
On the Semantics of Distributed Compensations
with Interruption

Roberto Bruni1, Anne Kersten2, and Ivan Lanese3

1 Department of Computer Science, University of Pisa, Italy
2 IMT Lucca, Institute for Andvanced Studies, Italy
3 Lab. FOCUS, University of Bologna/INRIA, Italy

Compensations is a well-known and widely used mechanism to ensure the
consistency and correctness of long-running transactions in the area of databases.
More recently, several compensable workflow languages and calculi emerged in
the area of business process modelling, service-oriented and global computing
to provide the necessary formal ground for compensation primitives like those
exploited in orchestration languages like WS-BPEL. The focus of this work is
on the semantics of the workflow based calculus Sagas [2] and its compensation
policy for parallel branches. The choice of the right strategy allows the user to
prevent unnecessary actions in case of an abort. An optimal formalization of this
policy is still an open problem that we want to solve.

In the past different policies have emerged. A thorough analysis is presented
in [1] by comparing the Sagas calculus with compensating CSP [3] (cCSP). Both
Sagas and cCSP focus on a core set of operations, namely compensation pairs
A÷B for two basic activities A and B, sequential composition of processes P ;Q
as well as the parallel composition P |Q and a transaction scope {[P]} (called
saga). The key idea is that for a pair A÷B the successful execution of A installs
the compensation B, to be executed for “undoing” A in case the transaction
is aborted later on. In case of sequential composition, the latest actions that
have been executed are the first to be compensated, hence compensations are
unfolded in the reverse order of installation. The different strategies emerge from
different approaches to handle compensations in a concurrent setting, by taking
into account two main aspects. One aspect concerns the interruption of siblings
in case of an abort(interruption or no interruption). The other depends on the
managing of whether compensations are started at the same time (centralized)
or siblings can start their compensation on their own (distributed). The relation
between the different policies is displayed in Fig. 1.

As it turns out, none of the four originally defined semantics is entirely sa-
tisfactory. Strategies one to three are too restrictive: it is important to have
the possibility to stop a sibling branch when a problem occurs and to activate
compensations as soon as possible, because typically compensations have a cost.
Without interruption (cases one and two) sibling branches finish their execu-
tion anyway, even though they will have to compensate. In the centralized case
three, branches might have to wait until they are allowed to continue together
with their siblings. The fourth strategy on the other hand is irrealistic, it allows
a kind of guessing mechanism where a branch may start its compensation even
though the error has not yet occurred. This holds as well for an asynchronous

Centralized Distributed

No interruption '&%$!"#1
⊆ //

⊆
��

'&%$!"#2

⊆
��

Näıve Sagas

Interruption '&%$!"#3
⊆ //

Original cCSP

'&%$!"#4
Revised Sagas

'&%$!"#5

Fig. 1. Compensation policies (arrows stand for trace inclusion)

setting. An optimal, realistic semantics should be more “permissive” (in the
sense of allowing more traces) than strategies two and three but less than four.

A recent fifth approach is presented in [5], but it is not expressed at the same
abstract level of detail, because its formalization relies on spurious mechanisms
closer to the implementation level. Moreover the fifth policy is not distributed,
as the order of the execution of compensations depends on the total order of
activities in the forward flow.

In this paper, we propose a new, optimal semantics for parallel Sagas with
interruption. Technically, the result is achieved via an encoding of parallel Sagas
into a calculus with dynamic compensations inspired by [4]. It uses message
passing for sending an interrupt to parallel branches. Thus compensations may
only be started after the error actually occurred.

To clarify the differences between the different policies discussed above, we
want to present different sets of traces obtained for a toy example. We consider
the term {[(A ÷ A′;B ÷ B′)|(C ÷ C ′; abort ÷ skip]}. It may stand for example
for a workflow for ordering products, where A stands for choosing the product,
the activity B for filling in an adress form while C is the credit card check, that
may currently be unavailable and therefore fails. Each compensation would be
the sending of failure notification by email.

For case one, centralized compensation without interruption, the resulting
set of traces is S1 ≡ (AB|||C)(B′A′|||C ′) (where ||| stands for the interleaving
of traces and juxtaposition stands for concatenation), i.e., all branches are fully
executed forward and only then their (interleaved) compensation is started.

For case two, distributed compensation without interruption, the set of traces
is S2 ≡ (AB|||CC ′)B′A′. The first branch still finishes its execution, nevertheless
C may already start its compensation as soon as it aborts.

For case three, we have S3 ≡ CC ′∪(A|||C)(A′|||C ′)∪(AB|||C)(B′A′||C ′), i.e.,
the branch for the activities A and B may be interrupted, however compensations
are started only when each branch is ready.

The fourth strategy, distributed interruption, is the most liberal one. It allows
the following set of traces: S4 ≡ CC ′ ∪ AA′|||CC ′ ∪ ABB′A′|||CC ′. Note that
means that B′ can also be executed before C, i.e.before the error occured.

In our new semantics: S ≡ S3 ∪ (CC ′AA′) ∪ (AB|||CC ′)B′A′.

References

1. Bruni, R., Butler, M.J., Ferreira, C., Hoare, C.A.R., Melgratti, H., Montanari, U.:
Comparing Two Approaches to Compensable Flow Composition. In: CONCUR’05.
LNCS, vol. 3653, pp. 383–397 (2005)

2. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations
in flow composition languages. In: POPL’05. pp. 209–220. ACM (2005)

3. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A Trace Semantics for Long-Running
Transactions. In: 25 Years CSP. LNCS, vol. 3525, pp. 133–150 (2004)

4. Lanese, I., Vaz, C., Ferreira, C.: On the expressive power of primitives for compen-
sation handling. In: ESOP’10. LNCS, vol. 6012, pp. 366–386 (2010)

5. Lanese, I., Zavattaro, G.: Programming Sagas in SOCK. In: SEFM’09. pp. 189–198.
IEEE (2009)

