
Electronic Notes in Theoretical Computer Science 62 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume62.html 21 pages

Comparing Higher-Order Encodings
in Logical Frameworks and Tile Logic 1

Roberto Bruni, a Furio Honsell, b Marina Lenisa, b and
Marino Miculan b

a Dipartimento di Informatica, Università di Pisa
Corso Italia 40, 56125 Pisa, Italy. bruni@di.unipi.it

b Dipartimento di Matematica e Informatica, Università di Udine
Via delle Scienze 206, 33100 Udine, Italy.
honsell,lenisa,miculan@dimi.uniud.it

Abstract

In recent years, logical frameworks and tile logic have been separately proposed by
our research groups, respectively in Udine and in Pisa, as suitable metalanguages
with higher-order features for encoding and studying nominal calculi. This paper
discusses the main features of the two approaches, tracing differences and analogies
on the basis of two case studies: late π-calculus and lazy simply typed λ-calculus.

Introduction

A key area of research of the tosca project was concerned with the topic
of metalanguages and (computational) metamodels, and in particular with
their use as logic and semantic frameworks for the definition and analysis of
languages, calculi and programming paradigms.

A metalanguage can be seen as a general specification system which allows
for representing, in a uniform setting, a wide range of formal systems, referred
to as the object systems. More precisely, a metalanguage is composed by two
parts: a formal language, the formalism, and an informal encoding methodol-
ogy, or protocol, which describes how an object system can be represented in
the formalism guaranteeing suitable properties. The metalanguage has to be
expressive enough to allow for a faithful translation, the specification, of all
components of the object systems. Peculiarites and idiosincrasies of the object
systems must be taken into account, e.g. context-dependent features such as
binders, non-standard notions of substitution, fresh name creation, weird side
conditions, etc. Still, the formalism must strive for simplicity and it should be
implementable on a machine. Indeed, such a general-purpose implementation

1 Research supported by the MURST Project tosca.

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume62.html�
mailto:bruni@di.unipi.it�
mailto:honsell@dimi.uniud.it,lenisa@dimi.uniud.it,miculan@dimi.uniud.it�

Bruni et al.

can be readily turned into a mechanized proof assistant for any given object
system, by simply providing the specification. This is particularly useful in
the case of logics and formal systems for dealing with programs and processes
properties. We can factorize out most of the common features of the plethora
of program and process logics, thus avoiding the daunting task of implement-
ing a specific proof assistant or integrated environment for each of them.

Three research groups of the tosca project, in Milano, Pisa and Udine,
have been actively involved in the area of metalanguages and metamodels
developing and experimenting cospan-span categories, tile logic (tl) [14, 4]
and logical frameworks (e.g. lf) [15, 27], respectively. We refer the reader
to [13] for a comparison between the two first metamodels. In this paper, we
discuss tile logic and logical frameworks. The foundations of both metamodels
are by now well established, various tools based on them are available (e.g. [19,
7]), and several case studies concerning widely used calculi and programming
paradigms have been carried out.

The two approaches have been developed separately and have focused on
different aspects and problems of meta-representation, namely syntactic and
proof-theoretical for the Logical Frameworks, and semantical and categorical
for tile logic. The two approaches however share many features both from the
conceptual and the methodological viewpoint. Thus, in the spirit of the tosca
project, it is interesting to clarify these connections, allowing for bidirectional
technology transfer, inheritance and reuse of techniques.

In this paper we address this issue and try to shed some light on the analo-
gies (but also on the differences) between the two approaches by comparing the
encodings in tl and lf of two paradigmatic nominal calculi: λ-calculus and π-
calculus. A key technique for their translations in lf and tl is the possibility
of exploiting higher-order objects as first-class citizens, so to delegate name-
handling issues (name binding, capture avoiding substitution, α-conversion,
name hiding, fresh name creation) to the underlying machinery, where these
are dealt with automatically, in a standard way. We remark that the choice
of the two case studies is instrumental in comparing tl and lf, and not in
claiming the novelty of the encoding themselves. In lf this encoding protocol
is named Higher-Order Abstract Syntax (HOAS), while in tl the analogous
idea leads to Higher-Order Tile Logic (HOTL). A main difference between
the two approaches is that in HOAS the syntax plays a primary rôle, while
HOTL is strongly typed and provides the encoding with observational and
operational semantics, and with categorical model of proof terms, i.e., HOTL
could be called Higher-Order Abstract Semantics.

Synopsys. In Section 1 we present the two metalanguages we focus on, namely
the Edinburgh Logical Framework (lf) and the Tile Logic (tl). Sections 2
and 3 present the π-calculus and λ-calculus case studies, respectively. For
each of them, we briefly present the object system, the formalization both in
lf and tl, and we discuss and compare these encoding. Final remarks and
directions for future work are in Section 4.

2

Bruni et al.

1 The two Metalanguages and Encoding Protocols

1.1 Logical Frameworks based on Type Theory

Type Theories, such as the Edinburgh Logical Framework lf [15, 2] or the
Calculus of (Co)Inductive Constructions [19] were especially designed, or can
be fruitfully used, as a general logic specification language, i.e. as a Logical
Framework (LF). In an LF, we can represent faithfully and uniformly all the
relevant concepts of the inferential process in a logical system (syntactic cate-
gories, terms, variables, contexts, assertions, axiom schemata, rule schemata,
instantiation, tactics, etc.) via the “judgements-as-types, λ-terms-as-proofs”
paradigm. The key concept for representing assertions and rules is that of
Martin-Löf’s hypothetico-general judgement [22], which is rendered as a type
of the dependent typed λ-calculus of the Logical Framework. The λ-calculus
metalanguage of an LF supports Higher-Order Abstract Syntax (HOAS) à la
Church, i.e., syntax where language constructors may have higher order types.
In HOAS, metalanguage variables play the rôle of “object logic” variables so
that schemata are represented as λ-abstractions and object-level instantiation
amounts to metalanguage β-reduction. Hence, binding operators of the ob-
ject language are encoded as higher order constants, being viewed as ranging
over schemata. Thus, most of the machinery needed for handling names, such
as capture-avoiding substitution, α-conversion of bound variables, generation
of fresh names and instantiation of schemata, comes “for free” because it is
safely delegated to the metalanguage [28].

Since LF’s allow for higher order assertions one can treat on a par ax-
ioms and rules, theorems and derived rules, and hence encode also generalized
natural deduction systems in the sense of [31].

The LF specification of a formal system is given by a signature, i.e. a
declaration of typed constants according to the following methodology:

Theory of Syntax Syntactic categories of the object language are encoded
as type constants; each syntactic constructor is encoded as a term constant
of the appropriate type.

Theory of Proofs Judgements over the object language are encoded as con-
stants of “typed-valued function” kind, and each rule is encoded as a term
constant of the appropriate type.

Hence, derivations of a given assertion are represented as terms of the type
corresponding to the assertion in question, so that checking the correctness of
a derivation amounts just to type-checking in the metalanguage. Thus, deriv-
ability of an assertion corresponds to the inhabitation of the type correspond-
ing to that assertion, i.e. the existence of a term of that type. It is possible to
prove, informally but rigorously, that a formal system is adequately, faithfully
represented by its encoding. This proof usually exhibit bijective maps be-
tween objects of the formal system (terms, formulæ, proofs) and the λ-terms
(in canonical form) of the corresponding types in the formalization.

3

Bruni et al.

Encodings in LF’s often provide the “normative” formalization of the sys-
tem under consideration. The specification methodology of LF’s, in fact, forces
the user to make precise all tacit, or informal, conventions, which always ac-
company any presentation of a system.

Any interactive proof development environment for the type theoretic met-
alanguage of an LF (e.g. Coq [19], LEGO [29]), can be readily turned into one
for a specific logic, once we have defined the corresponding signature. Such a
generated editor allows the user to reason “under assumptions” and go about
in developing a proof the way mathematicians normally reason: using hy-
potheses, formulating conjectures, storing and retrieving lemmata, often in
top-down, goal-directed fashion.

In this paper we will adopt the Edinburgh Logical Framework lf [15]. lf
is a system for deriving typing assertions of the shape Γ ` P : Q, whose
intended meaning is “in the environment Γ, P is classified by Q”. Three kinds
of entities are involved, i.e. terms (ranged over by M, N), types and typed
valued functions (ranged over by A,B), and kinds (ranged over by K). Types
are used to classify terms, and kinds are used to classify types and typed
valued functions. These entities are defined by the following abstract syntax.

M ::= x | MN | λx : A.M

A ::= X | AM | Πx:A.B | λx : A.B

K ::= Type | Πx:A.K.

Π is the dependent type construc-
tor. Intuitively Πx:A.B(x) denotes
the type of those functions, f , whose
domain is A and whose values belong
to a codomain depending on the in-
put, i.e. f(a) ∈ B(a), for all a ∈ A.

Hence, A → B is just notation abbreviating Πx:A.B, when x does not occur
free in B (x 6∈ FV (B)). In the “judgements-as-types” analogy the dependent
product type Πx:A.B(x) represents the assertion “for all x ∈ A, B(x) holds”.

Environments (ranged over by Γ, ∆) are lists of typed variables. A sig-
nature Σ is a particular environment which represents an object logic. Due
to this different rôle of signatures, instead of Σ, Γ ` P : Q we will write
Γ `Σ P : Q; possibly we will drop the index Σ when clear from the context.
We will say that a type A is inhabited in the environment Γ (and signature
Σ) (denoted Γ `Σ : A) if there exists a term M such that Γ `Σ M : A.

1.2 Tile Logic

Tile logic is a sequent calculus over a rule-based model (tile model) whose
sequents, called tiles, have a bidimensional nature: the horizontal dimension
is devoted to the static structure of system configurations, while the vertical
dimension is devoted to the observational dynamics of the system. Moreover,
the operational rules are designed for open configurations, which may interact
through their interfaces. In fact, unlike rewriting logic (rl) [23], where rewrite
rules can be freely instantiated and contextualized (e.g., if f(x) ⇒ g(x) is a
rule, then C[f(t)] can be rewritten to C[g(t)] for any context C[·] and any

4

Bruni et al.

³º¹́µ̧¶· s //

a

²²

initial configuration

trigger

initial input interface (i .i .i) ³º¹́µ̧¶·
b
²²

effect

initial output interface (i .o.i)

³º¹́µ̧¶·
t

//

final configuration

final input interface (f .i .i .)
³º¹́µ̧¶·

final output interface (f .o.i .)

Fig. 1. A tile.

term t), tiles have the form in Figure 1 (whence the name), written as the
sequent s

a−→
b

t, stating that the initial configuration s evolves to the final

configuration t producing the effect b, but such a step is allowed only if the
subcomponents of s evolve to the subcomponents of t, producing the trigger
a (e.g., the tile f(x)

a−→
b

g(x) can be applied to C[f(t)] only if t evolves with

effect a and a move of C[·] exists that is triggered by b). Triggers and effects
are called observations and tile vertices are called interfaces.

Formally, a tile system is a tuple R = (H,V , N,R) where H and V are
monoidal categories with the same set of objects OH = OV , N is the set of
rule names and R : N → AH×AV ×AV ×AH associates each name in x ∈ N
with a tile R(x) : s

a−→
b

t, with s, t ∈ H and a, b ∈ V .

Tiles can be composed horizontally (∗), synchronizing an effect with
a trigger; vertically (·), extending computations of a component; and in
parallel (⊗), modeling concurrent steps. We say that a tile α is entailed
by R, written R ` α, if α can be obtained by composing basic and auxiliary
tiles via ∗, · and ⊗. These compositions satisfy the laws of monoidal double

categories [14, 24]. For α : s
a−→

idx

idx and β : t
b−→

idy

idy with x the i.i.i. of β,

we write α / β as a shorthand for (α ∗ 1t) · β. Similarly, for α : idx
idx−→
a

s

and β : idy
idy−→
b

t with y the f.o.i. of α, we write α . β for α · (1s ∗ β). These

compositions are called diagonal and yield two monoidal categories.

Though the direction of the arrows in Figure 1 follows the intuitive way of
composing states (from left to right) and computations (from top to down),
opposites categories can be as well considered, as done e.g. in [10, 11], when
this is convenient to model certain operational features, and this impacts in
reversing the direction of arrows either in one dimension or in both.

tl extends the ordinary observational equivalences such as trace seman-
tics and bisimilarity by taking 〈trigger, effect〉 pairs as labels, favoring the
application of coalgebraic techniques to open systems [12]. The resulting ab-
stract semantics are called tile trace equivalence and tile bisimilarity (these
are families of equivalences indexed by sources and targets of configurations).

It is often convenient to consider tile logics whose categories of configura-
tions and observations are freely generated by suitable signatures ΣH and ΣV.
In particular, when the categories of configurations and observations rely on

5

Bruni et al.

the same algebraic structure (e.g. symmetric monoidal, or cartesian), some
auxiliary tiles can be added for free, which guarantee the consistency between
the adjoined structure (e.g., symmetries or cartesianity), and the categorical
models for such systems must be taken in the corresponding categories of, e.g.,
symmetric monoidal double categories or cartesian double categories [9, 4].

Fixing the auxiliary tiles and the format of the basic tiles of the system
means fixing a tile format. Several (first order) tile formats have been e.g.
defined which guarantee that tile bisimilarity is a congruence [5] (they usually
exploit the format independent tile decomposition property [14] to prove the
result). Though at present no automated verification tool is available which is
based directly on tl, some prototyping has been made possible for suitable tl
specification classes, via a conservative encoding in rl, as reported in [7,8,6].

The methodology of application of tl can be divided in three steps, which
can mutually influence each other’s design decisions:

Theory of Configurations Fix the signature of configurations identifying
the syntactic constructors and freely adjoin the auxiliary structure needed
in the category of configurations;

Theory of Observations Fix the signature of observations (e.g. ordinary
lts’s labels are usually seen as unary operators) and freely adjoin the aux-
iliary structure needed in the category of observations;

Theory of Tiles Define the basic operational rules for the dynamics of sys-
tem components, and fix the auxiliary tiles to be freely adjoined.

In this paper we focus on the higher-order version of tiles introduced in [10],
where H and V are cartesian closed, the models are cartesian closed double
categories (ccdc), and the auxiliary tiles can be conveniently represented as
those in the quartet category 2 of the cartesian closed category freely gener-
ated by the signature with the same sorts as ΣH and ΣV but empty set of
operators. Due to space limitation, we refer to [10] for more details, giving
here just the basic syntax and features of HOTL. The first thing to notice is
that language constructors can have higher-order types and that λ-abstraction
and application are introduced automatically in H and V . At the level of tiles
instead we deal with object abstraction only (configuration and observation
abstractions are in fact contra-variant and cannot be correctly typed in the
ccdc framework). However, we can pass an argument (e.g. names in nomi-
nal calculi) which is bound in the initial configuration to the effect, providing
bidimensional scope rules. The possibility of reconciling horizontal abstraction
with vertical application is another interesting feature, proper of ccdc’s.

Higher-order tiles are presented by typed sentences in the double λ-notation
of [10]. To deal with the double λ-notation, type judgments Γ ` M : σ, where
Γ is an environment and σ is the type of the term M in Γ, must take into
account that terms are double cells and that their types, called contour types,

2 The quartet category of a category C is the double category of commuting squares in C.
6

Bruni et al.

are cell borders. Thus, a double signature is a 4-tuple Σ = 〈B,H,V,C 〉,
where B is the set of type constants, H is the set of horizontal term constants
h : σ, g : τ, . . . typed over B (note that σ, τ can also be higher-order types),
V is the set of vertical term constants v : σ, u : τ, . . . typed over B, and C is
the set of tile term constants α2s, β2t, . . . , with s, t, . . . closed contour types.

A generic contour type has the form H : τ
V :ρ

//
U :τ→σ

G : ρ → σ , where H and

G are horizontal terms, while U and V are vertical terms. A contour type is
well-typed under Γ if H, G, V and U are well-typed under Γ. A contour type
is closed if it can be typed by an empty environment, i.e., if H, G, V and U
are closed terms. Starting from the constants in Σ, more complex terms are
constructed according to the syntax:

M ::= α | h | v | x | ? | 〈M, M〉% | Proj %
i M | λ%x :σ.M | M@

%M | M%M

where α ∈ C, h ∈ H, v ∈ V, x is a generic variable, ? is the unit, and pair-
ings, projections, abstractions and applications (the latter denoted by @) are
feasible in all compositional dimensions of tiles as % ∈ {∗, ·, /, .} (horizontal,
vertical and diagonal, the latter in the two distinct ways previously defined).
Moreover, horizontal, vertical and diagonal compositions are also given, be-
cause abstraction is restricted to objects, and hence these compositions cannot
be expressed just by functional application. A generic type sentence for double

λ-terms has the form Γ ` M 2 H : τ
V :ρ

//
U :τ→σ

G : ρ → σ .

We refer to [10] for the description of the type system, but it is worth
remarking that all variables in Γ are propagated by default around the contour
of the tiles, so that names in Γ can be used in U and G without being explicitly
forwarded by H and V , this makes Γ be a global environment for typing M
and its contour type. When a name x in Γ is abstracted from M , then the
abstraction consistently binds the occurrences of x in H, V , U and G.

2 π-calculus with Late Semantics

2.1 The object system

In this section we give the syntax of a finitary but significant fragment of
the π-calculus, the late operational semantics, and the strong late bisimilarity
equivalence, see [26] for more details.

Let N be an infinite set of names, ranged over by x, y. The set of processes
(or agents) P , ranged over by P , Q, is defined by the following abstract syntax:

P ::= 0 | x̄y.P | x(y).P | τ.P | (νx)P | P1|P2 | [x = y]P

The input prefix operator x(y) and the restriction operator (νy) bind the
occurrences of y in the argument P . Thus, for each process P we can define the
sets of its free names fn(P), bound names bn(P) and names n(P). Agents are

7

Bruni et al.

−
x(z).P

x(w)−→ P{w/z}
w 6∈ fn((νz)P) (IN)

P
µ−→ P ′

P |Q µ−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅ (PARl)

P
x(w)−→ P ′ Q

x(w)−→ Q′

P |Q τ−→ (νw)(P ′|Q′)
(CLOSEl)

P
µ−→ P ′

(νy)P
µ−→ (νy)P ′

y 6∈ n(µ)inP isaandUdine

(RES)

−
xy.P

xy−→ P
(OUT)

P
x(z)−→ P ′ Q

xy−→ Q′

P |Q τ−→ P ′{y/z}|Q′ (COMl)

P
µ−→ P ′

[x = x]P
µ−→ P ′

(MATCH)

−
τ.P

τ−→ P
(TAU)

P
xy−→ P ′

(νy)P
x(w)−→ P ′{w/y}

y 6= x, w 6∈ fn((νy)P ′) (OPEN)

Fig. 2. Late operational semantics of π-calculus.

taken up-to α-equivalence. For X ⊂ N , we let PX , {P ∈ P | fn(P) ⊆ X}.
Capture-avoiding substitution of y in place of x in P is denoted by P{y/x}.

There is a plethora of slightly different lts’s for the late operational se-
mantics of π-calculus, e.g. [26,25,30]. We present the original one in [26]: the

relation
µ−→ is the smallest relation on processes, satisfying the rules in Fig-

ure 2 (with the obvious rules PARr and COMr omitted). There are four kinds
of actions, ranged over by µ. Action τ is the silent move, and x̄y is the free

output : P
x̄y−→ Q means that P can reduce itself to Q emitting y on the chan-

nel x. Dually, the input P
x(z)−→ Q means that P can receive from the channel

x any name w and then evolve into Q{w/z}. The bound output P
x(z)−→ Q

means that P can evolve into Q emitting on the channel x a restricted name z
of P (name extrusion). The channel x is called the subject, while z, y are the
objects. The τ and free output are free actions, the other two are said bound.
The functions fn(·), n(·) and bn(·) are extended to actions in the obvious way.

Definition 2.1 A relation S ⊆ P × P is a strong late simulation iff, for all
processes P,Q, if P S Q then

(i) if P
µ−→ P ′ and µ is free, then for some Q′, Q

µ−→ Q′ and P ′ S Q′;

(ii) if P
x(y)−→ P ′ and y 6∈ fn(P, Q), then for some Q′, Q

x(y)−→ Q′ and for all
w ∈ N : P ′{w/y} S Q′{w/y};

(iii) if P
x(y)−→ P ′ and y 6∈ fn(P, Q), then for some Q′, Q

x(y)−→ Q′ and P ′ S Q′.

S is a strong late bisimulation if both S and S−1 are strong late simulations. P
and Q are strong late bisimilar, 3 written P

.∼ Q, if a strong late bisimulation

3 It is well-known that strong late bisimilarity .∼ can be defined as the greatest fixed point
of a suitable monotonic operator over subsets of P × P.

8

Bruni et al.

S exists such that P S Q.

2.2 Encoding the π-calculus in Logical Framework

In this section we present an encoding of π-calculus in lf, which follows [16],
further elaborated in [18] in the Calculus of Inductive Constructions. The
corresponding lf signature Σπ appears in Figure 3.

Syntax. Following the methodology outlined in Section 1.1, for each syntactic
category of names, labels and processes we introduce a specific type. Syn-
tactic constructors are defined for labels and processes only: names have no
constructor, so that the only terms which can inhabit Name are metalevel
variables, as usual in weak HOAS encodings [18, 17]. Binders of π-calculus
are rendered in lf making use of suitable abstractions. In the case of the in-
put prefix, for instance, in order to obtain a process, both a name (the input
channel) and an abstraction (a function from names to processes) are required.

Given a finite set of names X, it is easy to define an encoding function
εX from π-calculus processes with free names in X, to lf terms of type Proc.
Most of the π-calculus constructors are translated in the obvious way, but
for input prefix εX(x(y).P) = inp(x, λy : Name.εX∪{y}(P)) and restrictions:
εX((νy)P) = ν(λy : Name.εX∪{y}(P)). Accordingly, π-calculus processes will
be often pretty-printed, following the notation of Section 2.1. This encoding
map is an adequate and faithful representation of the syntax of π-calculus:

Proposition 2.2 (Adequacy, I) Let X = {x1, . . . , xn} be a finite set of
names. The map εX is a bijection between PX and the normal forms of type
Proc in the signature Σπ and environment ΓX , {x1 : Name, . . . , xn : Name}.

We omit the proof which follows a standard argument by induction on the
syntax of terms and on the derivation of the typing judgement [15].

In view of the remarks above, the set fn(P) for P ∈ Proc is simply the set
of free variables of type Name, occurring in the canonical (normal) form of P .

Operational semantics. The transition relation is rendered by two mutually
defined inductive predicates 7−→, 7−→→, which take care of transitions involving
free actions and bound actions, respectively. In the latter case, the result of
the transition is not a process but a process context, i.e. a process with a hole,
conveniently represented by a function Name → Proc.

Rules for 7−→ and 7−→→ appear in Figure 3. Some of the rules of Figure 2 have
two counterparts, according to whether they refer to free or bound transitions;
the bound version of COND has been omitted together with the right versions
of PAR, COM and CLOSE. Note that bound names in bound actions (the ob-
jects of communication) disappear in the encoding. In fact, the rôle played by
the objects in bound actions is to denote which name in the resulting process
is bound by the action. Since these bound names in processes are denoted
by “holes” in the encoding, taking full advantage of the HOAS approach,

9

Bruni et al.

Syntactic categories and constructors

Name : Type 0 : Proc
Label : Type τp : Proc → Proc
Proc : Type inp : Name → (Name → Proc) → Proc

τ : Label outp : Name → Name → Proc → Proc
out : Name → Name → Label | : Proc → Proc → Proc
in : Name → Label ν : (Name → Proc) → Proc

bout : Name → Label [=] : Name → Name → Proc → Proc

Judgements and rules

7−→ : Proc → Label → Proc → Type
7−→→ : Proc → Label → (Name → Proc) → Type

TAU : ΠP :Proc .τp.P
τ7−→ P

OUT : ΠP :ProcΠx,y:Name .outp(x, y).P
out(x,y)7−→ P

IN : ΠP :Name→ProcΠx:Name .inp(x).P
in(x)7−→→ P

PARf
l : ΠP,Q,R:ProcΠµ:Label .P

µ7−→ R → (P |Q)
µ7−→ (R|Q)

PARb
l : ΠP,Q:ProcΠR:Name→ProcΠµ:Name→Label .

P
µ7−→→ R → (P |Q)

µ7−→→ λx : Name. (Rx)|Q
COMl : ΠP,Q,R:ProcΠS:Name→Proc.

Πx,y:Name .P
out(x,y)7−→ R → Q

in(x)7−→→ S → (P |Q) τ7−→ R|(Sy)

RESf : ΠP,Q:Name→ProcΠµ:Label .
(
Πx:Name .(Px)

µ7−→ (Qx)
)
→ ν(P)

µ7−→ ν(Q)

RESb : ΠP :Name→ProcΠQ:Name→Name→ProcΠµ:Label .(
Πx:Name .(Px)

µ7−→→ (Qx)
)
→ ν(P)

µ7−→→ λz : Name. ν(λx : Name.(Qxz))

OPEN : ΠP,Q:Name→ProcΠx:Name .

(
Πy:Name .(Py)

in(x)7−→ (Qy)
)
→ ν(P)

bout(x)7−→→ Q

CLOSEl : ΠP,Q:ProcΠR,S:Name→ProcΠx:Name .

P
in(x)7−→→ R → Q

bout(x)7−→→ S → (P |Q) τ7−→ ν(λz : Name.(Rz)|(Sz))

CONDf : ΠP,Q:ProcΠµ:LabelΠx:Name .P
µ7−→ Q → [x=x]P

µ7−→ Q

Fig. 3. Σπ, lf signature for the π-calculus.

their representation in the bound action is unnecessary, e.g., the transition

x(y).P
x(y)7−→ P is represented by in(x)(λy : Name.ε(P))

in(x)7−→→ λy : Name.ε(P).

As an example, consider rule IN , where the target process is an abstrac-
tion; when an input occurs (e.g., in the COMl rule), the target is applied to
the effectively received name, so that this name replaces all the occurrences
of the placeholder in the target process.

10

Bruni et al.

The operational semantics we have presented here allows to eliminate those
explicit side-conditions, which are needed in the ordinary semantics to enforce
bound names to be fresh, so as to avoid name clashing. The side conditions
are implicit in the higher-order nature of the type encoding of the rules in
the lf presentation. Bound names remain bound also when the transition is
performed, since abstractions are used for the target process.

It is possible to establish a precise correspondence between derivations of
the semantics of π-calculus and lf judgements derivable in the signature Σπ.

Proposition 2.3 (Adequacy II) For any X ⊂fin N , P,Q ∈ PX , x, y ∈ N :

• P
τ−→ Q iff ΓX `Σπ : εX(P)

τ7−→ εX(Q);

• P
x̄y−→ Q iff ΓX `Σπ : εX(P)

out(x,y)7−→ εX(Q);

• P
x(y)−→ Q iff ΓX `Σπ : εX(P)

in(x)7−→→ λy : Name.εX∪{y}(Q);

• P
x̄(y)−→ Q iff ΓX `Σπ : εX(P)

bout(x)7−→→ λy : Name.εX∪{y}(Q).

The proof of this proposition is by induction on the structure of derivations
(⇒) and on the structure of normal forms (⇐).

The proposition above is proof-irrelevant, that is we do not consider the
“proofs” corrisponding to the derivations of the transitions. This result can be
strenghtened by considering also the structure of derivations of the lts, instead
of the mere transitions. From this proof-theoretical point of view, there is a
compositional bijection between derivations of P

τ−→ Q and canonical forms
t such that ΓX `Σπ t : εX(P)

τ7−→ εX(Q); similarly for the other actions.

Strong late bisimilarity. The strong late bisimilarity can be näıvely encoded
by adding to Σπ the following constants:

.∼ : Proc → Proc → Type
.∼coind : ΠP,Q:Proc.ΠQ:Proc.ΠR:Proc→Proc→Type .

(ΠP ′,Q′:Proc.(R P ′ Q′) → (T .∼ R P ′ Q′)) → (R P Q) → (P
.∼ Q)

where T .∼ : (Proc → Proc → Type) → (Proc → Proc → Type) in the coin-
ductive rule is suitably defined as the relational operator of strong late bisim-
ulation. However, since this definition needs an universal quantification on
the kind Proc → Proc → Type, it cannot be given in lf but only in stronger
theory, such as the Calculus of Constructions (CC).

Another possibility, is to introduce explicitly the type of propositions, Prop,
with their logical connectives and rules for proof derivations. In this way, the
quantification needed in

.∼coind is allowed in lf because it would range over the
sort Proc → Proc → Prop. Actually, this solution would be more adherent
to the encoding protocol of lf, since propositions and the logical system are,
after all, syntactic components of the object system.

As a final remark, notice that, since type-checking is decidable, every re-
lation which can be adequately represented in a Logical Framework must be

11

Bruni et al.

³º¹́µ̧¶· t≡H //

a≡V
²²

final configuration

trigger

final input interface ³º¹́µ̧¶·
b≡U

²²

effect

final output interface

³º¹́µ̧¶·
s≡G

//

=⇒

initial configuration

initial input interface
³º¹́µ̧¶·

initial output interface

Fig. 4. A “reversed” tile.

semidecidable. This is true for the strong late bisimilarity we are considering
in this paper, because we have only finite-state processes; however, it would
not hold in the general case of infinite-state processes [18].

2.3 Encoding the π-calculus in Tile Logic

To represent the π-calculus in HOTL we find it convenient to reverse the di-
rection of vertical arrows. Henceforth, according to this choice, tiles must be
interpreted as in Figure 4. Indeed this allows us to use the vertical cartesian
projections for dealing with name creation (since the computation grows up-
wards instead of downwards). The idea is then to define a signature for the

π-calculus such that each proof of the transition P
µ−→ Q is represented as a

tile term Γ ` M 2 [[Q]]
id−→
[[µ]]

[[P]] (for suitable encondings of agents and actions).

The double signature Rlate for π-calculus is given in Figure 5. The type
constants on which the type system for the π-calculus is defined in the double
λ-notation are Name and Proc. To shorten the notation we will often write n
and p in place of Name and Proc respectively.

[[0]] = 0

[[x(y).P]] = inp x λy : n.[[P]]

[[τ.P]] = τp [[P]]

[[x̄y.P]] = outp 〈x, y〉 [[P]]

[[P1|P2]] = [[P1]]|[[P2]]

[[(νx)P]] = ν λx : n.[[P]]

[[[x = y]P]] = if 〈x, y〉[[P]]

The horizontal term constants yielding
the syntactic structure of π-agents are very
similar to those employed in the lf encoding,
but product types are used in some operators
to pair arguments which operationally should
be provided together (nevertheless, the cur-
ryed versions of these operators always ex-
ist). The translation of π-agents into hori-
zontal terms (all of type Proc) is inductively
defined on the left.

The vertical term constants yielding the observations of π-agents are to
some extent a combination of the analogous operators in the lf encoding and
the two kinds of transition relations used in that encoding.

From Figure 5 we have omitted the following tile term constants: ResBout,
which is analogous to ResIn; ParOutl, ParBoutl and ParTaul (analogous to
ParInl); Closer, Comr, ParInr, ParOutr, ParBoutr and ParTaur (analogous
to their left counterparts with subscript l); CondIn, CondOut and CondBout

(analogous to CondTau). The tile term constants are presented using a more
linear notation than the one in Section 1.2, and designed for natural encoding

12

Bruni et al.

Interfaces Configurations Observations
n 0 : p τ : p → p
p τp : p → p out : 〈n,n〉 → p → p

inp : n → (n → p) → p in : n → (n → p) → p
outp : 〈n,n〉 → p → p bout : n → (n → p) → p

| : 〈p, p〉 → p
ν : (n → p) → p
if : 〈n,n〉 → p → p

Tile term constants
q : p ` Tau@/q 2 τp [q] ⇒ τ [q] : p

x, y : n, q : p ` Output@/〈x, y〉/@/q 2 outp 〈x, y〉[q] ⇒ out 〈x, y〉[q] : p

x : n, r : n → p ` Input@/x@/r 2 inp x[r] ⇒ in x[r] : p

x : n, r : n → (p × n) ` Open@/x@/r 2 ν[λy : n.out 〈x, π2(ry)〉, π1(ry)] ⇒ bout x[λy : n.π1(ry)] : p

x, y : n, r : n → p ` ResOut@/x@/r 2 ν[λz : n.out 〈x, y〉(rz)] ⇒ out 〈x, y〉[ν(λz : n.rz)] : p

x : n, s : n → n → p ` ResIn@/x@/s 2 ν[λz : n.in x(sz)] ⇒ in x[λy : n.ν(λz : n.szy)] : p

r : n → p ` ResTau@/r 2 ν[λz : n.τ(rz)] ⇒ τ [νr] : p

x : n, r1, r2 : n → p ` Closel@
/x@/〈r1, r2〉/ 2 [in xr1]1|[bout xr2]2 ⇒ τ [ν(λz : n.(r1z)|(r2z)] : p

x, y : n, r : n → p, q : p ` Coml@
/〈x, y〉/@/r@/q 2 [in xr]1|[out 〈x, y〉q]2 ⇒ τ [(ry)|q] : p

x : n, r : n → p, q : p ` ParInl@
/x@/r@/q 2 [in xr]1|[q]2 ⇒ in [λy : n.ry)|q] : p

x : n, q : p ` CondTau@/x@/q 2 if 〈x, x〉[τ q] ⇒ τ [q] : p

Fig. 5. A tl for the late π-calculus.

of interactive calculi. Thus, a contour type H : τ
V :ρ

//
λy:τ.U ′:τ→σ

λz : ρ.G′ : ρ → σ

is written G′[V/z] ⇒ U ′[H/y] : σ where the occurrences of H and V per-
forming substitution are written inside square brackets to separate terms that
live in orthogonal dimensions. This is consistent with the choice of revers-
ing the direction of vertical arrows as explained above. See also Figure 4
for the interpretation of the symbol ⇒. Since τ and ρ can be the prod-
uct of smaller types, all square brackets surrounding tuple elements are la-
belled by the element position in the tuple. For example, using infix notation,
([P]1|[P]2)|[P]1 is a context with three arguments applied to two instances of
the same term P , and where the first instance is used twice. This is different
from ([P]1|[P]2)|[P]2, where the second instance of P is used twice. They are
both different from ([P]1|[P]1)|[P]1: In the first two cases the middle interface
has two components, but only one in the third case (where the equivalent
notation ([P]|[P])|[P] can be used). We remark that variables in the global
environment Γ can be used without specifying their position in the interface.

To shorten the notation, in Figure 5 tile term constants are typed under
non-empty environments, while, e.g., the constant Tau should be presented as

∅ ` Tau 2 λq : p.τp ([λq′ : p.q′]q) ⇒ λq : p.τ ([λq′ : p.q′]q) : p → p

This expression is hard to read (and others look still more complicated), but
the diagonal application allows simplifying the presentation as in Figure 5.

Tiles Tau, Output, Input move the corresponding action prefix to the ef-
fect of the step. The tile Open is triggered by the horizontal abstraction of a

13

Bruni et al.

tile that produces an ordinary output; the abstraction is w.r.t. the received
name y (the name restricted by ν in the initial configuration), thus the pro-
duced effect is a bound output. Tiles ResOut, ResIn and ResTau propagate
actions through ν when free names in the label are not restricted. Tiles Closel

and Coml perform synchronous communications on channel x, w.r.t. a bound
output and an ordinary output, resp. Tile ParInl propagates asynchronous
communications and CondTau checks guards before propagating actions.

Proposition 2.4 (Adequacy) If P
µ−→ Q then fn(P) ` M 2 S

id−→
[[µ]]

[[P]],

where S = [[Q]] if µ is free, while S = λy : n.[[Q]] if µ is bound with object y.

The proofs proceed by induction on the proof of P
µ−→ Q. In fact, a

denotational mapping can be inductively defined from the proof terms of late
transitions and well-typed tile terms.

Proposition 2.4 shows that late transitions of π-calculus can be adequately
encoded in Rlate . Note however that in HOTL more operations are allowed,
as e.g. abstracting channel names from proofs and analyzing partially instan-
tiated process (with process variables), thus providing a richer lts. For this
reason, we conjecture that tile bisimilarity for Rlate is finer than late bisimi-
larity (e.g. processes with different sets of free names cannot be tile bisimilar).

2.4 Discussion

Both encodings exploit HOAS for handling names abstraction and applica-
tion. Comparing the two approaches, there is an evident similarity between
the inference rules in lf and the term tile constants in Rlate . In fact, observa-
tions in HOTL combine Label constructors with the two kinds of judgements:

the predicate
τ7−→ corresponds to τ ; the predicate

out(x,y)7−→ to out 〈x, y〉; the

predicates
in(x)7−→→ and

bout(x)7−→→ to in x and bout x, respectively. To some extent, in
HOTL the labels of the lts become higher-order constructors for transitions,
while in lf they are first order entities kept distinct from transition predicates.

HOTL is strongly typed and comes equipped with product types (but these
can be coded in lf using the currying operation). Due to the typing rules, it
might be necessary to reverse the direction of some arrows (e.g. observations,
in the case of π-calculus) for encoding certain operational steps.

Encodings in lf strictly adhere to the syntactical entities of the object
system. In particular, there is a 1-1 correspondence between derivations of
the operational semantics in the object system and terms inhabiting the type
corresponding to the transition judgement. On the other hand, in HOTL the
correspondence works in one direction only, i.e. it just provides a semantic
domain for transition proofs, where equivalent proofs are identified.

Concerning late bisimilarity, its näıve HOAS encoding require a type theory
stronger than lf (e.g., the Calculus of Constructions); otherwise, we can still
dwell in lf but a proposition type must be introduced. On the other hand, in
HOTL late bisimilarity is replaced by the finer tile bisimilarity.

14

Bruni et al.

−
Γ ` ∗ : unit

(∗)
−

Γ ` c : ι
(c)

−
Γ, x : σ ` x : σ

(VAR)

Γ ` M : σ1 → σ2 Γ ` N : σ1

Γ ` MN : σ2

(APP)

Γ, x : σ1 ` M : σ2

Γ ` λx:σ1.M : σ1 → σ2

(λ)

Fig. 6. Typing system for the λ-calculus.

−
c

c−→ ∗c ∈ Const (CONSTc)

−
(λx:σ.M)N

τ−→ M [N/x]
(β)

` P : σ

λx:σ.M
@P−→ M [P/x]

(@)

M
τ−→ N

MP
τ−→ NP

(LEFT)

Fig. 7. lts for lazy operational semantics of λ-calculus.

3 The Lazy λ-calculus

3.1 The object system

In this section, we present a simply typed λ-calculus with lazy operational
semantics. Usually, strategies on λ-calculus (and corresponding observational
equivalences) are defined in terms of reduction systems [3,1]. Here we give an
alternative presentation based on a lts inspired by [20] (where a call-by-value
typed λ-calculus is considered): we define a lts on closed λ-terms with weak
bisimilarity yielding observational (contextual) equivalence [1].

For simplicitly and for lack of space, we consider a very small language
whose syntax of types Type and terms Λ is defined as follows:

Type 3 σ ::= ι | unit | σ → σ Λ 3 M ::= c | ∗ | x | MM | λx:σ.M

where x ∈ V ar, c ∈ Const for Const a finite set of constants. As usual,
λ-terms are taken up-to-α-equivalence. The typing system à la Church is in
Figure 6. The environment Γ is a partial function from V ar to Type with
finite domain. We denote by Λσ

Γ the set of λ-terms typable with σ in Γ, e.g.,
Λσ? denotes the set of closed λ-terms typable with σ. We let Λ0 ,

⋃
σ Λσ?.

The transition rules of the lts corresponding to the lazy leftmost outermost
reduction strategy are in Figure 7. The transition relation

α−→, where the label
α ∈ {τ} ∪ {@P | P ∈ Λ0} ∪ Const , is defined on Λ0 × Λ0. Notice that the
transition relation

τ−→ is exactly the small-step lazy reduction strategy.

Definition 3.1 Let
γ⇒⊆ Λ0 × Λ0 be defined by

τ∗−→ ◦ γ−→ ◦ τ∗−→, where
τ∗−→

is the reflexive and transitive closure of
τ−→, and γ 6= τ . A weak bisimulation

is a family of symmetric relations {Rσ ⊆ Λσ? × Λσ?}σ indexed over types such
that, for all M, N ∈ Λσ1? , the following holds if M Rσ1 N then for all M ′ ∈ Λσ2?
such that M

γ⇒ M ′, there exists N ′ ∈ Λσ2? such that N
γ⇒ N ′ and M ′ Rσ2 N ′.

We let {≈σ
w}σ denote weak bisimilarity, i.e. the greatest weak bisimulation.

15

Bruni et al.

Syntactic categories and constructors

SType : Type unit : SType

Label : Type arr : SType → SType → SType

Const : Type ι : SType

Term : SType → Type c : Const (for each c)

∗ : Term(unit) τ : Label

inT : Const → Term(ι) inL : Const → Label

@ : Πσ:SType .Term(σ) → Label

lam : Πσ1,σ2:SType .(Term(σ1) → Term(σ2)) → Term(σ1 → σ2)

app : Πσ1,σ2:SType .Term(arr(σ1, σ2)) → Term(σ1) → Term(σ2)

Judgements and rules

7−→ : Πσ1,σ2:STypeTerm(σ1) → Label → Term(σ2) → Type

CONST : Πc:Const .inT (c)
inL(c)7−→ ∗

β : Πσ1,σ2:StypeΠM :Term(σ1)→Term(σ2)ΠN :Term(σ1).

appσ1,σ2
(lamσ1,σ2(M), N)

τ7−→ (MN)

@ : Πσ1,σ2:StypeΠM :Term(σ1)→Term(σ2)ΠP :Term(σ1).lamσ1,σ2(M)
@(P)7−→ (MP)

LEFT : Πσ1,σ2:StypeΠM,N :arr(σ1,σ2)ΠP :σ1 .

M
τ7−→ N → appσ1,σ2

(M, P)
τ7−→ appσ1,σ2

(N,P)

Fig. 8. Σλ, lf signature for the λ-calculus.

Definition 3.2 Let the lazy observational equivalence be the family {≈σ}σ of
relations such that, for all M, N ∈ Λσ?,

M ≈σ N ⇐⇒ ∀C[] ∈ Λι
?.∀c (C[M]

τ∗−→ c =⇒ C[N]
τ∗−→ c) .

Using the coinductive characterization of {≈σ}σ in terms of the applicative
equivalence [1], one can easily show that:

Theorem 3.3 For any type σ, we have ≈σ
w = ≈σ.

3.2 Encoding the lazy λ-calculus in Logical Framework

We present an encoding of the λ-calculus with lazy operational semantics in
lf. The signature Σλ corresponding to λ-calculus is in Figure 8. Our encoding
is “full HOAS,” i.e. the set of variables does not have a corresponding type
in lf, and the operation of substitution is delegated to the metalanguage like
in [15,2]. In particular, in rules (β) and (@) the higher order is fully exploited,
since term substitution is rendered via the application of the metalanguage.

16

Bruni et al.

One can easily define an encoding function ε for types, and a family of en-
coding functions εσ

Γ double indexed over types and environments from λ-terms
in Λσ

Γ, as defined in Section 3.1, to terms of lf in Term(σ). In particu-
lar, εσ1→σ2

Γ (λx:σ1.M) = lamσ1,σ2(λx:ε(σ1).ε
σ2
Γ,x:σ1

(M)). These encodings are a
faithful representation of the syntax of λ-calculus, and a second adequacy
result holds for the encoding of the lts.

Proposition 3.4 (Adequacy I) There is a bijection ε : Type → SType from
simple types to terms in SType. Moreover, for each Γ = {x1 : σ1, . . . , xn : σn}
and type σ, a bijection εσ

Γ exists between λ-terms in Λσ
Γ and the normal forms

of Σλ-terms with type Term(σ) in the environment {x1 : ε(σ1), . . . , xn : ε(σn)}.
Proposition 3.5 (Adequacy II) Let M, N ∈ Λσ?, M ′ ∈ Λσ′? , Q ∈ Λσ→σ′?
and c ∈ Const; then:

• M
c−→ ∗ iff `Σλ

: εσ?(M)
c7−→ ∗;

• M
τ−→ N iff `Σλ

: εσ?(M)
τ7−→ εσ?(N);

• Q
@M−→ M ′ iff `Σλ

: εσ→σ′? (Q)
@(εσ?(M))7−→ εσ′? (M ′).

Likewise π-calculus, this adequacy can be strengthened by exhibiting a
compositional bijection between derivations of P

µ−→ Q and canonical forms
t such that `Σπ t : ε(P)

µ7−→ ε(Q).

Weak bisimilarity and observational equivalence. As for π-calculus, since the
weak bisimilarity, and hence also observational equivalence, over the simply
typed λ-calculus are decidable, they can be adequately encoded in lf. This
does not hold for the untyped λ-calculus, where these relations are not semide-
cidable. Due to lack of space, we cannot describe these encoding, but they
are similar to that of

.∼ for the π-calculus (Section 2.2).

3.3 Encoding the lazy λ-calculus in Tile Logic

The simply typed λ-calculus over a higher-order signature defines exactly the
cartesian closed category of configurations. Thus, from the categorical view-
point, λ-terms that are equated up to α, β and η rules yield the same abstract
configuration in the initial model. Still the vertical dimension is apt for rep-
resenting applicative transitions, as again labels can be λ-terms. Moreover,
the auxiliary tiles of HOTL impose the coherence of horizontal and vertical
application, i.e. by letting evalσ,τ : τσ × σ → τ be the evaluation map, the

tile id
id−→

evalσ,τ

evalσ,τ is always present and can be composed with the vertical

identity of f ×a where f : τσ and a : σ yielding f ×a
id−→

evalσ,τ

fa, which tells that

the application of a function f to an argument a can be observed, resulting in
a final configuration where f is applied to a. In order to observe the argument
which the function is applied to, we must transfer horizontal constructors to
the vertical side. This can be done as in Figure 9, which defines the tl Rλ.

17

Bruni et al.

Interfaces Configurations Observations Tile term constants
ι c : ? → ι ĉ : ? → ι ` Dync 2 ĉ[?] ⇒ c[?] : ι

κ 0 : ? → κ ↓c : ι → κ ` Constc 2 ↓c [c] ⇒ 0[?] : κ

Fig. 9. A tl for the applicative λ-calculus (with c ranging over Const).

This time tiles are not reversed, e.g., in Constc, the initial configuration is
c, the effect is ↓c, the trigger is ? and the final configuration is 0 (and the i.i.i.
is empty). Note that, since ? is the terminal object, we cannot introduce an
observation ↓c : ι → ? because this would collapse ↓c=↓c′ for all c, c′ ∈ Const
(for each object σ, a unique map exists from σ to ?). Thus the type constant κ,
and the horizontal term constant 0, are introduced ad-hoc to model the basic
observational steps, which are defined by the tiles Const (they end in the final
configuration 0 instead of ?). Applicative steps are instead a combination of
tiles Dync and auxiliary tiles, as the following results show.

Proposition 3.6 For any closed configuration M , the tl Rλ entails the tile
?

?−→̂
M

M , where M̂ is the term obtained by the syntactic replacement of all c

by ĉ (i.e. we have (λx : σ.M)̂ , λx : σ.M̂ , (MN)̂ , M̂N̂ , ?̂ = ? and x̂ = x).

Corollary 3.7 For any closed configurations M ∈ Λσ→τ? and N ∈ Λσ?, we

have that Rλ entails the tile M
@N̂−→
?

MN , where @ , λx : τ.λf : σ → τ.fx.

Thus τ moves of the applicative transition system are mapped to vertical
identities, while the two kinds of labeled steps have their counterparts in the
logic. The type system takes care of allowing only correct applications.

Proposition 3.8 Tile bisimilarity coincides with applicative bisimilarity.

3.4 Discussion

In the “syntactically-minded” lf approach, each reduction step of λ-calculus
corresponds to a rule application; this is evident in the 1-1 correspondence be-
tween derivations of the lts semantics and terms inhabiting the corrispond-
ing type. An advantage of this viewpoint is that the lf encoding can be
easily modified to take into account other evaluation strategies, e.g. call-by-
value [2]. On the other hand, the semantical approach of TL is somehow more
compelling, because it hides β-reductions of the λ-calculus: two β-convertible
terms are identified in the same configuration. Therefore, in order to take into
account reduction strategies whose equivalences do not correspond to that of
ccdc (like call-by-value), we have to adopt different encodings of terms.

In both encodings we have presented here, the object level type system is
not explicitly represented, but it is delegated to the strict typing discipline of
the metalanguage. More precisely, what we have encoded is an intrinsic type
system, where only well-typed terms exist. One could also consider extrinsic

18

Bruni et al.

type system or even untyped λ-calculus tout court. These object systems
can be easily encoded in lf; for instance, the extrinsic type system can be
rendered just by adding an explicit typing judgement with its derivation rules.
In HOTL, the interpretation of an untyped λ-calculus would need some extra
structure in the underlying ccdc, corresponding to the usual construction of
universal objects in cartesian closed categories.

4 Final Remarks and Conclusions

Logical Frameworks are general formal logic specification languages for rep-
resenting uniformly the syntactical and inferential peculiarities of arbitrary
object logics/systems/calculi. When LF are expanded to a full-blown higher-
order dependent constructive type theory, they allow for a smooth encoding
of predicates and observational equivalence. Since these semantical encodings
rely on the proof strength of the metatheory, they are, in general, weaker than
the object language equivalence. On the hand, Logical Frameworks provide
straightforwardly the conceptual basis for general proof tools for assisting in
rigorous proofs. Summing up, LF’s are syntactical/proof theoretic tools.

Tile Logics provide general categorical tools for the specification of space-
time aspects of object transition systems. Tile logics can be viewed as a bidi-
mensional/visual/graphical specification system based on a categorical model
(ccdc’s). Therefore, Tile Logics have a semantical, rather than a proof-
theoretic flavour, in that they allow to focus directly on an observational
equivalence of the object transition system. Encodings based on Tile Logics
are therefore more abstract, and allow to factor out syntactical details, which
are present in a Logical Framework approach. Summing up, tl’s provide a
syntax-free approach to operational semantics, based on transition systems.

There are various similarities between the two metamodels under consid-
eration. The first lies in the treatment of syntax and the encoding of tran-
sition rules. Both lf and tl, being based, in effect, on a rich type theory,
allow to capitalize on their higher-order features and provide efficient encod-
ings, which delegate to the metalanguage features such as variable freshness,
capture-avoiding substitution, α-conversion, name creation.

Sharp differences between the two approaches arise in the context of se-
mantics/observational equivalence. lf is rather rigid here, allowing only to
model inferences, whereas tl’s are much more abstract, since they force to
capture some observational equivalence at the very outset. The semantical as-
pect is highly intertwined in the very encoding of the proof rules. In general,
tile bisimilarity is different from proof equivalence, and suitable tile formats
can guarantee that tile bisimilarity is a congruence w.r.t. the language in
question. On the other hand, lf’s are more transparent and faithful to the
object system, in that they allow to encode also formal systems, which are
not presented as transition systems. We conjecture that a full equivalence be-
tween the two approaches could be reached w.r.t. the encodings of transition
systems, where one wants to focus on (observe) just α-equivalence.

19

Bruni et al.

The comparison we have started in this work needs further elaboration.
Other semantics could be considered on the two object languages we have
focused on. For instance, for the λ-calculus we could consider a call-by-value
evaluation strategy, whose equivalence is not immediately recovered in the
metalanguages. On the π-calculus, it would be interesting to compare the en-
codings of early semantics [6,21], or reduction-like (i.e., unlabelled) semantics
and the associated equivalences (e.g., barbed bisimulation).

Many other object systems could be considered (e.g., ambient, ν-, spi-
calculus, etc.). A particularly challenging case is that of languages with
polyadic binders, like polyadic π-calculus; their HOAS encoding is not trivial.

Finally, let us point out that while a syntactic encoding of tl in lf looks
feasible and we leave it for future work, the semantical encoding of lf in HOTL
looks difficult at present, because it requires the treatment of dependent types,
not available in ccdc’s.

Acknowledgements. We warmfully thanks Ugo Montanari for preliminary dis-
cussions and suggestions on part of the topics explored in this paper.

References

[1] Abramsky, S. and C.-H.L. Ong, Full abstraction in the lazy lambda calculus,
Information and Computation 105 (1993), pp. 159–267.

[2] Avron, A., F. Honsell, I. Mason and R. Pollack, Using Typed Lambda Calculus
to implement formal systems on a machine, J. Aut. Reas. 9 (1992), pp. 309-354.

[3] Barendregt, H., “The lambda calculus: its syntax and its semantics,” Studies
in Logic and the Foundations of Mathematics, North-Holland, 1984.

[4] Bruni, R., “Tile Logic for Synchronized Rewriting of Concurrent Systems,”
Ph.D. thesis, Computer Science Department, University of Pisa (1999).

[5] Bruni, R., D. de Frutos-Escrig, N. Mart́ı-Oliet and U. Montanari, Bisimilarity
congruences for open terms and term graphs via tile logic, in: Proc. CONCUR
2000, LNCS 1877 (2000), pp. 259–274.

[6] Bruni, R., J. Meseguer and U. Montanari, Implementing tile systems: Some
examples from process calculi, in: Proc. ICTCS’98 (1998), pp. 168–179.

[7] Bruni, R., J. Meseguer and U. Montanari, Internal strategies in a rewriting
implementation of tile systems, in: Proc. WRLA’98, ENTCS 15 (1998).

[8] Bruni, R., J. Meseguer and U. Montanari, Executable tile specifications for
process calculi, in: Proc. FASE’99, LNCS 1577 (1999), pp. 60–76.

[9] Bruni, R., J. Meseguer and U. Montanari, Symmetric monoidal and cartesian
double categories as a semantic framework for tile logic, Math. Struct. in
Comput. Sci. (2001), to appear.

[10] Bruni, R. and U. Montanari, Cartesian closed double categories, their lambda-
notation, and the pi-calculus, in: Proc. LICS’99 (1999), pp. 246–265.

[11] Bruni, R., U. Montanari and F. Rossi, An interactive semantics of logic
programming, Theory and Practice of Logic Prog. 1(6) (2001), pp. 647–690.

20

Bruni et al.

[12] Corradini, A., R. Heckel and U. Montanari, Compositional sos and beyond: A
coalgebraic view of open systems, Theoret. Comput. Sci. (2001), to appear.

[13] Gadducci, F., P. Katis, U. Montanari, N. Sabadini and R.F.C. Walters,
Comparing cospan-spans and tiles via a Hoare-style process calculus, in: ENTCS
62 (2002). This volume.

[14] Gadducci, F. and U. Montanari, The tile model, in: Proof, Language and
Interaction: Essays in Honour of Robin Milner, MIT Press (2000).

[15] Harper, R., F. Honsell and G. Plotkin, A framework for defining logics, Journal
of the ACM 40 (1993), pp. 143–184.

[16] Honsell, F., M. Lenisa, U. Montanari and M. Pistore, Final semantics for the
π-calculus, in: Proc. PROCOMET’98 (1998), pp. 225–243.

[17] Honsell, F., M. Miculan and I. Scagnetto, An axiomatic approach to
metareasoning on systems in higher-order abstract syntax, in: Proc. ICALP’01,
LNCS 2076 (2001), pp. 963–978.

[18] Honsell, F., M. Miculan and I. Scagnetto, π-calculus in (co)inductive type
theory, Theoret. Comput. Sci. 253 (2001), pp. 239–285.

[19] INRIA, “The Coq Proof Assistant,” (2001). http://coq.inria.fr/.

[20] Jeffrey, A. and J. Rathke, Towards a theory of bisimulation for local names, in:
Proc. LICS 1999 (1999), pp. 56–66.

[21] Lenisa, M., “Themes in Final Semantics,” Ph.D. thesis, Dipartimento di
Informatica, Università di Pisa, Italy (1998).

[22] Martin-Löf, P., On the meaning of the logical constants and the justifications
of the logic laws, Technical Report 2, Scuola di Specializzazione in Logica
Matematica, Dipartimento di Matematica, Università di Siena (1985).

[23] Meseguer, J., Conditional rewriting logic as a unified model of concurrency,
Theoret. Comput. Sci. 96 (1992), pp. 73–155.

[24] Meseguer, J. and U. Montanari, Mapping tile logic into rewriting logic, in: Proc.
WADT’97, LNCS 1376 (1998), pp. 62–91.

[25] Milner, R., The polyadic π-calculus: a tutorial, in: Logic and Algebra of
Specification, NATO ASI Series F 94 (1993).

[26] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes,
Inform. and Comput. 100 (1992), pp. 1–77.

[27] Pfenning, F., The practice of Logical Frameworks, in: Proc. CAAP’96, LNCS
1059 (1996), pp. 119–134.

[28] Pfenning, F. and C. Elliott, Higher-order abstract syntax, in: Proc. ACM
SIGPLAN’88 (1988), pp. 199–208.

[29] Pollack, R., “The Theory of LEGO,” Ph.D. thesis, Univ. of Edinburgh (1994).

[30] Sangiorgi, D., A theory of bisimulation for the π-calculus, Acta Informatica 33
(1996), pp. 69–97.

[31] Schroeder-Heister, P., A natural extension of natural deduction, J. Symbolic
Logic 49 (1984), pp. 1284–1300.

21

http://coq.inria.fr/�

