
Tiles for Reo ⋆

Farhad Arbab1, Roberto Bruni2, Dave Clarke3, Ivan Lanese4, and Ugo Montanari2

1 CWI, Amsterdam, The Netherlands
farhad@cwi.nl

2 Dipartimento di Informatica, Università di Pisa, Italy
{bruni,ugo}@di.unipi.it

3 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Dave.Clarke@cs.kuleuven.be

4 Dipartimento di Scienze dell’Informazione, Università di Bologna, Italy
lanese@cs.unibo.it

Abstract. Reo is an exogenous coordination model for software components.
The informal semantics of Reo has been matched by several proposals of formal-
ization, exploiting co-algebraic techniques, constraint-automata, and coloring ta-
bles. We aim to show that the Tile Model offers a flexible and adequate semantic
setting for Reo, such that: (i) it is able to capture context-aware behavior; (ii) it is
equipped with a natural notion of behavioral equivalence which is compositional;
(iii) it offers a uniform setting for representing not only the ordinary execution of
Reo systems but also dynamic reconfiguration strategies.

1 Introduction

Reo [1, 7, 8] is an exogenous coordination model for softwarecomponents. It is based
on channel-like connectors that mediate the flow of data and signals among compo-
nents. Notably, a small set of point-to-point primitive connectors is sufficient to ex-
press a large variety of interesting constraints over the behavior of connected compo-
nents, including various forms of mutual exclusion, synchronization, alternation, and
context-dependency. In fact, components and primitive connectors can be composed in
a circuit fashion via suitable attach points, called Reo nodes. Typical primitive connec-
tors are the synchronous / asynchronous / lossy channels andthe asynchronous one-
place buffer. The informal semantics of Reo has been formalized in several ways, ex-
ploiting co-algebraic techniques [2], constraint-automata [3], and coloring tables [5].
However all the formalizations in the literature that we areaware of are unsatisfactory
from some points of view. In fact, both [2] and [3] provide detailed characterizations of
the behavior of connectors, allowing to exploit coinductive techniques, but they do not
support context-awareness, and, in particular, they are not able to faithfully model the
LossySync connector. Up to now, the only approach that takes context-awareness into
account is the 3-color semantics presented in [5]. This semantics, however, describes
only a single computational step, thus it does not describe the evolution of the state

⋆ Research supported by the project FET-GC II IST-2005-16004SENSORIA, by the Italian FIRB
project TOCAI, by the Dutch NWO project n. 612.000.316 C-Quattro, and by the bilateral
German-Dutch DFG-NWO project n. 600.643.000.05N12 SYANCO.



of a connector. Also, none of these semantics allows reconfiguration, which then, for
instance as in [12], has to be added on top of them. The interplay between the dataflow
semantics of Reo circuits and their reconfiguration has beenconsidered in [11] and [10]
using graph transformations triggered by the 3-color semantics.

We aim to show that the Tile Model [9] offers a flexible and adequate semantic
setting for Reo. The name ‘tile’ is due to the graphical representation of such rules (see
Fig. 5 in Section 3). The tileα states that theinitial configuration scan be triggered
by the eventa to reach thefinal configuration t, producing theeffect b. Tiles resemble
Gordon Plotkin’s SOS inference rules [17], but they can be composed in three different
ways to generate larger proof steps: (i) horizontally (synchronization), when the effect
of one tile matches the trigger for another tile; (ii) vertically (composition in time),
when the final configuration of one tile matches the initial configuration of another
tile; and (iii) in parallel (concurrency). Tiles take inspiration from Andrea Corradini
and Ugo Montanari’s Structured Transition Systems [6] and generalise Kim Larsen
and Liu Xinxin’s context systems [13], by allowing for more general rule formats. The
Tile Model also extends José Meseguer’s rewriting logic [15] (in the non-conditional
case) by taking into account rewrite with side effects and rewrite synchronization. As
rewriting logic, the Tile Model admits a purely logical formulation, where tiles are seen
as sequents subject to certain inference rules.

Roughly, in our tile encoding, Reo nodes and primitive connectors are represented
as hyper-edges (with typed incoming and outgoing tentacles) that can be composed
by connecting their tentacles. The one-step semantics of each primitive connectorC is
defined by suitable basic tiles whose initial configuration is the hyper-edgeC (we use
the same notation for primitive connectors and corresponding hyper-edges) and whose
triggers and effects define how the data can flow throughC.

A mapping of a fragment of Reo into the Tile Model has been already presented
in [4]. There the emphasis was on exploiting for Reo connectors the normalization and
axiomatization techniques developed therein for the used algebra of tile connectors. For
this reason the mapping concentrated only on the synchronization connectors, i.e., data
values were abstracted away, and data-sensitive connectors such as filters or stateful
connectors such as buffers were not considered. The reason was that axiomatization for
those more complex connectors was not available. The induced semantics corresponded
to the data-insensitive 2-color semantics of Reo [5].

In this paper we extend the mapping in [4] to deal with all Reo connectors, and
we concentrate on the 3-color semantics [5], the only one which captures context-
awareness. The 3-color semantics for Reo that we propose in Section 6 recovers the
good properties of the semantics in the literature, and provides also some additional
benefits:

– it allows to model context dependency, and models faithfully the 3-color semantics
of [5] as far as a single computational step is concerned;

– it is data-sensitive, describing the actual data that flow inside the connector;
– it can model whole computations, keeping into account the evolution of the state;
– it has a natural notion of behavioral equivalence, tile bisimilarity, that allows to

exploit coinductive techniques similar to the ones in [2, 3];
– the provided notion of bisimilarity is a congruence, i.e. the behavioral semantics is

compositional;



– the congruence property can be easily proved by exploiting standard meta-theoreti-
cal results;

– it can be smoothly extended to deal with some form of reconfiguration (Section 7),
and the extension also specifies in a formal way the interplaybetween computation
and reconfiguration.

To clarify the approach we first model the simpler 2-color semantics and then show
how to handle the 3-color case. In both cases we consider a data-sensitive semantics.
Interestingly, the two semantics can be expressed in the same setting (and in a very
similar way). Also, they give rise in a natural way to a notionof behavioral equivalence
called tile bisimilarity, which is compositional. Finally, we hint at how the same setting
can be exploited to model Reo reconfigurations, an aspect that is not considered by the
standard Reo semantics. A more detailed treatment of this complex task is left for future
work.

Structure of the paper.In Sections 2 and 3 we give some minimal background on Reo
and Tile Logic. In Section 4 we define the representation of Reo graphs of connectors
in terms of tile configurations. Sections 5 and 6 are dedicated respectively to the mod-
eling of the 2-color and the 3-color semantics. Section 7 outlines the modeling of Reo
reconfiguration. Concluding remarks are given in Section 8,together with some hints
on future work we have in mind.

2 Reo Connectors

Reo [1, 7, 8] allows compositional construction of complex connectors with arbitrary
behavior out of simpler ones. The simplest (atomic) connectors in Reo consist of a user
defined set ofchannels. A channel is a binary connector: a medium of communication
with exactly two directed ends. There are two types of channel ends: source and sink. A
source channel end accepts data into its channel. A sink channel end dispenses data out
of its channel. Every channel (type) specifies its own particular behavior asconstraints
on the flow of data through its ends. These constraints relate, for example, the content,
the conditions for loss and/or creation of data that pass through the ends of a channel,
as well as the atomicity, exclusion, order, and/or timing oftheir passage.

Although all channels used in Reo are user-defined and users can indeed define
channels with any complex behavior (expressible in the semantic model) that they wish,
a very small set of channels, each with very simple behavior,suffices to construct useful
Reo connectors with significantly complex behavior [8]. Figure 1 shows a common set
of primitive channels often used to build Reo connectors.

Fig. 1.A typical set of Reo channels



TheSync channel takes a data item from its source end and synchronously makes
it available at its sink end. This transfer can succeed only if both ends are ready to
communicate. TheLossySync has the same behavior, except that it does not block its
writer if its reader end cannot accept data. In this and only this case, the channel accepts
the written data item and loses it. TheFIFO1 is an asynchronous channel that has a
buffer of size one. Unlike the prior channels,FIFO1 is a stateful channel: its behavior
depends on whether its buffer is empty or full. TheSyncDrain channel has two source
ends (and no sink end) through which it can only consume data.It behaves as follows:
if and only if there are data items available at both ends, it consumes (and loses) both
of them atomically. TheAsyncDrain is the asynchronous counterpart of theSyncDrain:
it consumes and loses data items from either of its two ends only one at a time, but
never from both ends together at the same time.Filter(P) is a synchronous channel with
a data-sensitive behavior: it accepts through its source end and loses any data items that
do not match its filter patternP; it accepts a data item that matchesP only if it can
synchronously dispose of it through its sink end (exactly asif it were aSync channel).

A channel end can be composed with other channel ends into Reonodesto build
more complex connectors. Reo nodes are logical places wherechannel ends coincide
and coordinate their dataflows as prescribed by node types. Figure 2 shows the three
possible node types in Reo. A node with only source channel ends is asource node;
a node with only sink channel ends is asink node; and a node with both source and
sink channel ends is amixed node. The termboundary nodesis also sometimes used
to collectively refer to source and sink nodes. Boundary nodes define the interface of
a connector. Components connect to the boundary nodes of a connector and interact
anonymously with each other through this interface by performing I/O operations on the
boundary nodes of the connector:takeoperations on sink nodes, andwrite operations
on source nodes.

Fig. 2. Reo nodes

Reo fixes the semantics of (i.e., the constraints on the dataflow through) Reo nodes.
Data flow through a source node only if a write operationoffersa data item on this node
and every one of its source channel ends canaccepta copy of this data item. A source
node, thus, behaves as a synchronized replicator. Data flow through a sink node only if
at least one of its sink channel endsoffersa data item and an input operation pending
on this node canacceptthis data item. If more than one sink channel end offers data,
the node picks one non-deterministically and excludes the offers of all the rest. A sink
node, thus, behaves as a non-deterministic merger. The behavior of a mixed node is a
combination of that of the other two: data flow through a mixednode only if at least one



of its sink channel endsoffersa data item and every one of its source channel ends can
accepta copy of this data item. If more than one sink channel end offers data, the node
picks one non-deterministically and excludes the offers ofall the rest. Because a node
has no buffer, data cannot be stored in a node. Hence, nodes instigate the propagation
of synchrony and exclusion constraints on dataflow throughout a connector.

The simplest formalization of this behavior is the 2-color semantics presented in [5].
The two colors�/� model the flow/absence-of-flow of data at each node respectively
(this is the so-called data-insensitive semantics; instead if different colors are used to
distinguish the kind of data one obtains a data-sensitive semantics). This coloring must
satisfy the constraint conditions imposed by connectors. Each connector determines the
possible color combinations on its ends. For instance, bothends ofSync must have the
same color (i.e. either the datum flows through the whole connector or no data flow
at all), whileAsyncDrain allows any coloring but(�,�), which would represent data
flowing synchronously at both of its ends. All channel ends connected to a� node
must be colored by�, while for � nodes, exactly one of the incoming channel ends,
and all the outgoing channel ends, must have the� color. Deriving the semantics of a
Reo connector amounts to resolving the composition of the constraints of its constituent
channels and nodes. Given a connectorC a coloringc for C is a function associating a
color to each node inC. The 2-color semantics ofC is given by its coloring tableTC,
which contains all of its allowed colorings. For instance the coloring table of a connector
with two nodesA andB connected by aSync connector isT = {[A 7→ �,B 7→ �], [A 7→
�,B 7→ �]}.

In Fig. 3 we present two examples of Reo connectors that illustrate how non-trivial
dataflow behavior emerges from composing simple channels using Reo nodes. The lo-
cal constraints of individual channels propagate through (the synchronous regions of)
a connector to its boundary nodes. This propagation also induces a certain context-
awareness in connectors. See [5] for a detailed discussion of this.

Fig. 3. Reo circuit for (a) exclusive router (fromA to eitherF or G) and (b) Alternator



The connector shown in Fig. 3(a) is anexclusive router: it routes data fromA to
eitherF or G (but not both). This connector can accept data only if there is a write
operation at the source nodeA, and there is at least one taker at the sink nodesF andG.
If both F andG can dispense data, the choice of routing toF or G follows from the non-
deterministic decision by the mixed nodeE: E can accept data only from one of its sink
ends, excluding the flow of data through the other, which forces the latter’s respective
LossySync to lose the data it obtains fromA, while the otherLossySync passes its data
as if it were aSync. A valid coloring of the exclusive router is shown in Fig. 4. The
case shown in Fig. 4 corresponds to the forwarding of the dataavailable on nodeA
to the nodeF but not toG. There are two other possible 2-colorings for the exclusive
router: one representing the case where the flow goes fromA to G and not toF (i.e.
the mirrored diagram w.r.t. Fig. 4) and one representing no dataflow (all the boxes are
empty).

Fig. 4. A 2-coloring example for the exclusive router

The connector shown in Fig. 3(b) is analternator that imposes an ordering on the
flow of the data from its input nodesA and B to its output nodeC. The SyncDrain
enforces that data flow throughA andB only synchronously. The empty buffer together
with theSyncDrain guarantee that the data item obtained fromA is delivered toC while
the data item obtained fromB is stored in theFIFO1 buffer. After this, the buffer of the
FIFO1 is full and data cannot flow in through eitherA or B, butC can dispense the data
stored in theFIFO1 buffer, which makes it empty again.

3 Tile Logic

Reo connectors are naturally represented as graphs. The advantage of using (freely
generated) symmetric monoidal categories for representing configuration graphs is two-
fold. First, it introduces a suitable notion of (observable) interfaces for configurations.
Second, the natural isomorphism defined by symmetries allows to take graphs up to
interface-preserving graph isomorphisms.



We recall that a(strict) monoidal category[14] (C ,⊗,e) is a categoryC together
with a functor⊗ : C × C → C called thetensor productand an objecte called the
unit, such that for any arrowsα1,α2,α3 ∈ C we have(α1 ⊗α2)⊗α3 = α1 ⊗ (α2 ⊗
α3) andα1⊗ ide = α1 = ide⊗α1. The tensor product has higher precedence than the
categorical composition ;. Note that we focus only on “strict” monoidal categories,
where the monoidal axioms hold as equalities and not just up to natural isomorphisms.
By functoriality of⊗ we have, e.g.,α1⊗α2 = α1⊗ ida2; idb1⊗α2 = ida1⊗α2;α1⊗ idb2

for anyαi : ai → bi , i ∈ {1,2}.

Definition 1 (symmetric monoidal categories).A symmetric (strict) monoidal cat-
egory (C ,⊗,e,γ) is a (strict) monoidal category(C ,⊗,e) together with a family of
arrows {γa,b : a⊗b → b⊗a}a,b, called symmetries, indexed by pairs of objects inC
such that for any two arrowsα1,α2 ∈ C with αi : ai → bi , we haveα1 ⊗α2;γb1,b2 =
γa1,a2;α2⊗α1 (that is,γ is a natural isomorphism) that satisfies the coherence equali-
ties (for any objects a,b,c):

γa,b;γb,a = ida⊗b γa⊗b,c = ida⊗ γb,c;γa,c⊗ idb.

The categories we are interested in are those freely generated from a sorted (hyper)si-
gnatureΣ, i.e., from a sorted family of operatorsf : τi → τ f . The objects are words on
some alphabetSexpressing the sorts of interfaces (we useε to denote the empty word).
Consider, e.g.,S= {•,◦}. Then f : • ◦ → •• means thatf has two “attach points”
on both the interfaces, with types•◦ for the initial one and•• for the final one. The
operatorsσ ∈ Σ are seen as basic arrows with source and target defined according to the
sort ofσ. Symmetries can always be expressed in terms of the basic sorted symmetries
γx,y : x⊗ y → y⊗ x. Intuitively, symmetries can be used to rearrange the input-output
interfaces of graph-like configurations.

In this paper, we choose the Tile Model [9] for defining the operational and observa-
tional semantics of Reo connectors. In fact, tile configurations are particularly suitable
to represent the above concept of connector, which includesinput and output interfaces
where actions can be observed and that can be used to compose configurations and also
to coordinate their local behaviors.

A tile α : s
a
−→
b

t is a rewrite rule stating that theinitial configuration scan evolve

to thefinal configuration tvia α, producing theeffect b; but the step is allowed only
if the ‘arguments’ ofs can contribute by producinga, which acts as thetrigger of α
(see Fig. 5(i)). Triggers and effects are calledobservationsand tile vertices are called
interfaces.

Tiles can be composed horizontally, in parallel, or vertically to generate larger steps
(see Fig. 5). Horizontal compositionα;β coordinates the evolution of the initial configu-
ration ofα with that ofβ, yielding the ‘synchronization’ of the two rewrites. Horizontal
composition is possible only if the initial configurations of α andβ interact cooper-
atively: the effect ofα must provide the trigger forβ. Vertical compositionα ∗ β is
sequential composition of computations. The parallel compositionα⊗β builds concur-
rent steps.

The operational semantics of concurrent systems can be expressed via tiles if system
configurations form a monoidal categoryH , and observations form a monoidal category



(i)
◦

s
//

a
��

α
◦

b
��

◦
t

// ◦
(ii)

◦ //

��
α

◦ //

��
β

◦

��
◦ // ◦ // ◦

(iii)

◦ //

��
α

◦

��
◦ //

��
β

◦

��
◦ // ◦

(iv)

◦ //

��

◦

��◦ //

��

◦

��

β

◦ // ◦
◦ //α

◦

Fig. 5. Examples of tiles and their composition

V with the same underlying set of objects asH . Abusing the notation, we denote by
⊗ both monoidal functors ofH andV and by ; both sequential compositions inH

andV .

Definition 2 (tile system).A tile systemis a tupleR = (H ,V ,N,R) whereH and
V are monoidal categories with the same set of objects OH = OV , N is the set of
rule names and R: N → H ×V ×V ×H is a function such that for all A∈ N, if
R(A) = 〈s,a,b,t〉, then the arrows s,a,b,t can form a tile like in Fig. 5(i).

Like rewrite rules in rewriting logic, tiles can be seen as sequents oftile logic: the
sequents

a
−→
b

t is entailedby the tile logic associated withR , writtenR ⊢ s
a
−→
b

t, if it can

be obtained by horizontal, parallel, and/or vertical composition of some basic tiles in
R, plus possibly some auxiliary tiles such as identitiesid

a
−→
a

id which propagate obser-

vations, and horizontal symmetriesγ a⊗b
−−→
b⊗a

γ which swap the order in which concurrent

observations are attached to the left and right interfaces.The “borders” of composed
sequents are defined in Fig. 6.

The main feature of tiles is their double labeling with triggers and effects, allowing
to observe the input-output behavior of configurations. By taking〈trigger,effect〉 pairs
as labels one can see tiles as a labeled transition system. Inthis context, the usual notion
of bisimilarity is calledtile bisimilarity.

Definition 3 (tile bisimilarity). Let R = (H ,V ,N,R) be a tile system. A symmetric
relation∼t on configurations is called atile bisimulationif whenever s∼t t andR ⊢
s

a
−→
b

s′, then t′ exists such thatR ⊢ t
a
−→
b

t ′ and s′ ∼t t ′.

The maximal tile bisimulation is calledtile bisimilarity and it is denoted by≃t.

s
a
−→
b

t h
b
−→
c

f

s;h
a
−→
c

t; f
(hor)

s
a
−→
b

t h
c
−→
d

f

s⊗h
a⊗c

//
b⊗d

t ⊗ f

(par)
s

a
−→
b

t t
c
−→
d

h

s
a;c
−−→
b;d

h
(ver)

Fig. 6. Inference rules for tile logic

Note thats≃t t only if sandt have the same input-output interfaces.



The basic source property is a syntactic criterion ensuringthat tile bisimilarity is a
congruence.

Definition 4 (basic source property).A tile systemR = (H ,V ,N,R) enjoys the basic
source property if for each A∈ N if R(A) = 〈s,a,b,t〉, then s is an operator inΣ.

The following result from [9] can be used to ensure that tile bisimilarity is a con-
gruence.

Lemma 1. If a tile systemR enjoys the basic source property, then tile bisimilarity is
a congruence forR .

4 From Reo Connectors to Tile Configurations

In order to give semantics to Reo connectors using tile logic, we first need to map them
into tile configurations. The basic entities of Reo connectors are nodes and channels,
which are then composed by plugging channels into nodes. Here we consider Reo nodes
as composed out of replicators, mergers, and basic nodes, asin [5], since this will sim-
plify our mapping. A replicator is a ternary atomic connector with one source and two
sink ends. A merger is a ternary atomic connector with two source and one sink ends.
A basic node is one that has at most one source and at most one sink ends. Essentially,
a nodeN with n > 1 incoming andm> 1 outgoing channel ends will be represented by
a basic node with one incoming tree ofn−1 mergers and one outgoing tree ofm−1
replicators. Incoming channel ends ofN will be connected to the leaves of the tree of
mergers, and outgoing channel ends ofN will be connected to the leaves of the tree of
replicators.

The horizontal signature of the tile system for modeling Reoconnectors, thus, in-
cludes operators for basic nodes, mergers, replicators, and channels. As usual, when
modeling graphs with tiles (see, e.g., [16]), nodes are on the left, with their interfaces
heading toward right, and channels are on the right with their interfaces toward left. The
two interfaces are joined using symmetries, mergers and replicators. Notice that this
technique for representing graphs is fully general, i.e. any graph can be represented in
this style. Since we do not model components explicitly, boundary nodes are nodes with
a non-connected element of their right interface (the sink for source nodes, the source
for sink nodes). Interfaces are typed according to the direction of flow of data:• for data
going from left to right (from nodes to channels) and◦ for data going from right to left
(from channels to nodes). Thus, e.g., theMerger operator has sortMerger : ◦→ ◦◦. This
denotes the fact that data flow in theMerger operator from right to left. Similarly the
Sync channel has sortSync : •◦ → ε, with an empty right interface as for all channels.
Note that the order of elements in the interface matters. However, symmetries can be
used to reorder the elements in an interface as necessary. A basic node, with one sink
end and one source end has sortNode : ε →◦•. The full horizontal signature of our tile
system (for a sample set of basic connectors) is presented inFig. 7: on the left-hand side
in textual notation, and on the right-hand side in graphicalnotation, where for simplicity
we abbreviate the names of operators using their initials.



Replicator : •→ •• Merger : ◦→ ◦◦
Node : ε → ◦• Sync : •◦→ ε

SyncDrain : ••→ ε LossySync : •◦→ ε
SyncSpout : ◦◦→ ε AsyncDrain : ••→ ε

AsyncSpout : ◦◦→ ε Filter(p) : •◦→ ε
FIFO1 : •◦→ ε FIFO1(x) : •◦→ ε

Fig. 7. Signature for Reo configurations

The tile model for a general node, withn sink andmsource ends is obtained by com-
posing the tiles of a basic node,n−1 mergers, andm−1 replicators, as explained above.
For instance, a node with 2 sinks and 3 sources is:Node;Merger⊗Replicator; id◦◦•⊗
Replicator : ε → ◦◦••• (see Fig. 8).

Fig. 8. A tile configuration representing a mixed node

We can now define the mappingJ ·K from Reo connectors to tile configurations. If
a connectorC hasn boundary nodes, thenJCK : ε → ω whereω ∈ {•,◦}n is a word of
lengthn. The mapping is parametric with respect to an interface function In associating
to each boundary node inC an element inω, i.e.I is a bijection between nodes ofC and
{1, . . . ,n}.

Definition 5 (from Reo to tile configurations).Given a Reo connectorC with n bound-
ary nodes and an interface function In, the tile configurationJCKIn is defined as follows:

– on the left, it has a parallel composition ofNode operators, one for each node
in C, with the two ends connected to trees composed by n−1 mergers and m−1
replicators respectively, if the Reo node has n sources and msinks (the trees may
be empty); for boundary nodes one of the two attach points hasno connected tree,
and will be connected to the outside interface;

– on the right, it has a parallel composition of channel operators, one for each chan-
nel in C;



Fig. 9.Exclusive router and alternator as tile configurations

– the two parts are connected via identities and symmetries, so that each incoming
channel is connected to theMerger tree of the corresponding node, and similarly
for outgoing channels andReplicator trees;

– for each boundary node A, its free attach point is connected to the interface element
In(A) via identities and symmetries.

The tile configurations corresponding to the Reo connectorsthat define the exclusive
router and the alternator are presented in Fig. 9. The corresponding textual notation for
the alternator is below (wherePermis a composition of identities and symmetries):

Node⊗Node⊗Node; id◦⊗Replicator⊗ id◦⊗Replicator⊗Merger⊗ id•;Perm;

id◦⊗◦⊗SyncDrain⊗Sync⊗FIFO1⊗ id• : ε →◦◦•

Now we can give semantics to Reo connectors via tiles.

5 Modeling the 2-color Semantics of Reo

The one-step tile semantics of a connectorC is the set of all tiles that haveC as their
starting configuration. In order to give semantics to Reo connectors we need to pro-
vide the basic tiles defining the semantics of each operator,and then tile composition
operations allow the derivation of the semantics of generalconnectors. We begin by pre-
senting the 2-color data-sensitive semantics, which cannot express context-dependent
behavior, but which is simpler than the corresponding 3-color semantics that we will
introduce in the next section.

We choose as basic observations the data communicated at theinterfaces of con-
nectors, to model data-sensitive semantics, and we consider also a special observation
untick to denote no data communication. For instance, the tileMerger

a
−−−−−→
a⊗untick

Merger

allows aMerger connector to get an actiona from the first element in its right interface
and propagate it to its left interface, provided that there is no piece of data on the other
element of the right interface.

The basic tiles are described in Fig. 10, assuming an alphabet Act for basic actions.
We also assume thatx andy range overAct ∪{untick} anda andb range overAct. A



γ x⊗y
−−→
y⊗x

γ Replicator
x

−−→
x⊗x

Replicator Node
idε−−→
x⊗x

Node

Merger
a

−−−−−→
a⊗untick

Merger Merger
a

−−−−−→
untick⊗a

Merger Merger
untick

−−−−−−−−−→
untick⊗untick

Merger

Sync
x⊗x
−−→
idε

Sync SyncDrain
a⊗b
−−→

idε
SyncDrain SyncDrain

untick⊗untick
−−−−−−−−−→

idε
SyncDrain

SyncSpout
a⊗b
−−→

idε
SyncSpout SyncSpout

untick⊗untick
−−−−−−−−−→

idε
SyncSpout

AsyncDrain
x⊗untick
−−−−−→

idε
AsyncDrain AsyncDrain

untick⊗x
−−−−−→

idε
AsyncDrain

AsyncSpout
x⊗untick
−−−−−→

idε
AsyncSpout AsyncSpout

untick⊗x
−−−−−→

idε
AsyncSpout

LossySync
x⊗x
−−→
idε

LossySync LossySync
a⊗untick
−−−−−→

idε
LossySync

FIFO1
a⊗untick
−−−−−→

idε
FIFO1(a) FIFO1

untick⊗untick
−−−−−−−−−→

idε
FIFO1

FIFO1(a)
untick⊗a
−−−−−→

idε
FIFO1 FIFO1(a)

untick⊗untick
−−−−−−−−−→

idε
FIFO1(a)

Filter(P)
a⊗a
−−→

idε
Filter(P) if P(a) Filter(P)

a⊗untick
−−−−−→

idε
Filter(P) if ¬P(a)

Fig. 10.Tiles for data-sensitive, 2-color semantics

graphical representation of the tile that models the fillingof a FIFO1 buffer is in Fig. 11.
Note that observations on the interface are drawn along the vertical dimension.

These tiles define an LTS semantics for Reo, where states are tile configurations
and observations are〈trigger,effect〉 pairs. This semantics recovers all the information
in the 2-color tile semantics for Reo described in [5]. Furthermore it adds to it: (i) the
possibility of observing the actual data flowing in the connector, allowing to model
data-sensitive primitive connectors such as filters, (ii) the possibility to consider full
computations instead of single steps, keeping track also ofhow the state evolves (par-
ticularly, whether buffers get full or become empty). The theorem below shows how the
information provided by the 2-color semantics can be recovered from the tile seman-
tics. We call a connector data-insensitive if its behavior (i.e., whether or not it allows
data to flow) does not depend on data values. Specifically, every connector built using
any of the primitive connectors described above, excludingfilters, is a data-insensitive
connector. To formalize the correspondence between our tile model and the 2-color se-
mantics, we must restrict tiles to the one-step semantics ofthe connectors, and therefore
we do not need vertical composition of tiles. However, including vertical composition
does not add any one-step transition either.

Theorem 1 (correspondence between 2-color coloring tablesand tiles). Let TC be
the 2-color coloring table of a data-insensitive Reo connectorC with n boundary nodes.
TC contains a coloring c iff for each interface function In there exists a tile obtained
without using vertical composition having as initial configuration JCKIn such that, for
each node A, c(A) = � iff the observation at the interface In(A) in the tile isuntick.



Fig. 11.The tile for filling a FIFO1 buffer (left) and three bisimilarconfigurations (right)

Proof (Sketch).First notice that there is a bijection between colorings forchannels,
mergers and replicators and the basic tiles that have the corresponding operators as
their starting configurations, i.e. a basic connector allows a coloringc iff there is a basic
tile with that operator as its starting configuration and observationuntick on an interface
iff the corresponding node has color� in the coloring.

One has to prove that the correspondence is preserved while composing colorings on
one side and tiles on the other side. We consider the left-to-right implication, the other
being simpler. Colorings can be composed iff they agree on the color of their common
nodes (see Definition 3 in [5]). In order to compose the corresponding tiles to derive a
tile with the desired starting configuration, observationson matching interfaces have to
coincide. Let us consider the case of just one possible data value. Then the possibility
of composing the tiles follows from the hypothesis if connectors are connected directly
(e.g., channels to mergers and replicators), and from the properties of the auxiliary tiles
for identities and symmetries and the basic tiles for nodes if connectors are connected
via them.

Let us now consider the general case of an arbitrary set of data values. Note that for
data-insensitive connectors, if a tile for a certain data flow exists, then a tile with the
same data flow, but where all the data are equal can be built (this can be easily proved
by induction on the number of operators in the starting configuration of the tile), thus
the case of an arbitrary set of data values can be reduced to the one data value case.
Notice that the above property does not hold for data-sensitive connectors. ⊓⊔

As we have seen, all information provided by the coloring tables can be deduced
from the tile semantics. Furthermore, the final configuration of a tile represents the
state of the connector after the data flow has been performed.This can be used also to
recover information provided by the constraint-automata or coalgebraic semantics of
Reo. However a detailed comparison with those semantics is left for future work.

The theorem below ensures that the tile semantics is compositional w.r.t. the opera-
tors of parallel and sequential composition provided by tiles.

Theorem 2 (2-coloring congruence).Tile bisimilarity is a congruence for the 2-color
semantics of Reo connectors.

Proof. Straightforward by inspection, using Lemma 1. ⊓⊔



Note that the compositionality is proved w.r.t. the operators of tile composition,
however this can be extended also to Reo composition operators. Composition in Reo
is obtained by merging boundary nodes. In the tile model thiscan be obtained by con-
necting them viaSync channels (this corresponds to compose them in parallel and then
sequentially with theSync channel and some identities). The example below shows that
the additional channel does not influence the behavior of thecomposition.

Example 1.Consider the simple Reo connectorC1 composed out of a mixed node with
one source end and one sink end,Node : ε →◦• (see Fig. 11, top-center). We can show
that this is bisimilar to a Reo connectorC2 composed out of two such nodes connected
by a Sync channel:Node⊗Node; id◦ ⊗Sync ⊗ id• : ε → ◦• (see Fig. 11, top-right).
First, note that the two connectors have the same interface.Then, observe that for both
connectors the only possible tiles are vertical compositions of tilesCi

x
−→
x

Ci (with i = 1

or i = 2). Thus, from the definition of bisimilarityC1 ∼t C2. Therefore, thanks to the
congruence theorem, in each connector we can replace the twonodes connected by a
Sync channel with a single node without changing the overall behavior. A third bisimilar
configuration is in Fig. 11, bottom-right.

6 Modeling the 3-color Semantics of Reo

As pointed out in [5], the 2-color semantics of Reo fails to fully capture the context-
dependent behavior of Reo connectors. Consider in fact the connector in Fig. 12, which

Fig. 12.Overflow-lossy FIFO1

is represented by the tile configuration:
Node⊗Node⊗Node; id◦⊗LossySync⊗FIFO1⊗ id• : ε →◦•
There are two possible tiles with this initial configurationand with the observa-

tion 〈idε,a⊗ untick〉 modeling data entering in the connector. The first one loses the
data item in theLossySync channel and has the final configurationNode⊗Node⊗
Node; id◦ ⊗ LossySync ⊗ FIFO1⊗ id•. The second one transports the data item into
the buffer of theFIFO1(a) channel and has the final configurationNode⊗ Node⊗
Node; id◦⊗LossySync⊗FIFO1(a)⊗ id•. The expected behavior corresponds to the sec-
ond one, since there is no reason for the data to be lost. However, both the 2-color se-
mantics and the tile model we presented above generate both alternatives as permissible
behavior for this connector.

The 3-color semantics of Reo discussed in [5] solves this problem by tracking ‘rea-
sons to prohibit data flow’, and allowsLossySync to lose data only if there is a reason
for the data not to flow out of the channel (e.g., an attached full buffer or an interface
that does not accept data at the other end). The 3-color semantics replaces the� color
by two colors corresponding to ‘giving a reason for no data flow’ and ‘requiring a rea-
son for no data flow.’ Briefly, ‘giving a reason’ is used to model either a choice made by



the connector or to capture the absence of data flow on a particular channel end. On the
other hand, ‘requiring a reason’ is used to model that the context determines whether a
particular choice is made. Consider the two key tiles forLossySync:

LossySync
a⊗a
−−→

idε
LossySync LossySync

a⊗⊲
−−−→

idε
LossySync

The first one simply states that data flow through theLossySync. The second states that
data will be lost in theLossySync if a reason for no flow can be provided by the context
in which the channel is plugged. If a tile with the labela⊗⊳ was also present, this
would say that theLossySync provides a reason for the data to be lost, and thus the
LossySync would lose the property that the decision ought to be made by the context.

Composition in the 3-color model includes the additional requirement that at each
basic node where there is no data flow, at least one reason for no flow must be present.

We show that tile logic can also easily model this more detailed semantics. To this
end, we must refine ouruntick observation into⊳, which models ‘requires a reason
for no data flow,’ and⊲, which models ‘gives a reason for no data flow,’ when these
symbols occur on the left-hand side of the tile (above the line in the rule format). When
these observations occur on the right-hand side of a tile, their meanings are reversed.
For instance, one of the rules forReplicator:

Replicator
⊲

−−−→
⊲⊗⊲

Replicator

means that a reason is required from the channel end on the left of the tile (above the
line) and will be given (propagated) to the channel ends on the right of the tile (below
the line). This captures that no-input to theReplicator is sufficient to cause no data flow
through theReplicator, and that this reason is passed onto the sink ends.

The main tiles for modeling the 3-color semantics of Reo are in Fig. 13. The others
are analogous.

γ x⊗y
−−→
y⊗x

γ Replicator
a

−−→
a⊗a

Replicator

Replicator
⊲

−−−→
⊲⊗⊲

Replicator Replicator
⊳

−−−→
⊲⊗⊳

Replicator Replicator
⊳

−−−→
⊳⊗⊲

Replicator

Node
idε−−→

a⊗a
Node Node

idε−−−→
⊳⊗⊲

Node Node
idε−−−→

⊲⊗⊳
Node Node

idε−−−→
⊳⊗⊳

Node

Merger
a

−−−→
a⊗⊲

Merger Merger
a

−−−→
⊲⊗a

Merger Merger
⊲

−−−→
⊲⊗⊲

Merger Merger
⊳

−−−→
⊳⊗⊳

Merger

Sync
a⊗a
−−→

idε
Sync Sync

⊳⊗⊲
−−−→

idε
Sync Sync

⊲⊗⊳
−−−→

idε
Sync Sync

⊲⊗⊲
−−−→

idε
Sync

LossySync
a⊗a
−−→

idε
LossySync LossySync

a⊗⊲
−−−→

idε
LossySync LossySync

⊲⊗⊳
−−−→

idε
LossySync

FIFO1
⊲⊗⊳
−−−→

idε
FIFO1 FIFO1

a⊗⊳
−−−→

idε
FIFO1(a) FIFO1(a)

⊳⊗a
−−−→

idε
FIFO1 FIFO1(a)

⊳⊗⊲
−−−→

idε
FIFO1(a)

Fig. 13.Tiles for data-sensitive, 3-color semantics



Note that the tileNode includes a behavior that mimics the so-calledflip rule in
connector coloring [5]. The point of the flip rule is to reducethe size of coloring tables
using the fact that nodes need no more than one reason. The fact that nodes can also
accept multiple reasons is captured by the tile:

Node
idε−−−→

⊳⊗⊳

Node

Results analogous to the one in the previous section can be proved, showing that
the 3-color tile semantics recovers all the information provided by the standard 3-color
semantics of Reo. As for the 2-color semantics, the tile semantics is data-sensitive, and
allows to track the state of connectors and model full computations.

Theorem 3 (correspondence between 3-color coloring tablesand tiles). Let TC be
the 3-color coloring table (see [5]) of a data-insensitive Reo connector C with n bound-
ary nodes. TC contains a coloring c iff for each interface function In there exists a tile
obtained without using vertical composition with initial configurationJCKIn such that,
for each node A:

– c(A) is the color for no dataflow with the reason coming into the node (given) iff
the observation at the interface element In(A) in the tile is⊲ (this is always below
the line);

– c(A) is the color for no dataflow with the reason leaving the node (required) iff the
observation at the interface element In(A) in the tile is⊳ (this is always below the
line).

Proof. The proof is similar to the one of Theorem 1. ⊓⊔

As for the 2-color semantics, tile bisimilarity is a congruence.

Theorem 4 (3-coloring congruence).Tile bisimilarity is a congruence for the 3-color
semantics of Reo connectors.

7 Reconfiguration of Reo Connectors

Since the tile semantics of a Reo connector includes also thestate of the connector
after each step, one can model inside the Tile Model also the reconfiguration of Reo
connectors triggered by dataflow as presented in [11].

The idea is that some connectors, when suitable conditions concerning their state
and the ongoing dataflow are met, can automatically be reconfigured to meet the re-
quirements of the environment. We sketch this approach by demonstrating it through
the example of an infinite FIFO buffer [11], and leave a more detailed study of recon-
figuration for future work. An infinite FIFO buffer is a FIFO buffer that grows when
a new datum arrives to be inserted and its buffer is full, and shrinks when a datum is
consumed out of the buffer. To model this we require two new channels:FIFO∞ is the
empty infinite buffer, andFIFOtmp(a) is a temporary buffer, containing valuea, that
will disappear when thea is consumed.



FIFO∞
untick⊗untick
−−−−−−−−−→

idε
FIFO∞ FIFO∞

a⊗untick
−−−−−→

idε
id•⊗Node⊗ id◦;FIFO∞ ⊗FIFOtmp(a)

FIFOtmp(a)
untick⊗a
−−−−−→

idε
Sync FIFOtmp(a)

untick⊗untick
−−−−−−−−−→

idε
FIFOtmp(a)

Fig. 14.Tiles for 2-color semantics of infinite buffer

Fig. 15.Some graphical shorthand

For simplicity we give semantics to the infinite FIFO buffer using the 2-color se-
mantics, however, the 3-color semantics can be used as well.The necessary basic tiles
can be found in Fig. 14. Note that the tile for shrinking the buffer transforms the tem-
porary bufferFIFOtmp(a) into aSync channel. Thanks to Example 1, up to bisimilarity,
this corresponds to removing the temporary buffer and its nearby node. However, the
tile needed to actually do the garbage collection would not satisfy the basic source
property, thus we preferr this approach.

To sketch the evolution of infinite buffers, we draw some possible proof steps ob-
tained by horizontal composition of basic tiles. To simplify the graphical notation we
introduce some suitable graphical shorthand in Fig. 15 (left) for the composition of a
node and a temporary buffer (TM) and for the composition of a node and a synchronous
channel (FWD) that basically behaves as a forwarder. Using the shorthand, the tile for
inserting a new datum in the infinite buffer can be drawn as in Fig. 15 (right). Figure 16
shows what happens if a new datumb arrives when the buffer already contains a datum
a (left) and what happens if a datum is then requested from the buffer (right). Note that
it is also allowed for the arrival and departure of data happen at the same time (see
Fig. 17).

Proposition 1 (a reconfiguration congruence).Tile bisimilarity is a congruence for
the 2-color semantics of Reo connectors including the infinite FIFO buffer.

Observe that in this approach reconfiguration and computation are fully integrated
(while in [11] and [11, 10] the two aspects are dealt with by separate models). Fur-
thermore, reconfigurable connectors and normal connectorscan be used together, since
reconfiguration is not visible from the outside. However, our tile model currently cannot
express more complex reconfigurations that change the interfaces of connectors. Cap-
turing these reconfiguration in such a way as to allow the congruence of bisimilarity to
be proved using the basic source property, requires (1) connectors to agree on when and



Fig. 16.Datumb arrives (left) and datuma leaves

Fig. 17.Datumc arrives while datuma leaves

which reconfiguration to perform, and (2) nodes to propagatethis kind of information.
We leave an analysis of this approach for future work.

8 Conclusion

We have shown that the Tile Model can be used to describe all main aspects of the
semantics of Reo connectors: synchronization, dataflow, context dependency, and re-
configuration. This is the first semantic description of Reo connectors able to present
all these aspects natively in a single framework. Furthermore, the semantics is compo-
sitional.

As future work we want to consider an alternative approach tothe 3-color semantics
based on priorities: one can specify that losing data in theLossySync channel has lower
priority than data flowing through it. Our goal is to match theexpected intuitive seman-
tics of Reo, and solve the problem of causes for data-discardthat arises in some cycles
in the 3-color semantics, as discussed in [5]. However, further research is necessary to
understand how to apply this reasoning to complex connectors. Another long term goal
of our work is to understand how to define complex reconfigurations along the lines
sketched at the end of Section 7.

References

1. F. Arbab. Reo: A channel-based coordination model for component composition.Math.
Struct. in Comput. Sci., 14(3):1–38, 2004.



2. F. Arbab and J. J. M. M. Rutten. A coinductive calculus of component connectors. In
M. Wirsing, D. Pattinson, and R. Hennicker, editors,WADT 2002, volume 2755 ofLNCS,
pages 34–55. Springer, 2002.

3. C. Baier, M. Sirjani, F. Arbab, and J. J. M. M. Rutten. Modeling component connectors in
Reo by constraint automata.Sci. Comput. Program, 61(2):75–113, 2006.

4. R. Bruni, I. Lanese, and U. Montanari. A basic algebra of stateless connectors.Theoret.
Comput. Sci., 366(1-2):98–120, 2006.

5. D. Clarke, D. Costa, and F. Arbab. Connector colouring I: Synchronisation and context
dependency.Sci. Comput. Program, 66(3):205–225, 2007.

6. A. Corradini and U. Montanari. An algebraic semantics forstructured transition systems and
its application to logic programs.Theoret. Comput. Sci., 103:51–106, 1992.

7. CWI. Reo home page. http://reo.project.cwi.nl.
8. CWI. A repository of Reo connectors. http://homepages.cwi.nl/˜proenca/webreo/.
9. F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling, and M. Tofte,

editors,Proof, Language and Interaction: Essays in Honour of Robin Milner, pages 133–
166. MIT Press, 2000.

10. C. Koehler, F. Arbab, and E. de Vink. On hierarchical reconfiguration of Reo connectors. In
A. Corradini and U. Montanari, editors,WADT 2008, volume ??? ofLNCS, pages ???–???
Springer, 2009.

11. C. Koehler, D. Costa, J. Proença, and F. Arbab. Reconfiguration of Reo connectors triggered
by dataflow. In C. Ermel, R. Heckel, and J. de Lara, editors,Proceedings of GT-VMT’08,
volume 10 ofElect. Communic. of the European Association of Software Science and Tech-
nology, pages 1–13. EASST, 2008.

12. C. Koehler, A. Lazovik, and F. Arbab. Connector rewriting with high-level replacement
systems. In C. Canal, P. Poizat, and M. Viroli, editors,Proceedings of FOCLASA’07, Elect.
Notes in Th. Comput. Sci. Elsevier Science, 2007.

13. K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.
In M. Paterson, editor,ICALP’90, volume 443 ofLNCS, pages 526–539. Springer, 1990.

14. S. MacLane.Categories for the working mathematician. Springer, 1971.
15. J. Meseguer. Conditional rewriting logic as a unified model of concurrency.Theoret. Comput.

Sci., 96:73–155, 1992.
16. U. Montanari and F. Rossi. Graph rewriting, constraint solving and tiles for coordinating

distributed systems.Applied Categorical Structures, 7(4):333–370, 1999.
17. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,

60-61:17–139, 2004.


