Tiles for Reo™

Farhad Arbab, Roberto Brurfi, Dave Clarké, lvan Lanes® and Ugo Montanafi

1 cwiI, Amsterdam, The Netherlands
farhad@wi . nl
2 Dipartimento di Informatica, Universita di Pisa, Italy
{bruni, ugo}@li . unipi.it
3 Department of Computer Science, Katholieke Universiteitven, Belgium
Dave. O ar ke@s. kul euven. be
4 Dipartimento di Scienze dell'lnformazione, UniversitéBiblogna, ltaly
| anese@s. uni bo. it

Abstract. Reo is an exogenous coordination model for software comgene
The informal semantics of Reo has been matched by sevebgats of formal-
ization, exploiting co-algebraic techniques, constraintomata, and coloring ta-
bles. We aim to show that the Tile Model offers a flexible andcatite semantic
setting for Reo, such that: (i) it is able to capture contaxire behavior; (i) it is
equipped with a natural notion of behavioral equivalencétvis compositional;
(iii) it offers a uniform setting for representing not onlya ordinary execution of
Reo systems but also dynamic reconfiguration strategies.

1 Introduction

Reo [1,7, 8] is an exogenous coordination model for softwarmaponents. It is based
on channel-like connectors that mediate the flow of data éthls among compo-
nents. Notably, a small set of point-to-point primitive ceators is sufficient to ex-
press a large variety of interesting constraints over theab®r of connected compo-
nents, including various forms of mutual exclusion, sywctization, alternation, and
context-dependency. In fact, components and primitiveneators can be composed in
a circuit fashion via suitable attach points, called Reoasodypical primitive connec-
tors are the synchronous / asynchronous / lossy channeltharasynchronous one-
place buffer. The informal semantics of Reo has been formdlin several ways, ex-
ploiting co-algebraic techniques [2], constraint-auttan&], and coloring tables [5].
However all the formalizations in the literature that we aveare of are unsatisfactory
from some points of view. In fact, both [2] and [3] provide @iétd characterizations of
the behavior of connectors, allowing to exploit coinduetigchniques, but they do not
support context-awareness, and, in particular, they aralole to faithfully model the
LossySync connector. Up to now, the only approach that takes contegreness into
account is the 3-color semantics presented in [5]. This s¢iosa however, describes
only a single computational step, thus it does not deschibeevolution of the state

* Research supported by the project FET-GC Il IST-2005-168¥MSORIA by the Italian FIRB
project TOCAI, by the Dutch NWO project n. 612.000.316 C-@ua and by the bilateral
German-Dutch DFG-NWO project n. 600.643.000.05N12 SYANCO

of a connector. Also, none of these semantics allows reaanafiipn, which then, for

instance as in [12], has to be added on top of them. The irtgi@tween the dataflow
semantics of Reo circuits and their reconfiguration has beasidered in [11] and [10]
using graph transformations triggered by the 3-color sditsin

We aim to show that the Tile Model [9] offers a flexible and ad&g semantic
setting for Reo. The name ‘tile’ is due to the graphical repreation of such rules (see
Fig. 5 in Section 3). The tiler states that thénitial configuration scan be triggered
by the eventi to reach thdinal configuration producing theeffect b Tiles resemble
Gordon Plotkin’s SOS inference rules [17], but they can bmposed in three different
ways to generate larger proof steps: (i) horizontally ($ypaization), when the effect
of one tile matches the trigger for another tile; (ii) vedliy (composition in time),
when the final configuration of one tile matches the initiahfiguration of another
tile; and (iii) in parallel (concurrency). Tiles take insgiion from Andrea Corradini
and Ugo Montanari’s Structured Transition Systems [6] ardeagalise Kim Larsen
and Liu Xinxin's context systems [13], by allowing for morernggral rule formats. The
Tile Model also extends José Meseguer’s rewriting logk] [(in the non-conditional
case) by taking into account rewrite with side effects amarite synchronization. As
rewriting logic, the Tile Model admits a purely logical foration, where tiles are seen
as sequents subject to certain inference rules.

Roughly, in our tile encoding, Reo nodes and primitive canoes are represented
as hyper-edges (with typed incoming and outgoing tentatkes can be composed
by connecting their tentacles. The one-step semanticsobif @@mitive connecto€ is
defined by suitable basic tiles whose initial configurati®thie hyper-edg€ (we use
the same notation for primitive connectors and correspantiyper-edges) and whose
triggers and effects define how the data can flow thrabgh

A mapping of a fragment of Reo into the Tile Model has beenaalyepresented
in [4]. There the emphasis was on exploiting for Reo conmsdtte normalization and
axiomatization techniques developed therein for the ukpebaa of tile connectors. For
this reason the mapping concentrated only on the synchatioizconnectors, i.e., data
values were abstracted away, and data-sensitive consesiioh as filters or stateful
connectors such as buffers were not considered. The reas®that axiomatization for
those more complex connectors was not available. The intesmantics corresponded
to the data-insensitive 2-color semantics of Reo [5].

In this paper we extend the mapping in [4] to deal with all Rearectors, and
we concentrate on the 3-color semantics [5], the only oneclvlsaptures context-
awareness. The 3-color semantics for Reo that we proposedtio8 6 recovers the
good properties of the semantics in the literature, and igesvalso some additional
benefits:

— it allows to model context dependency, and models faithfibié 3-color semantics
of [5] as far as a single computational step is concerned;

— itis data-sensitive, describing the actual data that flsidiethe connector;

it can model whole computations, keeping into account ttodugion of the state;

it has a natural notion of behavioral equivalence, tilerbikrity, that allows to

exploit coinductive techniques similar to the ones in [2, 3]

the provided notion of bisimilarity is a congruence, i.ee tiehavioral semantics is

compositional;

— the congruence property can be easily proved by exploitanydard meta-theoreti-
cal results;

— it can be smoothly extended to deal with some form of recondion (Section 7),
and the extension also specifies in a formal way the intelipédyween computation
and reconfiguration.

To clarify the approach we first model the simpler 2-color aatits and then show
how to handle the 3-color case. In both cases we consideraaseasitive semantics.
Interestingly, the two semantics can be expressed in the satting (and in a very
similar way). Also, they give rise in a natural way to a notafrbehavioral equivalence
called tile bisimilarity, which is compositional. Finajlye hint at how the same setting
can be exploited to model Reo reconfigurations, an aspetsthat considered by the
standard Reo semantics. A more detailed treatment of thigplax task is left for future
work.

Structure of the papenn Sections 2 and 3 we give some minimal background on Reo
and Tile Logic. In Section 4 we define the representation af aphs of connectors

in terms of tile configurations. Sections 5 and 6 are deditegspectively to the mod-
eling of the 2-color and the 3-color semantics. Section Tireeg the modeling of Reo
reconfiguration. Concluding remarks are given in Sectioto§ether with some hints
on future work we have in mind.

2 Reo Connectors

Reo [1,7, 8] allows compositional construction of complexcectors with arbitrary
behavior out of simpler ones. The simplest (atomic) cororsdh Reo consist of a user
defined set othannelsA channel is a binary connector: a medium of communication
with exactly two directed ends. There are two types of chbemés: source and sink. A
source channel end accepts data into its channel. A sinknethand dispenses data out
of its channel. Every channel (type) specifies its own paldicbehavior agonstraints
on the flow of data through its ends. These constraints rd@mtexample, the content,
the conditions for loss and/or creation of data that passutiiin the ends of a channel,
as well as the atomicity, exclusion, order, and/or timinghafir passage.

Although all channels used in Reo are user-defined and usersndeed define
channels with any complex behavior (expressible in the séimmodel) that they wish,
a very small set of channels, each with very simple behasidfices to construct useful
Reo connectors with significantly complex behavior [8].0Fig 1 shows a common set
of primitive channels often used to build Reo connectors.

> > > > <« > - v

Sync LossySync FIFO1 SyncDrain AsyncDrain Filter(P)

Fig. 1. A typical set of Reo channels

The Sync channel takes a data item from its source end and synchriynmages
it available at its sink end. This transfer can succeed dnboth ends are ready to
communicate. ThéossySync has the same behavior, except that it does not block its
writer if its reader end cannot accept data. In this and drik/dase, the channel accepts
the written data item and loses it. TIR&O1 is an asynchronous channel that has a
buffer of size one. Unlike the prior channelFO1 is a stateful channel: its behavior
depends on whether its buffer is empty or full. T®ncDrain channel has two source
ends (and no sink end) through which it can only consume ttdtehaves as follows:
if and only if there are data items available at both endspiitstmes (and loses) both
of them atomically. TheésyncDrain is the asynchronous counterpart of $yncDrain:
it consumes and loses data items from either of its two entisame at a time, but
never from both ends together at the same tiRileer(P) is a synchronous channel with
a data-sensitive behavior: it accepts through its sourdeed loses any data items that
do not match its filter patterrP; it accepts a data item that matchrenly if it can
synchronously dispose of it through its sink end (exactlif @asvere aSync channel).

A channel end can be composed with other channel ends intoBaesto build
more complex connectors. Reo nodes are logical places vaharenel ends coincide
and coordinate their dataflows as prescribed by node typgsré=2 shows the three
possible node types in Reo. A node with only source chanrid enasource node
a node with only sink channel ends isimk node and a node with both source and
sink channel ends is mixed nodeThe termboundary nodegs also sometimes used
to collectively refer to source and sink nodes. Boundaryasodefine the interface of
a connector. Components connect to the boundary nodes afreector and interact
anonymously with each other through this interface by penfog I/0 operations on the
boundary nodes of the connecttakeoperations on sink nodes, andite operations
on source nodes.

Source node Sink node Mixed node

Fig. 2. Reo nodes

Reo fixes the semantics of (i.e., the constraints on the dat#firough) Reo nodes.
Data flow through a source node only if a write operatiffiersa data item on this node
and every one of its source channel endsaarepta copy of this data item. A source
node, thus, behaves as a synchronized replicator. Dataliloudh a sink node only if
at least one of its sink channel enaffersa data item and an input operation pending
on this node camcceptthis data item. If more than one sink channel end offers data,
the node picks one non-deterministically and excludes tfeesoof all the rest. A sink
node, thus, behaves as a non-deterministic merger. Thevioelod a mixed node is a
combination of that of the other two: data flow through a mirede only if at least one

of its sink channel endsffersa data item and every one of its source channel ends can
accepta copy of this data item. If more than one sink channel end®ffata, the node
picks one non-deterministically and excludes the offeralbthe rest. Because a node
has no buffer, data cannot be stored in a node. Hence, nostagate the propagation

of synchrony and exclusion constraints on dataflow througha@onnector.

The simplest formalization of this behavior is the 2-colemgntics presented in [5].
The two colordll/C] model the flow/absence-of-flow of data at each node resggtiv
(this is the so-called data-insensitive semantics; imstedifferent colors are used to
distinguish the kind of data one obtains a data-sensitieas¢ics). This coloring must
satisfy the constraint conditions imposed by connectashiEonnector determines the
possible color combinations on its ends. For instance, botls 0fSync must have the
same color (i.e. either the datum flows through the whole eotor or no data flow
at all), while AsyncDrain allows any coloring bu{ll, ®), which would represent data
flowing synchronously at both of its ends. All channel endsnazted to a1 node
must be colored by, while for B nodes, exactly one of the incoming channel ends,
and all the outgoing channel ends, must havellheolor. Deriving the semantics of a
Reo connector amounts to resolving the composition of thstraints of its constituent
channels and nodes. Given a conne€ar coloringc for C is a function associating a
color to each node i€. The 2-color semantics @ is given by its coloring tabldc,
which contains all of its allowed colorings. For instance tioloring table of a connector
with two nodesA andB connected by &ync connectorisT = {[A— B,B— B], [A—
0,B—0O]}.

In Fig. 3 we present two examples of Reo connectors thatiliteshow non-trivial
dataflow behavior emerges from composing simple channaig &0 nodes. The lo-
cal constraints of individual channels propagate through §ynchronous regions of)
a connector to its boundary nodes. This propagation alsociesl a certain context-
awareness in connectors. See [5] for a detailed discussitiso

A
. Sa
E! B ® wec
v y
ISa 7 S ISA
A) A
‘d poa §° A e
se| 8¢ E %o Se
F G !
(a) exclusive router (b) alternator

Fig. 3. Reo circuit for (a) exclusive router (fros to eitherF or G) and (b) Alternator

The connector shown in Fig. 3(a) is axclusive routerit routes data fromA to
eitherF or G (but not both). This connector can accept data only if thera write
operation at the source nodeand there is at least one taker at the sink ndtdaadG.

If both F andG can dispense data, the choice of routin§ tor G follows from the non-
deterministic decision by the mixed noBeE can accept data only from one of its sink
ends, excluding the flow of data through the other, whichderihe latter's respective
LossySync to lose the data it obtains frol while the othetossySync passes its data
as if it were aSync. A valid coloring of the exclusive router is shown in Fig. 4h&
case shown in Fig. 4 corresponds to the forwarding of the dasdlable on nodé\

to the nodeF but not toG. There are two other possible 2-colorings for the exclusive
router: one representing the case where the flow goes &dnG and not toF (i.e.

the mirrored diagram w.r.t. Fig. 4) and one representing awaftbw (all the boxes are

empty).

Fig. 4. A 2-coloring example for the exclusive router

The connector shown in Fig. 3(b) is alternator that imposes an ordering on the
flow of the data from its input node& and B to its output nodeC. The SyncDrain
enforces that data flow throughandB only synchronously. The empty buffer together
with the SyncDrain guarantee that the data item obtained fr&iis delivered taC while
the data item obtained froBis stored in theé=IFO1 buffer. After this, the buffer of the
FIFO1 is full and data cannot flow in through eith&ror B, butC can dispense the data
stored in theFIFO1 buffer, which makes it empty again.

3 Tile Logic

Reo connectors are naturally represented as graphs. Tlantade of using (freely
generated) symmetric monoidal categories for represgotinfiguration graphs is two-
fold. First, it introduces a suitable notion of (observalitgerfaces for configurations.
Second, the natural isomorphism defined by symmetries sltowake graphs up to
interface-preserving graph isomorphisms.

We recall that gstrict) monoidal category14] (C,®,e) is a categoryC together
with a functor®: C x C — C called thetensor productand an objece called the
unit, such that for any arrows,a;,03 € C we have(o; ® ap) ® 0z = 01 ® (02 ®
03) anda; ® ide = 01 = ide® 01. The tensor product has higher precedence than the
categorical composition ;. Note that we focus only on “$trimonoidal categories,
where the monoidal axioms hold as equalities and not jusb uyatural isomorphisms.

By functoriality of ® we have, e.gq1 ® 02 = 01 ®ida,; idp, ® 02 = idy, ® t2; 01 ®idy,
foranya;: ay — by,i € {1,2}.

Definition 1 (symmetric monoidal categories).A symmetric (strict) monoidal cat-
egory (C,®,ey) is a (strict) monoidal categoryC,®,e) together with a family of
arrows {Yap: a®b — b®a}ap, called symmetriesindexed by pairs of objects id
such that for any two arrows1,0, € C with aj: a — bj, we haven; ® 02; Yo, b, =
Ya,.a,; 02 ® 01 (that is,y is a natural isomorphism) that satisfies the coherence equal
ties (for any objects d, c):

Yab; Yba = idashb Yazb,c = i10a ® Ybc; Yac ® idp.

The categories we are interested in are those freely gekefiedm a sorted (hyper)si-
gnaturez, i.e., from a sorted family of operatofs 1; — 1¢. The objects are words on
some alphabe$ expressing the sorts of interfaces (we ase denote the empty word).
Consider, e.9.5= {e,0}. Thenf: eo — ee means thatf has two “attach points”
on both the interfaces, with types for the initial one andee for the final one. The
operators € X are seen as basic arrows with source and target defined augtodhe
sort of 0. Symmetries can always be expressed in terms of the basadssymmetries
Yey: X@Y — Y® X. Intuitively, symmetries can be used to rearrange the Hopiput
interfaces of graph-like configurations.

In this paper, we choose the Tile Model [9] for defining therapienal and observa-
tional semantics of Reo connectors. In fact, tile configaret are particularly suitable
to represent the above concept of connector, which incliugeg and output interfaces
where actions can be observed and that can be used to congpoggications and also
to coordinate their local behaviors.

A tile a: s%t is a rewrite rule stating that thiaitial configuration scan evolve

to thefinal configuration tvia a, producing theeffect h but the step is allowed only
if the ‘arguments’ ofs can contribute by producing, which acts as thé&igger of a
(see Fig. 5(i)). Triggers and effects are call@abervationsand tile vertices are called
interfaces

Tiles can be composed horizontally, in parallel, or vettyci® generate larger steps
(see Fig. 5). Horizontal compositian 3 coordinates the evolution of the initial configu-
ration ofa with that of 3, yielding the ‘synchronization’ of the two rewrites. Hooiatal
composition is possible only if the initial configurations @ and 3 interact cooper-
atively: the effect ofa must provide the trigger fof. Vertical compositiona x 3 is
sequential composition of computations. The parallel cositipna ® (3 builds concur-
rent steps.

The operational semantics of concurrent systems can bessgxt via tiles if system
configurations form a monoidal categot, and observations form a monoidal category

o—s>o 0—0—0 G\L ° | o E h
(ya} o |b (i) § o B} (i) i—>$ ™) o_‘g,_)i
0 —>0 0—>0—0 B I

Fig. 5. Examples of tiles and their composition

9 with the same underlying set of objects s Abusing the notation, we denote by
_®_both monoidal functors off and’ and by_; _ both sequential compositions #
and /.

Definition 2 (tile system).A tile systemis a tuple® = (#,?,N,R) where # and
7 are monoidal categories with the same set of objecfs©0,,, N is the set of
rule names and RN — #H x ¥ x ¥ x A is a function such that for all A& N, if
R(A) = (s,a,b,t), then the arrows &, b,t can form a tile like in Fig. 5(i).

Like rewrite rules in rewriting logic, tiles can be seen aqugnts oftile logic: the
sequens% t is entailedby the tile logic associated witR, written ® - s% t, ifitcan

be obtained by horizontal, parallel, and/or vertical cosipon of some basic tiles in
R, plus possibly some auxiliary tiles such as identit'cési} id which propagate obser-

vations, and horizontal symmetrigstafc—m y which swap the order in which concurrent
Ra

observations are attached to the left and right interfatks. “borders” of composed
sequents are defined in Fig. 6.

The main feature of tiles is their double labeling with trégg and effects, allowing
to observe the input-output behavior of configurations. &kirtg (trigger, effect pairs
as labels one can see tiles as a labeled transition systéiis bontext, the usual notion
of bisimilarity is calledtile bisimilarity.

Definition 3 (tile bisimilarity). Let ® = (H,¥,N,R) be a tile system. A symmetric
relation ~¢ on configurations is called &le bisimulationif whenever sv;t and R +
s% g, then t exists such tha® -t % t'and § ~ t’.

The maximal tile bisimulation is calleile bisimilarity and it is denoted by-:.

a C
s&t hf st hof sSt tSh
. (bor) asc (paz) — e, (ver)
shSt;f sh—=t®f s—h
c bod b;d

Fig. 6. Inference rules for tile logic

Note thats ~; t only if sandt have the same input-output interfaces.

The basic source property is a syntactic criterion ensutagitile bisimilarity is a
congruence.

Definition 4 (basic source property) A tile systen® = (#,¥,N,R) enjoys the basic
source property if for each & N if R(A) = (s,a,b,t), then s is an operator i&.

The following result from [9] can be used to ensure that tikdrbilarity is a con-
gruence.

Lemma 1. If a tile systemR®_enjoys the basic source property, then tile bisimilarity is
a congruence foR .

4 From Reo Connectors to Tile Configurations

In order to give semantics to Reo connectors using tile logéfirst need to map them
into tile configurations. The basic entities of Reo connectrye nodes and channels,
which are then composed by plugging channels into nodeg Werconsider Reo nodes
as composed out of replicators, mergers, and basic nodes[Fssince this will sim-
plify our mapping. A replicator is a ternary atomic connectath one source and two
sink ends. A merger is a ternary atomic connector with twas@and one sink ends.
A basic node is one that has at most one source and at mostdnensls. Essentially,
a nodeN with n > 1 incoming andn > 1 outgoing channel ends will be represented by
a basic node with one incoming treemf 1 mergers and one outgoing treerof- 1
replicators. Incoming channel endséfwill be connected to the leaves of the tree of
mergers, and outgoing channel enddNoivill be connected to the leaves of the tree of
replicators.

The horizontal signature of the tile system for modeling Rennectors, thus, in-
cludes operators for basic nodes, mergers, replicatocschannels. As usual, when
modeling graphs with tiles (see, e.g., [16]), nodes are erdft, with their interfaces
heading toward right, and channels are on the right witfr in&rfaces toward left. The
two interfaces are joined using symmetries, mergers anlicegprs. Notice that this
technique for representing graphs is fully general, i.g. giaph can be represented in
this style. Since we do not model components explicitly,imary nodes are nodes with
a non-connected element of their right interface (the sorksburce nodes, the source
for sink nodes). Interfaces are typed according to the torof flow of data:e for data
going from left to right (from nodes to channels) antbr data going from right to left
(from channels to nodes). Thus, e.qg., kierger operator has soMlerger : o — oo. This
denotes the fact that data flow in thrger operator from right to left. Similarly the
Sync channel has sofiync : eo — €, with an empty right interface as for all channels.
Note that the order of elements in the interface matters. é¥&y symmetries can be
used to reorder the elements in an interface as necessagsié tode, with one sink
end and one source end has $wstle : € — oe. The full horizontal signature of our tile
system (for a sample set of basic connectors) is presentéd.iii: on the left-hand side
in textual notation, and on the right-hand side in graphicaation, where for simplicity
we abbreviate the names of operators using their initials.

—e —o
e— R o— M
= —o
_O o—
. N s
Replicator : @ — ee Merger : o — oo —e O
Node : € — oe Sync : eo — € 1o 1 s
SyncDrain : ee — € LossySync : eo — & *—| O—
SyncSpout : oo — € AsyncDrain : ee — € T T
AsyncSpout : oo — € Filter(p) : eo — € o *—
FIFOl: e0 — ¢ FIFO1(x) : @0 — € 0 o
AS F(p)
o—i (o
o o—]
Fi F1(x)
o o

Fig. 7. Signature for Reo configurations

The tile model for a general node, wittsink andmsource ends is obtained by com-
posing the tiles of a basic node;- 1 mergers, anth— 1 replicators, as explained above.
For instance, a node with 2 sinks and 3 sourcesligte; Merger ® Replicator;id.ce @
Replicator: € — oo e @ @ (see Fig. 8).

o——o0

1 Fo—o0
-o—o

—e
R
e

Fig. 8. A tile configuration representing a mixed node

We can now define the mappirjg] from Reo connectors to tile configurations. If
a connecto€ hasn boundary nodes, thelC] : € — wwherew € {o,0}" is a word of
lengthn. The mapping is parametric with respect to an interfacetfond, associating
to each boundary node @ian elementinw, i.e.l is a bijection between nodes@fand

{%,...,n}.

Definition 5 (from Reo to tile configurations).Given a Reo connector C with n bound-
ary nodes and an interface functiay the tile configuratiorfC],, is defined as follows:

— on the left, it has a parallel composition dfode operators, one for each node
in C, with the two ends connected to trees composed-b§ mergers and m- 1
replicators respectively, if the Reo node has n sources asthks (the trees may
be empty); for boundary nodes one of the two attach pointsibannected tree,
and will be connected to the outside interface;

— ontheright, it has a parallel composition of channel operat one for each chan-
nelin C;

Fig. 9. Exclusive router and alternator as tile configurations

— the two parts are connected via identities and symmetrieghat each incoming
channel is connected to thderger tree of the corresponding node, and similarly
for outgoing channels andeplicator trees;

— for each boundary node A, its free attach pointis connecidkld interface element
In(A) via identities and symmetries.

The tile configurations corresponding to the Reo connethatsiefine the exclusive
router and the alternator are presented in Fig. 9. The qooreting textual notation for
the alternator is below (whelermis a composition of identities and symmetries):

Node ® Node ® Node;id, ® Replicator ® id, ® Replicator ® Merger ® id,; Perm
idogo ® SyncDrain ® Sync @ FIFO1R®id, : € — oo e

Now we can give semantics to Reo connectors via tiles.

5 Modeling the 2-color Semantics of Reo

The one-step tile semantics of a conne@as the set of all tiles that have as their
starting configuration. In order to give semantics to Reoneators we need to pro-
vide the basic tiles defining the semantics of each operatatthen tile composition
operations allow the derivation of the semantics of germahectors. We begin by pre-
senting the 2-color data-sensitive semantics, which daexyoress context-dependent
behavior, but which is simpler than the corresponding 3cekmantics that we will
introduce in the next section.

We choose as basic observations the data communicated iatehfaces of con-
nectors, to model data-sensitive semantics, and we carastea special observation

untick to denote no data communication. For instance, thevideger ;K Merger
axuntic|

allows aMerger connector to get an actianfrom the first element in its right interface
and propagate it to its left interface, provided that therea piece of data on the other
element of the right interface.

The basic tiles are described in Fig. 10, assuming an alpiatbdor basic actions.
We also assume thatandy range oveiAct U {untick} anda andb range oveAct. A

X® . . id
Yy LR Yy Replicator SLN Replicator Node —=+ Node
y®&X XRX XRX
a a untick
Merger ———— Merger Merger ———— Merger Merger ——— Merger
a®untick untick®a untick®untick
. b . . ick ick .
Sync)f—x> Sync SyncDrain % SyncDrain SyncDrain % SyncDrain
ide idg 1de
b ick ick
SyncSpout % SyncSpout SyncSpout M SyncSpout
10¢ €
. ick . . ick .
AsyncDrain % AsyncDrain AsyncDrain % AsyncDrain
1de 10

AsyncSpout)@L.'dﬂ> AsyncSpout AsyncSpout %kwg AsyncSpout
I |

€ €

a®untick

LossySync f—x> LossySync LossySync LossySync
1de

1de

FIFO1 22Utk bie61a) FIFOL -——>“"ti°k_2°“"“d‘ FIFO1
B 1de
FIFO1(a) Y92, FlEg1 FIFO1(a) UMHekuntick, o161 (a)

Filter(P) aj—a> Filter(P) if P(@) Filter(P) M“T““CK Filter(P) if —P(a)
ide i

€

Fig. 10. Tiles for data-sensitive, 2-color semantics

graphical representation of the tile that models the filiig FIFO1 bufferis in Fig. 11.
Note that observations on the interface are drawn alongehtéal dimension.

These tiles define an LTS semantics for Reo, where statesle@nfigurations
and observations argrigger, effect pairs. This semantics recovers all the information
in the 2-color tile semantics for Reo described in [5]. Farthore it adds to it: (i) the
possibility of observing the actual data flowing in the coctoe allowing to model
data-sensitive primitive connectors such as filters, (i§ possibility to consider full
computations instead of single steps, keeping track al$mwfthe state evolves (par-
ticularly, whether buffers get full or become empty). Thedhem below shows how the
information provided by the 2-color semantics can be remyérom the tile seman-
tics. We call a connector data-insensitive if its behavia. (whether or not it allows
data to flow) does not depend on data values. Specificallyy @amnector built using
any of the primitive connectors described above, exclufiitags, is a data-insensitive
connector. To formalize the correspondence between @umiidel and the 2-color se-
mantics, we must restrict tiles to the one-step semantitteafonnectors, and therefore
we do not need vertical composition of tiles. However, inahg vertical composition
does not add any one-step transition either.

Theorem 1 (correspondence between 2-color coloring tablesnd tiles). Let Tc be
the 2-color coloring table of a data-insensitive Reo corae€ with n boundary nodes.
Tc contains a coloring c iff for each interface functionthere exists a tile obtained
without using vertical composition having as initial configtion [C]);, such that, for
each node A, @) = O iff the observation at the interfacg(A) in the tile isuntick.

-o——— o0
N
Fi v e .
e o] S
N
o— o
=% O O
M
._o_
o<
Fi(a) o
o— e o

Fig. 11.The tile for filling a FIFO1 buffer (left) and three bisimilaonfigurations (right)

Proof (Sketch)First notice that there is a bijection between coloringsdbannels,
mergers and replicators and the basic tiles that have thesmrnding operators as
their starting configurations, i.e. a basic connector adlaveoloring iff there is a basic
tile with that operator as its starting configuration andesteationuntick on an interface
iff the corresponding node has colarin the coloring.

One has to prove that the correspondence is preserved winilpasing colorings on
one side and tiles on the other side. We consider the lefigta-implication, the other
being simpler. Colorings can be composed iff they agree ercttor of their common
nodes (see Definition 3 in [5]). In order to compose the c@uesling tiles to derive a
tile with the desired starting configuration, observationsnatching interfaces have to
coincide. Let us consider the case of just one possible dditgvThen the possibility
of composing the tiles follows from the hypothesis if conioes are connected directly
(e.g., channels to mergers and replicators), and from thpepties of the auxiliary tiles
for identities and symmetries and the basic tiles for notlesnnectors are connected
via them.

Let us now consider the general case of an arbitrary set afwddties. Note that for
data-insensitive connectors, if a tile for a certain datw féxists, then a tile with the
same data flow, but where all the data are equal can be budtqdéim be easily proved
by induction on the number of operators in the starting caméion of the tile), thus
the case of an arbitrary set of data values can be reducedc tonth data value case.
Notice that the above property does not hold for data-sgasibnnectors. a

As we have seen, all information provided by the coloringdalzan be deduced
from the tile semantics. Furthermore, the final configuraiid a tile represents the
state of the connector after the data flow has been perforiieés can be used also to
recover information provided by the constraint-automataaalgebraic semantics of
Reo. However a detailed comparison with those semantiestifor future work.

The theorem below ensures that the tile semantics is cotnpuediw.r.t. the opera-
tors of parallel and sequential composition provided kBstil

Theorem 2 (2-coloring congruence)Tile bisimilarity is a congruence for the 2-color
semantics of Reo connectors.

Proof. Straightforward by inspection, using Lemma 1. a

Note that the compositionality is proved w.r.t. the opersitof tile composition,
however this can be extended also to Reo composition opsr&omposition in Reo
is obtained by merging boundary nodes. In the tile modeldaisbe obtained by con-
necting them viagync channels (this corresponds to compose them in parallelteerd t
sequentially with the&ync channel and some identities). The example below shows that
the additional channel does not influence the behavior ofdineposition.

Example 1.Consider the simple Reo connec@rcomposed out of a mixed node with
one source end and one sink eNdgde : € — oe (see Fig. 11, top-center). We can show
that this is bisimilar to a Reo conneci@f composed out of two such nodes connected
by a Sync channel:Node ® Node;id, ® Sync ® id, : € — oce (see Fig. 11, top-right).
First, note that the two connectors have the same interfdem, observe that for both
connectors the only possible tiles are vertical compasitiof tilesCi % G (withi=1

ori = 2). Thus, from the definition of bisimilaritZ; ~ C,. Therefore, thanks to the
congruence theorem, in each connector we can replace thedd&s connected by a
Sync channel with a single node without changing the overall binaA third bisimilar
configurationis in Fig. 11, bottom-right.

6 Modeling the 3-color Semantics of Reo

As pointed out in [5], the 2-color semantics of Reo fails tyfiwapture the context-
dependent behavior of Reo connectors. Consider in facttheextor in Fig. 12, which

[] e g]

Fig. 12.Overflow-lossy FIFO1

is represented by the tile configuration:

Node ® Node ® Node;id, ® LossySync ® FIFO1®id, : € — ce

There are two possible tiles with this initial configuratiand with the observa-
tion (idg,a® untick) modeling data entering in the connector. The first one ldses t
data item in theLossySync channel and has the final configuratiinde ® Node ®
Node;id, ® LossySync ® FIFO1 ® id,. The second one transports the data item into
the buffer of theFIFO1(a) channel and has the final configuratitiode ® Node ®
Node;id, ® LossySync ® FIFO1(a)® id.. The expected behavior corresponds to the sec-
ond one, since there is no reason for the data to be lost. Howeeth the 2-color se-
mantics and the tile model we presented above generate lbethedives as permissible
behavior for this connector.

The 3-color semantics of Reo discussed in [5] solves thiblpro by tracking ‘rea-
sons to prohibit data flow’, and allowsssySync to lose data only if there is a reason
for the data not to flow out of the channel (e.g., an attachédbfiifer or an interface
that does not accept data at the other end). The 3-color smsmaeplaces thél color
by two colors corresponding to ‘giving a reason for no datevfland ‘requiring a rea-
son for no data flow.’ Briefly, ‘giving a reason’ is used to mbeligher a choice made by

the connector or to capture the absence of data flow on a plartichannel end. On the
other hand, ‘requiring a reason’ is used to model that theecamletermines whether a
particular choice is made. Consider the two key tiles fo¥sySync:

LossySync % LossySync LossySync é§§—>> LossySync
idg ([oF3

The first one simply states that data flow throughithesySync. The second states that
data will be lost in the.ossySync if a reason for no flow can be provided by the context
in which the channel is plugged. If a tile with the lalzek < was also present, this
would say that the.ossySync provides a reason for the data to be lost, and thus the
LossySync would lose the property that the decision ought to be madééygontext.

Composition in the 3-color model includes the additiongjuieement that at each
basic node where there is no data flow, at least one reaso fitow must be present.

We show that tile logic can also easily model this more detbdemantics. To this
end, we must refine ourntick observation into<, which models ‘requires a reason
for no data flow,” and>, which models ‘gives a reason for no data flow,” when these
symbols occur on the left-hand side of the tile (above theilinthe rule format). When
these observations occur on the right-hand side of a tikdy theanings are reversed.
For instance, one of the rules fBeplicator:

Replicator —— Replicator
>E>

means that a reason is required from the channel end on thef léfe tile (above the
line) and will be given (propagated) to the channel ends erritht of the tile (below
the line). This captures that no-input to tReplicator is sufficient to cause no data flow
through theReplicator, and that this reason is passed onto the sink ends.

The main tiles for modeling the 3-color semantics of Reo arfeig. 13. The others
are analogous.

XQy . a .
—Y Replicator —— Replicator
Y&X a®a
Replicator L, Replicator Replicator =, Replicator Replicator =, Replicator
>R >R 4>
idg idg ide ide
Node —— Node Node —— Node Node —— Node Node —— Node
a®a <9@> >®<q <®<

a a > <
Merger —— Merger Merger —— Merger Merger —— Merger Merger —— Merger
ag> >®a >®> <R

Sync % Sync Sync % Sync Sync :ﬁ> Sync Sync D_ZC;R Sync
1de

10 10 1de
LossySync % LossySync LossySync ii—ba LossySync LossySync D_?;;<1> LossySync
idg 10¢ 1de

FIFo1 22< FiFo1 FIFO1 %ﬂ FIFOl(a) FIFO1(a) iji FIFO1 FIFOl(a) qj—>> FIFO1(a)
ide 10 1de

ide

Fig. 13. Tiles for data-sensitive, 3-color semantics

Note that the tileNode includes a behavior that mimics the so-calféd rule in
connector coloring [5]. The point of the flip rule is to redube size of coloring tables
using the fact that nodes need no more than one reason. Thid&aodes can also
accept multiple reasons is captured by the tile:

Node 'd%» Node
<R
Results analogous to the one in the previous section candweqrshowing that
the 3-color tile semantics recovers all the informatiorvidled by the standard 3-color
semantics of Reo. As for the 2-color semantics, the tile sgicgis data-sensitive, and
allows to track the state of connectors and model full coratons.

Theorem 3 (correspondence between 3-color coloring tablesd tiles). Let Tc be
the 3-color coloring table (see [5]) of a data-insensitivedRonnector C with n bound-
ary nodes. & contains a coloring c iff for each interface functionthere exists a tile
obtained without using vertical composition with initiadrfiguration[C],, such that,
for each node A:

— c(A) is the color for no dataflow with the reason coming into the enggiven) iff
the observation at the interface elemet(t¥) in the tile ist> (this is always below
the line);

— c(A) is the color for no dataflow with the reason leaving the noee(ired) iff the
observation at the interface elemepfA) in the tile is< (this is always below the
line).

Proof. The proof is similar to the one of Theorem 1. a
As for the 2-color semantics, tile bisimilarity is a congneae.

Theorem 4 (3-coloring congruence)Tile bisimilarity is a congruence for the 3-color
semantics of Reo connectors.

7 Reconfiguration of Reo Connectors

Since the tile semantics of a Reo connector includes alsstdte of the connector
after each step, one can model inside the Tile Model alsogbenfiguration of Reo
connectors triggered by dataflow as presented in [11].

The idea is that some connectors, when suitable conditionserning their state
and the ongoing dataflow are met, can automatically be regnafil to meet the re-
quirements of the environment. We sketch this approach byodstrating it through
the example of an infinite FIFO buffer [11], and leave a moritkd study of recon-
figuration for future work. An infinite FIFO buffer is a FIFO fiar that grows when
a new datum arrives to be inserted and its buffer is full, amih&s when a datum is
consumed out of the buffer. To model this we require two neanciels:FIFO, is the
empty infinite buffer, andFIFOtmp(a) is a temporary buffer, containing valwee that
will disappear when thais consumed.

untick®untick a®untick
- ” - ”

FIFO FIFOw FIFOo

1 1de

ide ® Node ®id,; FIFOo @ FIFOtmp(a)

FIFOtmp(a) “"t_i;ﬂ> Sync FIFOtmp(a)
I

€ 10

untick@untick,) 6tmp(a)

Fig. 14. Tiles for 2-color semantics of infinite buffer

-o———0
N F,
O—{TM(a)O = =
Fime(3)
o—— O
-o—— o
N F
O—|FWD O = 4 o @
S TM(a)
oO—— O

Fig. 15. Some graphical shorthand

For simplicity we give semantics to the infinite FIFO buffesing the 2-color se-
mantics, however, the 3-color semantics can be used asMwinecessary basic tiles
can be found in Fig. 14. Note that the tile for shrinking théféutransforms the tem-
porary bufferFIFOtmp(a) into aSync channel. Thanks to Example 1, up to bisimilarity,
this corresponds to removing the temporary buffer and ierlmenode. However, the
tile needed to actually do the garbage collection would ity the basic source
property, thus we preferr this approach.

To sketch the evolution of infinite buffers, we draw some pmegroof steps ob-
tained by horizontal composition of basic tiles. To simplifie graphical notation we
introduce some suitable graphical shorthand in Fig. 15)(fef the composition of a
node and a temporary bufferNt) and for the composition of a node and a synchronous
channel FWD) that basically behaves as a forwarder. Using the shorthtaedile for
inserting a new datum in the infinite buffer can be drawn asgn 15 (right). Figure 16
shows what happens if a new datbrarrives when the buffer already contains a datum
a (left) and what happens if a datum is then requested fromuffetoright). Note that
it is also allowed for the arrival and departure of data happethe same time (see
Fig. 17).

Proposition 1 (a reconfiguration congruence)Tile bisimilarity is a congruence for
the 2-color semantics of Reo connectors including the teffRiFO buffer.

Observe that in this approach reconfiguration and compmurtaie fully integrated
(while in [11] and [11,10] the two aspects are dealt with bpasate models). Fur-
thermore, reconfigurable connectors and normal connectéorde used together, since
reconfiguration is not visible from the outside. However, tile model currently cannot
express more complex reconfigurations that change thefasts of connectors. Cap-
turing these reconfiguration in such a way as to allow the ngenge of bisimilarity to
be proved using the basic source property, requires (1)exiors to agree on when and

Fig. 16. Datumb arrives (left) and datura leaves

Fig. 17. Datumc arrives while datuna leaves

which reconfiguration to perform, and (2) nodes to propati@tekind of information.
We leave an analysis of this approach for future work.

8 Conclusion

We have shown that the Tile Model can be used to describe ail aspects of the
semantics of Reo connectors: synchronization, dataflontesd dependency, and re-
configuration. This is the first semantic description of Rearectors able to present
all these aspects natively in a single framework. Furtheepibe semantics is compo-
sitional.

As future work we want to consider an alternative approathé-color semantics
based on priorities: one can specify that losing data in.tissySync channel has lower
priority than data flowing through it. Our goal is to match theected intuitive seman-
tics of Reo, and solve the problem of causes for data-digbatdhrises in some cycles
in the 3-color semantics, as discussed in [5]. Howeverhérrtesearch is necessary to
understand how to apply this reasoning to complex conngctarother long term goal
of our work is to understand how to define complex reconfigonstalong the lines
sketched at the end of Section 7.

References

1. F. Arbab. Reo: A channel-based coordination model formament composition.Math.
Struct. in Comput. Scil4(3):1-38, 2004.

o

10.

11.

12.

13.

14.
15.

16.

17.

F. Arbab and J. J. M. M. Rutten. A coinductive calculus ofnponent connectors. In
M. Wirsing, D. Pattinson, and R. Hennicker, editovdADT 2002 volume 2755 ofLNCS
pages 34-55. Springer, 2002.

. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Madglcomponent connectors in

Reo by constraint automat&ci. Comput. Progran61(2):75-113, 2006.

. R. Bruni, I. Lanese, and U. Montanari. A basic algebra afed¢ss connectorsTheoret.

Comput. Sci.366(1-2):98-120, 2006.

. D. Clarke, D. Costa, and F. Arbab. Connector colouringyinéronisation and context

dependencySci. Comput. Progran66(3):205-225, 2007.

. A. Corradini and U. Montanari. An algebraic semanticssftouctured transition systems and

its application to logic programd heoret. Comput. S¢il03:51-106, 1992.

. CWI. Reo home pagéhttp://reo.project.cwi.nl.
. CWI. A repository of Reo connectorhttp://homepages.cwi.nl/"proenca/webreo/.
. F. Gadducci and U. Montanari. The tile model. In G. Platin Stirling, and M. Tofte,

editors,Proof, Language and Interaction: Essays in Honour of Robiinét, pages 133—
166. MIT Press, 2000.

C. Koehler, F. Arbab, and E. de Vink. On hierarchical réiguration of Reo connectors. In
A. Corradini and U. Montanari, editorSYADT 2008 volume ??? o NCS pages ??7-??7?
Springer, 2009.

C. Koehler, D. Costa, J. Proenca, and F. Arbab. Recaafign of Reo connectors triggered
by dataflow. In C. Ermel, R. Heckel, and J. de Lara, editBrsceedings of GT-VMT'Q8
volume 10 ofElect. Communic. of the European Association of Softwaien8e and Tech-
nology, pages 1-13. EASST, 2008.

C. Koehler, A. Lazovik, and F. Arbab. Connector rewdtiwith high-level replacement
systems. In C. Canal, P. Poizat, and M. Viroli, edité@*mceedings of FOCLASA'QElect.
Notes in Th. Comput. Sci. Elsevier Science, 2007.

K. G. Larsen and L. Xinxin. Compositionality through grecational semantics of contexts.
In M. Paterson, editofCALP’90, volume 443 oLLNCS pages 526-539. Springer, 1990.
S. MacLaneCategories for the working mathematiciaBpringer, 1971.

J. Meseguer. Conditional rewriting logic as a unified i@ concurrencyTheoret. Comput.
Sci, 96:73-155, 1992.

U. Montanari and F. Rossi. Graph rewriting, constraoiving and tiles for coordinating
distributed systemsApplied Categorical Structure§(4):333—370, 1999.

G. D. Plotkin. A structural approach to operational setica. J. Log. Algebr. Program.
60-61:17-139, 2004.

