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Abstract The definition of SOs formats ensuring that bisimilarity on
closed terms is a congruence has received much attention in the last two
decades. For dealing with open system specifications, the congruence is
usually lifted from closed terms to open terms by instantiating the free
variables in all possible ways; the only alternatives considered in the
literature relying on Larsen and Xinxin’s context systems and Rensink’s
conditional transition systems. We propose a different approach based on
tile logic, where both closed and open terms are managed analogously. In
particular, we analyze the ‘bisimilarity as congruence’ property for sev-
eral tile formats that accomplish different concepts of subterm sharing.
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Introduction

The semantics of many languages can be conveniently expressed via labelled
transition systems whose states are terms over a certain signature and whose
labels give some abstract information about the performed transition. If such
information is sufficient to model the possible interactions between the various
(sub)systems when they are composed through the operators of the language,
then the specification can be assembled compositionally. Plotkin’s structural op-
erational semantics (SOS) [21] is surely one of the most successful frameworks,
where the transitions a system state can perform are defined by induction on the
structure of states. Of course, once the transition system has been formalized,
one is interested in equating those states that yield the same behavior.

In this paper we rely on bisimulation equivalence [20,19]: two states are equiv-
alent if every action of the one can be simulated by the other, still ending in
equivalent states. Within this setting, it is essential to have a compositional
framework, where each subcomponent of a state can be safely replaced by any
equivalent subcomponent without affecting the overall behavior. This motivated
a lot of efforts in the definition of sos formats (e.g., De Simone [10], GSOS [2],
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tyft/tyxt [14,1]) whose syntactic constraints guarantee that bisimilarity is a
congruence, where bisimilarity means the largest bisimulation. In fact those for-
mats can serve as a guide in planning good system specifications. However the
congruence is usually defined on closed terms only. It can be of course extended
to contexts (i.e., terms with variables) by saying that two contexts are equivalent
if they are equivalent under all possible instantiations of their free variables; this
yields the coarsest conservative extension of the equivalence on closed terms that
is preserved by instantiation and, to some extent, is analogous to reducing an
equivalence on closed terms to the congruence respected by all possible contexts.

When designing open systems, the preservation of a given equivalence under
all possible instantiations should of course be a necessary property, however it is
not very practical to define it by universal quantification on all possible instanti-
ations, since proofs of properties will become difficult. It would be preferable to
extend the bisimulation game from closed states to contexts, providing a uniform
framework. Thus, the variables of a context C' can be viewed as its input inter-
face that is used by C for communicating with its arguments. Then, the label
of a transition with source C' must include some information about the moves
accomplished by each argument for allowing the context to evolve. Moreover,
for nonlinear contexts, the degree of subterm sharing may make a difference
In fact, for partially specified components it may be convenient to distinguish
between the situation in which different copies of a nondeterministic resource
are available, which can evolve independently, from the situation in which the
resource is shared between many components (and thus the resource must offer
the same behavior to all its users). Conceptually, this give rise to two kinds of
open systems that we call incomplete systems and coordinators.

A first situation would be the case in which variables represent software
components possibly used by several processes. For example, one can take a
ccs-like context C[z]|D[z], with z a process variable, where the same protocol
specification should be employed by both C' and D to provide a certain service.
In such a case, the two instances of z in C[z]|D[z] must be instantiated with two
copies of the same pattern (a suitable agent), which can progress independently.

On the other hand, if the process C[z]|D[z] represents a coordinator which
regulates the execution of the argument x then, when z is instantiated to a
process g, replication must be avoided: both C' and D become connected to the
same agent ¢. In this case the two occurrences of ¢ must evolve in the same way
and at the same time. Notationally this situation can be expressed by writing
let z = ¢ in C[z]|D[z] instead of C[q]|D[g]- A concrete example for this situation
is when several consumers receive information from a single producer by means of
possibly replicated handshaking channels: We desire all the consumers to receive
the same information through all their channels at the same time.

Ordinary sos formats do not seem suitable to deal with this latter view in
the correct way. For example, let us consider the well-known SOS specification
for Milner’s finite ccs [19], whose rules are in De Simone format, and take the
contexts C[z] = z\q|z\q and D[z] = (z|z)\q. Then, the two contexts cannot
react as coordinators to any move of x and thus they are equivalent according



to bisimilarity (since z is shared, each move of z is replicated along its two
occurrences and it is not possible to have complementary actions). However,
if we instantiate z with the process p = a.nil + @.nil, then C[p] is no longer
bisimilar to D[p], since the former is stuck and the second can make a 7, i.e.,
the sharing information on z is lost after instantiation.

It is clear that these two cases do not exhaust all the possible ways to treat
nonlinear contexts, but they give us a motivation to study different ways to cope
with the problem: (1) considering only linear contexts; (2) always allowing free
duplication of shared components, as if, e.g., the ccs context (z|z)\, could make
a transition to (21|z2)\4, disconnecting the shared resource, and observing that
its argument = has been duplicated; (3) employing term graphs [11] instead of
terms to describe states. The first solution avoids sharing at all. The second
proposal requires an enrichment of the observation algebra. The third proposal
is especially attractive for the specification and analysis of distributed systems.
In fact, term graphs offer a finer model than terms, allowing one to express
the sharing of closed subterms, and hence to distinguish, e.g., the coordinator
let x = p in (z|z)\, from (p|p)\e-

As far as we know, the extension of good specification formats to incomplete
systems has been addressed only recently by Rensink [22], who exploited a pre-
vious idea of De Simone. Rensink formalized several extensions to open terms of
the bisimilarity defined just on closed terms, based on the notion of conditional
transition systems. Some of these extensions turned out to be finer than instan-
tiation closure. In this paper, we propose instead the use of tile systems, where
the extensions (1)—(3) discussed above can be straightforwardly handled, both
at the levels of specifications and of computational models. The tile model [13]
is a formalism for describing the dynamic evolutions of open compositional sys-
tems. It relies on certain rewrite rules with side effects, called basic tiles, which
are reminiscent of both sos rules and Larsen and Xinxin’s context systems [16].
It collects intuitions coming from structured transition systems [9] and rewrit-
ing logic [17], and by analogy with rewriting logic, the tile model has a logical
presentation, called tile logic, where tiles are seen as sequents subject to certain
inference rules. Tile logic extends (unconditional) rewriting logic by modeling
state changes with side effects and rewriting synchronization.

Tiles are written a: s_:)t, stating that the initial configuration s of the sys-
tem evolves to the final configuration t producing the effect b, which can be
observed by the rest of the system. However, such a step is allowed only if the
subcomponents supplied as arguments to s evolve to the subcomponents of ¢,
producing the observation a, which is the trigger of the tile a. Triggers and ef-
fects are called observations. The vertices of the tile are called interfaces. Tiles
can be composed horizontally (synchronizing an effect with a trigger), vertically
(computational evolutions of a certain component), and in parallel (concurrent
steps) to generate larger steps. Given a set of basic tiles, the associated tile logic
is obtained by adding some ‘auxiliary’ tiles — this may be necessary to represent
consistent horizontal and vertical rearrangements of interfaces — and then freely
composing in all possible ways both auxiliary and basic tiles.



In this paper, we want to stress that tiles are designed for open systems,
(either incomplete or coordinators). In particular, the notion of bisimulation can
be generalized to that of tile bisimulation, which operates over contexts rather
than just over terms. More precisely, we investigate tile formats for basic tiles
guaranteeing that tile bisimilarity is a congruence.

The first tile format appeared in the literature is the algebraic tile format
(ATF) [12,13]. It has a cartesian structure of configurations and a monoidal
structure of observations.! However, we show that the ATF is not completely
satisfactory for defining bisimilarity congruences, due to the different structure
of configurations and observations. We focus instead on three tile formats where
configurations and observations reflects the approaches — linearity, free dupli-
cation and explicit sharing — previously discussed: (1) the monoidal tile format
(MTF) [18], whose configurations and observations have a monoidal structure;
(2) the term tile format (TTF) [5,6], whose configurations and observations have
a cartesian structure; (3) the gs-monoidal tile format (GSTF), whose configura-
tions have a gs-monoidal structure and observations have a monoidal structure.
The MTF corresponds to abandoning sharing of subterms in configurations. The
TTF extends the cartesian structure of configurations to observations, allowing,
e.g., duplication of computations. Using the GSTF one can express sharing of
closed subterms, as when employing term graphs.

By imposing the so called basic source constraint (i.e., the initial configu-
rations of basic tiles must consist of a single basic operator) on the ATF, one
can recover a slightly more general format than De Simone format (final con-
figurations can be nonlinear) but stricter than (positive) Gsos. In this case, tile
bisimilarity recovers the ordinary congruences for closed terms, but not for con-
texts. The analogous constraint on MTF and TTF yields respectively De Simone
and a format more general than (positive) Gsos, both guaranteeing that tile
bisimilarity is a congruence also for terms with variables. The GSTF cannot be
easily recasted in existing s0s formats, due to its treatment of subterm sharing.
We are indeed confident that GSTF can find a meaningful application for model-
ing (coordinator) systems with shared resources. Moreover, the syntactic ‘basic
source’ constraint guarantees again that tile bisimilarity is a congruence.

Outline. In Section 1 we fix the notation and recall the notions of bisimula-
tion, tiles, and tile bisimulation, while in Section 2 we review the most common
sos formats and several tile formats. Sections 3, 4 and 5 deal with MTF, TTF and
GSTF, respectively, showing the main results of the paper, namely that for all of
them the basic source implies that tile bisimilarity is a congruence. Formal proofs
are moved into the appendix. Section 6 compares our approach with Rensink’s
proposal in [22]. We conclude by mentioning several directions for further work.

! Essentially, cartesian configurations can be seen as substitutions over a given sig-
nature (e.g., substitution [t1(z1,...,%n)/Y1, -, tm(Z1,...,2Zn)/ym] corresponds to
a configuration t:n — m). In monoidal configurations terms t1, ...,y are linear in
their variables. In gs-monoidal configurations, sharing of subterms is possible, but
it cannot be eliminated by copying, i.e., let x = ¢; in ¢; is different from ¢a[t;/z]
whenever z does not occur, or occurs more than once, in ¢».



1 Tiles and Bisimulation

Notation. To ease the presentation we will consider only one-sorted signatures,
though our results extend to the many-sorted case. We recall that a one-sorted
signature is a set of operators X together with an arity function ar: ¥ — N. For
neN, welet X, = {f € X| ar(f) = n}. Operators in Xy are called constants.
We denote by T's;(X) the term algebra over X' and variables in X (disjoint from
X)), with Ty, = Tx(9). For t € Tx(X) we denote by var(t) the set of variables
that appear in t. If var(t) = @ then ¢ is called closed, otherwise open. A term is
linear if each variable occurs at most once in it.

A substitution is a mapping 0: X — Tx(X). It is closed if each variable is
mapped into a closed term. Substitutions uniquely extend to mappings from
terms to terms as usual: o(t) is the term obtained by simultaneously replacing
all occurrences of variables z in ¢ by o(z). The substitution mapping z; to ¢; for
i € [1,n] is denoted by [t1/z1,...,tn/%ys], and it is linear if each t; is linear and
var(t;) Nvar(t;) = @ for i # j. A substitution ¢’ can be applied elementwise to
o=[t1/z1,...,tn/xy] yielding o;0' = [0'(t1) /21, .., 0" (tn)/Tn]-

A contert t = Clz1,...,2z,] denotes a term in which at most the distinct
variables z1, ..., z, appear. The term C[ty,...,t,] is then obtained by applying
the substitution [t1/z1,...,tn/Zys] to the context C[z1,...,2,], which can thus
be regarded as a function from n arguments to 1. Note that the z; may as well
not appear in C[z1, ..., 2,]. For example, the context z3[z1, 22, 23] is a function
from three arguments to one, which is the projection on the second argument.

Bisimulation. A labelled transition system (LTS) is a triple L = (S, A, —), where
S is a set of states, A is a set of labels, and -C S x A x S. We let s,t,... range
over S and a,b,c,... range over A. For (s,a,t) € — we say that s is the source,
t is the target and a is the observable, and use the notation s —» t.

Definition 1. Given an LTS L = (S, A, —), a bisimulation on L is a symmetric,
reflexive relation ~ C S x S such that if s ~ t then for any transition s —— s'
there exists a transition t — t' such that s' ~ t'. We denote by ~ the largest
bisimulation, called bisimilarity, and we say that two states s and t are bisimilar
whenever s ~ t, i.e., whenever there exists a bisimulation ~ such that s ~ t.

When S = Ty, an essential property of bisimilarity is compositionality w.r.t.
operators in X, guaranteeing that operationally equivalent subsystems can be
safely replaced in any context. This amounts to requiring that ~ is a congru-
ence, i.e., that for all f € ¥, s; ~ t; for i € [1, ar(f)] implies f(s1,...,Sar(s)) ~
f(t1,...,ter(s))- Bisimilarity can be extended to contexts by letting C[z1, ..., z5] ~
Diz1,...,z,]iff for all closed terms ¢y, ..., t, we have C[t1,...,ts] = D[t1,. .., tn],
i.e., the two contexts are equivalent if they are equivalent when instantiated w.r.t.
all closed terms. This is not very practical for designing open systems, because
of the universal quantification on all possible instantiations.

Tile systems and tile bisimulation. The point of view of the tile model [13]
is that bisimulation can be defined uniformly on both closed terms and contexts,
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without resorting to instantiation closure. In the following we use monoidal cat-
egories for providing an abstract presentation of tile systems. As a matter of
notation, sequential composition and monoidal tensor product are denoted by
- -and - ® _, respectively. The unfamiliar reader may consult, e.g., [13,3].

A tile system is a tuple R = (#H,V,N,R) where H and V are monoidal
categories with the same set of objects Oy = Oy, N is the set of rule names and
R: N — H xVxV xHis a function such that for all « € N, if R(a) = (s,a,b,t)
then we have s:x — y, a:x — 2z, b:y — w, and t: z — w for suitable objects z,

a
y, 2 and w. We will write such rule « either as a: s_b>t, or as the tile

s
r——Y

al a lb

Z4t>w

The category H is called horizontal and its arrows are called configurations.
The category V is called wvertical and its arrows are called observations. The
objects of H and V are called interfaces. Starting from the basic tiles, more
complex tiles can be constructed by means of horizontal, vertical and parallel
composition. Moreover, the horizontal and vertical identities are always added
and composed together with the basic tiles. All this is illustrated in Figure 1.

Depending on the chosen tile format (see Section 2), H and V can be spe-
cialized (e.g., to cartesian categories) and suitable auziliary tiles are added and
composed with basic tiles and identities in all the possible ways. The set of re-
sulting tiles (also called flat sequents) define the flat tile logic associated to R.

a a
We say that s—,*t is entailed by the logic, written R + s, 7t, if the sequent
a
s_b)t can be expressed as the composition of basic and auxiliary tiles.

Definition 2. Let R = (H,V,N,R) be a tile system. A symmetric relation
~¢ on configurations is called tile bisimulation if whenever s ~¢ t and R +

a a
s_b)s’, then there exists t' such that R + t_b>t’ and s' ~¢ t'. The mazximal tile

bistimulation s called tile bisimilarity and denoted by ~.

An interesting question concerns suitable conditions under which tile bisim-
ilarity yields a congruence (w.r.t. the operations of the underlying horizontal
structure); two main properties have been investigated: basic source and tile
decomposition [13]. The former is strongly related to tile formats and will be
discussed later. Tile decomposition has a completely abstract formulation that
applies to all tile systems, and it will be very useful in our congruence proofs.
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Definition 3. A tile system R = (H,V, N, R) enjoys the decomposition prop-
erty if for all arrows s € H and for all sequents s_b>t entailed by R, then:

c
(1) if s = s1;82 then Ic € V, t1,t2 € H such that R F 81_Z>t1, R+ 32_b>t2
and t = ty;te; (2) if s = 51 ® so then Jai,az,b1,ba € V, t1,t2 € H such that

al a2
Rl—slb—1>t1, R|_32b—2>t2, a=a; ®as, b=b;Rby andt =t; R ts.

This property characterizes compositional systems. It amounts to saying that
if a system s can undergo a transition «, then for every subsystem s; of s there
exists some transition o/, such that a can be obtained by composing o' with a
transition of the rest.

Proposition 1 (cf. [13]). If R enjoys decomposition, then ~ is a congruence.

2 Relating SOS and Tile Formats

SOS formats. LTSs over the closed terms of a given signature X' and label
alphabet A can be more conveniently specified by means of a collection of in-
ductive proof rules, called transition system specification (TSS). Such rules have
the form in Figure 2(a), where the s;, ¢;, s and ¢ range over Tx(X) and the a;,
a range over A. Transitions in the upper part of the rule are called premises and
the transition in the lower part is called conclusion. The LTS associated to a TSS
has set of states Ty and all transitions s — ¢ that can be proved by using the
Tss rules. In the sos approach [21] the behavior of s is defined in terms of the
behaviors of its subterms, but in general this is not enough to guarantee that
bisimilarity on the associated LTS is a congruence. Several SOs formats have been
defined to ensure this important property For example, in the De Simone format
(DSF) [10] rules have the form in Figure 2(b), where f € X),, I C {1,...,n}, the
context D is linear and the variables z; and y; are distinct, except for y; = x; if
i ¢ I. Hence each argument z; can be used at most once in the premises, and
if used cannot appear in D. The positive Gsos format [2] (we do not consider
negative premises) extends the DSF in several ways (e.g., the same z; can ap-
pear more than once in the premises and also in the target D of the conclusion,
which can be nonlinear). The tyft/tyxt format [14] generalizes GSos by allow-
ing generic terms t; as sources of the transition in the premises. However, in all
such formats, the main requirement is that rule conclusions must have the form
flzy,...,x,) == t, i.e., their sources must consist of a single operator f applied
to ar(f) different variables. This fact is crucial in the proof that bisimilarity is a
congruence: Conclusions of the form C[z1,...,z,] — t can make the behavior
of certain states be dependent on the context in which they are inserted.
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Tile formats. Since we are particularly interested in considering tile systems
where configurations and observations are freely generated by the horizontal
signature X' and by (the signature associated to) the set of labels A, in what
follows we shall present tile systems as tuples of the form R = (¥, A, N, R). In
particular, we employ categories of substitutions on X and A.

In fact, substitutions and their composition _;_ form a cartesian category
Subs x, with linear substitutions forming a monoidal subcategory. An alternative
presentation of Subsy can be obtained resorting to algebraic theories [15]. The
free algebraic theory associated to a signature X is the category Th[X]: Its
objects are ‘underlined’ natural numbers, the arrows from m to n are n-tuples
of terms in the free Y-algebra with (at most) m variables, and composition of
arrows is term substitution. The arrows of Th[X] are generated from X by the
inference rules in Figure 3, modulo the axioms in Table 1. It is folklore that
Th[Y] is isomorphic to Subsy, and the arrows from 0 to 1 are in bijective
correspondence with the closed terms over X.

An object n (interface) can be thought of as representing the n (ordered) vari-
ables z1,...,x,, i.e., a standard naming is assumed. This allows us to denote a
substitution [t1/%1,. .., tn/Zs] just by the tuple (t1,...,t,), since names of sub-
stituted variables are implicit. We omit angle brackets when no confusion can
arise. The rule op defines basic substitutions [f(z1,...,2Zn)/z1] = f(z1,--.,Zn)
for each operator f € X,. The rule id yields identity substitutions {x1,...,Z,).
The rule seq represents the application of a to £. The rule mon composes substi-
tutions in parallel (in a ® 8, a goes from 1, ...,2, t0 T1,...,Zmy, while 8 goes
from Xy y1,---, Ttk 1O Tma1,-- -, Tmar)- Then some ‘auxiliary’ operators (i.e.,
not dependent on the signature) are introduced that recover the cartesian struc-
ture: symmetries, duplicators, and dischargers. The symmetry 7, (rule sym)
corresponds to the permutation (Z, 41, - - -, Zntm, &1, -- -, En). The duplicator V,,
(rule dup) introduces variable sharing and therefore nonlinear substitutions; it
corresponds to (zi,...,%n,%1,--.,%,). The discharger !,, (rule dis) recovers
cartesian projections and corresponds to the empty substitution on z1,...,z,.
We shal not discuss the axioms in Table 1 (see, e.g., [3,5] for explanations).

Monoidal theories relate to algebraic theories as linear substitutions relate
to generic substitutions. This originates a subcategory M[X] of Th[X] whose
arrows are those generated by rules op, id, seq, and mon in Figure 3 modulo the
axioms of category and tensor product (first and second rows in Table 1).

Term graphs [11] are in some sense situated between linear and cartesian
terms, because they allow for explicit sharing and discharging, in such a way that
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this information is preserved by composition. In fact, Corradini and Gadducci [8]
have shown that by abandoning the naturality of V and ! in the construction
of Th[X], one obtains a category (called gs-monoidal, from graph substitution)
GS[X] which is isomorphic to the category of (ranked) term graphs on ¥. For
example, in GS[X] the composition [t1/z1]; C[z1] can be written as let z; =
t1 in C[z1], with the convention that it evaluates to C[t1] when C' is linear.
The tile format proposed in the original presentation of tiles [13] is the so-
called algebraic tile format (ATF) that recollected the perspective of most Tss:
configurations are terms, and observations are the arrows of the monoidal cate-
gory freely generated by labels (regarded as unary operators). Auxiliary tiles lift
the horizontal cartesian structure to the horizontal composition of tiles. In the
ATF basic tiles have the form in Figure 4(a), where the a; and a can be either
labels (viewed as arrows from 1 to 1) or identities and s,t € Tx({z1,...,Zn}).
Typical auxiliary tiles for the ATF are those in Figure 5: V, duplicates the obser-
vation a (trigger of the tile) propagating it to two instances of the unique variable
in the initial interface, while v, swaps the subcomponents in the initial inter-
face, together with their observations, and !, discharges the initial interface and
its move a. We refer to [13] for more details. The ATF corresponds to SOS rules
of the form in Figure 4(b), where I C {1,...,n}, C and D are contexts (that
correspond to s and ¢ in the tile), and all the y; and z; are different if i € I, but
yr = xp, whenever k & I. The correspondence follows since for all closed terms s

and ¢ and for any label a, R + 34t holds if and only if the LTS associated to
the sos specification includes the transition s — ¢.

In the ATF, H is cartesian, whereas V is only monoidal. We will show that
this combination can create some difficulties in dealing with tile bisimilarity as
a congruence. In particular, it will be convenient either to consider the term tile
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format (TTF) [5], where also V is cartesian, or renounce the horizontal carte-
sian structure. This latter option can be achieved (at least) in two ways: either
considering the monoidal tile format (MTF) [18] where also A is monoidal, or
resorting to the gs-momnoidal tile format (GSTF), where a faithful account of
subterm sharing is provided by abandoning the naturality of V and !.

The MTF deals only with linear terms and has no auxiliary tiles. Its basic
tiles are similar to those of the ATF, but initial and final configurations must
be linear. Although the auxiliary tiles of the GSTF are the same as those of the
ATF, the former deals with term graphs rather than terms and therefore when
composing tiles the naturality axioms of duplicators and dischargers cannot be
applied, yielding a more concrete framework.

According to the TTF basic tiles have the form:

n—" .m
o Lo
k—7p—1

with h,v € Th[Y] and v,u € Th[A], where X is the horizontal signature of
configurations and A is the vertical signature of observations. Of course, if A
contains only elementary actions, regarded as unary operators, then m = 1.

We present term tiles more concisely as logic sequents n < h % g, where the

number of variables in the ‘upper-left’ corner of the tile is made explicit.
Auxiliary tiles for term tile systems consist of all tiles that perform con-

. . . . . . v
sistent rearrangements in the two dimensions, i.e., term tiles k< s —~>¢ such

that s;u = v;t with either (1) s, ¢, u and v are terms over the empty signature
(and therefore also in Th[X] N Th[A]); or (2) s,t € Th[X] and v and v are
terms over the empty signature; or (3) u,v € Th[A] and s and ¢ are terms over

. . .1: . x1
the empty signature. Typical auxiliary term tiles are m; = 14 21 oy T
and 7 =14 T1,T1 % Z1,Z2 that consistently duplicate the unary interface,

2,1 .
01,1 =24 T2,T1 — T1,T2 that consistently swaps the two components of the

e s Vz .

initial interface, and Vy = 2« f(z1,22) ~ (f(x1,22), f(x3,24)) that verti-
1

cally duplicates the configuration f(z1,z2) (see [5,3] for more details). Table 2

summarizes the differences between the tile formats we consider.

10



| I # 1V ] auxiliary tiles

monoidal tile format M[X] | M[A none

gs-monoidal tile format||GS[X]| M[A Ya,bs Va, la

algebraic format Th[X]| M[A Ya,b, Va, la

term tile format Th[X]|Th[A] Va6, Va, la; Ys,ts Vi, ¢, 01,1, T1, 71, ..

Our aim is to extend the theory of sos formats to tile formats for defining
syntactic constraints on basic tiles that enforce the ‘tile bisimilarity as congru-
ence’ property. One such constraint, already noticed in [13], is called basic source,
which is reminiscent of analogous restrictions required by most good sos formats:
A tile system enjoys the basic source property if the initial configuration of each
basic tile consists of a single operator, rather than a generic context.

Proposition 2 (cf. [13]). If an algebraic tile system R enjoys the basic source
property, then tile bisimilarity on closed terms is a congruence.

3 The Monoidal Tile Format

If the monoidal tile format is employed, the basic source requirement establishes
a bijective correspondence between basic tiles and rules in De Simone format
(as noticed in [13]). Therefore it is trivial to show that tile bisimilarity on closed
terms exactly corresponds to bisimilarity on the LTS defined by the associated
De Simone presentation of the tile system. However, we can extend this result
to contexts in a different way from ordinary instantiation closure.

Theorem 1. If a monoidal tile system R = (X, A, N, R) enjoys the basic source
property, then tile bisimilarity defines a congruence also on contexts.

Of course a congruence on contexts is closed under instantiations, and there-
fore ~; C ~. It can be shown that ~; is in general finer than ~ on contexts. To
see this, it suffices to introduce a basic tile whose trigger cannot be generated
by any closed instance of the associated argument. We propose the following
nontrivial example, inspired by [22].

Ezample 1. Let us consider finite cCs (see Appendix A) extended with the family
of unary operators doj(-) with n € N and p an action. For all n > 0, the
behaviour of doj;(-) is described by the De Simone rule

P54 Q

dol}(P) 5 do} ™ (Q)

whose corresponding MTF tile is doZ(xl)%)dozfl(ml) (see Appendix A for the
other basic tiles). There are no rules for dog(_). Then the contexts Ci[z1] =

11



B.do}(x1) + B.anil + B.nil and Csfz1] = B.a.nil + B.nil (already considered
in [22]) are bisimilar but not tile bisimilar. In fact, if p is a closed process,

then C[p] N dol(p), and do’ (p) has either no transition (when p cannot
do @) or a transition leading to the deadlocked state do?(q) for some g such
that p =5 q. Therefore Cy[p] = B.a.nil + B.nil is always able to match the
B move, i.e., Ci[p] = Cs[p] for all closed p. On the other hand, we have the

id
tile Cy [:cl]?do(lx(xl) that cannot be matched by Cs[z1] ending in tile bisimilar
id id
states. In fact, if Cg[xl]?)a.m'l then the tile a.nil%m’l cannot be matched

id
by dol(z1) (the trigger a would be required). If instead 02[3:1]?1“'1 then

dol(x1) ¢ nil. Note that we have slightly abused the notation by writing,
e.g., nil rather than nil[z1] = nil®!(z1), where the discarded variable is made
explicit as required by the MTF.

4 Algebraic vs. Term Tile Formats

When dealing with nonlinear contexts and tile bisimulation, the ATF can give
rise to unexpected results, as the following example illustrates.

Ezample 2. Let us consider the algebraic tile system for finite ccs (see Ap-
pendix A) given in [13]. It is straightforward that on closed terms tile bisim-
ilarity ~¢ coincides with bisimilarity ~ on the ordinary LTS of cCS. More-
over, since the TSs is De Simone, then bisimilarity is a congruence. However,
on open terms ~ is different from ~. In fact, let us consider the contexts
Ci[z1] = (z1]z1)\e and Cs[z1] = (z1\al|z1\a).- Then Ci[z1] ~¢ Ca[z1], but
Ci[z1] # Ca[z1], since there exists a process p (e.g., p = a.nil + @.nil) such that
Ci[p] — @ and Cs[p] cannot move. But then, of course, Cy[p] #; C2[p] and
therefore tile bisimilarity is not a congruence in the algebra of contexts. Finite
ccs admits also a presentation in TTF [5,3], which is recalled in Appendix A.
Again we have that on closed terms tile bisimilarity ~; coincides with ~. But
now, thanks to the auxiliary tiles of TTF we can prove that Ci[z1] % Ca[z1].
a(zi),a(z1)
7(21)
Ci[z1] = Vi;(21|22)\a) cannot be mimicked by Ca[z1].

In fact the tile 1 « Ci[z1] (z1]z2)\a (see Figure 6, noticing that

A more general result demonstrates that the fact that the TTF for ccs behaves
better than its ATF counterpart is not a mere coincidence.

Theorem 2. If a term tile system R = (X, A,N,R) enjoys the basic source
property, then tile bisimilarity is a congruence (also for open terms).

The previous theorem states that if a system can be expressed in TTF with
basic source, then we have a more satisfactory equivalence on open terms than
the one obtained by closing contexts under all possible instantiations of the

12
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Figure 6.

variables with closed terms. In fact it is completely analogous and consistent
with that of closed terms and moreover takes care of the specification constraints
(initial configurations of basic tiles can be seen, e.g., as incomplete open software
modules) rather than just of the effective realizations (closed systems). As for
MTF, it can be shown that ~ for TTF is in general finer than the corresponding
instantiation closure ~. A nontrivial example is given, e.g., by considering again
the family of doj; () operators.

5 The Gs-Monoidal Format for Explicit Sharing

It should be evident that the definition of good sos formats for process alge-
bras based on term graphs rather than terms is not straightforward, since the
interplay between configurations and observations is difficult to manage. The
general setting of tiles can be used to overcome this inconvenience. The idea is
to consider a monoidal category of observations and a gs-monoidal category of
configurations (where V and ! are not natural). Although the auxiliary and basic
tiles of GSTF are much like those of ATF, the gs-monoidal (rather than cartesian)
structure is lifted from configurations to (horizontal composition of) tiles.

Example 3. The behavior of the term graph representation
let 1 = a.nil + a.nil in (z1|z1)\a

of the ccs agent ((a.nil + a.nil)|(a.nil + a.nil))\, must be evaluated by syn-
chronizing the moves that p = a.nil + @.nil can perform with the open behavior
of the nonlinear context (z1|z1)\a = Vi; (21|z2)\a. Since p can execute either
a or @ but not both at the same time, then no such synchronization is possible
(see the incomplete tile pasting in Figure 7(a)). This is not the case of (p|p)\a,
where there are two subcomponents p that can perform complementary moves
and synchronize (see Figure 7(b), noticing that p; Vi # Vo; (p ® p) = pQ p).

Likewise MTF and TTF, also tile bisimilarity for GSTF enjoys a nice congruence
property, providing a good format for the specification of resource aware systems,
like coordinators discussed in the Introduction.

Theorem 3. If a gs-monoidal tile system R = (X, A, N,R) enjoys the basic
source property, then tile bisimilarity is a congruence (also for open terms).
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6 Related Work: Conditional Transition Systems

The problem of defining formats for bisimilarity congruences on open terms
has been previously addressed by Rensink in [22], exploiting conditional tran-
sition systems (CTS). The basic ingredients of CTSs are conditional transitions
't s =% ¢, where s and ¢ are open terms, and the environment I is a finite
graph {z; =% y1,...,Tn — y,} (with variable names as nodes) that involves
suitable assumptions about the variables in s and ¢, defining the hypotheses
under which the open transition exists. Building on this, Rensink proposes two
kinds of bisimilarities called formal hypothesis (~™) and hypothesis preserving
(~PP). The difference between them is that in the latter the environments used
along the consecutive steps of a computation are persistent, and thus they can
be reused when necessary.

Although one could expect that conditional transitions correspond to tiles

s%t for I' belonging to a suitable category of observations, a comparison
with the tile model is not straightforward. One important difference is that
in Rensink’s approach the environment I' is observed, which provides all the
potential triggers of the systems, while in the tile approach the observation of a
particular step includes the actual trigger.

Moreover, a different operation closure is introduced by Rensink via condi-
tional transition system specifications (CTSSs), whose rule premises and conclu-
sions have the form I F s; — t;, and come equipped with three administrative
rules (called wariable, weakening and substitution) that operate on the basic
conditional transitions of any specification. The latter have a special format de-
signed for expressing the behavior of basic symbols of the signature. cTSSs also
include binders, although Rensink investigates only recursion based CTSSs.

The main theorem of [22] states that for recursion based cTsss both ~f
and ~"P are congruences and ~™ C ~" C ~. Rensink also conjectured that
in the (algebraic) tile setting ~; = ~M = ~PP probably inspired by the fact
that tile triggers define acyclic environments, where the assumptions made in
the past cannot influence successive steps. The fact that for the ATF the basic
source property does not imply that ~; is a congruence gives evidence that
the models built via ¢TSS and tiles can be very different, and indeed a formal
correspondence between administrative rules and tile operations is hard to state
— informally, variable, substitution and weakening rules correspond respectively
to horizontal identities, horizontal composition and parallel composition, while
vertical composition of tiles has no administrative counterpart in CTSS.
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The presence of nonlinear terms (that are dealt with differently in ATF, TTF
and GsTF) also introduces transitions that are unexpected in Rensink’s frame-

work. For instance, the tile z1|z1 0%1’1171 |z1 appears in all the tile systems for ccs
that we have considered (except MTF, where duplication is not allowed); this
corresponds to using the same assumption to prove ‘atomically’ two consecutive

steps, which can have some interpretation in terms of ~", but not of ~f.

Concluding Remarks and Future Work

We have proposed several tile formats for defining bisimilarity congruences di-
rectly on both closed and open terms. The simpler MTF relies on global lin-
earity of the modeled system. The more expressive TTF reflects nonlinearity of
configurations at the level of observations. The GSTF provides a sound formal
framework for the treatment of resource aware systems, via explicit sharing of
closed subterms, which was missing completely in the literature. Currently we
are studying several applications that employs specifications in GSTF. In many
such cases the congruence proofs (via decomposition property) can be carried
out at the pictorial level as tile pastings (see Appendix B).

At a first look, open systems are just natural extensions of the notion of
closed system, but when we study the point with more attention we immediately
find different classes of open systems. An initial classification would distinguish
incomplete systems, which define the main behavior (at the top level) of the
system, to be refined by providing the corresponding components, and coordi-
nators, which define services to be used by the processes instantiating their free
arguments. Thus, the latter class of systems corresponds to bottom-up design
and the most usual notion of reusable component.

As discussed in the Introduction, it is reasonable to cope with variables in
these two classes of open systems in a different way, specially when their inter-
faces contain repeated occurrences of the same variables.

Another interesting point is the duality between the extension of a process by
(partial) instantiation of its variables, and by embedding it in a context (i.e., an
incomplete system by itself). In another recent paper [7], the notion of ground tile
bisimulation has been developed, which thanks to additional transitions labelled
by contexts (in the style of dynamic bisimilarity) is a congruence for (external)
contexts, practically without any format limitation. It seems rather interesting
to try to unify the advances in both directions in order to obtain a uniform
treatment of both internal and external contexts in the framework of dynamic
bisimilarity.

Another related topic which we are working at is to restrict the tiles to be
considered when defining bisimulation for open terms, trying to remove those
tiles containing triggers which in fact cannot be generated after instantiating the
variables in any possible way. The idea is to obtain a weaker notion, closer to
the one obtained by instantiating variables with closed terms.

Finally, an interesting open problem is the extension of our results to the
adequate notion of weak tile bisimulation.
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A Tiles and CCS

Milner’s Calculus for Communicating Systems (ccs) [19] is among the better
known and studied concurrency models. We recall here its operational semantics
and the tile specifications that have been proposed in the literature for recovering
the behavior of (finite) agents.

We let A (ranged over by a) be the set of basic actions, and A the set of
complementary actions (where (_) is an involutive function such that A = A
and AN A = @). We denote by A (ranged over by \) the set AUA. Let 7 ¢ A
be a distinguished action, and let Act = AU{7} (ranged over by u) be the set of
ccs actions. Then, a CCS process is a term generated by the following grammar:

Pu=nil | wP | P\, | P+P | P|P

We let P, @, R, ...range over the set Proc of CCS processes. Assuming the
reader familiar with the notation, we give just an informal description of ccs
operators: the constant nil yields the inactive process; process u.P can behave
like P but only after the execution of action y; process P\, is P with actions a
and a blocked by restriction _\4; process P+ @ is the nondeterministic guarded
sum of P and Q; process P|Q is the parallel composition of P and Q. The sos
system for CCS processes is defined by the set of De Simone rules in Figure 8 (the
obvious symmetric rules for sum and asynchronous communication are omitted).

The basic tiles of the algebraic tile system for ccs proposed in [13] are given
in Figure 9.

The basic tiles of the monoidal tile system for ccs proposed in [18] differ from
those in the algebraic format only in the treatment of nondeterministic sum. This
is because the monoidal format has no horizontal discharger and therefore an ex-
plicit unary operator !(_) must be introduced for garbaging discarded arguments.
Thus, the MTF tiles for nondeterministic sum are given in Figure 10. There are
no tiles with source !(z1) and therefore the operator !(-) locks its argument.
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The basic tiles of the gs-monoidal tile systems for ¢Cs have not been presented
in the literature, however, they are essentially the same as those of the MTF case,
but where the operator !(_) is the discharger ;.

The basic tiles of the term tile system for cCs proposed in [5] are given
in Figure 11. Apart from the notation, the main difference w.r.t. the ATF tiles
resides again in the rule for sum. In fact we can now discard the unused argument
at the level of observations (see the trigger of (+,).

B Proofs

Proof of Theorem 2

Proof. The proof reduces to demonstrating that for term tile systems the basic
source implies the decomposition property, and then to apply Proposition 1. To

a
show this, we proceed by induction on the proof of a generic tile a = s_b>t.
The base cases (identities, auxiliary tiles and basic tiles) are either obvious
or implied by the basic source property.

a1
If the proof is obtained as the vertical composition of two tiles a; = sb_1>t1

a2
and a; = tlb_2>t, then the decomposition property trivially follows from the

inductive hypothesis applied to a; and as.
a1l
If the proof is obtained as the parallel composition of two tiles a; = s1 b_l’tl

a2
and oy = 321;_2)’52’ then s = 51 ® s2 and we have the following cases:

1. let s = s}; s for some s} and sj, then there exist s11, s1,2, s2,1 and sa2
such that s§ = s1,1 ® s2,1 and sy = 51,2 ® 2,2, with also s; = s1,1; 81,2 and
83 = 83,1;52,2. Then by inductive hypothesis we have that o; and as can
be decomposed along the s; ; into smaller proofs o, ; for 4,j € [1,2]. Then
the parallel compositions of a1, with as; and of a;» with as2 provide a
horizontal decomposition of « along s] and sh;
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2. let s = s} ® s, for some s| and sh. If s; = s} for i € [1,2] then the decom-

position is trivial. If s; = 5] ® s5; with s, = s ; ® s2, then we apply the
inductive hypothesis to s; obtaining a decomposition of a; along s} and s5 ;
into the parallel composition of oy and o ;, but then the expected decom-
position of « along s} and s}, is given by o} and the parallel composition of
as y with az. Likewise if sy = 57 5, ® 85 with 57 = 51 ® 87 5.

If the proof is obtained as the horizontal composition of two tiles a; =
a b1

s1 bl’tl and oy = 8o b ’tz, then s = s1; 82 and we have the following cases:

1.

let s = 57 ® s for some s7 and s, then there exist 57 1, 81 5, 851 and s,

such that s; = 87 ; ® 85 ; and 83 = 8] , ® 85 5, With also 57 = s ;;8] , and

85 = 851;854. Then by inductive hypothesis we have that a; and as can

be decomposed along the s; ; into smaller proofs o ; for 4,5 € [1,2]. Then

the horizontal compositions of o ; with of , and of o, ; with o), , provide
bl b bl b

a parallel decomposition of « along s} and sb;

. let s = s7;s4 for some s} and s). This is the more intriguing case, where

the auxiliary term tiles are exploited, making the difference between the
algebraic and the term tile formats. If s; = s} for ¢ € [1,2] then the de-
composition is trivial. If s; = s7;s5 ; with s5 = s} ;; 59, then we apply the
inductive hypothesis to s; obtaining a decomposition of «; along s| and
851 into the sequential composition of @) and a3, but then the expected
decomposition of « along s} and s} is given by a} and the sequential com-
position of a5 ; with as. Likewise if s2 = 57 5; 55 with s} = s1; 5] ,. However,
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it could also be the case that some of the axioms in Table 1 must be applied
to prove that s};s) = s1;$2 in such a way that none of the previous corre-
spondence can be established. Hence we must check that the decomposition
is not compromised by the application of the various axioms. Monoidal and
category axioms (first and second rows) are directly reflected at the level of
tiles and therefore preserve decomposition. Coherence axioms can be dealt
with very easily by exploiting auxiliary tiles, because they involve just auxil-
iary operators. In fact let o1;09 = 01; o) be a generic coherence axiom such

that a tile 8 = 01; 09 —(th can be decomposed as the sequential composition

of 1 = o1 %’tl and By = ag—i>t2, then we want to show that it can be
decomposed also along o and o). The proof is illustrated in Figure 12(a). In
fact, since all o; and o} are auxiliary, they define both horizontal and vertical
arrows, and by the property of auxiliary term tiles we know that the tiles

id 91 P a
: 1= 1 — : "
id= o, 0y ol 02, and 0,7, "id are present. Therefore the tiles 8] = o} oliet

and S5 = o), %gid (obtained by the horizontal and vertical pastings of 51, 32
and auxiliary tiles) provide a decomposition of 8 along o] and ¢. Notice that
each axiom generates two cases to check. For instance, the coherence axiom
Vi Yn,n = Vp originates two cases: the first with o1 = 0] = Vg, 02 = Yp,n,
0% = idp4n, and the second one with o1 = 0] = Vy,, 02 = idptn, 05 = Yn.n.
Finally, the naturality axioms must be considered (as for coherence, each
axioms originates two cases to check):

[(5®1); Ym,i = Yn,k; (t®s)]: In the first case we assume that a tile § with initial
configuration (s ®t); ym, can be decomposed along (s ®t) and 7, 4, then we
want to show that the same tile can be decomposed along v, and (t ® s).
Since symmetries are auxiliary operators, the proof relies on the existence

of auxiliary tiles wz—jﬂd, t® s%)s ®t and idz._vd”y (subscripts omitted for
readability), as illustrated in Figure 12(b). Likewise for the second case.

[$; Vin = Va3 (s ® s)]: Here the simpler case is assuming that a tile § with
initial configuration V,; (s ® s) can be decomposed along V,, and (s ® s) in
B1 and (2, and then show that there exists a decomposition g1, 85 of 8 along
s and V. The pictorial proof for this case is illustrated in Figure 13(a). The
second case is more complex to illustrate but analogous and thus omitted.
[s;lm =!n]: Here the interesting case is decomposing a tile f with initial
configuration !,, along s and !,,,. The proof is illustrated in Figure 13(b). O

The proof of Theorems 1 and 3 are analogous. In particular, the proof of The-

orem 1 is much simpler since coherence and naturality axioms are not present.
The proof of Theorem 3 is based on the fact that basic observations are all de-
fined as unary arrows. In fact, since not all the auxiliary term tiles needed in the
proof of coherence axioms are present, it is necessary to show that symmetries,
duplicators and dischargers distribute on observations. On the other hand nat-
urality of duplicators and dischargers cannot be dealt with, but we can avoid it
since the horizontal structure is gs-monoidal.
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