Graph Representation of Sessions and Pipelines for Structured Service Programming

Liang Zhao^{1,2}

with Roberto Bruni¹ and Zhiming Liu²

¹University of Pisa, Italy ²UNU-IIST, Macao SAR, China

FACS 2010

Introduction

Traditional process calculi

- successful in modeling concurrent systems, mobile systems
- modeling service systems?
- Problem: low level communication primitives, complexity of analysis

Calculus of Sessions and Pipelines (CaSPiS)

- Aspects: service autonomy, client-service interaction, orchestration
- Key notions: session (define interactions between two sides), pipeline (orchestrate the flow of data)
- Sessions and pipelines can be nested.
- Operational semantics: transition rules, silent transitions (reductions)

Introduction

Motivation

hierarchical service system

• vs. textual expression: $s.P_1|r \triangleright (\overline{s}.P_2|P_3)|r \triangleright P_4$

Outline

- The calculus CaSPiS
 - Syntax
 - Operational semantics (reduction)
- Algebra of hierarchical graphs
 - Grammar and semantic model
 - Graph transformation by DPO
- Graph representation of CaSPiS
 - Processes as designs
 - Graph transformation rules
 - Soundness and completeness

Outline

- The calculus CaSPiS
 - Syntax
 - Operational semantics (reduction)
- Algebra of hierarchical graphs
 - Grammar and semantic model
 - Graph transformation by DPO
- Graph representation of CaSPiS
 - Processes as designs
 - Graph transformation rules
 - Soundness and completeness

Syntax

Syntax of CaSPiS

```
Process P,Q ::= M \mid P \mid Q \mid s.P \mid \overline{s}.P \mid r \triangleright P \mid (vn)P \mid P > Q

Sum M ::= \mathbf{0} \mid (?x)P \mid \langle V \rangle P \mid \langle V \rangle^{\uparrow}P \mid M+M

Value V ::= x \mid c
```

• Example: $P_0 = time.\langle T \rangle | \overline{time}.(?x)\langle x \rangle^{\uparrow}$

Structural Congruence

```
(P_1|P_2)|P_3 \equiv_c P_1|(P_2|P_3)
M_1 + M_2 \equiv_c M_2 + M_1
(vn)\mathbf{0} \equiv_c \mathbf{0}
r \rhd (vn)P \equiv_c (vn)(r \rhd P) \text{ if } n \neq r
```

Semantics

Contexts

- Dynamic operators: $(?x)[\cdot], [\cdot] + M, s.[\cdot], P > [\cdot]$
- Static contexts: $[\cdot]|Q, r \triangleright [\cdot], (vx)[\cdot], [\cdot]|[\cdot], \dots$

Basic Reductions

- (Sync): $C[s.P, \overline{s}.Q] \rightarrow (vr)C[r \triangleright P, r \triangleright Q]$
- (S-Sync): $C[r \triangleright (P_0|\langle y \rangle P), r \triangleright (?x)Q] \rightarrow C[r \triangleright (P_0|P), r \triangleright Q[y/x]]$
- (P-Sync): $C[(P_0|\langle y\rangle P) > (?x)Q] \rightarrow C[Q[y/x]|((P_0|P) > (?x)Q)]$
-

Example

$$P_0 = time.\langle T \rangle | time.(?x) \langle x \rangle^{\uparrow}$$

$$\rightarrow P_1 = (vr)(r \triangleright \langle T \rangle | r \triangleright (?x) \langle x \rangle^{\uparrow})$$

Outline

- The calculus CaSPiS
 - Syntax
 - Operational semantics (reduction)
- Algebra of hierarchical graphs
 - Grammar and semantic model
 - Graph transformation by DPO
- Graph representation of CaSPiS
 - Processes as designs
 - Graph transformation rules
 - Soundness and completeness

Graph Grammar

Terms

Graph
$$G ::= \mathbf{0} \mid x \mid I(\vec{x}) \mid G \mid G \mid (vx)G \mid D(\vec{x})$$

Design $D ::= L_{\vec{y}}[G]$

Free Node

- Free node: not restricted or exposed
- Example: $L_{\mathbf{y}}[(\mathbf{v}\mathbf{x})I(\mathbf{x},\mathbf{y})]\langle \mathbf{z}\rangle$

Type

- Fixed Type: each node x, edges label I, design label L
- Well-typedness: $I(\vec{x}), L_{\vec{y}}[G]\langle \vec{x} \rangle$

Semantic Model

Interpretation of Terms

- $G_1 = a(y_1)|y_2$
 - •y₁ → a •y₂

Order of Tentacles of (Hyper-)edges

Semantic Model

Interpretation of Terms

• $G_2 = L_{(y_1,y_2)}[a(y_1)|y_2]\langle x_1,x_2\rangle$

$$L_1^1 \longrightarrow a$$
 L_2^1
 $\bullet x_1$

• $G_3 = L_{(y_1,y_2)}[a(y_1)|y_2]\langle x_1,x_2\rangle \mid L_{(y_1,y_2)}[y_1|a(y_2)]\langle x_1,x_2\rangle$

Semantic Model

Flat Design Edge

• $L_{(y_1,y_2)}[a(y_1)|y_2]\langle x_1,x_2\rangle$ vs. $F_{(y_1,y_2)}[a(y_1)|y_2]\langle x_1,x_2\rangle$

$$\bullet x_1 \rightarrow a \quad \bullet x_2$$

Node Sharing

• $K_x[b(x,y)]\langle z\rangle|K_x[b(x,y)]\langle z\rangle$ vs. $K_x[(vy)b(x,y)]\langle z\rangle|K_x[(vy)b(x,y)]\langle z\rangle$

Graph Transformation

Morphism and Pushout

- Morphism: a mapping $(m: G_1 \rightarrow G_2)$ that preserves types of nodes, labels and tentacles of edges
- Pushout: a square of (four) morphisms that commute

Double Pushout (DPO) Rules

• $R: GL \stackrel{m_l}{\leftarrow} GI \stackrel{m_r}{\rightarrow} GR$, or simply GL|GI|GR

- Direct derivation: $G \Rightarrow_B G'$
- Derivation: a sequence of direct derivations, $G \Rightarrow_{\Delta}^* G'$

Outline

- The calculus CaSPiS
 - Syntax
 - Operational semantics (reduction)
- Algebra of hierarchical graphs
 - Grammar and semantic model
 - Graph transformation by DPO
- Graph representation of CaSPiS
 - Processes as designs
 - Graph transformation rules
 - Soundness and completeness

Nil, Abstraction and Parallel composition

$$\begin{bmatrix}
\mathbf{0}
\end{bmatrix} \stackrel{\text{def}}{=} \mathbb{P}_{(p,i,o,t)}[i|o|t|Nil(p)]$$

$$\begin{bmatrix}
(?x)P
\end{bmatrix} \stackrel{\text{def}}{=} \mathbb{P}_{(p,i,o,t)}[(v\{p_1,x\})(Abs(p,x,p_1,i)|[P]|\langle p_1,i,o,t\rangle)]$$

$$\begin{bmatrix}
P|Q
\end{bmatrix} \stackrel{\text{def}}{=} \mathbb{P}_{(p,i,o,t)}[(v\{p_1,p_2\})$$

$$(Par(p,p_1,p_2)|[P]|\langle p_1,i,o,t\rangle|[Q]|\langle p_2,i,o,t\rangle)]$$

Session and Pipeline

An Example

• $P_0 = time.\langle T \rangle | \overline{time}.(?x)\langle x \rangle^{\uparrow}$

Tagged Graph

•
$$P_0 = time.\langle T \rangle | \overline{time}.(?x)\langle x \rangle^{\uparrow}$$

- Do congruence processes have the same graph representation? $[P_1|P_2]^\dagger$ vs. $[P_2|P_1]^\dagger$
- Δ_C : Rules for congruence
- What is the relation between $[\![P]\!]^\dagger$ and $[\![Q]\!]^\dagger$ with $P \rightarrow Q$?
- Δ_R : Rules for reduction
- Auxiliary rules (tagging, garbage collection)

Rule for Congruence

• $[C[P_1|P_2]]^{\dagger} \Rightarrow [C[P_2|P_1]]^{\dagger}$

Rule for Congruence (Cont.)

• $[C[(P_1|P_2)|P_3]]^{\dagger} \Rightarrow [C[P_1|(P_2|P_3)]]^{\dagger}$

Rule for Congruence (Cont.)

• $[C[P_1|(vn)P_2]]^{\dagger} \Rightarrow [C[(vn)(P_1|P_2)]]^{\dagger}$

Tagging Rule

- $[P_1]^{\dagger}\langle p, i, o, t\rangle$
- $P_1 = (vr)(r \rhd \langle T \rangle | r \rhd (?x) \langle x \rangle^{\uparrow})$

Rule for Reduction

- $[P_2]^{\dagger}\langle p, i, o, t\rangle$
- $P_2 = (vr)(r \triangleright 0 | r \triangleright \langle T \rangle^{\uparrow})$

Soundness and Completeness

Theorem (soundness w.r.t. congruence)

• $\llbracket P \rrbracket^\dagger \Rightarrow_{\Delta_C}^* G$ implies $G \equiv_d \llbracket Q \rrbracket^\dagger$ for some $Q \equiv_c P$

Theorem (completeness w.r.t. congruence)

• $P \equiv_c Q$ implies $\llbracket P \rrbracket^\dagger \Rightarrow_{\Delta_C}^* \llbracket Q' \rrbracket^\dagger$ and $\llbracket Q \rrbracket^\dagger \Rightarrow_{\Delta_c}^* \llbracket Q' \rrbracket^\dagger$ for some Q'

Conjecture (soundness w.r.t. reduction)

- $[P]^{\dagger} \Rightarrow_{\Delta_A}^* [Q]^{\dagger}$ implies $P \rightarrow {}^*Q$
- difficulty: intermediate states

Conjecture (completeness w.r.t. reduction)

- $P \rightarrow Q$ implies $\llbracket P \rrbracket^\dagger \Rightarrow_{\Delta_A}^* \llbracket Q' \rrbracket^\dagger$ for some $Q' \equiv_c Q$
- difficulty: replications

Summary

What we have done

- a graph algebra: grammar, semantic model
- graph representation of CaSPiS processes (tagged graphs)
- graph transformation rules (DPO): congruence, reduction, auxiliary (tagging, garbage collection)
- soundness and completeness of DPO rules w.r.t. congruence

Future Work

- soundness and completeness of DPO rules w.r.t. reduction
- case study and implementation