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Abstract. A number of formalisms have been defined to support the spaceifi
tion and analysis of service oriented applications. Thesmdlisms have been
equipped with tools (types or logics) to guarantee the corbehavior of the
specified services. Due to the semantic gap between thefispgon formalism
and the programming languages of service oriented ovedaypaters a criti-
cal issue is guaranteeing that correctness is preserved wheing the specified
systems over available implementations. We have definedvcseriented ab-
stract machine, equipped with a formal structural semantitat can be used to
implement service specification formalisms. We use ourrabsmachine to im-
plement diferent service oriented formalisms that have been recenblygsed,
each posing specific challenges that we can address sudbed3§ exploiting
the SOS semantics of the abstract machine and those of tiseleced service
oriented formalisms we do prove that our implementatiores @rrect (sound
and complete). We also discuss possible implementatioothef formalisms.

1 Introduction

The explosive growth of the Web has led to the widespread usermomunication cen-
tered applications (often referred towasb servicesand to the growth of a new com-
putational paradigm known &ervice Oriented ComputifgOC). The intrinsic com-
plexity of such an open ended paradigm can better be govésntaking advantage of
well-structured and tightly disciplined approaches tort@deling of interaction. With
these motivations in mind, a number of formalisms have bedimed to support the
specification and analysis of service oriented applicatatrthe right level of abstrac-
tion.

Orc [18] is an elegant programming model for structured orafagisin. Building
on three primitives for parallel composition, pipelinedasome sort of cancellation, ar-
bitrarily complex interaction patterns can be programnme@ic by relating sequences
of independent service invocations via ad-hoc mechanisgn gtate variables).

SCC [4] is a formalism based on-calculus and influenced byrO that introduces
a specific notion of @essioras the basic tool for programming services and monitor-
ing the communication graph between client and servicavics are seen as passive
objects that can be invoked by clients. Service definitioaspecific instances of input
prefixed processes. The two endpoints of a session (semvibdiant) can communicate
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by exchanging messages. A fresh shared name is used to tpeathat messages are
exchanged only between partners of the same session, sothiastances of the same
persistent service (that was invoked from twdtelient sessions) run separately and
cannot interfere. From the original proposal in [4], otharigtions and refinements of
SCC have stemmed. SSCC [15] exploitsteeamoriented unidirectional communica-
tion mechanism; and values produced in a session can begindbeledicated queues,
accessible via their names. The Conversation Calculusgli®ys bidirectional com-
munications between a child session and its parent seSSk8RS [5] is adataflow
oriented refinement of SCC that uses pipelines to model tbedl kexchange of infor-
mation. The improvements concern a pattern matching mésinaior communication
and a discipline for the graceful closure of nested sessions

The central role assigned to sessions by the above calaliihendirect use of op-
erators for modeling interaction renders the logical dtree of programs clearer and
leads to well disciplined specification languages. Otheppsals take multiparty ses-
sions as basic work-units, instead of dyadic sessions.igkig. the case of [13], where
the number of roles covered by participants is staticallgdiby means of some sort
of global contract which allows for the enforcement of a rigid type discipliioe their
trustworthy interaction. Oferently,use (read “muse”, after MUItiparty SEssions) [7]
allows dynamic join to a session and unbounded number otpaabts. Type systems
for guaranteeing type safety and progress properties aferwtudy [6].

A different thread of research, deeply influenced by XML techriebofpr Web
Services like WS-BPEL, exploits the ideaaufrrelation set$o establish session scopes.
Roughly, the idea is to route each message to a specific testdra service depending
on the values taken from certain parameters [16, 9]. Thoogtetion sets guarantee a
good expressiveness and match a technology trend, we drguesiculi based on such
concepts are less suited for analysis and verification,usecanost of their interactions
are driven by actual values of data. Also, unrelated sesstam interfere with each
other if ends up using the “right” values.

A key point for the usefulness of the above formalisms is tealability of tools
(types or logics) to specify, check and guarantee the cobtavior of the considered
services (see e.g. [14,17, 23]). It is then important to nsake that the proved proper-
ties are preserved when running the specified systems oa#alle implementations.
This might not be obvious due to the semantic gap betweerpaifation formalism
and the programming languages used for their implememtatio

Abstract machines that describe step-by-step executiggragframs but omit the
many details of real (hardware) machines are a good tooldpraaching this problem.
They provide an intermediate language for compilation aandl fee used to bridge the
gap between the high level of a programming language andthéelel of a real ma-
chine. The instructions of an abstract machine are tailtmete particular operations
required to implement operations of a specific class of solaieguages. Indeed, the in-
troduction of layers of abstractions increases maintalityaand portability. Moreover,
apart for these software engineering considerationstatishachines are theoretically
appealing as they facilitate correctness proofs of the igéee code and simplify pro-
gram analysis and transformations. With this in mind, weehdefined a Service Ori-
ented Abstract Machine (SOAM), equipped with a formal seticanthat can be used



to implement the service specification formalisms. The rnreethat we have designed
is specifically conceived to permit inter-task communigatand thus to guarantee by
means of dedicated queues created on service invocatiorsistpat, protected, com-
munication line that naturally corresponds to the concéession that is proper of
service centered calculi. This enables programs to coramettommunicate with other
programs and to discover new resources in the network. Besie use the standard
imperative primitives i.e.: assignments, loops and caowdls, to write local programs.

The operational semantics of our abstract machine can ke ase¢he basis for
guaranteeing that the properties that have been proveddspméng on the calculi-
based specification are preserved by the actual impleni@msaMany abstract machine
already exists [21, 19, 20, 22], with SOAM we focus on comroatidns in presence of
sessions, and we simplify the theory where the problems laeady well-studied to
keep proofs simpler.

We test our proposal by providing the implementation in SO&Mhree very dif-
ferent session-based calculi, namely the session land&gef Honda, Vasconcelos
and Kubo [12], GSRS and Qc, each posing specific challenges, like session delega-
tion (SL), pipelining, session nesting and pattern magh.SRS), and cancelation
of activities (Ckc). For all of them we provide a structural translation inte ttode of
our abstract machine and prove the operational correspmedsetween a process and
its encoding: all computations of a process are mimickedheyatbstract machine ob-
tained from the translation, and vice versa, the transtatioa process only performs
meaningful computations, i.e. only those computationsdbaespond to possible evo-
lutions of the encoded term. The encoding scheme is similalt three cases: a process
P is translated into a network = net(P) which is essentially a soup of stgteogram
pairs{o + C) and named queues h, where the use of some name could be restricted.
Initially each program can be seen as the encoding of a ségqlagent, then, as the
program evolves, it updates its local state, forks new Esegsand creates new queues.

To keep actual proofs simple, we assume availability of thégkl operators such as
name restrictions, and concentrate on the problems raisdtelactual implementation
of the interactions mechanisms via shared queues. We dadertive details about
proofs only for SL. The proofs for the encodings of®RS and Gxc being similar, we
highlight only the diferences and the key ideas.

The rest of the paper is organized as follows. In the nexi@eete introduce the
operational semantics of our abstract machine and distaissain features. Then, in
the three successive sections we consider in turn SISAS and Qc. We conclude
with a few final considerations.

2 A Session Oriented Abstract Machine

In this section we present the formal specification of outuar machine for services,
called SOAM (Service Oriented Abstract Machine). The syrab SOAM programs
(G, D) is reported in Fig. 1, where expressions are denoteé, byalues byv,w, .. .,
variables byx, y, . .., patterns by, andn is used to denote names which may indicate
elements of two dferent kinds, namelgessionsanged over by, s... andservices
ranged over bya. As usual, we usetd indicate finite sequences of values.



C,D ::=skip|X:=e|whileedo C|if ethen C else D |C;D
| new n|invoke(V, (X, V), C) | offer(v,(xy), C)
| out(w,9) | in(W, Zjes(F;.€))) | fork((Xa, Y1), €1, (X, ¥a), €2)

e ==f@|v

F =e| X

v,w = n]|true false| xy,... |n
(o =0|x:v,o

Fig. 1. Syntax of SOAM programs

Standard imperative commands are #ssignmentthe while-dqg the if-then-else
and the sequencingkip is the empty program and is often omitted from programs
when it is in tail position. The remaining commands are usethteract with other
programs in the network. Commanedw n; € allows the creation of a new name. Com-
mandsinvoke(V, (X1, Y1), ©1) andoffer(v, (X, y2), C2) permit the synchronization be-
tween service fiers and service invocations o) the additional parametefxy, y1)
and(xy, y») are local variables bound in the bodiés and C;, respectively, to a new
pair of session queues which allow bidirectional commutiice: x; and X, will be
bound to the same queue, and similarly farandy,. Outputout(w,V) and input
in(w, Zjes(F5.Cj)) primitives allow, respectively, the output of a tuplénSide session
w and the input of a tupleftered within sessiow that matches one of the pattet#is
the continuatior€; will depend on the selected pattern. The primitheerk allows the
creation of two threads that can communicate by means otdextl session queues
bound to the pairgxy,y1) (for C1) and{X.,y,) (for G2). When the threads need no
communication we writefork(Cy, Cy).

Each command is evaluated by exploiting a memonyhich is just a list of pairs
binding variables to values. The memory is updated by thetgubion functiono[*/,],
which allows to extend the memory with a new binder or to replan existing associ-
ation, as inductively defined by letting:

O[*/v] = x:v,0
(x:V,a) [*/\] X:V,0’
(V.o )N =y v (@A) if xzy

We start by defining the evaluation function for commands exputessions which
have only local impact and do not require any interactiorr ttve network (see Fig. 2).
The operational semantics of SOAM is based on an evaluatioctibn,—, which is
defined both for expressions and commards: €) — v means that the result of eval-
uating expressioawith memoryo isv; (o + C) — (o’ + €’) means that the evaluation
of command® with memoryo leads with a small step to a new memarywhere the
command>’ must be evaluated. Ru{erruxc) evaluates each parameter first and returns
the result of the evaluation of functidfvy, . . ., v,). RuleExwvar) returns the value asso-
ciated to the variabl& while the rule for the evaluation of valug®ther than variables
returnsv regardless of. Rules for local commands (conditional, while and assigmine



(ExpFunc) (ExsVar) (ExpVAL)
Vidorey >V f(Vi,...Vy) =V APYAR V# X
(1, XV, 02F X) >V D EE—
(o rflen,...e)) >V (Cc+V) >V

(Mskir) (MassIGN)

(o + skip: D) — (o + D) g v

(ckXx:=€D) - (d[*/v] F D)

(MwHILET)
(o F &) - true

(o +whileedo C;D) —» (o + C;while edo C; D)

(MwaILEF) (MIFT)
(o +e)— false (o + €) — true
(0 +while edo C; D) - (o + D) (o +if ethen C; else Cy; D) — (o + Cy; D)
(MirF)

(o +e) — false
(o + if ethen C; else Cy; D) — (o + Cy; D)

Fig. 2. Local evaluation

N:u=0 (empty net) h:= 0 (emptyqueue)
| (o+C) (running program) |  V-h (sequence of values)
| NIM (network composition)
| (vn)N (name restriction)
| r:h (session queue)

Fig. 3. Syntax of SOAM Networks

are standard. For conciseness we give the rules assumingsmmtinuatiorD is also
present, the simpler cases being recovered viibenskip.

Defining the operational semantics for the other constnecjaires introducing the
notion of networks which models the behavior of multiple gnams running concur-
rently. The syntax of network¥, M, ... is reported in Fig. 3. A network can be empty
or a progrant running with local storer, the parallel composition of two networks, a
network with specific private names, or a sessiovith associated a sequence of values
h (a queug. The set ofree namesn of a network (defined in Fig. 4) considers the ref-
erences to service and session names in the memory, in a quirand in a sequence
of valuesh. Remind that the only binders for service and session nameasea n; C
and (¢n)N, the set obound namesn(N) is defined as expected. As usual, processes
are considered equal up-to alpha-renaming of bound namdsb(@und variables).

The operational semantics for the commands operating at@ranks is reported
in Fig. 5(b). It relies on two key auxiliary notions, namelysauctural congruence
relation= (see Fig. 5(a)) and pattern matchingunction match (see Fig. 5(c)). The
structural congruence is similar to the one focalculus. Here, we just remark that
rule (o + skip) = O considers a vacuous program equivalent to an empty network
and rule ¢r)(r : h) = O permits garbage collection of sessions. The pattern majchi
function match returns a substitution that replaces with values the visafdenoted



fn(0) =0 fn((o + €)) = fn(o) U fn(C) fn(r : h) = {r} u fn(h)
fn(N|M) = fn(N) U fn(M) fn((vn)N) = fn(N) \ {n}

Fig. 4. Free namefn(N) of a network

by ?x) within the pattern. In Fig. 5(b) and Fig. 5(c), we do relyatm the following
notation:p denotes a generic substitutianis the empty substitution; the composition
of two substitutions is denotedand we userp and Cp to denote the application of
the substitution to a stater or to a commane, respectively. Moreover, we ugg to
denote a substitutignwhose domain is restricted to the sefsialugi.e. to a function
defined only for variables that never appear on the left hae sf an assignment.
Correspondingly,. is defined only for those variables that have been previdusiynd

to actual values. In rulga), the R-value part of the substitution is applied directly to
the continuation while the other component is applied to wgnr.

Output operation, rulevour, outputs the tuple,’in the session bound withis to
variablew. Input rulemn) non deterministically takes one of the value in the session
queue bound tev within o which pattern-matches one the pattefias Rule (xewR) iS
used to create a new (empty) session quethat is private of the continuatio€) and
can be possibly extruded to the network and used to exchaalges: Rulgmxews) is
similar but does not create any queue, it only guarantegatgrniess of nama

We provide two mechanisms for process communication, nameluse command
fork for interprocess communication and the pair of commanfifer-invoke for
inter-site communication. Ruleirrx) says that when @ork operation is invoked two
new threads are created duplicating the current memagrand two empty session
queues are created to be used later for bidirectional cornration between the two
new threads. To guarantee sharing of information betweerthteads, each of the
copies of the memory; is enriched by bindings the two fresh session queue names
r andr’ to the variables of the pa{x;, yi). The rule for inter-site communicatiQmsyxcs)
is similar tomrork) but there is no memory duplication and the bindings of thefiesh
session queue namesandr’ to the variables of the pairx;, yi) is performed within
memoriesr ando”’.

Next we show a sort of non interference property valid for 3Oprograms that
we use in correctness proof of each encoding, namely eacsiticm diferent from an
input (ruleq(vy) or an intra site synchronization (rugesvwem) can be freely interleaved.
Roughly, this helps since no matter how such actions ardéateed in the network, the
result is the same. As we shall see, from the point of view efeminess proofs this
means that each transition in a given calculus can be sigtulay multiple machine
instructions, as long as we maintain a one to one correspmedamong input and
synchronization transitions of the machine to input andchyonization transitions of
the calculus (see Theorem 2).

In the following, we introduce some syntax. Sometimes, iitnportant to establish
the origin of a transition therefore we denote witha transition originated from rules
(M) andMsyxer) and we use> otherwise.



(CFskipy= O ON=N  NM=MN  NOIM) = NIM)M/
(vn)(ym)N = (vm)(vn)N n ¢ fn(N) = N|(vn)M = (vn)(N|M) ()(r:h)=0
(a) Structural congruence over networks

(Mour)
(CFW) =T

(o Fout(W,V);C)r:h—{(crC)r:¥-h

(MN) .
(c W) > r match(o,F,V) = p

(o F in(W, Zjes(F1.€))); DIIr 1 h- V- W = (opp + Cxpr; DIIF 1 h- b

(MNEWR) (MNEWS)
r ¢ fn(o) a ¢ fn(o)
(o Fnewr;C)— (vr){o+ C)r:0) (o +new &, C) - (va)(o + C)
(MFoRrK)

nr¢(orC)Uumior D) p1=["/xll"/ul p2=["/xll" /vl

R ()1 (oo F Crpar)]
(o + fork({x1, Y1), C1, (X2, ¥2), C2); D) (@20 + (€23 DYpar)lr - OIF : 0)

(MsyncH)

Vie(L2) (oirviy—a p=[/]"/r] 11 ¢in(oitrCp))
(o1 + offer(va, (X1, ¥1), C1); D) _, (our Doz + D) )(r - 0" - 0]
(o2 F invoke(Vz, (X2, ¥2), C2); D'y~ {owpyL F Caprr)l{o2p2L + C2p2Rr))

(Mequv) (MaInD) (Mpar)
N=N N ->M M=M N - N N — N
N —->M (vMN — (vn)N’ NIM — N’ |M

(b) Network evaluation
(cre)y -V

— — match(o, ?x,V) = [V
match(o, e V) = € ( )= [

match(o, F1, V1) = p1...match(o, Fn, Vi) = pn
match(o, F1,...,Fn, V1, ..., Vh) =pP1° ... Pn
(c) Pattern matching function

Fig. 5. Network interactions



PQ:=0 | if ethen Pelse Q (null / conditional)
| (vn)P | PIQ (restriction/ parallel)
| accepta(r)inP | request a(r) in P (session acceptan¢eequest)
| r?(X)in P | ri(&);P (input/ output)
| ro{lyPe.. P} r<l;P (label branching selection)
| |

throw r(r’); P

(a) Syntax of Honda et al. session calculus

catchr(r’);in P (session sendingreceiving)

(Lnx) (accept a(X) in P)|(request a(x) in Q) — accept a(x) in P|(vr)(P[" /. ]IQ[" /x])
©ov) (rPU(®); PI(rP?(®) in Q) — (PIQ[/5])  ife—7

Lasr) (P < 1 PY(P 5 {113 Pl lln; Pa)) = (PIP) (L <i <n)

(Pss)  (throw rP(r'9); P)|(catch rP(x); in Q) — P|Q["/4]

(k1) ifethenPelseQ— P if e— true

(2) ifethenPelseQ—Q if e— false

(o) P>Q = ()P - (vn)Q

Pw) PP = PQ-PIQ

(Sk) P=PandP - QandQ=Q = P->Q

(b) Operational semantics of Honda et al. session calculus

Fig. 6. Honda et al. session calculus

[m} u . . age
As usual—* (resp.— *, resp— *) is the reflexive and transitive closureef (resp.

=y resp;). Finally M <« N — M” indicates the possibility fdN to evolve in either
M orM”.

Proposition 1. If M’ END M thenW 5 =N = W7

Proof. By induction on the structure df and on the derivation of the proofs fos
and— .

Corollary 1. If M’ ENS M thenW’ S =N = M”

3 Honda-Vasconcelos-K ubo Session L anguage

In this section we show how to encode in SOAM the popular sessilculus in [12].
The set of variables, y, . . . and servicesa are the same to previous sections. In addition
we use a denumerable set of labledérd a denumerable set of polarized session names
rP. Syntactic categories, expressi@patternsF, and values, w. .. are the same as in
Fig. 1. The syntax of the calculus is reported in Fig. 6(aifedéntly from the original
proposal we miss the recursive definitions which can beyeastommodated inserting
functions call in SOAM. We however maintain a recursive flawpreplicating services.
Without recursive definition the structural congruencénissi-calculus one.

Labeled branching>{l1; P1| .. .|In; P} is sometimes abbreviated {l;; P;}i.Binders
for sessiorr areaccept a(r) in P, request a(r) in P, catch r’(r); in P and ¢r)P,
binders for service are only ¢a). The derived notions of free and bound names, ses-
sion names and service names are standard. In the follonengssume each process



is closel at least w.r.t. session names. The operational semasttbg ismallest rela-
tion on processeR — Q generated by the rules in Fig. 6(b), where» v says that
expressiore evaluates to the value With respect to the original proposal we use an
operational semantics more similar to [24] where polasit@pear, because the origi-
nal rule for session communication would otherwise needchéime check for session
linearity (see [12]), which we do not want to impose in a gaherachine like SOAM.

Rule nx) establishes a new session between the sendcept a(r) in P and
the clientrequest a(r) in P via shared nama. Rule (cow) transmits tuples between
the client and the service at the private channel so thatrdéatacy or value delivery is
ensured among the two parties. Ridexcr) allows a process to choose from a series of
offered options in the dual side. Rukes) is the key rule to allow higher-order session
communication, i.e. session channel send and receive wiithwarious protocols are
expressed, allowing complex nested structured commuaicat

Since the calculus is synchronous we assume a primitiveyioctgonous output
Sout(w, ¥); € in SOAM which is achieved with standard technique. We do resaidl
further on the implementation but the rule needs to behavellasvs.

(MSour)
Yie{l,2} (oj+rw)—r match(o, F,V) =p

(o1 + in(WLZjeJ(fT;j-ej))i Dl

(o2 + Sout(wy, ¥); C)|r : h

— (0'1,0\L) = ka|R; @)l(o’z = G)|r “h

Notice thatvsour) Originates a> transition. As outlined in the introduction, the trans-
lation of the calculus is given by means of two functioesandprg: the former returns
the SOAM network associated to a proc@sshile the latter returns the static program
associated to a process. Intuitivelyg is used to block the simulation of a process un-
der a prefix until the prefix is consumed. For example'it{4); (r+*!1(5)|r*1(6)) we want
the delivery of 5 and 6 to be performedter the delivery of 4. In fact, later we prove
that wheneveprg(P) is active, then it can beconmet(P) after some internal evaluation
steps. The translation in Fig. 7 has some redundancy, betaodiferent translations
must be considered depending of when the session subjegtisadlex or when the
session subject is a session sifleA variablex appearing as a session subject is trans-
lated in two variables* andx™ the former used to output tuples and the latter to input
tuples. Label choice and label selection are viewed as fjopptit actions too.

In case that the session subject is a polarized session ifainethe same way we
have two variables? andrP but the translation is parametric gn The polarity infor-
mation p says that® is used for output operations an@lis used for input operations.
Notice that for ease of clarity, with a (slight) abuse of tioiawe use polarized sessions
and variables in the machine too. In case of sessions coneationthrow andcatch
both session sides are sgateived. Functioprg is similar tonet, but without memory.

Let start proving some facts. The next proposition says rloae of the variables
generated during the translation is an R-Value and accgtdithe operational seman-
tics of SOAM this implies that all the substitutions are aggpldirectly to the com-
mands.

Proposition 2. Let x a variable appearing in the translatioret(P) then x is not an
R-Value.



net((va)P) = (va)(net(P))

net((vr)P) = (vr*)(vr™)(met(P)|r* : 0]r~ : 0)

net(P|Q) = net(P)net(Q)

net(P) = (0 + prg(P)) otherwise

prg(accept a(x) in P) = while true do offer(a, (x*; x°), fork(prg(P), skip))
prg(request a(X) in P) = invoke(a, (x"; X"), prg(P))

prg(x!(€); P) = Sout(x", &); prg(P) prg(rPi(e); P) = Sout(rP, &); prg(P)
prg(x?(y) in P) = in(x", (¥.0rg(P))) prg(rP?(y) in P) = in(rP, (%y.prg(P)))
prog(x<l; P) = Sout(x, 1); prg(P) prg(r? <l; P) = Sout(rP,1); prg(P)

prg(xe {li; Piti) = in(x", Zi(li.prg(P:))) prg(rP > {li; Pi}i) = in(rP, Zi(li.pro(P)))
prg(throw X(rP); P) = Sout(x*, (r?,rP)); pro(P)

pro(throw r’9(rP); P) = Sout(r’d, (r?, r?)); prg(P)

prg(throw X(y); P) = Sout(x", (y~,y")); pra(P)

prg(throw rP(y); P) = Sout(rP, (y-,y")); pra(P)

prg(catch X(y); in P) = in(x, ((y".y").prg(P)))

prg(catch rP(y);in P) = in(rP, ((y~, y*).pra(P)))

prg(if v=w then P else Q) = if v=w then prg(P) else prg(Q)
prg((va)P) = new & prg(P)

prg((vr)P) = new r*;new r~; prg(P)

prg(PIQ) = fork(prg(P), pra(Q))

Fig. 7. Translation of the session calculus in SOAM

Next proposition relates the substitutions of the calcwliik the encoding.

Proposition 3. Let v a value djerent from a session theng(P)[V/x] = prg(P[Y/«]).
Moreoverprg(P)[" /x 11" /x-1 = pra(P[" /«]) andprg(P)[" /x1[" /x-1 = pra(P[" /«])

As discussed before each programs takes some internalstatat steps” to come
from prg(P) to net(P).

Proposition 4. Letprg(P) defined therd® + prg(P))—>*net(P).

The two main theorems state the completeness and the cwsscdf the translation,
in particular the machine needs multiple steps to simulaiegle transition of the cal-
culus, and in the correctness proof we must show that thdéaténg of these actions,
with other actions due to other network components doesawetroubles (e.g., dead-
lock).

Theorem 1 (Completeness). If P—Q thennet(P) —*= net(Q).

Proof. The proof is by induction on the derivation ¢—Q. We sketch the base
case when the rulgcow) is applied. Since we are considering closed process
we haveP = (vr)(rP!I(8); Pl)l(rﬁg()i) in Pjg)) and net(P) = (r*)(vr)((0 *
Sout(r”, &); prg(P1))K0 + in(r~, (?xprg(P2))))) — (") )0 + prg(P))K0 +
prg(P)[Y/s])) — ... = (") (vr~)(net(Py)Inet(P2[Y/x])). Notice that due to Prop. 2 R-
Prop. 3and 4
Values are not t?ound by susbtitutions. In particular, tis¢ éamuality is exactlyet(Q)
which concludes the proof.



The proof of correctness is split in two parts, first we proyaaposition of local cor-
rectness in which we consider the simulation of each treomsif the process calculus
without worry about the interleaving with other networksmgonents, then we prove
the final theorem.

Proposition 5 (Local-Correctness). If net(P) - N3 — ... —» Nx —= net(Q’) for
some k> 0 and APy s.t.Nj = net(Py), then P—* Q and Q= Q.

Proof. By structural induction on the depth of the derivation ef and case
analysis on the structure ohet(P). We sketch the base case whéh =
(accept a(x) in P;)|(request a(x) in P;). We have that

net(P) = (0 + C)|{0 + invoke(a, {(X; X", prg(Q)))
where
C =while true do offer(a, (X"; X7), fork(prg(P), skip))
we have that:
(0 + C)KO + invoke(a, (x; X*), prg(P2)))
=" (0 + offer(a, (x*;x7), prg(P1)))K0 - C)KO + invoke(a, (X5 X*), prg(P2)))
= ()0 F prg(Pl)[I+/x+][r I DIO + prg(PR)[" /-1 /5 1)KO + €)
=" (7)) (O prg(Pal’ /x]))KO F prg(Po[" /x)))KO + ©)
= .= () () (0 - net(Pa[" /x]))KO + net(Po[" /x))KO + C) = M
Prop. 3

It is easy to prove that each net occurring in the above diésivabut for M and
net(P), does not correspond to any proc€ssAt the same time we have that

P — accept a(x) in Py|(vr)(P[" /x]IP2[" /)
and, as expected{ = net(accept a(x) in P1|(vr)(P1["" /x]IP2[" /x])).

Next is a technical lemma which establishes that éneransition can be freely inter-
leaved with arbitraryl transitions without compromising the final result.
Lemmal. If net(P) —* M = N andN —* = net(Q) then P—* Q
Theorem 2 (Correctness). If net(P) —* M then eitherM = net(Q’) or there exists
k>0stM— ... - =net(Q)and P-* Q with Q= Q.

k
Proof. The proof proceeds by first proving a slight weak stateméat,is all the transi-
tionsinM — ... - = net(Q’) are— transitions. The statement is proved by induction

k

on the number of> transition innet(P) —* M. In the base case where there are neither
inputs nor synchronizations we use Proposition 1 and Campb, to conclude. In the

inductive cases we use Lemma 1 on the lastransition together with Proposition 1
and Proposition 5 to conclude. Then, the theorem is proveddyction on the number

of > transitions iV — ... — = net(Q’).
—
k



PQ:=0 | if v=w then Pelse Q (null / conditional)
| P | PIQ (restriction/ parallel)
| aP | v.Q (service definitiory invocation)
| rP>P | P>31 5P, (session pipeline)
| TP @® (abstractionf concretion)
| laP | 120,50.P (replications)
| @®P (return)

Fig. 8. Syntax of GSRS

4 CaSPiS

CaSRS (Calculus of Sessions and Pipelings) is a core calculus whergessiongind
pipelinesare viewed as natural tools for structuring client-seniitteraction and ser-
vice orchestration. The syntax of the calculus is reponteBig. 8. We have the same
standard sets of names, variables and expressions, butegne the set of values to
avoid session names, since IRSAS sessions are not first order values. The only binder
for names (sessions and services)ig)(and in the following we consider translation
of only processes without free session names. Processesmsaered up to alpha-
conversion of bound names and modulo the structural congrieelation= which is
standard but in addition allows floating of restrictionsFin- 21, 3;.P; and inr » P and
garbage collection of empty sessions (see [5]).

In CaSRS, service definitiorand service invocatiorare respectively rendered as
a.P anda.Q, wherea is the name of the service (rufev)). However, diferently from
r-calculus,P and Q are not ordinary continuations but rather the protocolsegoing
the interaction between client (service invoker) and sefservice provider). Synchro-
nization ofa.P anda.Q leads to the creation ofreewsession, identified by a fresh name
r that can be viewed as a private, synchronous channel birdiltey and callee. Since
client and service may be far apart, a session naturally somith two sides, written
r*»>Pandr~» Q. Processes at the two sides of a session can interact withogaer by
means ofconcretiong(€).P) andabstractiong 2} ,(5).P): the formerproducea value
resulting from the evaluation of the expressions tuplehile the latterread a value
matching one of patterff; (rule (cow). Values produced b¥ via concretions can be
consumed by abstractions @, and vice-versa. Values can be returned outside a ses-
sion to the enclosing environment using the return operatdt rule (rer). These values
can be sent over sessions, or used to invoke other servicert new activities. This
is achieved using thgipelineoperator, writterP > X1 3;.Q;. Here, anewinstance of
process;j is activated each time emits a value matching;. Such new instance runs
in parallel withP” > X 3;.Q;, whereP” is the continuation oP.

We present the operational semantics in Fig. 9(a) by exptpieduction contexts
in Fig. 9(b). We have four dlierent types of contexts generated from the respective
grammar. The one-hole conteX{f -] is useful to insert a procesB into an arbitrary
nesting of sessions with arbitrary processes in paralielrésult being denoted] PJ.
The one-hole context,» allows inserting a process into the sessidogether with an



(nv) D[aPaQ] — (vr)D[r =P r*sQ] if r¢fn(D[aP,aqQ])
©ov) D2, TP, (&] — D/[P[¥/x],0]1 if €— Vandmatch(F;,%) =[" /3]
Re) CalCol@®'.QIl - Cal@ICHIQ  if e
(Bave) D! P,Q] — Di[!PIP.Q]
(IeT) C[if v=w then P else Q] — C[P] if (v=w) — true
(F) C[if v=wthen Pelse Q] » C[Q] _if (v=w)— false B
Pree) CI(WIP) > 2N, F.P] — CI(P) >z, 5P| Py[V/sl] match(F;, V) = [ /5]
(Sop) P - PP = (vn)P - (vn)P’
Sr) P=PAP-Q AQ=Q=P->Q
(a) CaSPiS operational semantics

=[1 | CP | rP»C | C>3"F.P, Cro 2= P ([1IP)
D :=C[C|C"] Dy z=D[C,,Cr] 1 ¢ fn(D)

(b) Contexts

(@]
I:

Fig.9. CASRS

arbitrary process in parallel. ContexisandD; are the two-holes counterparts of the
previous contexts. Note that in each context, binders daapyzear above the hole.

As before, the encoding in SOAM machine is given by meansefwo functions
net andprg. However, due to the fact that sessions can be nested angriwgsses
can be inserted in a pipeline, the functioat needs three sessions for determining
the surrounding communication context: the input sessgeduo address the receive
operations the output session used to address the sendémgtiops and the return
session used to send values to parent session. We have twoaolezl version of the
net function. The first one without parameters is initially ealto prepare the network
and to create three new fresh sessions to be used for topojeeedtions.

The other functiomet(P, rj, 1o, ;) creates a network foP assumingP can input
fromrj, output values to, and return values tg. Consider thenet-encoding of P » P,
the surrounding sessiar? says thatrP is used for outputrP for inputs and the old
sessiorn, used before as outputs session can be used now as a retuon saggogram
generated from the functioprg can statically access to the value of thg, andr,
referencing the three variables~, ml*, m2* respectively. In fact, the encoding makes
an additional work to prepare the memory in order to haveehesiables correctly
set. Thanks to the operational semantics of (ule each program can be evaluated
only in a memory containing only these three values. To thi$ we assume that the
programmers of a process cannot access to the variatilgsnl* andm2*. Note that
the rule for service definitioa.P sets in memory the variabie2* used for return values
to the session previously used for output. The replicatégraaf a service definition is
simulated by a while construct and the value for varialbis, m1* used respectively
forinput and output are set by the machine once the conmeistestablished. Similarly
for service invocation, but the variabled*, m1~ are provided in inverse order to allow
communication. Encoding afet for a pipe requires the creation of a new fresh queue
r. used byP to output values to a forever input which forks a new copyQfvith
the received value bound i The notation R treates a patternx?for each variable



net(P) = (vry)(vro)(vr)(met (P, ri, ro, 1o)Iri : Olro : Olr; : 0) wherer;, 1o, 1, fresh
net(0, ri,ro, 1) = (0 + skip)
net(rPe> Pri,ro, 1) = net(P, 14, Ip, o)
net(a.P,ri,ro,1;) = (O[°/m+] + offer(a, (ml*, ml™), prg(P)))
net(laPri,ro, ry) = (O[/mp+] + while true do offer(a, (ml*, ml™), fork(prg(P), skip)))
net((vr)P,ri,ro,1;) = (vr)(vr)(met(Pri, ro, r)r* : 0r~ : 0)
net((va)P,ri,ro, 1) = (va)(net(P,ri,1o,1v))
net(P|Q,ri,ro, 1) = net(P,ri,ro, rr)net(Q,ri,ro, rr)
net(aQ.ri,ro,rr) = {0[/mp+] + invoke(a, (ml~, m1*), prg(Q)))
net(if v=wthen P else Q.ri,lo, ;) =
O /ma+ ][ /- ][ /et + 1£ v = W then prg(P,ri, 1o, 1v) else pro(Q,ri, o, It))

net((€), ri,ro,rr) = O /ma+1[" /ma-1[" /me+] F out(ml®, €))
net((&".P.ri,ro,1r) =

O /ma+ 1" /a1 /] + out(m27, E)KO[ /ma+ 1[" /ma- [ / e+ ] F pTO(P))
net(!Zin:lSti,Pi, fi, o, rr) = <(Z)[r°/ml+][ri /mll][rr/mZ*] F

while true do in(ml-, Zigjp o (Fi. fork(prg(P;), skip))))

net(P > XL, Fi.P;,1i,ro, 1) = (vr)met(P,ri, re, re)KO[™ /ma+ I /et 10" /o] F

while true do in(ry, (X7, J;.fork(prg(P;), skip))))Ire : )  wherer, fresh
prg(0) = skip
pro(rP > P) = m2* := m1*; m1P := r?; m1P := rP; prg(P)
prg(a.P) = m2* := ml*; offer(a, (ml*, ml"), prg(P))
prg(fa.P) = m2* := ml*;while true do fork(offer(a, (ml*, ml™), prg(P)), skip))
prg((va)P) = new a; prg(P)
prg((vr)P) = new r*;new r~; prg(P)
prg(PIQ) = fork(prg(P), pra(Q))
prg(v.Q) = m2* ;= ml*; invoke(v, (ml1~, m1*), prg(Q))
prg(if v =w then P else Q) = if v=w then prg(P) else prg(Q)
prg(Z,J:.P) = in(ml™, Zic.n(Fi.prg(P)))
prg((8) = out(ml*, ¥
pro((&'.P) = fork(out(m2*, &), pro(P))
prg(1=",3:.P) = while true do in(ml™, Zicq_n(Fi. fork(pro(P), skip)))
prg(P > 3", F.P) = m2" := ml"; fork((ml*, e), prg(P), (ml", e),

while true do in(ml-, (Zi"zlf;"i.fork(ml‘ = m27; prg(P;), skip))))

Fig. 10. Translation of GSRS in SOAM



in X. As a general observation notice that replication is siteady the machine in
such a way that a new thread is created only after the previnass consumed. The
functionprg is similar tonet but, since it cannot access memory directly, it uses explici
assignments. The only subtle case is phg-encoding of a pipe which uses tiferk
feature to synchronize and communicate. Bhiedicates that the variable it replaces
is not used by the program, and thus that communication idin@ctional. After the
synchronizatiorml®* is bound inP to a new queue and used Byto output and the
same queue is used@but bound inm1~. After a new copy of) is created the previous
input channel stored im2~ is replaced in place ahl™.

The key idea for correspondence results is to prove a baspogition which relates
the encoding ofZ[ P] with the separate encoding @f0] and P. Moreover, the rule
(Baxa) IS NoOt directly simulated by the machine which gives raisarimverflow in a real
implementation, than the final result of completeness ts#eat the machine is able to
simulate the session nesting structure of a process.

5 ORC

In this section we show & [18] can be implemented over SOAM. In this sections we
also introduce the SOAM primitives for handling unexpedbetiavior and for closing
allocated queues. The syntax of SOAM programs presentetjirL ks extended with
the following commandstry C with Zje;(F}; Cj), raise @ anddispose x; € These
new primitives permit definingontrolled execution blocks where exceptions can be
raised by means of commamdise & Each block is equipped with a set of guarded
inputs (a sort of catch blocks) that are used for handlingediexceptions. These inputs
are used for selecting the exception handler to activatellyi commandlispose X;
can be used for deallocating existing queues. Syntax of SOwlorks (Fig. 3) is
consequently extended witiy block {N}(, .. 4.c,)) @and the nets executed within a
try-blockare terminated as soon as an exception is raised.

The operational semantics of new commands is defined asvi&llo

(MTRY)
(o + try Cwith Zie;(Fi; G)) — (o F e>}(g,2igl(§i;ei))

(MpisposE)
(CFX)y—>T

(o +dispose X;C)|r:h— (o +C)

(MRAISE) .
NN :h match(F,V) =p

{{(oc +raise \7>|N}((rf,2,-gd(§j;ej)) — (o’p1L + CipRr)

Notice that(vrase) is easy to implement. Indeed, each network in a try-block fban
thought of as a thread waiting for a given signal. Semantigsiaise) guarantees that
queues are not killed. Rul@nsrose) States that, when commaddlspose X; is executed,
the queue referenced byis removed. The structural equivalence of SOAM nets is



extended with the following cases:

F - hiiN} g5 ey = NI Mo 5y
(Vn){N}((TYZiEI (ii;ei)) = {(VH)N}(ULEI (:;‘i;ei))) n¢ fn(a—) U fn(:}]) U fn(e|)

The check of free names in the second rule is necessary siricge communicate a
name. We now give a brief overview ofR@. Orc is centered on the idea of service or-
chestration, and it assumes that basic services, ablefarpecomputations, are avail-
able on primitivesites Orc concentrates on invoking and orchestrating those services
to reach some goal. Services mayblishstreams of values.

Orc uses the following syntax categories: site names, rangedipy, ..., variables,
ranged byx,y, ..., values (including site names), rangeduy, .... Actual parameters,
ranged byp, g, ..., can be either values or variables. We &8s, ... to range over expres-
sions. An Qic expression can be either a site call, an expression call orrgosition
of expressions according to one of the three basic orchiestrpatterns. The term 0
denotes the inactive €0 term. A site call can have either the fop) or x(p). In the
first case the site name is known statically, in the other taseomputed dynamically.
In both the casep is the parameter of the call. [§ is a variable, then it must be in-
stantiated before the call is made. A site call may publishlaes(but it is not obliged
to do so). The compositioR|Q executes botf? andQ concurrently (diferently from
the original proposal, here we assume parallel and 0 defireranutative monoid),
assuming that there is no interaction between them. It plieéi the interleaving of the
two streams of values published ByandQ. The compositiorP > u > Q execute$,
and, for each value returned byP, it spawns a new instance @fwith v assigned tai.
The asymmetric parallel compositi@wherex :e P starts in parallel bott and the
parts ofQ that do not need. WhenP publishes a value, say the continuation oP is
canceled and is assigned to.

Now, we give a detailed description of the most interestiages of @c encoding:

p1(p2): a call to a site is translated into a service invocation atidg®n macracall
defined as follows:

invoke(a, (X, y), out(Xx, v); in(y, W); out(o,w)) (b = true)

call(av.o,b) = {invoke(a, (X, ¥), out(x,v); in(y, W); raise w) (b= false

This macro implements eequest-responsateraction with a remote service. No-
tice that ifb is true, the result of the invocation is stored in the queu@therwise,
the obtained value is raised.

a(x) = f(x): each site definition is mapped to a service definition. Theicemlssoci-
ated to sitea retrieves a valuev from the first queue and then sends the result of
f(w) on the second queue.

P> x> Q: a private queu®’ is created, whereet(P, o, true, o’) will send all com-
puted values. Values stored in quaxiare retrieved by a process that will instanti-
ate a copy oprg(Q, b, 0) where a new queue is created and associated to variable
X. This task is performed by the following macro:
wait(o, X, C) = while true do in(o, W); fork(new X; out(x, w); C, skip)

Qwherex:e P: a new queue is created and associatexl fthis queue is shared be-
tween the nets associatedR@ndQ. Proces# is executed within &ry-catchblock



and returns a value via theaise command, the returned value will be stored in
the queue associatedxo

6 Conclusions

We have defined a service oriented abstract machines, esfingith a formal structural
semantics, that can be used to implement the service sggicfidormalisms. Other
than the usual constructs for imperative programmingh@r-else, while, assignment,
sequencing), the machine has primitives for connectingcantmunicating over a net-
work and to discover new resources in the network. Dedicqteslies guarantee that,
on service invocation, a persistent and protected, comeatinh can be established to
mirror the concept of session that is proper of service cedtealculi.

We have used the proposed machine to implement three vieyatit formalisms
for service specification namely the session language (8[)2), CASRS, and Qc.
For all of them we have proved that the proposed implementasi operationally cor-
rect (sound and complete). This fact is important if we cdesthat many useful prop-
erties (progress, non-interference, ...) can be estaaisly using formal tool such as
session types, see e.g. [11, 3, 8] and reused for free, bedaarsks to correspondence
results we have that such properties are preserved by tloelegs in SOAM.

The actual implementations of the threéelient formalisms in SOAM have helped
us in better understanding their nature, and in appregjdtieir diferences and their
interrelationships. This could be instrumental for reédagng some design choices
that we have made for &SRS (the fact the we have implicit top level sessions) or
the the fact that the SL with polarities is more suitable foirmplementation w.r.t the
original proposal with runtime checking of linearity.

As future work, we plan to investigate the extensions thatreeeded to deal with
more advanced features of service oriented computing ssiclo@trolled service clo-
sures, compensations and multiparty synchronization.

Moreover, we plan to provide a complete prototype impleragon of our machine,
possibly exploiting the IMC framework described in [1] (s&eo [2]) so that we can
conduct full fledged experiments.
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