
Provably correct implementations of services⋆

Roberto Bruni1, Rocco De Nicola2, Michele Loreti2, and Leonardo G. Mezzina3

1 Dipartimento di Informatica, Università di Pisa, Italy
2 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy

3 IMT Alti Studi Lucca, Italy

Abstract. A number of formalisms have been defined to support the specifica-
tion and analysis of service oriented applications. These formalisms have been
equipped with tools (types or logics) to guarantee the correct behavior of the
specified services. Due to the semantic gap between the specification formalism
and the programming languages of service oriented overlay computers a criti-
cal issue is guaranteeing that correctness is preserved when running the specified
systems over available implementations. We have defined a service oriented ab-
stract machine, equipped with a formal structural semantics, that can be used to
implement service specification formalisms. We use our abstract machine to im-
plement different service oriented formalisms that have been recently proposed,
each posing specific challenges that we can address successfully. By exploiting
the SOS semantics of the abstract machine and those of the considered service
oriented formalisms we do prove that our implementations are correct (sound
and complete). We also discuss possible implementations ofother formalisms.

1 Introduction

The explosive growth of the Web has led to the widespread use of communication cen-
tered applications (often referred to asweb services) and to the growth of a new com-
putational paradigm known asService Oriented Computing(SOC). The intrinsic com-
plexity of such an open ended paradigm can better be governedby taking advantage of
well-structured and tightly disciplined approaches to themodeling of interaction. With
these motivations in mind, a number of formalisms have been defined to support the
specification and analysis of service oriented applications at the right level of abstrac-
tion.

O [18] is an elegant programming model for structured orchestration. Building
on three primitives for parallel composition, pipeline, and some sort of cancellation, ar-
bitrarily complex interaction patterns can be programmed in O by relating sequences
of independent service invocations via ad-hoc mechanism (e.g. state variables).

SCC [4] is a formalism based onπ−calculus and influenced by O that introduces
a specific notion of asessionas the basic tool for programming services and monitor-
ing the communication graph between client and services. Services are seen as passive
objects that can be invoked by clients. Service definitions are specific instances of input
prefixed processes. The two endpoints of a session (service and client) can communicate

⋆ Research supported by the Project FET-GC II IST-2005-16004. The second author has been
partially supported also by IMT Alti Studi Lucca.

by exchanging messages. A fresh shared name is used to guarantee that messages are
exchanged only between partners of the same session, so thattwo instances of the same
persistent service (that was invoked from two different sessions) run separately and
cannot interfere. From the original proposal in [4], other variations and refinements of
SCC have stemmed. SSCC [15] exploits astreamoriented unidirectional communica-
tion mechanism; and values produced in a session can be pushed into dedicated queues,
accessible via their names. The Conversation Calculus [10]allows bidirectional com-
munications between a child session and its parent session.CSPS [5] is adataflow
oriented refinement of SCC that uses pipelines to model the local exchange of infor-
mation. The improvements concern a pattern matching mechanism for communication
and a discipline for the graceful closure of nested sessions.

The central role assigned to sessions by the above calculi and the direct use of op-
erators for modeling interaction renders the logical structure of programs clearer and
leads to well disciplined specification languages. Other proposals take multiparty ses-
sions as basic work-units, instead of dyadic sessions. Thisis e.g. the case of [13], where
the number of roles covered by participants is statically fixed by means of some sort
of global contract, which allows for the enforcement of a rigid type disciplinefor their
trustworthy interaction. Differently,µse (read “muse”, after MUltiparty SEssions) [7]
allows dynamic join to a session and unbounded number of participants. Type systems
for guaranteeing type safety and progress properties are under study [6].

A different thread of research, deeply influenced by XML technologies for Web
Services like WS-BPEL, exploits the idea ofcorrelation setsto establish session scopes.
Roughly, the idea is to route each message to a specific instance of a service depending
on the values taken from certain parameters [16, 9]. Though correlation sets guarantee a
good expressiveness and match a technology trend, we argue that calculi based on such
concepts are less suited for analysis and verification, because most of their interactions
are driven by actual values of data. Also, unrelated sessions can interfere with each
other if ends up using the “right” values.

A key point for the usefulness of the above formalisms is the availability of tools
(types or logics) to specify, check and guarantee the correct behavior of the considered
services (see e.g. [14, 17, 23]). It is then important to makesure that the proved proper-
ties are preserved when running the specified systems over available implementations.
This might not be obvious due to the semantic gap between the specification formalism
and the programming languages used for their implementation.

Abstract machines that describe step-by-step execution ofprograms but omit the
many details of real (hardware) machines are a good tool for approaching this problem.
They provide an intermediate language for compilation and can be used to bridge the
gap between the high level of a programming language and the low level of a real ma-
chine. The instructions of an abstract machine are tailoredto the particular operations
required to implement operations of a specific class of source languages. Indeed, the in-
troduction of layers of abstractions increases maintainability and portability. Moreover,
apart for these software engineering considerations, abstract machines are theoretically
appealing as they facilitate correctness proofs of the generated code and simplify pro-
gram analysis and transformations. With this in mind, we have defined a Service Ori-
ented Abstract Machine (SOAM), equipped with a formal semantics, that can be used

to implement the service specification formalisms. The machine that we have designed
is specifically conceived to permit inter-task communication and thus to guarantee by
means of dedicated queues created on service invocation a persistent, protected, com-
munication line that naturally corresponds to the concept of session that is proper of
service centered calculi. This enables programs to connectand communicate with other
programs and to discover new resources in the network. Besides we use the standard
imperative primitives i.e.: assignments, loops and conditionals, to write local programs.

The operational semantics of our abstract machine can be used as the basis for
guaranteeing that the properties that have been proved by reasoning on the calculi-
based specification are preserved by the actual implementations. Many abstract machine
already exists [21, 19, 20, 22], with SOAM we focus on communications in presence of
sessions, and we simplify the theory where the problems are already well-studied to
keep proofs simpler.

We test our proposal by providing the implementation in SOAMof three very dif-
ferent session-based calculi, namely the session language(SL) of Honda, Vasconcelos
and Kubo [12], CSPS and O, each posing specific challenges, like session delega-
tion (SL), pipelining, session nesting and pattern matching (CSPS), and cancelation
of activities (O). For all of them we provide a structural translation into the code of
our abstract machine and prove the operational correspondence between a process and
its encoding: all computations of a process are mimicked by the abstract machine ob-
tained from the translation, and vice versa, the translation of a process only performs
meaningful computations, i.e. only those computations that correspond to possible evo-
lutions of the encoded term. The encoding scheme is similar in all three cases: a process
P is translated into a networkN = net(P) which is essentially a soup of state/program
pairs〈σ ⊢ C〉 and named queuesr : h, where the use of some name could be restricted.
Initially each program can be seen as the encoding of a sequential agent, then, as the
program evolves, it updates its local state, forks new processes and creates new queues.

To keep actual proofs simple, we assume availability of highlevel operators such as
name restrictions, and concentrate on the problems raised by the actual implementation
of the interactions mechanisms via shared queues. We do provide the details about
proofs only for SL. The proofs for the encodings of CSPS and O being similar, we
highlight only the differences and the key ideas.

The rest of the paper is organized as follows. In the next section we introduce the
operational semantics of our abstract machine and discuss its main features. Then, in
the three successive sections we consider in turn SL, CSPS and O. We conclude
with a few final considerations.

2 A Session Oriented Abstract Machine

In this section we present the formal specification of our virtual machine for services,
called SOAM (Service Oriented Abstract Machine). The syntax of SOAM programs
(C,D) is reported in Fig. 1, where expressions are denoted bye, values byv,w, . . .,
variables byx, y, . . ., patterns byF, andn is used to denote names which may indicate
elements of two different kinds, namelysessionsranged over byr, s. . . andservices
ranged over bya. As usual, we use ˜· to indicate finite sequences of values.

C,D ::= skip | x := e | while e do C | if e then C else D | C; D

| new n | invoke(v, 〈x, y〉,C) | offer(v, 〈x, y〉,C)

| out(w, ṽ) | in(w, Σ j∈J(F̃ j .C j)) | fork(〈x1, y1〉,C1, 〈x2, y2〉,C2)

e ::= f(ẽ) | v

F ::= e | ?x

v,w ::= n | true, f alse| x, y, . . . | n

σ ::= ∅ | x : v, σ

Fig. 1. Syntax of SOAM programs

Standard imperative commands are theassignment, the while-do, the if-then-else
and the sequencing.skip is the empty program and is often omitted from programs
when it is in tail position. The remaining commands are used to interact with other
programs in the network. Commandnew n; C allows the creation of a new name. Com-
mandsinvoke(v, 〈x1, y1〉,C1) andoffer(v, 〈x2, y2〉,C2) permit the synchronization be-
tween service offers and service invocations onv, the additional parameters〈x1, y1〉

and〈x2, y2〉 are local variables bound in the bodiesC1 andC2, respectively, to a new
pair of session queues which allow bidirectional communications: x1 and x2 will be
bound to the same queue, and similarly fory1 and y2. Outputout(w, ṽ) and input
in(w, Σ j∈J(F̃ j.C j)) primitives allow, respectively, the output of a tuple ˜v inside session
w and the input of a tuple offered within sessionw that matches one of the patternsF j :
the continuationC j will depend on the selected pattern. The primitivefork allows the
creation of two threads that can communicate by means of dedicated session queues
bound to the pairs〈x1, y1〉 (for C1) and 〈x2, y2〉 (for C2). When the threads need no
communication we writefork(C1,C2).

Each command is evaluated by exploiting a memoryσ which is just a list of pairs
binding variables to values. The memory is updated by the substitution functionσ[x/v],
which allows to extend the memory with a new binder or to replace an existing associ-
ation, as inductively defined by letting:

∅ [x/v] = x : v, ∅
(x : v′, σ′) [x/v] = x : v, σ′

(y : v′, σ′) [x/v] = y : v′, (σ′[x/v]) if x , y

We start by defining the evaluation function for commands andexpressions which
have only local impact and do not require any interaction over the network (see Fig. 2).
The operational semantics of SOAM is based on an evaluation function,→, which is
defined both for expressions and commands:〈σ ⊢ e〉 → v means that the result of eval-
uating expressionewith memoryσ is v; 〈σ ⊢ C〉 → 〈σ′ ⊢ C′〉means that the evaluation
of commandC with memoryσ leads with a small step to a new memoryσ′ where the
commandC′ must be evaluated. Rule(EF) evaluates each parameter first and returns
the result of the evaluation of functionf(v1, . . . , vn). Rule(EV) returns the value asso-
ciated to the variablex while the rule for the evaluation of valuesv other than variables
returnsv regardless ofσ. Rules for local commands (conditional, while and assignment)

(EF)
∀i.〈σ ⊢ ei〉 → vi f(v1, . . . vn) = v

〈σ ⊢ f(e1, . . .en)〉 → v

(EV)

〈σ1, x : v, σ2 ⊢ x〉 → v

(EV)
v , x

〈σ ⊢ v〉 → v

(M)

〈σ ⊢ skip; D〉 → 〈σ ⊢ D〉

(M)
〈σ ⊢ e〉 → v

〈σ ⊢ x := e; D〉 → 〈σ[x/v] ⊢ D〉

(MT)
〈σ ⊢ e〉 → true

〈σ ⊢ while e do C; D〉 → 〈σ ⊢ C; while e do C; D〉

(MF)
〈σ ⊢ e〉 → f alse

〈σ ⊢ while e do C; D〉 → 〈σ ⊢ D〉

(MIT)
〈σ ⊢ e〉 → true

〈σ ⊢ if e then C1 else C2; D〉 → 〈σ ⊢ C1; D〉

(MF)
〈σ ⊢ e〉 → f alse

〈σ ⊢ if e then C1 else C2; D〉 → 〈σ ⊢ C2; D〉

Fig. 2. Local evaluation

N ::= O (empty net) h ::= ∅ (empty queue)
| 〈σ ⊢ C〉 (running program) | ṽ · h (sequence of values)
| N|M (network composition)
| (νn)N (name restriction)
| r : h (session queue)

Fig. 3. Syntax of SOAM Networks

are standard. For conciseness we give the rules assuming some continuationD is also
present, the simpler cases being recovered whenD = skip.

Defining the operational semantics for the other constructsrequires introducing the
notion of networks which models the behavior of multiple programs running concur-
rently. The syntax of networksN,M, . . . is reported in Fig. 3. A network can be empty
or a programC running with local storeσ, the parallel composition of two networks, a
network with specific private names, or a sessionr with associated a sequence of values
h (a queue). The set offree namesfn of a network (defined in Fig. 4) considers the ref-
erences to service and session names in the memory, in a command and in a sequence
of valuesh. Remind that the only binders for service and session names are new n; C
and (νn)N, the set ofbound namesbn(N) is defined as expected. As usual, processes
are considered equal up-to alpha-renaming of bound names (and bound variables).

The operational semantics for the commands operating over networks is reported
in Fig. 5(b). It relies on two key auxiliary notions, namely astructural congruence
relation≡ (see Fig. 5(a)) and apattern matchingfunctionmatch (see Fig. 5(c)). The
structural congruence is similar to the one forπ-calculus. Here, we just remark that
rule 〈σ ⊢ skip〉 ≡ O considers a vacuous program equivalent to an empty network
and rule (νr)(r : h) ≡ O permits garbage collection of sessions. The pattern matching
functionmatch returns a substitution that replaces with values the variables (denoted

fn(O) = ∅ fn(〈σ ⊢ C〉) = fn(σ) ∪ fn(C) fn(r : h) = {r} ∪ fn(h)
fn(N|M) = fn(N) ∪ fn(M) fn((νn)N) = fn(N) \ {n}

Fig. 4. Free namesfn(N) of a network

by ?x) within the pattern. In Fig. 5(b) and Fig. 5(c), we do rely also on the following
notation:ρ denotes a generic substitution;ǫ is the empty substitution; the composition
of two substitutions is denoted· and we useσρ andCρ to denote the application of
the substitutionρ to a stateσ or to a commandC, respectively. Moreover, we useρ|R to
denote a substitutionρwhose domain is restricted to the set ofR-Value; i.e. to a function
defined only for variables that never appear on the left hand side of an assignment.
Correspondinglyρ|L is defined only for those variables that have been previouslybound
to actual values. In rule(M), the R-value part of the substitution is applied directly to
the continuation while the other component is applied to memoryσ.

Output operation, rule(M), outputs the tuple ˜v, in the session bound withinσ to
variablew. Input rule(M) non deterministically takes one of the value in the session
queue bound tow within σ which pattern-matches one the patternsFk. Rule (MR) is
used to create a new (empty) session queuer that is private of the continuation (C) and
can be possibly extruded to the network and used to exchange values. Rule(MS) is
similar but does not create any queue, it only guarantees privateness of namea.

We provide two mechanisms for process communication, namely we use command
fork for interprocess communication and the pair of commandsoffer-invoke for
inter-site communication. Rule(M) says that when afork operation is invoked two
new threads are created duplicating the current memoryσ, and two empty session
queues are created to be used later for bidirectional communication between the two
new threads. To guarantee sharing of information between the threads, each of the
copies of the memoryσi is enriched by bindings the two fresh session queue names
r andr ′ to the variables of the pair〈xi , yi〉. The rule for inter-site communication(M)

is similar to(M) but there is no memory duplication and the bindings of the twofresh
session queue namesr and r ′ to the variables of the pair〈xi , yi〉 is performed within
memoriesσ andσ′.

Next we show a sort of non interference property valid for SOAM programs that
we use in correctness proof of each encoding, namely each transition different from an
input (rule(M)) or an intra site synchronization (rule(M)) can be freely interleaved.
Roughly, this helps since no matter how such actions are interleaved in the network, the
result is the same. As we shall see, from the point of view of correctness proofs this
means that each transition in a given calculus can be simulated by multiple machine
instructions, as long as we maintain a one to one correspondence among input and
synchronization transitions of the machine to input and synchronization transitions of
the calculus (see Theorem 2).

In the following, we introduce some syntax. Sometimes, it isimportant to establish

the origin of a transition therefore we denote with
�

→ a transition originated from rules

(M) and(M) and we use
�

→ otherwise.

〈σ ⊢ skip〉 ≡ O O|N ≡ N N|M ≡M|N N|(M|M′) ≡ (N|M)|M′

(νn)(νm)N ≡ (νm)(νn)N n < fn(N)⇒ N|(νn)M ≡ (νn)(N|M) (νr)(r : h) ≡ O

(a) Structural congruence over networks

(M)
〈σ ⊢ w〉 → r

〈σ ⊢ out(w, ṽ); C〉|r : h→ 〈σ ⊢ C〉|r : ṽ · h

(M)

〈σ ⊢ w〉 → r match(σ, F̃k, ṽ) = ρ

〈σ ⊢ in(w, Σ j∈J(F̃ j .C j)); D〉|r : h · ṽ · h′ → 〈σρ|L ⊢ Ckρ|R; D〉|r : h · h′

(MR)
r < fn(σ)

〈σ ⊢ new r; C〉 → (νr)(〈σ ⊢ C〉|r : ∅)

(MS)
a < fn(σ)

〈σ ⊢ new a; C〉 → (νa)〈σ ⊢ C〉

(M)

r, r ′ < fn(〈σ ⊢ C1〉) ∪ fn(〈σ ⊢ C2; D〉) ρ1 = [r/x1][r′/y1] ρ2 = [r/x2][r′/y2]

〈σ ⊢ fork(〈x1, y1〉,C1, 〈x2, y2〉,C2); D〉 →
(νr)(νr ′)(〈σ1ρ1|L ⊢ C1ρ1|R〉|

〈σ2ρ2|L ⊢ (C2; D)ρ2|R〉|r : ∅|r ′ : ∅)
(M)

∀ i ∈ {1,2} 〈σi ⊢ vi〉 → a ρi = [xi /r][yi /r′] r, r ′ < fn(〈σi ⊢ Ci〉)

〈σ1 ⊢ offer(v1, 〈x1, y1〉,C1); D〉|
〈σ2 ⊢ invoke(v2, 〈x2, y2〉,C2); D′〉

→
〈σ1 ⊢ D〉|〈σ2 ⊢ D′〉|(νr)(νr ′)(r : ∅|r ′ : ∅|
〈σ1ρ1|L ⊢ C1ρ1|R〉|〈σ2ρ2|L ⊢ C2ρ2|R〉)

(M)
N ≡ N′ N′ →M′ M′ ≡M

N →M

(M)
N → N′

(νn)N → (νn)N′

(M)
N → N′

N|M → N′|M

(b) Network evaluation

〈σ ⊢ e〉 → v

match(σ,e, v) = ǫ
match(σ,?x, v) = [v/x]

match(σ,F1, v1) = ρ1 . . .match(σ,Fn, vn) = ρn

match(σ,F1, . . . ,Fn, v1, . . . , vn) = ρ1 · . . . · ρn

(c) Pattern matching function

Fig. 5. Network interactions

P,Q ::= 0 | if e then P else Q (null / conditional)
| (νn)P | P|Q (restriction/ parallel)
| accept a(r) in P | request a(r) in P (session acceptance/ request)
| r?(x̃) in P | r!(ẽ); P (input / output)
| r ⊲ {l1; P1|| . . . ||ln; Pn} | r ⊳ l; P (label branching/ selection)
| throw r(r ′); P | catch r(r ′); in P (session sending/ receiving)

(a) Syntax of Honda et al. session calculus

(L) (accept a(x) in P)|(request a(x) in Q)→ accept a(x) in P|(νr)(P[r+/x]|Q[r−/x])
(C) (r p!(ẽ); P)|(r p?(x̃) in Q)→ (P|Q[ṽ/x̃]) if ẽ→ ṽ
(L) (r p

⊳ l; P)|(r p
⊲ {l1; P1|| . . . ||ln; Pn})→ (P|Pi) (1 ≤ i ≤ n)

(P) (throw r p(r ′q); P)|(catch r p(x); in Q)→ P|Q[r′q/x]
(I1) if e then P else Q→ P if e→ true
(I2) if e then P else Q→ Q if e→ f alse
(S) P→ Q ⇒ (νn)P→ (νn)Q
(P) P→ P′ ⇒ P|Q→ P′|Q
(S) P ≡ P′ andP′ → Q′ andQ′ ≡ Q ⇒ P→ Q

(b) Operational semantics of Honda et al. session calculus

Fig. 6. Honda et al. session calculus

As usual→∗ (resp.
�

→ ∗, resp
�

→ ∗) is the reflexive and transitive closure of→ (resp.
�

→, resp
�

→). Finally M′ ← N →M′′ indicates the possibility forN to evolve in either
M′ or M′′.

Proposition 1. If M′
�

← N
�

→ M′′ thenM′
�

→ ≡ N′ ≡
�

←M′′

Proof. By induction on the structure ofN and on the derivation of the proofs for
�

→

and
�

→ .

Corollary 1. If M′
�

← N
�

→ ∗ M′′ thenM′
�

→ ∗ ≡ N′ ≡
�

←M′′

3 Honda-Vasconcelos-Kubo Session Language

In this section we show how to encode in SOAM the popular session calculus in [12].
The set of variablesx, y, . . . and servicesa are the same to previous sections. In addition
we use a denumerable set of labelsl and a denumerable set of polarized session names
r p. Syntactic categories, expressionse, patternsF, and valuesv,w . . . are the same as in
Fig. 1. The syntax of the calculus is reported in Fig. 6(a), differently from the original
proposal we miss the recursive definitions which can be easily accommodated inserting
functions call in SOAM. We however maintain a recursive flavor by replicating services.
Without recursive definition the structural congruence is theπ-calculus one.

Labeled branchingr⊲{l1; P1|| . . . ||ln; Pn} is sometimes abbreviatedr⊲{l i ; Pi}i .Binders
for sessionr areaccept a(r) in P, request a(r) in P, catch r ′(r); in P and (νr)P,
binders for servicea are only (νa). The derived notions of free and bound names, ses-
sion names and service names are standard. In the following we assume each process

is closed at least w.r.t. session names. The operational semantics is the smallest rela-
tion on processesP → Q generated by the rules in Fig. 6(b), wheree → v says that
expressione evaluates to the valuev. With respect to the original proposal we use an
operational semantics more similar to [24] where polarities appear, because the origi-
nal rule for session communication would otherwise need a runtime check for session
linearity (see [12]), which we do not want to impose in a general machine like SOAM.

Rule (L) establishes a new session between the serviceaccept a(r) in P and
the clientrequest a(r) in P via shared namea. Rule (C) transmits tuples between
the client and the service at the private channel so that determinacy or value delivery is
ensured among the two parties. Rule(S) allows a process to choose from a series of
offered options in the dual side. Rule(P) is the key rule to allow higher-order session
communication, i.e. session channel send and receive with which various protocols are
expressed, allowing complex nested structured communications.

Since the calculus is synchronous we assume a primitive for synchronous output
Sout(w, ṽ); C in SOAM which is achieved with standard technique. We do not detail
further on the implementation but the rule needs to behave asfollows.

(MS)

∀i ∈ {1, 2} 〈σi ⊢ wi〉 → r match(σ1,Fk, ṽ) = ρ

〈σ1 ⊢ in(w1, Σ j∈J(F̃ j.C j)); D〉|
〈σ2 ⊢ Sout(w2, ṽ); C〉|r : h

→ 〈σ1ρ|L) ⊢ Ckρ|R; D〉|〈σ2 ⊢ C〉|r : h

Notice that(M) originates a
�

→ transition. As outlined in the introduction, the trans-
lation of the calculus is given by means of two functionsnet andprg: the former returns
the SOAM network associated to a processP while the latter returns the static program
associated to a process. Intuitivelyprg is used to block the simulation of a process un-
der a prefix until the prefix is consumed. For example inr+!(4); (r+!(5)|r+!(6)) we want
the delivery of 5 and 6 to be performedafter the delivery of 4. In fact, later we prove
that wheneverprg(P) is active, then it can becomenet(P) after some internal evaluation
steps. The translation in Fig. 7 has some redundancy, because two different translations
must be considered depending of when the session subject is avariablex or when the
session subject is a session sider p. A variablex appearing as a session subject is trans-
lated in two variablesx+ andx− the former used to output tuples and the latter to input
tuples. Label choice and label selection are viewed as input/ouput actions too.

In case that the session subject is a polarized session namer p, in the same way we
have two variablesr p andr p but the translation is parametric onp. The polarity infor-
mationp says thatr p is used for output operations andr p is used for input operations.
Notice that for ease of clarity, with a (slight) abuse of notation we use polarized sessions
and variables in the machine too. In case of sessions communicationthrow andcatch
both session sides are sent/received. Functionprg is similar tonet, but without memory.

Let start proving some facts. The next proposition says thatnone of the variables
generated during the translation is an R-Value and according to the operational seman-
tics of SOAM this implies that all the substitutions are applied directly to the com-
mands.

Proposition 2. Let x a variable appearing in the translationnet(P) then x is not an
R-Value.

net((νa)P) = (νa)(net(P))
net((νr)P) = (νr+)(νr−)(net(P)|r+ : ∅|r− : ∅)
net(P|Q) = net(P)|net(Q)
net(P) = 〈∅ ⊢ prg(P)〉 otherwise
prg(accept a(x) in P) = while true do offer(a, 〈x+; x−〉, fork(prg(P), skip))
prg(request a(x) in P) = invoke(a, 〈x−; x+〉, prg(P))
prg(x!(ẽ); P) = Sout(x+, ẽ); prg(P) prg(r p!(ẽ); P) = Sout(r p, ẽ); prg(P)
prg(x?(ỹ) in P) = in(x−, (?̃y.prg(P))) prg(r p?(ỹ) in P) = in(r p, (?̃y.prg(P)))
prg(x⊳ l; P) = Sout(x+, l); prg(P) prg(r p

⊳ l; P) = Sout(r p, l); prg(P)
prg(x⊲ {l i; Pi}i) = in(x−, Σi(l i .prg(Pi))) prg(r p

⊲ {l i ; Pi}i) = in(r p, Σi(l i .prg(Pi)))
prg(throw x(r p); P) = Sout(x+, (r p, r p)); prg(P)
prg(throw r ′q(r p); P) = Sout(r ′q, (r p, r p)); prg(P)
prg(throw x(y); P) = Sout(x+, (y−, y+)); prg(P)
prg(throw r p(y); P) = Sout(r p, (y−, y+)); prg(P)
prg(catch x(y); in P) = in(x−, ((y−, y+).prg(P)))
prg(catch r p(y); in P) = in(r p, ((y−, y+).prg(P)))
prg(if v = w then P else Q) = if v = w then prg(P) else prg(Q)
prg((νa)P) = new a; prg(P)
prg((νr)P) = new r+; new r−; prg(P)
prg(P|Q) = fork(prg(P), prg(Q))

Fig. 7. Translation of the session calculus in SOAM

Next proposition relates the substitutions of the calculuswith the encoding.

Proposition 3. Let v a value different from a session thenprg(P)[v/x] = prg(P[v/x]).
Moreoverprg(P)[r+/x+][r−/x−] = prg(P[r+/x]) andprg(P)[r−/x+][r+/x−] = prg(P[r−/x])

As discussed before each programs takes some internal “adjustment steps” to come
from prg(P) to net(P).

Proposition 4. Letprg(P) defined then〈∅ ⊢ prg(P)〉
�

→∗net(P).

The two main theorems state the completeness and the correctness of the translation,
in particular the machine needs multiple steps to simulate asingle transition of the cal-
culus, and in the correctness proof we must show that the interleaving of these actions,
with other actions due to other network components does not cause troubles (e.g., dead-
lock).

Theorem 1 (Completeness). If P→Q thennet(P)→∗≡ net(Q).

Proof. The proof is by induction on the derivation ofP→Q. We sketch the base
case when the rule(C) is applied. Since we are considering closed process
we have P = (νr)(r p!(ẽ); P1)|(r p?(x̃) in P1)) and net(P) = (νr+)(νr−)(〈∅ ⊢
Sout(r+, ẽ); prg(P1)〉|〈∅ ⊢ in(r−, (?̃x.prg(P2)))〉) → (νr+)(νr−)(〈∅ ⊢ prg(P1)〉|〈∅ ⊢
prg(P2)[ṽ/x̃]〉)→ . . .→︸ ︷︷ ︸

Prop. 3 and 4

(νr+)(νr−)(net(P1)|net(P2[ṽ/x̃])). Notice that due to Prop. 2 R-

Values are not bound by susbtitutions. In particular, the last equality is exactlynet(Q)
which concludes the proof.

The proof of correctness is split in two parts, first we prove aproposition of local cor-
rectness in which we consider the simulation of each transition of the process calculus
without worry about the interleaving with other networks components, then we prove
the final theorem.

Proposition 5 (Local-Correctness). If net(P) → N1 → . . . → Nk →≡ net(Q′) for
some k> 0 and∄PN s.t.Ni ≡ net(PN), then P→∗ Q and Q≡ Q′.

Proof. By structural induction on the depth of the derivation of→ and case
analysis on the structure ofnet(P). We sketch the base case whenP =

(accept a(x) in P1)|(request a(x) in P2). We have that

net(P) = 〈∅ ⊢ C〉|〈∅ ⊢ invoke(a, 〈x−; x+〉, prg(Q))〉

where
C = while true do offer(a, 〈x+; x−〉, fork(prg(P), skip))

we have that:

〈∅ ⊢ C〉|〈∅ ⊢ invoke(a, 〈x−; x+〉, prg(P2))〉
→∗ 〈∅ ⊢ offer(a, 〈x+; x−〉, prg(P1))〉|〈∅ ⊢ C〉|〈∅ ⊢ invoke(a, 〈x−; x+〉, prg(P2))〉
→ (νr+)(νr−)(〈∅ ⊢ prg(P1)[r+/x+][r−/x−]〉|〈∅ ⊢ prg(P2)[r+/x−][r−/x+]〉)|〈∅ ⊢ C〉

→∗ (νr+)(νr−)(〈∅ ⊢ prg(P1[r+/x])〉|〈∅ ⊢ prg(P2[r−/x])〉)|〈∅ ⊢ C〉

→ . . .→
︸ ︷︷ ︸

Prop. 3

(νr+)(νr−)(〈∅ ⊢ net(P1[r+/x])〉|〈∅ ⊢ net(P2[r−/x])〉)|〈∅ ⊢ C〉 =M

It is easy to prove that each net occurring in the above derivation, but forM and
net(P), does not correspond to any processQ. At the same time we have that

P→ accept a(x) in P1|(νr)(P1[r+/x]|P2[r−/x])

and, as expected,M = net(accept a(x) in P1|(νr)(P1[r+/x]|P2[r−/x])).

Next is a technical lemma which establishes that one
�

→ transition can be freely inter-

leaved with arbitrary
�

→ transitions without compromising the final result.

Lemma 1. If net(P)
�

→ ∗ M
�

→ N andN
�

→ ∗ ≡ net(Q) then P→∗ Q

Theorem 2 (Correctness). If net(P) →∗ M then eitherM ≡ net(Q′) or there exists
k > 0 s.t.M→ . . .→

︸ ︷︷ ︸

k

≡ net(Q′) and P→∗ Q with Q≡ Q′.

Proof. The proof proceeds by first proving a slight weak statement, that is all the transi-

tions inM→ . . .→
︸ ︷︷ ︸

k

≡ net(Q′) are
�

→ transitions. The statement is proved by induction

on the number of
�

→ transition innet(P)→∗ M. In the base case where there are neither
inputs nor synchronizations we use Proposition 1 and Corollary 5, to conclude. In the

inductive cases we use Lemma 1 on the last
�

→ transition together with Proposition 1
and Proposition 5 to conclude. Then, the theorem is proved byinduction on the number

of
�

→ transitions inM→ . . .→
︸ ︷︷ ︸

k

≡ net(Q′).

P,Q ::= 0 | if v = w then P else Q (null / conditional)
| (νn)P | P|Q (restriction/ parallel)
| a.P | v.Q (service definition/ invocation)
| r p ⊲ P | P > Σn

i=1F̃i .Pi (session/ pipeline)
| Σn

i=1F̃i .Pi | 〈ẽ〉 (abstraction/ concretion)
| !a.P | !Σn

i=1F̃i .Pi (replications)
| 〈ẽ〉↑.P (return)

Fig. 8. Syntax of CSPS

4 CaSPiS

CSPS (Calculus of Sessions and Pipelines)[5] is a core calculus wheresessionsand
pipelinesare viewed as natural tools for structuring client-serviceinteraction and ser-
vice orchestration. The syntax of the calculus is reported in Fig. 8. We have the same
standard sets of names, variables and expressions, but we redefine the set of values to
avoid session names, since in CSPS sessions are not first order values. The only binder
for names (sessions and services) is (νn), and in the following we consider translation
of only processes without free session names. Processes areconsidered up to alpha-
conversion of bound names and modulo the structural congruence relation≡ which is
standard but in addition allows floating of restrictions inP > Σn

i=1F̃i .Pi and inr ⊲ P and
garbage collection of empty sessions (see [5]).

In CSPS, service definitionandservice invocationare respectively rendered as
a.P anda.Q, wherea is the name of the service (rule(I)). However, differently from
π-calculus,P andQ are not ordinary continuations but rather the protocols governing
the interaction between client (service invoker) and server (service provider). Synchro-
nization ofa.P anda.Q leads to the creation of anewsession, identified by a fresh name
r that can be viewed as a private, synchronous channel bindingcaller and callee. Since
client and service may be far apart, a session naturally comes with two sides, written
r+ ⊲P andr− ⊲Q. Processes at the two sides of a session can interact with each other by
means ofconcretions(〈ẽ〉.P) andabstractions(Σn

i=0(F̃).P): the formerproducea value
resulting from the evaluation of the expressions tuple ˜e while the latterread a value
matching one of patterñFi (rule (C)). Values produced byP via concretions can be
consumed by abstractions inQ, and vice-versa. Values can be returned outside a ses-
sion to the enclosing environment using the return operator, 〈 · 〉↑ rule (R). These values
can be sent over sessions, or used to invoke other services, to start new activities. This
is achieved using thepipelineoperator, writtenP > Σn

i=1F̃i .Qi . Here, anewinstance of
processQ j is activated each timeP emits a value matching̃F j . Such new instance runs
in parallel withP′ > Σn

i=1F̃i .Qi , whereP′ is the continuation ofP.

We present the operational semantics in Fig. 9(a) by exploiting reduction contexts
in Fig. 9(b). We have four different types of contexts generated from the respective
grammar. The one-hole contextC[[·]] is useful to insert a processP into an arbitrary
nesting of sessions with arbitrary processes in parallel, the result being denotedC[[P]].
The one-hole contextCr p allows inserting a process into the sessionr p together with an

(I) D[[a.P,a.Q]] → (νr)D[[r− ⊲ P, r+ ⊲ Q]] if r < fn(D[[a.P,a.Q]])
(C) Dr [[Σn

i=1F̃i .Pi , 〈ẽ〉]] → Dr [[Pj [ṽ′/x̃],0]] if ẽ→ ṽ andmatch(F̃ j , ṽ) = [ṽ′/x̃]
(R) Crq

1
[[Cr p[[〈ẽ〉↑.Q]]]] → Crq

1
[[〈ṽ〉|Cr p [[Q]]]] if ˜e→ ṽ

(B) Dr [[! P,Q]] → Dr [[! P|P,Q]]
(IT) C[[if v = w then P else Q]] → C[[P]] if (v = w)→ true
(IF) C[[if v = w then P else Q]] → C[[Q]] if (v = w)→ f alse
(P) C[[(〈ṽ〉|P′) > Σn

i=1F̃i .Pi]] → C[[(P′) > Σn
i=1F̃i .Pi | Pj [ṽ/x̃]]] match(F̃ j , ṽ) = [ṽ′/x̃]

(S) P → P′ ⇒ (νn)P→ (νn)P′

(S) P ≡ P′ ∧ P′ → Q′ ∧ Q′ ≡ Q⇒ P→ Q

(a) CaSPiS operational semantics

C ::= [[·]] | C|P | r p ⊲ C | C > Σn
i=1F̃i .Pi Cr p ::= r p ⊲ ([[·]] |P)

D ::= C[[C′ | C′′]] Dr ::= D[[C′r p ,C
′′

r p]] r < fn(D)

(b) Contexts

Fig. 9. CSPS

arbitrary process in parallel. ContextsD andDr are the two-holes counterparts of the
previous contexts. Note that in each context, binders cannot appear above the hole.

As before, the encoding in SOAM machine is given by means of the two functions
net andprg. However, due to the fact that sessions can be nested and thatprocesses
can be inserted in a pipeline, the functionnet needs three sessions for determining
the surrounding communication context: the input session used to address the receive
operations the output session used to address the sending operations and the return
session used to send values to parent session. We have two overloaded version of the
net function. The first one without parameters is initially called to prepare the network
and to create three new fresh sessions to be used for top leveloperations.

The other functionnet(P, r i, ro, rr) creates a network forP assumingP can input
from r i , output values toro and return values torr . Consider thenet-encoding ofr p ⊲ P,
the surrounding sessionr p says thatr p is used for output,r p for inputs and the old
sessionro used before as outputs session can be used now as a return session. A program
generated from the functionprg can statically access to the value of ther i ,ro and rr

referencing the three variablesm1−, m1+, m2+ respectively. In fact, the encoding makes
an additional work to prepare the memory in order to have these variables correctly
set. Thanks to the operational semantics of rule(M) each program can be evaluated
only in a memory containing only these three values. To this end we assume that the
programmers of a process cannot access to the variablesm1−, m1+ andm2+. Note that
the rule for service definitiona.P sets in memory the variablem2+ used for return values
to the session previously used for output. The replicated nature of a service definition is
simulated by a while construct and the value for variablesm1−, m1+ used respectively
for input and output are set by the machine once the connection is established. Similarly
for service invocation, but the variablesm1+, m1− are provided in inverse order to allow
communication. Encoding ofnet for a pipe requires the creation of a new fresh queue
rt used byP to output values to a forever input which forks a new copy ofQ with
the received value bound in ˜x. The notation ? ˜x creates a pattern ?xi for each variable

net(P) = (νr i)(νro)(νrr)(net(P, r i , ro, rr)|r i : ∅|ro : ∅|rr : ∅) wherer i , ro, rr fresh
net(0, r i , ro, rr) = 〈∅ ⊢ skip〉
net(r p ⊲ P, r i , ro, rr) = net(P, rp, rp, ro)
net(a.P, r i , ro, rr) = 〈∅[ro/m2+] ⊢ offer(a, 〈m1+,m1−〉, prg(P))〉
net(!a.P, r i , ro, rr) = 〈∅[ro/m2+] ⊢ while true do offer(a, 〈m1+,m1−〉, fork(prg(P), skip))〉
net((νr)P, r i , ro, rr) = (νr+)(νr−)(net(P, r i , ro, rr)|r+ : ∅|r− : ∅)
net((νa)P, r i , ro, rr) = (νa)(net(P, r i , ro, rr))
net(P|Q, r i , ro, rr) = net(P, r i , ro, rr)|net(Q, r i , ro, rr)
net(a.Q, r i , ro, rr) = 〈∅[ro/m2+] ⊢ invoke(a, 〈m1−,m1+〉, prg(Q))〉
net(if v = w then P else Q, r i , ro, rr) =

〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢ if v = w then prg(P, r i , ro, rr) else prg(Q, r i , ro, rr)〉
net(Σn

i=1F̃i .Pi , r i , ro, rr) = 〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢ in(m1−, Σi∈{1,...,n}(F̃i .prg(Pi)))〉
net(〈ẽ〉, r i , ro, rr) = 〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢ out(m1+, ẽ)〉
net(〈ẽ〉↑.P, r i , ro, rr) =

〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢ out(m2+, ẽ)〉|〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢ prg(P)〉
net(!Σn

i=1F̃i .Pi , r i , ro, rr) = 〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢
while true do in(m1−, Σi∈{1...n}(F̃i .fork(prg(Pi), skip)))〉

net(P > Σn
i=1F̃i .Pi , r i , ro, rr) = (νrt)(net(P, r i , rt, rr)|〈∅[ro/m1+][ri /m1−][rr /m2+] ⊢

while true do in(rt, (Σn
i=1F̃i .fork(prg(Pi), skip)))〉|rt : ∅) wherert fresh

prg(0) = skip
prg(r p ⊲ P) = m2+ := m1+; m1p := r p; m1p := r p; prg(P)
prg(a.P) = m2+ := m1+; offer(a, 〈m1+,m1−〉, prg(P))
prg(!a.P) = m2+ := m1+; while true do fork(offer(a, 〈m1+,m1−〉, prg(P)),skip))
prg((νa)P) = new a; prg(P)
prg((νr)P) = new r+; new r−; prg(P)
prg(P|Q) = fork(prg(P),prg(Q))
prg(v.Q) = m2+ := m1+; invoke(v, 〈m1−,m1+〉, prg(Q))
prg(if v = w then P else Q) = if v = w then prg(P) else prg(Q)
prg(Σn

i=1F̃i .Pi) = in(m1−, Σi∈{1...n}(F̃i .prg(Pi)))
prg(〈ẽ〉) = out(m1+, ẽ)
prg(〈ẽ〉↑.P) = fork(out(m2+, ẽ), prg(P))
prg(!Σn

i=1F̃i .Pi) = while true do in(m1−, Σi∈{1...n}(F̃i .fork(prg(Pi), skip)))
prg(P > Σn

i=1F̃i .Pi) = m2− := m1−; fork(〈m1+, •〉, prg(P), 〈m1−, •〉,
while true do in(m1−, (Σn

i=1F̃i .fork(m1− := m2−; prg(Pi), skip))))

Fig. 10. Translation of CSPS in SOAM

in x̃. As a general observation notice that replication is simulated by the machine in
such a way that a new thread is created only after the previousone is consumed. The
functionprg is similar tonet but, since it cannot access memory directly, it uses explicit
assignments. The only subtle case is theprg-encoding of a pipe which uses thefork
feature to synchronize and communicate. The• indicates that the variable it replaces
is not used by the program, and thus that communication is unidirectional. After the
synchronizationm1+ is bound inP to a new queue and used byP to output and the
same queue is used inQ but bound inm1−. After a new copy ofQ is created the previous
input channel stored inm2− is replaced in place ofm1−.

The key idea for correspondence results is to prove a basic proposition which relates
the encoding ofC[[P]] with the separate encoding ofC[[0]] and P. Moreover, the rule
(B) is not directly simulated by the machine which gives raise toan overflow in a real
implementation, than the final result of completeness asserts that the machine is able to
simulate the session nesting structure of a process.

5 ORC

In this section we show O [18] can be implemented over SOAM. In this sections we
also introduce the SOAM primitives for handling unexpectedbehavior and for closing
allocated queues. The syntax of SOAM programs presented in Fig. 1 is extended with
the following commands:try C with Σ j∈J(F̃ j ; C j), raise ẽ anddispose x; C These
new primitives permit definingcontrolled execution blocks where exceptions can be
raised by means of commandraise ẽ. Each block is equipped with a set of guarded
inputs (a sort of catch blocks) that are used for handling raised exceptions. These inputs
are used for selecting the exception handler to activate. Finally, commanddispose x;
can be used for deallocating existing queues. Syntax of SOAMnetworks (Fig. 3) is
consequently extended withtry block {N}(σ,Σi∈I (F̃i ;Ci)) and the nets executed within a
try-blockare terminated as soon as an exception is raised.

The operational semantics of new commands is defined as follows:

(M)

〈σ ⊢ try C with Σi∈J(F̃i ; Ci)〉 → {〈σ ⊢ C〉}(σ,Σi∈I (F̃i ;Ci))

(M)

〈σ ⊢ x〉 → r

〈σ ⊢ dispose x; C〉|r : h→ 〈σ ⊢ C〉

(M)

N . N′|r : h match(F̃i, ṽ) = ρ

{〈σ ⊢ raise ṽ〉|N}(σ′ ,Σ j∈J(F̃ j ;C j)) → 〈σ
′ρ|L ⊢ Ciρ|R〉

Notice that(M) is easy to implement. Indeed, each network in a try-block canbe
thought of as a thread waiting for a given signal. Semantics of (M) guarantees that
queues are not killed. Rule(M) states that, when commanddispose x; is executed,
the queue referenced byx is removed. The structural equivalence of SOAM nets is

extended with the following cases:

r : h|{N}(σ,Σi∈I (F̃i ;Ci)) ≡ {N|r : h}(σ,Σi∈I (F̃i ;Ci))
(νn){N}(σ,Σi∈I (F̃i ;Ci)) ≡ {(νn)N}(σ,Σi∈I (F̃i ;Ci))) n < fn(σ) ∪ fn(Fi) ∪ fn(Ci)

The check of free names in the second rule is necessary sinceraise communicate a
name. We now give a brief overview of O. O is centered on the idea of service or-
chestration, and it assumes that basic services, able to perform computations, are avail-
able on primitivesites. O concentrates on invoking and orchestrating those services
to reach some goal. Services maypublishstreams of values.

O uses the following syntax categories: site names, ranged bya, b, c, ..., variables,
ranged byx, y, ..., values (including site names), ranged byu, v, Actual parameters,
ranged byp, q, ..., can be either values or variables. We useP,Q, ... to range over expres-
sions. An O expression can be either a site call, an expression call or a composition
of expressions according to one of the three basic orchestration patterns. The term 0
denotes the inactive O term. A site call can have either the forma(p) or x(p). In the
first case the site name is known statically, in the other caseit is computed dynamically.
In both the casesp is the parameter of the call. Ifp is a variable, then it must be in-
stantiated before the call is made. A site call may publish a value (but it is not obliged
to do so). The compositionP|Q executes bothP andQ concurrently (differently from
the original proposal, here we assume parallel and 0 define a commutative monoid),
assuming that there is no interaction between them. It publishes the interleaving of the
two streams of values published byP andQ. The compositionP > u > Q executesP,
and, for each valuev returned byP, it spawns a new instance ofQ with v assigned tou.
The asymmetric parallel compositionQ where x :∈ P starts in parallel bothP and the
parts ofQ that do not needx. WhenP publishes a value, sayv, the continuation ofP is
canceled andv is assigned tox.

Now, we give a detailed description of the most interesting cases of O encoding:

p1(p2): a call to a site is translated into a service invocation and relies on macrocall
defined as follows:

call(a, v, o, b) =

{

invoke(a, 〈x, y〉, out(x, v); in(y, ?w); out(o,w)) (b = true)
invoke(a, 〈x, y〉, out(x, v); in(y, ?w); raise w) (b = f alse)

This macro implements arequest-responseinteraction with a remote service. No-
tice that ifb is true, the result of the invocation is stored in the queueo. Otherwise,
the obtained value is raised.

a(x) = f (x): each site definition is mapped to a service definition. The service associ-
ated to sitea retrieves a valuew from the first queue and then sends the result of
f (w) on the second queue.

P > x > Q: a private queueo′ is created, wherenet(P, σ, true, o′) will send all com-
puted values. Values stored in queueo′ are retrieved by a process that will instanti-
ate a copy ofprg(Q, b, o) where a new queue is created and associated to variable
x. This task is performed by the following macro:
wait(o, x,C) = while true do in(o, ?w); fork(new x; out(x,w); C, skip)

Q where x :∈ P: a new queue is created and associated tox. This queue is shared be-
tween the nets associated toP andQ. ProcessP is executed within atry-catchblock

and returns a value via theraise command, the returned value will be stored in
the queue associated tox.

6 Conclusions

We have defined a service oriented abstract machines, equipped with a formal structural
semantics, that can be used to implement the service specification formalisms. Other
than the usual constructs for imperative programming (if-then-else, while, assignment,
sequencing), the machine has primitives for connecting andcommunicating over a net-
work and to discover new resources in the network. Dedicatedqueues guarantee that,
on service invocation, a persistent and protected, communication can be established to
mirror the concept of session that is proper of service centered calculi.

We have used the proposed machine to implement three very different formalisms
for service specification namely the session language (SL) of [12], CSPS, and O.
For all of them we have proved that the proposed implementation is operationally cor-
rect (sound and complete). This fact is important if we consider that many useful prop-
erties (progress, non-interference, . . .) can be established by using formal tool such as
session types, see e.g. [11, 3, 8] and reused for free, because thanks to correspondence
results we have that such properties are preserved by the encodings in SOAM.

The actual implementations of the three different formalisms in SOAM have helped
us in better understanding their nature, and in appreciating their differences and their
interrelationships. This could be instrumental for reconsidering some design choices
that we have made for CSPS (the fact the we have implicit top level sessions) or
the the fact that the SL with polarities is more suitable for an implementation w.r.t the
original proposal with runtime checking of linearity.

As future work, we plan to investigate the extensions that are needed to deal with
more advanced features of service oriented computing such as controlled service clo-
sures, compensations and multiparty synchronization.

Moreover, we plan to provide a complete prototype implementation of our machine,
possibly exploiting the IMC framework described in [1] (seealso [2]) so that we can
conduct full fledged experiments.

References

1. L. Bettini, R. De Nicola, D. Falassi, M. Lacoste, L. M. B. Lopes, L. Oliveira, H. Paulino,
and V. T. Vasconcelos. A software framework for rapid prototyping of run-time systems for
mobile calculi. In Corrado Priami and Paola Quaglia, editors, Global Computing, volume
3267 ofLecture Notes in Computer Science, pages 179–207. Springer, 2005.

2. L. Bettini, R. De Nicola, and M. Loreti. Implementing session centered calculi. In Doug
Lea and Gianluigi Zavattaro, editors,COORDINATION, volume 5052 ofLecture Notes in
Computer Science, pages 17–32. Springer, 2008.

3. E. Bonelli, A. Compagnoni, and E. Gunter. Correspondenceassertions for process synchro-
nization in concurrent communications.J. Funct. Program., 15(2):219–247, 2005.

4. M. Boreale, R. Bruni, L. Caires, R. De Nicola, I. Lanese, M.Loreti, F. Martins, U. Monta-
nari, A. Ravara, D. Sangiorgi, V.T. Vasconcelos, and G. Zavattaro. SCC: a service centered
calculus. InWeb Services and Formal Methods, Third International Workshop, WS-FM 2006,
volume 4184 ofLecture Notes in Computer Science, pages 38–57. Springer, 2006.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessionsand pipelines for structured
service programming. InProc. of FMOODS’08, volume 5051 ofLecture Notes in Computer
Science. Springer, 2008.

6. R. Bruni, I. Lanese, H. Melgratti, L.G. Mezzina, and E. Tuosto. Towards trustworthy mul-
tiparty sessions (extended abstract). In V.T. Vasconcelosand N. Yoshida, editors,Pre-
proceedings of PLACES 2008, 1st Workshop on Programming Language Approaches to
Concurrency and Communication-Centric Software, pages 22–27, 2008. Technical Report
DI-FCUL TR-08-14, Departamento de Informatica, Faculdadede Ciencias da Universidade
de Lisboa.

7. R. Bruni, I. Lanese, H. Melgratti, and E. Tuosto. Multiparty sessions in SOC. In D. Lea and
G. Zavattaro, editors,Proceedings of COORDINATION 2008, 10th International Conference
on Coordination Models and Languages, volume 5052 ofLect. Notes in Comput. Sci., pages
67–82. Springer, 2008.

8. R. Bruni and L.G. Mezzina. Types and deadlock freedom in a calculus of services, sessions
and pipelines. In G. Rosu and J. Meseguer, editors,Proceedings of AMAST’08, 12th Inter-
national Conference on Algebraic Methodology and SoftwareTechnology, volume 5140 of
Lect. Notes in Comput. Sci., pages 100–115. Springer, 2008.

9. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Sock: a calculus for service
oriented computing. InProc. of 4th Int. Conf. on Service-Oriented Computing, volume 4294
of Lect. Notes in Comput. Sci., pages 327–338. Springer, 2006.

10. L. Caires, H.T. Viera, and J.C. Seco. The conversation calculus: a model of service oriented
computation. Technical Report TR DIFCTUNL 6/07, Univ. Lisbon, 2007.

11. M. Dezani-Ciancaglini, de’ Liguoro U., and U. Yoshida. On progress for structured commu-
nications. InTGC’07, volume 4912 ofLect. Notes in Comput. Sci., pages 257–275. Springer,
2008.

12. K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type discipline for
structured communication-based programming. InProc. of ESOP’98, volume 1381 ofLect.
Notes in Comput. Sci., pages 122–138. Springer, 1998.

13. K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types. InProceed-
ings of POPL’08, 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 273–284. ACM, 2008.

14. N. Kobayashi. Typical: Type-based static analyzer for the pi-calculus. Tool available at
http://www.kb.ecei.tohoku.ac.jp/˜koba/typical/.

15. I. Lanese, F. Martins, A. Ravara, and V.T. Vasconcelos. Disciplining orchestration and con-
versation in service-oriented computing. InSEFM ’07, pages 305–314. IEEE Computer
Society Press, 2007.

16. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. In
ESOP ’07, volume 4421 ofLect. Notes in Comput. Sci., pages 33–47. Springer, 2007.

17. L. G. Mezzina. How to infer finite session types in a calculus of services and sessions. In
COORDINATION’08, volume 5052 ofLect. Notes in Comput. Sci., pages 216–231. Springer,
2008.

18. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, 6(1):83–110, 2007.

19. F. Peschanski and S. Hym. A stackless runtime environment for a pi-calculus. InVEE ’06:
Proceedings of the 2nd international conference on Virtualexecution environments, pages
57–67, New York, NY, USA, 2006. ACM.

20. B. C. Pierce. Programming in the pi-calculus: A tutorialintroduction to pict. available elec-
tronically. Technical report, 1997.

21. A. Rossberg, D. Le Botlan, G. Tack, T. Brunklaus, and G. Smolka. Alice Through the Look-
ing Glass, volume 5 ofTrends in Functional Programming, pages 79–96. Intellect Books,
Bristol, UK, ISBN 1-84150144-1, Munich, Germany, February2006.

22. David N. Turner and Ph. D. The polymorphic pi-calculus: Theory and implementation.
Technical report, 1995.

23. H. Vieira and L. Caires. The spatial logic model checker users manual. Technical report,
2004.

24. N. Yoshida and V.T. Vasconcelos. Language primitives and type discipline for structured
communication-based programming revisited: Two systems for higher-order session com-
munication.Elect. Notes in Th. Comput. Sci., 171(4):73–93, 2007.

