bar{y} / \overline{\bar{x}}\}] & \text { if }|\bar{y}| \cap f n(\mathbb{G})=\emptyset & \text { (NODES4) } \\
\mathbb{G} \|(\nu x) \mathbb{H} & \equiv(\nu x)(\mathbb{G} \| \mathbb{H}) & \text { if } x \notin f n(\mathbb{G}) & \text { (NODES5) } \\
L_{\bar{x}}[(\nu y) \mathbb{G}](\bar{z}) & \equiv(\nu y) L_{\bar{x}}[\mathbb{G}](\bar{z}) & \text { if } y \notin|\bar{x}| \cup|\bar{z}| & \text { (NODES6) } \\
x \| \mathbb{G} & \equiv \mathbb{G} & \text { if } x \in f n(\mathbb{G}) & \text { (NODES7) }
\end{array}
$$

These axioms are rather standard and thus intuitive to those familiar with algebraic specifications.

Sagas encoding: sagas as calculus

Let us assume the following syntax for our sagas language

$$
\begin{array}{llllllll}
\mathrm{S} & ::= & \mathrm{a} \mid & \mathrm{S} ; \mathrm{S} \mid & \mathrm{S}|\mathrm{~S}| & {[\mathrm{P}]} & \text { (sagas) } \\
\mathrm{P} & ::= & \mathrm{S} \% \mathrm{~S} & \mid \mathrm{P} ; \mathrm{P} & |\mathrm{P}| \mathrm{P} & & \text { (processes) }
\end{array}
$$

with the usual following axioms holding

- associativity for sequential composition;
- associativity and commutativity for parallel composition.

Sagas encoding: key ideas I

1. Algebraic reading of the calculus

- Syntactical categories as Sorts
- Productions as Operators
for instance
S ::= S ; S ====> _ ; : S $\times \mathrm{S} \rightarrow \mathrm{S}$

2. Each sort becomes a design label

Sagas sort S

Process sort P

Sagas encoding: key ideas II

3. Each production becomes a derived operator

$$
X ; Y \stackrel{\text { def }}{=} S_{p, q, r}[(\nu \mathrm{~s})(X\langle\mathrm{p}, \mathrm{~s}, \mathrm{r}\rangle \mid \mathrm{Y}\langle\mathrm{~s}, \mathrm{q}, \mathrm{r}\rangle)]
$$

4. Some symbols should be material, i.e. represented by graph items like edges

for instance, an activity

Sagas encoding: key ideas III

5. Some symbols should be immaterial. For instance, a material parallel operator yields non isomorphic graphs

To capture associativity with iso we need something like

Sagas encoding: key ideas IV

6. Flattening dissolves composition frames.

For instance, without flattening associativity is not captured by isomorphism

With flattening of sagas we get

in both cases.

Sagas encoding: main productions

Sagas encoding: main productions

$$
\begin{gathered}
X \mid Y Y \\
S_{p, q, r}[X\langle p, q, r\rangle
\end{gathered}
$$

Sagas encoding: main productions

$$
X ; Y \stackrel{\text { def }}{=}
$$

$$
\mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}[(\nu \mathrm{~s})(\mathrm{X}\langle\mathrm{p}, \mathrm{~s}, \mathrm{r}\rangle \mid \mathrm{Y}\langle\mathrm{~s}, \mathrm{q}, \mathrm{r}\rangle)]
$$

$$
\mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}[\mathrm{X}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle \mid \mathrm{Y}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle]
$$

$$
X \% Y \xlongequal{\text { def }}
$$

$$
P_{p, q, r, s, t}[X\langle p, q, s\rangle \mid Y\langle r, s, t\rangle]
$$

Sagas encoding: main productions

$$
X ; Y \quad \stackrel{\text { def }}{=}
$$

$$
\mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}[(\nu \mathrm{~s})(\mathrm{X}\langle\mathrm{p}, \mathrm{~s}, \mathrm{r}\rangle \mid \mathrm{Y}\langle\mathrm{~s}, \mathrm{q}, \mathrm{r}\rangle)]
$$

$$
X \% Y \quad \stackrel{\text { def }}{=}
$$

$$
\mathrm{P}_{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{~s}, \mathrm{t}}[\mathrm{X}\langle\mathrm{p}, \mathrm{q}, \mathrm{~s}\rangle \mid \mathrm{Y}\langle\mathrm{r}, \mathrm{~s}, \mathrm{t}\rangle]
$$

$$
\begin{gathered}
X \mid Y \quad \stackrel{\text { def }}{=} \\
S_{p, q, r}[X\langle p, q, r\rangle \mid Y\langle p, q, r\rangle]
\end{gathered}
$$

Sagas encoding: coherence proof

At the end we point at a result like

Theorem

Two sagas S and R are congruent exactly when they are isomorphic.

- The proof of soundness is reduced to show that in each axiom of the structural congruence the lhs and rhs are isomorphic, which is facilitated by the similarity of the axioms.

For instance,

$$
\begin{aligned}
\mathrm{X} \mid \mathrm{Y} & \stackrel{\text { def }}{=} \mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}[\mathrm{X}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle \mid \mathrm{Y}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle] \\
& \stackrel{\text { parr }}{=} \mathrm{S}_{\mathrm{p}, \mathrm{q}, \mathrm{r}}[\mathrm{Y}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle \mid \mathrm{X}\langle\mathrm{p}, \mathrm{q}, \mathrm{r}\rangle] \\
& \stackrel{\text { def }}{=} \mathrm{Y} \mid \mathrm{X}
\end{aligned}
$$

- The proof of completeness is done as usual by structural induction on the normal form of sagas terms. Still not easy, but at least we deal with similar notations.

Outline

Introduction

A simple scenario
Goal statement

An algebra of hierarchical graphs
A syntax for hierarchical graphs Identifying equivalent graphs
Example encoding

Conclusion

Possible scenario where the graph syntax could live

Possible scenario where the graph syntax could live

Implementation snapshot (a simple visualiser)

adr2graphs
a simple visualiser of algebraic specifications

1) Choose the input language ${ }^{1}$: network topologies (alpha) $\mid \hat{\imath}$
2) Choose the ouput format: formal hierarchical graph $\hat{\imath}$
3) Enter a term in the box below.

where x is a channel name given as a doubly-quoted string example: host | < host \% host("a") ; host > | < host \% [host; host("a") \}>

Done

- Available at www.albertolluch.com/adr2graphs

One further goal

Our hope is to find a notion of graph rewriting such that graph transformations are directly inferred from

- the original semantic rules of the calculus
- the graphical encoding of terms.

Concluding remarks

The graphical syntax ...

- Grounds on widely-accepted models;
- Simplifies the graphical representation of process calculi;
- Hides the complexity of hierarchical graphs;
- Enables proofs by structural induction;
- Has been evaluated on various calculi;
- Nesting and sharing features suitable for modelling soc features such as transactions or sessions.
- Natural implementation in RL/Maude (support for theorem proving, model checking, simulation, etc.)
- Offers a technique for complementing textual and visual notations in formal tools;

Credits and references I

[BGL09] Roberto Bruni, Fabio Gadducci, and Alberto Lluch Lafuente.
A graph syntax for processes and services.
In WS-FM'09, 2009.
To appear.
[BL09] Roberto Bruni and Alberto Lluch Lafuente.
Ten virtues of structured graphs.
In Invited paper at the 8th International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT'09), Electronic Communications of the EASST, 2009.
To appear.
[BLM08] Roberto Bruni, Alberto Lluch Lafuente, and Ugo Montanari. Hierarchical Design Rewriting with Maude.
In Proceedings of the 7 th International Workshop on Rewriting Logic and its Applications (WRLA'08), Electronic Notes in Theoretical Computer Science. Elsevier, 2008.
To appear.
[BLME07] Roberto Bruni, Alberto Lluch Lafuente, Ugo Montanari, and Emilio Tuosto. Service Oriented Architectural Design.
In Proceedings of the 3rd International Symposium on Trustworthy Global Computing (TGC'07), volume 4912 of Lecture Notes in Computer Science, pages 186-203. Springer, 2007.
[BMM05] Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari.
Theoretical foundations for compensations in flow composition languages.
In Jens Palsberg and Martín Abadi, editors, POPL, pages 209-220. ACM, 2005.
[CG99] Andrea Corradini and Fabio Gadducci.
An algebraic presentation of term graphs, via gs-monoidal categories. applied categorical structures. Applied Categorical Structures, 7:7-299, 1999.
[CMR94] Andrea Corradini, Ugo Montanari, and Francesca Rossi. An abstract machine for concurrent modular systems: CHARM. Theoretical Compututer Science, 122(1\&2):165-200, 1994.

Credits and references II

[DHP02] Frank Drewes, Berthold Hoffmann, and Detlef Plump. Hierarchical graph transformation.
Journal on Computer and System Sciences, 64(2):249-283, 2002.
[Gad03] Fabio Gadducci.
Term graph rewriting for the pi-calculus.
In Atsushi Ohori, editor, Proceedings of the 1st Asian Symposium on Programming Languages and Systems, volume 2895 of Lecture Notes in Computer Science, pages 37-54. Springer, 2003.
[JM03] O. H. Jensen and R. Milner. Bigraphs and mobile processes.
Technical Report 570, Computer Laboratory, University of Cambridge, 2003.
Note: Some figures have been borrowed from the referred papers.

Related work

GS-Graphs [CG99]

- syntactical structure, algebraic presentation
- flat (hierarchy-as-tree)

Related work

GS-Graphs [CG99]

- syntactical structure, algebraic presentation
- flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

- node sharing, calculi encoding
- no composition interface, flat

Related work

GS-Graphs [CG99]

- syntactical structure, algebraic presentation
- flat (hierarchy-as-tree)

Ranked Graphs [Gad03]

- node sharing, calculi encoding
- no composition interface, flat Hierarchical Graphs [DHP02]
- basic model, composition interface
- no node sharing, no algebraic syntax

Related Work

Bigraphs [JM03]

- nesting + linking
- 2 overlapping structures, complex syntax, no composition interface, flat

Related Work

Bigraphs [JM03]

- nesting + linking
- 2 overlapping structures, complex syntax, no composition interface, flat
Graph Algebra, SHR [CMR94]
- basic algebra
- flat, no composition interface

