Zero-Safe Nets: The Individual Token
Approach*

Roberto Bruni and Ugo Montanari

Dipartimento di Informatica, Universita di Pisa, Italia.
bruni,ugo@di.unipi.it.

Abstract. In this paper we provide both an operational and an ab-
stract concurrent semantics for zero-safe nets under the individual token
philosophy. The main feature of zero-safe nets is a primitive notion of
transition synchronization. Besides ordinary places, called stable places,
zero-safe nets come equipped with zero places, which are empty in any
stable marking. Connected transactions represent basic atomic compu-
tations of the system between stable markings. They must satisfy two
main requirements: 1) to model interacting activities which cannot be
decomposed into disjoint sub-activities, and 2) not to consume stable to-
kens which were generated in the same transaction. Zero tokens acts as
triggers for the firings of the transitions which compose the transaction.
The abstract counterpart of a zero-safe net consists of a P/T net where
each transition locates a distinguished transaction. In the second part
of the paper, following the Petri nets are monoids approach, we make
use of category theory to analyze and motivate our framework. More
precisely, the operational semantics of zero-safe nets is characterized as
an adjunction, and the derivation of abstract P/T nets as a coreflection.

1 Introduction

Petri nets [18] are one of the most attractive models of concurrency, which also
offers a basic concurrent framework often used as a semantic foundation on which
to interpret many concurrent languages [21, 10, 17, 6, 8, 1]. However, the basic
net model does not have any synchronization mechanism among transitions,
while this feature is essential to write modular and expressive programs. For

* Research supported by Office of Naval Research Contracts N00014-95-C-0225 and
N00014-96-C-0114, National Science Foundation Grant CCR-9633363, and by the
Information Technology Promotion Agency, Japan, as part of the Industrial Sci-
ence and Technology Frontier Program “New Models for Software Architechture”
sponsored by NEDO (New Energy and Industrial Technology Development Organi-
zation). Also research supported in part by U.S. Army contract DABT63-96-C-0096
(DARPA); CNR Integrated Project Metodi e Strumenti per la Progettazione e la
Verifica di Sistemi Fterogenet Connessi mediante Ret: di Comunicazione; and Esprit
Working Groups CONFER2 and COORDINA. Research carried on in part while
the second author was on leave at Computer Science Laboratory, SRI International,
Menlo Park, USA, and visiting scholar at Stanford University.

instance, all the above translations involve complex constructions for the net
defining the synchronized composition of two programs.

Zero-safe nets (also ZS nets), introduced in [4], extend Petri nets along this
direction, coming equipped with a very general notion of transition synchroniza-
tion as a built-in feature. ZS nets are based on the notion of zero places. Tokens
produced in a zero place act as triggers for the firing of transitions which are
able to consume them. A distinguished set of stable places is also present. Stable
markings (consisting only of stable tokens) describe the abstract-level markings,
whilst non-stable markings (those involving zero tokens) define non-observable
states of the refined model. A synchronized evolution of a ZS net starts at some
stable marking, evolves through non-observable states and finally leads to a new
observable state. A ‘refined” ZS net and an ‘abstract’ Petri net are supposed
to model the same given system. The latter offers the synchronized view and
the former specifies how every transition of the latter is actually achieved as a
different coordinated collection of firings, called transactions. However, the con-
current semantics of an operational model is usually defined by considering as
equivalent all the computations where the same concurrent events are executed
in different orders. Thus, we would like to identify those transactions which
are equivalent from a concurrent viewpoint. The simplest approach, presented
in [4], relies on the collective token philosophy [9], CTph for short. This school
of thought identifies all the firing sequences obtained by repeatedly permuting
pairs of concurrently enabled firings. The major drawback of this approach is
that causal dependencies on zero tokens are lost. It follows that the class of com-
putations captured by abstract nets may turn out to be far too generic for many
applications. In this paper we present an alternative approach based on the in-
dividual token philosophy [9], ITph for short, where a wider class of aspects can
be taken into account. In fact, we identify transactions which refer to isomorphic
Goltz-Reisig processes [11]. The induced equivalence classes are called connected
transactions.

The ZS net M S in Fig. 1 will be our running example. Net M .S represents
a multicasting system. As in a broadcasting system, an agent can simultane-
ously send the same message to an unlimited number of receivers, but here the
receivers are not necessarily all the remaining agents, and thus several one-to-
many communications can take place concurrently. Each token in place a is a
different active (i.e., ready to communicate) agent. Transition new permits to
create an unlimited number of agents. A firing of send opens a one-to-many com-
munication: a message is put in the buffer z and the agent is suspended until
the end of the transaction. A firing of copy adds a new copy of the message. A
firing of receive synchronizes an active agent with a copy of the message and
then suspends the agent. The transaction is completed when all the copies have
been received. At the end of a session, all the suspended agents are moved into
place b. Transition reset makes an agent active again. We call copy policy any
strategy for making copies of the messages in the buffer. E.g., in the sequential
copying policy, every time copy produces two copies of the message in the buffer,
at most one of them is used to produce other copies. In the CTph, only transmis-

@ tg a z o ty to = new

l t1 = send
to = copy
b “ ' ts = recetve
ts = reset
b MS

it1
] 1 1 \ 1 \ ci
ty A T2 / i g,

Fig.1. A ZS net for a multicasting system, and its causal abstract net (we extend the
“circles and boxes” representation for nets by drawing smaller circles for zero places).

sions differing for the number of involved agents can be distinguished. E.g., the
sequential copy sca = send-copy-{receive,copy}-{receive,copy}-2receive and the
balanced copy bea = send-copy-2copy-4receive are equivalent one-to-four trans-
missions [4]. On the contrary, the ITph distinguishes different copy policies. The
resulting infinite causal absiract P/T net Ips is displayed in Fig. 1. Net Iyg
comes equipped with a causal refinement morphism eprs to the ZS net M.S. Mor-
phism €375 maps the places of Iprs into the homonymous stable places of M .S,
and each transition of Insg into a connected transaction of M S (i.e., transition

o corresponds to the one-to-n transmission which follows the k-th codified copy

n
policy). For each one-to-n transmission there are ¢, copy policies (e.g., ¢4 = 2,
and the transitions o} and o7 identify the equivalence classes of scq and bey).
The paper is organized as follows: after briefly recalling some basic defini-
tions of net theory, in Section 3 we present ZS nets and their operational and
abstract ITph semantics. We introduce the notion of causal firing sequences, as
enriched firing sequences. This allows a concise representation of concatenable
processes, and has a suggestive implementation on a machine whose states are
collections of token-stacks. Then, the evolution of a ZS net is defined in terms
of equivalence classes of causal firing sequences (satisfying some additional re-
quirement), and ordinary P/T nets are defined as the abstract counterparts of
ZS nets. In Section 4, by employing some elementary category theory, we give
evidence that our constructions are natural. Both the operational semantics of
ZS nets and the derivation of the abstract P/T nets are characterized as two
universal constructions (the former is an adjunction and the latter is a coreflec-
tion), following the Petri nets are monoids style. The universal properties of the
two constructions state that they are the ‘best’ possible choices. Due to space
limitation, some proofs are omitted and others just sketched.

2 Preliminaries

A net N is a triple (Sn, Tn; Fiv), where Sy # (0 is the set of placesa,a’, ..., Ty is
the set of transitionst,t’, ... (with SyNTy = 0), and Fiy C (Sy xTn)U(Ty xSN)
is called the flow relation. We will denote Sy UTx by N whenever no confusion
arises. Subscripts will be omitted if they are obvious from the context. For z € N,
theset c ={y € N |yFa} (¢* = {y € N | zFy}) is called the pre-set (post-set)
of z. Let also °N = {z € N | *z = 0} and N° = {z € N | z* = (0} be the
sets of initial and final elements of N, resp. A place a is said to be isolated iff
*aUa® = (). We assume that for any transition ¢, * # 0.

A P/T netis a tuple N = (S, T; F,W,uin) s.t. (S,T; F) is a net, function
W : F — IN assigns a positive weight to each arc and multiset uj, : S — IN is
the initial marking. Relation ' may be seen as a function F : ((S x T) U (T x
S)) — {0,1}, with 2 F'y <= F(z,y) # 0. Then, if we replace {0, 1} with IN,
F becomes a multiset relation and W is unnecessary.

A markingu : S — N is a finite multiset of places. It can be written either as
u = {nyay, ..., npay } where n; € IN, n; > 0 (if n; = 0 then the corresponding term
n;a; is safely omitted) dictates the number of occurrences (tokens) of the place a;
in u, i.e. n; = u(a;), or as a formal sum v = ®a,65 n;a; (the order of summands
is immaterial, and the addition is defined by taking (B, nia;) ® (P, mia;) =
(B;(n; + m;)a;) and 0 as the neutral element). For any transition ¢ € T let
pre(t) and post(t) be the multisets over S such that pre(t)(a) = F(a,t) and
post(t)(a) = F(t,a) Ya € S.

The interleaving behaviour of a net is usually described in terms of firing
sequences. Given a P/T net N let u and u’ be two markings of N. Then, a
transition t € Ty is enabled at u iff pre(t)(a) < u(a), Ya € Sy. Moreover, we say
that u evolves to u’ under the firing of t, written uft)u’, if and only if ¢ is enabled
at u and u'(a) = u(a) — pre(t)(a) + post(t)(a), Ya € S. A firing sequence from
ug to u, is a sequence of markings and firings such that wolt)uy...un_1[tn)un.
Given a marking u of N the set [u) of its reachable markings is the smallest set
of markings such that u € [u), and moreover Yu' € [u) such that u'[t)u’ for some
transition ¢, then u' € [u). Besides firings and firing sequences, steps and steps
sequences are introduced. A step allows the simultaneous execution of several
independent transitions. Eventually, we say that a net is safe if, for all reachable
markings, a bound n can be given for the number of tokens in each place, i.e.
Yu € [uin),Va € S, u(a) < n.

3 Zero Safe Computations

We augment P/T nets with special places called zero places. Their role is to
coordinate the atomic execution of complex collections of transitions.

Definition1 (ZS net). A zero-safe net (ZS net for short) is a 5-tuple B = (Sp,
Tp; Fp, up; Zp) where Ng = (Sp, Tp; Fp, up) is the underlying P/T net, and
the set Zg C Sp is the set of zero places. The places in Sp \ Zp are called stable
places. A stable marking is a multiset of stable places.

Stable markings describe observable states of the system. The presence of
some zero tokens in a marking makes it unobservable (e.g., non-stable). State
changes are given in terms of connected steps. A connected step may involve the
synchronization of several transitions, but it can be applied only if the starting
state contains enough stable tokens to enable all the transitions independently.
No token can be left on zero places at the end of the step (neither can be found
there at the beginning of the step). Thus, all the zero tokens which are produced
are also consumed in the same step. Connected transactions are atomic connected
steps which consume all the stable tokens of the starting state.

In the ITph, a marking may be seen as an indexed (over the places of the net)
collection of ordered sequences of tokens, and the firing of a transition specify
which tokens (of each ordered sequence) are consumed and also the correspon-
dence between each token in the reached marking with either a produced token
or an idle token of the original marking. Using multisets instead of ordered se-
quences would make it impossible to recognize which token was produced by
which firing, as it happens for the CTph.

Ezample 1. In our running example, suppose that the current marking is {a, b}.
If t4 fires, then a new token is produced in place a. Then, a firing of ¢; consumes
a token from place a. In the I'Tph approach, it makes a difference if ¢; gets the
token produced by t4 or the one already present in a (in the former case the
firing of ¢; causally depends on that of ¢4 while in the latter case the firings of
t; and of t4 are concurrent activities). In the CTph approach the two firings
are always concurrent, since the initial marking enables both ¢; and %4, i.e., the
execution of {4 does not modify the enabling condition of ¢;.

The Stacks Based Approach. The approach we propose is very similar to the
one adopted in [19]: we choose a canonical interpretation of the tokens that are
to be consumed and produced in a firing and we introduce permutation firings
with the task of rearranging the orderings of the indexed sequences of tokens. A
marking becomes a collection of stacks, one for each place, that can be accessed
by transitions through a firing to extract and to insert tokens. A permutation
firing is just a re-organization of the current state (i.e., of the stacks). We will
denote the token stack associated to a certain place @ with the term a-stack.

Definition2 (Causal firing, permutation firing). Let N be a P/T net, and
s = uft)u’ be a firing of N for some marking u and transition ¢. We interpret
firing s as a causal firing by assuming that s consumes the “first’ pre(t)(a) tokens
of the a-stack of u and produces the ‘first’ post(t)(a) tokens of the a-stack of ’,
for each place a. Given a marking u = {nsa}.cs, of N, a symmelry p on u is a
vector of permutations p = (wg)qesy With mq € II(n,), Va € Sy, i.e. each m, is
a permutation of n, elements. We denote by IT(u) the set of all symmetries on
u. Each symmetry p on u induces a permutation firing s = u[p)u on the net. A
causal firing sequence is a finite sequence w = s1 - - - s, of causal and permutation
firings such that s; = u;_1[X;)u; with X; € Ty U IT(u;—q) for i = 1,...,n. We
say that w starts at ug (written O(w) = ug) and ends in u, (written D(w) = uy,).

FErample 2. Let Nprs be the underlying net of the ZS net MS in Fig. 1. A
causal firing sequence for Nysg is w = {b, c}[to){a, b, c} [ta){2a,c} [t1){a,b, ¢, 2}
[t3){2b,c}. At the beginning the stacks of places a and z are empty and the
stacks of places b and ¢ contain one token each. After the firing of ¢y the to-
ken in the c-stack is replaced by a new one and a token is also inserted in
the a-stack. The firing of ¢4 consumes the token in the b-stack and puts a new
token on top of the a-stack. Transition #; consumes the token on top of the
a-stack and inserts a token both in the b-stack and in the z-stack. The firing
of t3 consumes the unique token in the z-stack and also the token produced
by tg in the a-stack, and it inserts a token on top of the b-stack. Since the
sequence w does not involve any symmetry, it follows that the latest tokens
produced are the first to be consumed next. To represent the sequence where
t; depends on ty (and ?3 depends on t4) we have two possibilities. The first
one is to execute ?g after ¢4 (they are concurrently enabled), thus obtaining the
sequence w’ = {b, c}[ta}{a, c}[to){2a, c}[t1){a, b, c, z}[t3){2b, c}. The second pos-
sibility is to reorganize the a-stack just before the execution of ¢;. This can be
done via a symmetry p = ((1 2),) € II(2a & ¢), thus obtaining the sequence

w'" = {b, c}to}{a,b, c}[ta){2a, c}[p){2a, c}[t1){a, b, ¢, 2 }[ts)}{2b, c}.

Review of Concatenable Processes. Causal firing sequences define a corre-
spondence among the tokens produced and consumed via firings. This is due to
the implicit orders which are imposed on the markings and is strictly related
to a process view of computations. Concatenable processes [5, 20] are obtained
from processes by imposing a total ordering on the origins that are instances of
the same place and, similarly, on the destinations.

A net K is a deterministic occurrence net iff Va € Sk, %] < 1A]e*| <1
and Ff; is acyclic (F* denotes the reflexive and transitive closure of relation F'),
ie,Voe,y € K, aFfyAyFie = = = y). A (Goltz-Reisig) process for a P/T
net N is a mapping P : K — N from an occurrence net K to N such that
P(SK) C Sn, P(TK) C 1Ty, °K C Sk, and Vt € Tk, VYa € Sy, FN(a,P(t)) =
|P_1(a) N ’t| A Fn(P(t),a) = |P_1(a) ﬁt’|. As usual we denote the set of
origins (i.e., minimal or initial places) and destinations (i.e., final or maximal
places) with O(K) = °K and D(K) = K° N Sk, resp. Two processes P and
P’ of N are isomorphic and thus identified if there exists an isomorphism v :
Kp — Kp/ such that P' oy = P.

Given a set S with a labelling function | : S — S’ a label-indezed ordering
function for 1 is a family 8 = {8, }aes’ of bijections, where 8, : [7!(a) —
{1,..., |l_1(a)|}. A concatenable process for a P/T net N is a triple C =
(P, %,£°) where P : K — N is a process for N and %, £° are label-indexed
ordering functions for the labelling function P restricted to O(K) and D(K),
resp. Two concatenable processes C' and C’ are isomorphic if Pc and Pg: are
isomorphic via a mapping preserving all the orderings.

A partial binary operation _;_ (associative up to iso and with identities)
of concatenation of concatenable processes (whence their names) can be easily
defined: we take as source (target) the image through P of the initial (maximal)
places of Kp; then the composition of C = (P, %, £°) and C' = (P’ %' £'°)

is realized by merging, when it is possible, the maximal places of Kp with the
initial places of Kp: according to their labelling and ordering functions so to
match those places one-to-one. Concatenable processes admit also a monoidal
parallel composition - ® _; which can be represented by putting two processes
side by side. Due to space limitation, we refer the interested reader to [5] for the
formal definitions.

3.1 From Causal Sequences to Processes.

It may be easily noticed that each causal firing sequence uniquely determines
a concatenable process. Informally the construction associates an elementary
(concatenable) process to each causal and permutation firing.

From causal firings to processes. Let N be a P/T net and s = u[t)u’ be a
causal firing, with v = {ngsa}eecsy, pre(t) = {haatacsy, post(t) = {kqa}acsy -
The associated concatenable process is pr(s) = (P : K — N, %, {°), where:
.TK:{{}a P(i):t; SK:{ai|a€SN: 1§i§na+ka}a P(ai):a;
et={d|aeSy, 1<i<hg},t*={d;|a€ Sy, ha+1<i<hy,+k,}, thus
O(K)={a; € Sk |i < hyVi>hg+ko+1}and D(K) ={a; € Sk | i > ho+1};

- . - ? if 1 <i<h,
© Vs € OUR). al@i) =45 ki by + T+ ka S0 < nat by
o Va; € D(K), £3(a;) =1 — hg.

A brief explanation is necessary. The occurence net K contains a unique
transition ¢ (mapped onto transition ¢ of N), and a place for each consumed,
produced, and idle token of s. For each place a € Sy we need exactly n, + &,
different places in Sk . We denote the generic ¢-th place associated to place a with
a;. The set {@; | a € Sy, 1 < i< h,} represents the tokens which are consumed
by the causal firing of ¢, i.e. the ‘first’ h, tokens of each a-stack in the starting
state. The set {@; | a € Sy, ha +1 < i < hy + ko} represents the tokens which
are produced by the causal firing of ¢, i.e. the ‘first’ k, tokens of each a-stack in
the ending state. The set {a; |a € Sy, hg + ka+ 1< i <n,+kq} contains the
remaining idle tokens, i.e. the ‘last’ n, — h, token of each a-stack of both u and
u’. Functions °¢ and £° are defined accordingly with this assumptions.

From permutation firings to processes. Let N be a P/T net and s = u[p)u’
be a permutation firing, with u = {ngsa}ses, and p = (74} qes, . The associated
concatenable process pr(s) = (P : K — N, %, £°) is defined as follows:

o T = (it follows that O(K) = D(K) = Sk);

e Sk ={ai|a€ Sy, 1 <i<na}, P(a;) =g

o Va; € O(K), *4(a;) = t;Ya; € D(K), £(a;) = mq(i).

In this case the set of transitions is empty and all the tokens stay idle. The
generic place a; of k£ denotes the instance of place a which corresponds to the
i-th token (from the top) of the a-stack of the starting state. The re-organization
induced by the permutation firing is provided by the functions °¢ and £°.

The concatenable process associated to a (finite) causal firing sequence is
given by the concatenation of the concatenable processes associated to each step
of the given sequence. In what follows we denote with pr(w) the concatenable
process associated with the causal firing sequence w (up to iso).

ty)

b b Ob b
by 2 1 2 1

pr(w')=pr(w’) pr(w)

Fig. 2. The concatenable processes derived from sequences w”, w’, and w of Ex. 2.

Ezample 3. The concatenable processes derived from the sequences of Ex. 2 are
presented in Fig. 2 (we use the standard notation that labels the places and
transitions of the occurence net K with their images in N; a superscript for any
initial place and a subscript for any final place denotes the value of °¢ and ¢°,
resp.), the construction of pr(w’) being explained in details.

Terminology. Let us introduce some properties of processes that we will use
extensively. A process is active iff it includes at least one transition, inactive
otherwise. An active process is decomposable into parallel activities iff it is the
parallel composition of two (or more) active processes. If such a decomposition
does not exist, then the process is called connected. A connected process may
involve idle places, but it does not admit disjoint activities. The resources which
are first produced and then consumed (i.e., the ‘inner’ places) are called evolution
places. More formally, a concatenable process C' = (P : K — N, %, £°) is
connected iff the set of transitions of A is non-empty and moreover, for each
pair (¢,t') of transitions of K there exists an undirected path (through the arcs
of the flow relation) connecting ¢ and t'. Process C' is full iff it does not contain
idle (i.e., isolated) places (i.e., Va € Sk, | *%a| + |a*| > 1). Finally, the set of

evolution places of process C'is Ec = {P(a) |a € K, |%| = |a*| = 1}.

3.2 Operational Semantics

A causal firing sequence is essentially a linearization of a concatenable process,
and more than one sequence? can correspond to the same (up to iso) concatenable
process. Thus we consider the equivalence over sequences induced by isomorphic
processes. Moreover, we will notice that, for the kind of sequences under consid-
eration, the label-indexed ordering functions of origins and destinations are no
longer important, so we base the equivalence on the Goltz-Reisig processes.

Definition 3 (Equivalent causal firings). Given a net N, we say that two
causal firing sequences w and w’ are causally equivalent, written w =~ ' iff
pr(w) = (P, °%,£°) and pr(w') = (P’, %', ¢'°) with process P isomorphic to
P’. The equivalence class of w is denoted with [w]~. We use ¢ to range over
equivalence classes. Since relation = respects the initial and final marking, we

extend the notation letting O(£) = O(w) and D(£) = D(w), for £ = [w]x.

Definition4 (Connected step and transaction). Given a ZS net B, letw =
$1-- -8, be a causal firing sequence of the P/T net Ng. The equivalence class
¢ = [w]x is a connected step of B, written O(&)[€)D(), if (i) O(w) and D(w)
are stable markings, and (ii) £,,) C Zp. A connected step sequence is a finite
sequence ug[[€1)uy ... un_1[€n)un and we say that u, is reachable from ug. Fur-
thermore, the connected step € is a connected transaction of B if (iii) pr(w) is
connected, and (iv) pr(w) is full. We denote with =g the set of all the connected
transactions over B. Properties (i)-(iv) impose conditions only over the Goltz-
Reisig process associated with pr(w), and thus are preserved by equivalence =s.

We claim that connected transactions are a good definition for the basic be-
haviours of the systems. Our assertion is supported by the fact that connected
transactions denote atomic computations that cannot be extended further. Atom-
icity follows immediately from the connectedness of the associated processes. The
second argument deserves a more precise explanation. An atomic behaviour can
be extended if there exists a broader atomic behaviour of which the former is a
sub-part. From our viewpoint, the only interaction allowed in a ZS net is given
by the flow of tokens through zero places. Since connected steps and transactions
start and also end in stable markings, it is impossible to hook them in a wider
atomic computation by means of zero tokens. This is very clear for transactions,
because they consume all the needed resources. This is not the case of connected
steps, since it could be possible for some resource to stay idle during the whole
sequence of moves. However this kind of resources are stable and not connected
to the rest of the step, thus, any other activity involving them is intrinsically con-
current w.r.t. the step under consideration. It follows that any wider behaviour
extending a connected step is not atomic (i.e., it can be expressed in terms of
concurrent components).

? Sequences differing in the order in which concurrent firings are executed or for the
way in which equivalent symmetries are performed are identified.

Ezample 4. Let us consider the ZS net M S of Fig. 1. The equivalence class of the
causal firing sequence {a}[t1){b, z}[t4){a, z}[ts){b} is not a connected step since
the prop. (ii) is not satisfied. Class [{2a, c}[t1){a, b, ¢, z}[t5){2b, c}[to){a, 2b, c}]~
is a connected step but not a connected transaction since the constraint (iii) is
not satisfied. The class of {4a}[t1){3a,b, z}[t2){3a, b, 22}[ts){2a, 2b, z}[ts){a, 3b}
is a connected step but not a connected transaction since the prop. (iv) is not sat-
isfied. The class of {ba}[t1)u1[ta)uslta)uslta)uafts)usts)usts)ur[ts){5b}, where
intermediate markings are the obvious ones, is a connected transaction.

3.3 Abstract Semantics

Next, we define an abstract view of the system modelled by a ZS net. Since
transactions rewrite multisets of stable tokens, it is natural to choose a net
as a candidate for the abstraction. Since the ordering of tokens in the pre-set
(post-set) of a transition is useless we should abstract from it. This is already
done via the equivalence classes of causal firing sequences. When restricted to
connected steps, this equivalence intuitively corresponds to limit the symmetries
of permutation firings to be vectors of permutations over the zero places only,
with the assumption that the stable tokens which are produced in a transaction
are not reused during the same transaction. The last statement was also the
basis for the CTph approach.

Ezample 5. Consider the ZS net M S in Fig. 1. Let w = {2a}[t1){a, b, z}[t3){2b},
s = {2a}[p){2a} and s’ = {2b}[p'){2b}, where p and p’ are the symmetries which
swap the two tokens in a and b, resp. The causal sequences w, sw, and ws’ define
the same connected transaction £ = [w]x, but pr(sw) # pr(w) # pr(ws’). If we
represent the connected transaction £ as a transition t of a net, then its preset
(as well as its postset) is an unordered multiset. This means that when ¢ fires it
is impossible to distinguish among the two tokens in b that it produces, and also
among the two tokens in a that it consumes. We can conclude that it makes no
sense to have many different transitions to represent behaviours that we cannot
reproduce at the abstract level. Thus we are forced to identify pr(sw), pr(w),
pr(ws’), and also pr(sws’).

Definition5 (Causal abstract net). Let B = (Sp,Tp; F'p, up; Zp) a ZS net.
Net Ip = (Sp\ZB, =B; I, up), with F'(a, §) = pre(6)(a) and F'(8, a) = post(é)(a),
is the causal abstract net of B, where =g is the set of all the connected transac-
tion of B, and pre(8) and post(8) denote the multisets O(é) and D(§), resp.

Ezample 6. We conclude this section by illustrating the causal abstract net of the
multicasting system. The net Ipss is (partially!) depicted in Fig. 1. Transition
1, creates a new communicating process and it corresponds to [wg]x Wwith wg =
{c}to){a, c}. Similarly ¢} is the equivalence class of the the firing of ¢4 in the
marking {b}. Each of describes a different one-to-i communication, where index
k identifies the copy policy. A generic one-to-z communication can be essentially
described as follows: a firing of ¢; initiates the communication, then the system

executes as many firings of {5 as the number of copies of the message needed
(i.e., 1 — 1 since a message is already present in the buffer), and finally ¢ firings
of t3 synchronize the messages with different active processes. In the I'Tph we
distinguish among tokens in a same marking, which were created by different
firings. In this way we have a one-to-one correspondence among copy policies and
the complete® binary trees with exactly ¢ leaves (we don’t distinguish between
‘left” and ‘right’ children).

For any i, the total number of copy policies can be derived as follows. For
1 = 1 there is only one tree whose root is the unique leaf. If i = 2h + 1 for some
integer h > 0, it follows that one of the subtrees rooted in a child of the root is
a complete binary tree with j < h leaves, while the subtree rooted in the other
child is a complete binary tree with i — j leaves; for any j, we know that there
are c; - ¢;_; possible trees made in this way, thus ¢; = Z?zl cj-ci—j. If i =2h
for some integer h > 0, we adopt an analogous reasoning to deduce that for any
J < h there are ¢; - ¢;_; possible complete binary trees such that exactly j leaves
belongs to one of the subtrees rooted in the children of the root. The case j = h
requires more attention. In fact, if the two subtrees have the same number A of
leaves then there are u;"—-lhll possible ways for choosing them. It follows that
c = c"(czi’ﬁl) + Z?;ll ¢j - Cp—j. Since there are no transitions in M S requiring
2 or more zero token, there are no other transactions.

4 Universal Constructions

The aim of this section is to propose an algebraic characterization of the defini-
tions and the constructions presented in the previous section. To this purpose,
we make use of some elementary concepts of category theory. The first notion
consists of the category of models itself: objects are models and arrows represent
some notion of simulation. The choice of arrows is very informative, since they
complement and in a sense redefine (e.g., isomorphic objects are often identified)
the meaning of models. We define a suitable category dZPetri (where ZS nets
are considered as programs) where net morphisms satisfy an important addi-
tional condition. Then we consider a construction that exhibits an adjunction
from dZPetri to a category ZSCGraph consisting of some kind of machines,
equipped with operations and transitions between states. It is proved that this
adjunction is strictly related to the semantics of ZS nets defined in the previous
section. Our second construction starts from a complex category ZSC of ZS nets
(which is however strictly related to ZSCGraph), having the ordinary category
Petri of P/T nets as a subcategory, and yields a coreflection corresponding
exactly to the construction of the causal abstract net in Def. 5.

4.1 Review of ‘Petri Nets are Monoids’

Petri net theory can be profitably developed within category theory [22, 13, 2].
We follow the approach initiated in [13] (other references are [14, 5, 15, 16]).

® We say that a binary tree is complete if any internal node has exactly two children.

A (place/transition) Petri net is a graph (S®,T,8,01) where the set of
nodes is the free commutative monoid S% over the set of places S (functions
O0u, 01 : T — V are called source and target, resp., and we write ¢ : u — v,
with obvious meaning, to shorten the notation). A Petri net morphism is a graph
morphism h = (f : T — T',9 : S® — S'9) (ie., g(9i(u)) = 9'i(f(u)) for
i =0,1) where g is a monoid homomorphism (this defines the category Petri).

In [14, 5] it has been shown that it is possible to enrich the algebraic structure
of transitions in order to capture some basic constructions on nets. As an ex-
ample,; the forgetful functor from CMonRPetri [14] to Petri has a left adjoint
which associates to each Petri net N its marking graph C[N], which corresponds
to the ordinary operational semantics of N (i.e., its arrows are the step sequences
of N). The objects of CMonRPetri are reflezive Petri commutative monoids
(i.e., Petri nets together with a function id : S — T', where T is a commutative
monoid (7, ®,0) and Jy, 01 and id are monoid homomorphisms), and its arrows
are Petri net morphisms preserving identities and the monoidal structures.

The algebraic structure of process is well captured in [20]. There it is shown
how to associate a free symmetric strict monoidal category (see Appendix A)
F[N] to each net N in such a way that, under two suitable axioms, it character-
izes the concatenable processes of N. This is due to the existence of a left adjoint
functor F : Petri — SSMC? to the forgetful functor # : SSMC® — Petri.
Given a net N the category F[N] has the elements of Sj?, as objects, while its
arrows are generated by the following inference rules

uESJ% t:u—vETN a,b e Sy
idy :u —u€F[N] t:u—vE€F[N] cap:a®b—0bDac F[N]

a:u— v, f:u — v € F[N
a@fB:udu —vdv € F[N

a:u—uv f:v— we F[N]
a; 3 :u — w € F[N]

]
]
modulo the axioms expressing that F[N] is a strict monoidal category, and the
axioms stating that the collection* {CUVU}U,UES% plays the role of the symmetry

natural isomorphism which makes F[N] into a ssmc. This axiomatization will
be useful to shorten the notation in the sketched proof of Th. 16.

Theorem 6. Given a net N, the concatenable processes of N are isomorphic to
the arrows of the category P[N], which is the monoidal quotient of the free ssmc
on N (F[N]) modulo the azioms

Cap = tdags tf a £b€ SN, and (1)

s;t;s' =t if t €Ty, and s,s’ are symmetries. (2)

The previous construction provides an algebraic view of net computations
which is strictly related to a process understanding of the causal behaviour

of a net, but is not functorial. The main problem is that there exist reasonable
morphisms of nets which cannot be extended to a monoidal functor. We illustrate

4 Symmetries cy,» for u,v € SJ% denote any term obtained from cqp for a,b € Sy by
applying recursive rules analogous to axioms (3) given in Th. 11.

below the example presented in [16]. We will show that this kind of morphisms
can be avoided in the category of ZS nets, our choice being justified by the
necessity to preserve atomic behaviours through morphisms.

Ezample 7. Consider the nets N and N’ pictured below and the net morphism
f:N— N'st. f(t;) =1, Y=2d', f(b) =¥ and f(c) = ¢ for i =0, 1.

]]
tD tl

S

Morphism f cannot be extended to a functor P[f] : P[N] — P[N']. In fact,
supposing that such an extension F' exists, then F(tg ® t1) = F(to) ® F(t1) =
t, @t} by the monoidality of F. Since tg®t; = t1 ®t¢ in P[N], then t{®t] = | ®t]
which is impossible, as the two expressions denote different processes in P[N'].

4.2 Operational Semantics as Adjunction

Definition 7 (Category dZPetri). A ZS net is a Petri net where the set of
places S = LU Z is partitioned into stable and zero places. A ZS net morphism
is a Petri net morphism (f,¢9) : N — N’ where homomorphism g preserves
partitioning of places (i.e., if a € Z then g(a) € Z'® and if a € S\ Z then
g(a) € (S"\ Z')?) and satisfies the additional condition of mapping zero places
into pairwise disjoint (non-empty) zero markings (disjoint image property). We
call disjoint any morphism of this kind. This defines the category dZPetri.

Since SP is a free commutative monoid we may represent the set of nodes of
a ZS net as L% x Z%9 and ZS net morphisms as triples (f, g, gz), where g1, and
gz are monoid homomorphisms on the monoids of stable and zero places, resp.

Ezample 8. The graph corresponding to the ZS net M S defined in Fig. 1 has the
following set of arcs: Tars = {to : (¢,0) — (a B ¢,0),t1 : (a,0) — (b, 2),12
(0,2) — (0,22),t3 : (a,z) — (b,0),t4 : (b,0) — (a,0)}.

Disjoint morphisms play a very important role here. If we restrict to consider
disjoint morphisms only, then we avoid the awkward situation arising from Ex. 7.
Moreover, if we identified two different zero places via a (non-disjoint) morphism
then the behaviour of the abstract model might dramatically change. Since we
use zero places to specify a synchronization mechanism, it is important to ensure
that this mechanism is always preserved.

The next definition introduces a category of more structured models, which
is reminiscent of the constructions both of marking graphs and free ssmc’s.

Definition 8 (Category ZSCGraph). A ZS causal graph E = (LU Z)®, (T,
®, 0, id, x), 0g, 01) is both a ZS net and a reflexive Petri monoid. In addition,
it comes equipped with a partial function _* _ called horizontal composition:

a:(u,z) — (v,y), B:(v,y) — (¥v',¥)
axf:(udu,z) — (v, y)

and a collection of horizontal swappings {ezy : (0, 2@ y) — (0, y D)}z yezeo.
Horizontal composition is associative and has identities id(g ;) for any z € 79,
The monoidal operator _ ® _ is functorial w.r.t. horizontal composition, and
the horizontal naturality axiom ez o * (f @ @) = (o ®) * ey, holds for any
a:(u,z) — (v,y)and B : (v, 2") — (v, y'). Moreover, the following coherence
axioms are satisfied for any z,y,y € Z%: e, * €y, = td(0 2y, and ez ygyr =
(€xy @ id(oyn) * (id(0,y) @ €y). A morphism h between two ZS causal graphs
E and E’ is a monoidal disjoint morphism which in addition respects horizontal
composition and swappings This defines the category ZSCGraph.

Horizontal composition is the key feature of our approach. It behaves like
sequential composition on zero places and like the ordinary parallel composition
on stable places. This is necessary to avoid the construction of steps which
reuse stable tokens. Swappings are used to specify the causality relation among
produced and consumed zero tokens.

Proposition9. If a : (u,0) — (v,0) and &' : (v/,0) — (v, 0) are two transi-
tions of a ZS causal graph then a @ o' =o' @ @ and ax o’ = a @ o'.

Corollary 10. The full subcategory of ZSCGraph whose objects are Petri nets
(i.e., Z =0) is isomorphic to CMonRPetri.

Theorem 11. The obvious forgetful functor U : ZSCGraph — dZPetri has
a left adjoint CG : dZPetri — ZSCGraph, which maps a 7S net B into the
ZS causal graph CG[B], whose arrows are generated by the following inference
rules

t:(u,z) — (v,y) €15 a:(u,z) — (v,y), B: (v, 3') — (v',y') € CG[B]
t:(u,z) — (v,y) € CG[B] a@fB:(udu,zdz')— (v, ydDy') € CG[B]
(u,z) € LE x 2% z,2' € Zp
id(“@) : (u, ‘T) - (‘u, I) € CG[B] dzs (0, z® -T) — (0, z @D Z) € CG[B]
a:(u,z) — (v,y), B: (v, y) — (v, 2) € CG[B]
axf:(udu',z) — (v® ', z) € CG[B]
modulo the azioms expressing that the arrows form a (strict) monoid with unit
id(g 0y, and that horizontal composition _* _ is associative and has identities
id(g), the functoriality aziom for the tensor product, and the axioms expressing
that the collection of swappings dy, plays the role of the ‘horizontal’ natural
isomorphism: dy o % (B Q@) = (@ B) *dy yr, and d, . xd,, = id, g, for
any arrows « : (u,z) — (v,y),0 : (W', 2") — (V',y') € CG[B], and for any
z,72' € Zp, where dy for z,y € Z%) denotes any term obtained from the basic
symmetries by applying recursively the rules:

dO,:c = Zd(O,:c) - d:c,O:
dz@x,y = (id(oyz) 034 dxyy) * (dzyy ® id(ow)), and (3)
dx,y@z == (d:c,y ® Zd(O,z)) * (Zd(O,y) ® d:c,z)~

Proof. (Sketch). Tt follows immediately from the definition that CG[B] is a ZS
causal graph. We need to show that it is the free ZS causal graph on B. Let
np : B — U[CG[B]] the disjoint ZS net morphism which is the identity on places
and the obvious injection on transitions. We show that np is universal, i.e., for
any ZS causal graph £ and for any disjoint ZS net morphism h = (f,9r,9z) :
B — U[E], there exists a unique ZS causal graph morphism k : CG[B] — E
such that h = np;U[k] (in dZPetri). Thus, morphisms k£ and h must agree on the
generators of CG[B] and the extension of k to tensor and horizontal composition
is uniquely determined by its definition on the generators. The proof can be
completed just showing that k& preserves the axioms which generate CG[B].

The notion of adjunction between a category with ‘more structure’ (ZSCGraph
in our case), and a similar category but with ‘less structure’ (dZPetri) is useful
to characterize natural constructions. In fact, the left-adjoint to the usually ob-
vious forgetful functor which deletes the ‘extra’ structure is unique (up to iso)
and represents the best possible way for adding this structure.

Theorem 12. When restricted to P/T nets, funcior CG coincides with C.

The previous theorem shows that the algebraic semantics of ZS nets is an
extension of the ordinary semantics of P/T nets. Unfortunately, the ZS causal
graph CG[B] is still too concrete w.r.t. the operational semantics of ZS nets.
Thus, we need two more axioms (analogous to axioms (1) and (2) of Th. 6).

Definition13. Given a ZS net B, let CG[B]/¥ be the quotient of the free ZS
causal graph CG[B] generated by B in ZSCGraph modulo the axioms

dz,z’ - id(o,z@zl) if z ;é ZI € ZB’ and (4)
d+txd =t if t€Tp, and d,d' are swappings. (5)

The quotient CG[B]/¥ is s.t. for any ZS causal graph morphism k : CG[B] —
E respecting axioms (4) and (5) (i.e., k(d. .1) = id(o r(z)ar(z)), and k(dxtxd') =
k(1)), there is a unique arrow kg such that k = Qu; kv (in ZSCGraph), where
Qv : CG[B] — CG[B]/¥ is the obvious morphism associated to the (least)
congruence generated by the imposed axiomatization.

Proposition14. For any disjoint morphism h : B — B’ in dZPetri there

erists a unique extension h : CG[B]/W — CG[B']/¥ of h in ZSCGraph.
Proof. Take k = Q} o CG[h] : CG[B] — CG[B']/¥. Morphism k respects axioms

(4) and (5) (because h is disjoint and maps transitions to transitions), thus kg
is uniquely determined. Then take h = kg .

Ezample 9. Let M S be the ZS net of our running example whose set of arcs is
defined in Ex. 8. For instance the arrow ¢, * t3 € CG[M S]/¥ has source (2a,0)
and target (2b,0). Instead, notice that the arrow (t; ® id(4,0) * (id(3,0) @ 3) goes
from (3a@®b, 0) to (a®3b, 0). As another example, the following expressions are all
identified in CG[M S]/¥, i.e., they all denote the same arrow: ¢ *ta*((2®13)*(t3®
t3) = tl *tg*(tz ®Zd(073))*(t3®t3 ®t3) = tl *tg *dzyz*(tg ®Zd(073))*(t3 ®t3 ®t3) =
tl * tg * (Zd(o,z) (024 tz) * (t3 ® t3 ® t3) = tl * tg * (t3 024 tz) * (t3 024 t3).

Definition15 (Prime Arrow). An arrow « : (u,0) — (v,0) of a ZS causal
graph E is prime iff @ cannot be expressed as the monoidal composition of
non-trivial arrows (i.e., A3,y € H, 3 # id(o,0) # 7 such that a = F® 7).

Ezample 10. In our running example, some prime arrows of CG[M S] are tg, t1 %3,
and ty * g * (12 @ t2) * (I3 @ t2 @ t3 @ t3) * (I3 @ t3). As a counterexample, the
arrow (11 @ t1) * d, , * (t2 ® t3) * (t3 @ t3) is not prime.

Theorem 16. Given a ZS net B, there is a one-to-one correspondence between
arrows « : (u,0) — (v,0) € CG[B]/¥ and the connected steps of B. Moreover, if
such an arrow is prime (and is not an identity) then the corresponding connected
step is a connected transaction.

Proof. (Sketch). For any arrow 3 of CG[B]/¥ we define inductively on the struc-
ture of 3 a concatenable process C(8) of Np as follows: C(t) = t, C(id) =
idy @ idgy, C(d, ;) = ¢, C(F @ p") = C(F) @ C(F") and C(F * §") =
CBYu);(veC(p)if 7 (u,z) — (v,y) and B : (v, 2") — (v,). It
can be verified that any different expression denoting [yields the same result.
Moreover, if a : (u,0) — (v,0) € CG[B]/¥ then the process obtained from
C(a) by forgetting the label-indexed ordering functions of origins and destina-
tions denotes a connected step of B.

Conversely, let £ = [w]x (for some causal firing sequence w) be a connected
step. The concatenable process pr(w) of Np can be denoted algebraically as the
sequential and parallel composition of transitions, identities and symmetries.
Moreover, we can take an equivalent process C without stable symmetries; i.e.,
C' can be expressed as a1;...;a, where a; = 3; Q@ u; @ x; with u; € L%, x; € Zg
and §; € T U{ck: :}2ez5 ke Then take of = of % ... x !, where of = 8] @ x;
and 8 = p; it §; € Tp and B} = dy, . if §; = cp.,, for some zero place z, and
integer k. Eventually, « = o/ ® u’ where v’ is the multiset of idle tokens.

This result states the correspondence among algebraic and operational se-
mantics.

4.3 Abstract Semantics as Coreflection

Finally, we present the universal construction of the abstract semantics of ZS
nets. We make use of a category ZSC whose objects are ZS nets and whose mor-
phisms allow for the refinement of a transition into a connected transaction. This
construction is somehow reminiscent of the construction of ImplPetriin [14].

Definition17. Given ZS net B, a causal abstract transition of a CG[B]/¥ is
either a prime arrow of CG[B]/¥ or a transition of B. Given two ZS net B and
B', a causal refinement morphism h : B — B’ is a disjoint ZS net morphism
h=(f,9r,9z) from B to (the image through the forgetful functor of) CG[B']/¥
such that function f maps transitions into causal abstract transitions.

Since morphism A is disjoint, a transition can be refined into a transaction
iff both its preset and its postset are stable. Transition involving zero places can
only be mapped to transitions.

Lemma18. Given a causal refinement morphism h : B — B', it uniquely
extends to a morphisms h : CG[B]/W — CG[B']/¥ in ZSCGraph, which pre-
serves prime arrows.

Definition 19 (Category ZSC). The category ZSC has ZS nets as objects
and causal refinement morphisms as arrows, their composition being defined
through the extension in ZSCGraph given by Lemma 18.

Theorem 20. Category Petri is embedded in ZSC fully and faithfully as a core-
flective subcategory. Furthermore, the right adjoint of the coreflection T[] maps
every 7S net B into its causal abstract net Ip (see Def. 5).

Proof. (Sketch). The connected transactions (i.e. prime arrows, by Theorem 16)
of a P/T net are all and only its transitions. Thus a causal refinement morphism
h : N — N’ maps transitions into transitions. Next we want to prove that
the obvious inclusion functor from Petri to ZSC has a right adjoint Z[] :
ZSC — Petri such that 7[] maps each ZS net B into its causal abstract
net Ig. We verify that Z[] extends to a functor. Consider a causal refinement
morphism h = (f,gr,92) : B — B'. Let h : CG[B]/¥ — CG[B']/¥ be the
unique extension of h in ZSCGraph. Morphism h preserves prime arrows (by
Lemma 18). Then we define Z[h] = (f’,g) with f'(¢) = 71(5) for any £ € =g
and g(a) = gr(a) for any @ € Lp. It follows that the unit component ny of the
adjunction is the identity and the counit component ¢g maps each transition of
the abstract net into the appropriate connected transaction.

Category ZSC can be thought to represent the operational models, while
Petri defines ‘abstract’ models. The functor Z : ZSC — Petri that maps each
7S net B onto its abstract P/T net Ip, is the right adjoint to the inclusion
functor. For every ZS net B there is a unique arrow e¢p : Z[B] — B with
the universal property that, given any abstract model N in Petri, for every
arrow h : N — B there is a unique arrow h’ : N — Z[B] with h = h’; eg. This
situation is ideal from a semantic point of view. In fact Z[B] can be understood as
an abstraction of model B (e.g. its behaviour), with the additional advantage of
being at the same time a model itself. The universal property above means that if
we observe models from an abstract point of view (i.e. via morphisms originating
from objects in Petri), then there is an isomorphism (via left composition with
ep) between observations of B and observations of its abstract counterpart Z[B].
Thus in a sense, seen from Petri, B is the same as Ig.

5 Conclusion

We have proposed ZS nets as a model which offers the basis for a uniform
approach to concurrent language translations. E.g., CCS-style languages may be

easily modelled by representing the channels as zero places, in the style of our
multicasting example. In this paper we have based our constructions on the so-
called individual token philosophy [9]. Correspondingly, our categorical models
rely on monoidal graphs equipped with an operation of horizontal composition
together with a collection of special transitions called swappings to represent
the permutations of tokens, along the style of [5]. An alternative and simpler
approach corresponds to the so-called collective token philosophy as illustrated in
[4]. We noticed that, whatever the adopted philosophy is, an identical restriction,
called ‘disjoint image property’, must be required for the arrows of categories
ZSC and ZSN (of [4]), which are used to define the abstract semantics. However,
depending on the chosen approach — I'Tph vs CTph — two notion of transactions
may be defined, each leading to different operational and abstract models. This
should help to clarify the distinction between the two philosophies also from a
pragmatic perspective rather than just from an academic viewpoint.

As a final remark, symmetric, strict monoidal double categories [3] seem to
offer an alternative categorical characterization for the semantics of ZS nets. In
this sense a ZS net could be viewed as a simple instance of a tile rewrite system
[3, 7] where basic tiles are net transitions, and the horizontal composition of
tiles corresponds to composition _* _. The vertical composition of tiles would
essentially build causal step sequences.

References

1. E. Best, R. Devillers and J. Hall. The Box Calculus: A New Causal Algebra with
Multi-label Communication. In Advances in Petri Nets ‘92, LNCS, n. 609, 21-69.
Springer-Verlag, 1992.

2. C. Brown and D. Gurr. A Categorical Linear Framework for Petri Nets. In Pro-
ceedings of the 5th LICS Symposium, 208-218, 1990.

3. R. Bruni, J. Meseguer, and U. Montanari. Process and Term Tile Logic. Technical
Report, SRI International, to appear.

4. R. Bruni and U. Montanari. Zero-Safe Nets, or Transition Synchronization Made
Simple. In Proceedings of EXPRESS’97, ENTCS, Vol.7, 1997.

5. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the Algebra of Net Com-
putations and Processes. Acta Informatica, 33(7):641-667, October 1996.

6. P. Degano, R. De Nicola, and U. Montanari. A Distributed Operational Semantics
for CCS based on Condition/Event Systems. Acta Informatica, 26:59-91, 1988.

7. F. Gadducci and U. Montanari. The Tile Model In: Gordon Plotkin, Colin Stir-
ling, and Mads Tofte, Eds., Proof, Language and Interaction: Essays in Honour of
Robin Milner MIT Press, to appear.

8. R. Gorrieri and U. Montanari. On the Implementation of Concurrent Calculi into
Net Calculi: Two Case Studies TCS 141, 1-2, 1995, 195-252.

9. R.J. Van Glabbeek and G.D. Plotkin. Configuration Structures. In D. Kozen,
editor, Proceedings of the 10th LICS Symposium, IEFEF, pages 199-209, 1995.

10. R. Van Glabbeek and F. Vaandrager. Petri Net Models for Algebraic Theories of
Concurrency. In Proc. of PARLE, LNCS, n. 259, 224-242. Springer-Verlag, 1987.

11. U. Goltz and W. Reisig. The Non-Sequential Behaviour of Petri Nets. Information
and Computation, 57:125-147, 1983.

12. S. MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.

13. J. Meseguer and U. Montanari Petri Nets are Monoids: A New Algebraic Founda-
tions for Net Theory. Proc. 8rd LICS Symposium, IEEE 1988:155-164.

14. J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Compu-
tation, 88(2):105-155, October 1990.

15. J. Meseguer, U. Montanari, and V. Sassone. Process versus Unfolding Semantics
for Place/Transition Petri Nets. TCS, Volume 153, issue 1-2, (1996) pages 171-210.

16. J. Meseguer, U. Montanari, and V. Sassone. Representation Theorems for Petri
Nets. Festschrift in honor of Prof. Wilfried Brauer to appear.

17. E.R. Olderog. Operational Petri Net Semantics for CCSP. In G. Rozenberg, edi-
tor, Advances in Petri Nets ‘87, LNCS, n. 266, 196-223. Springer-Verlag, 1987.

18. W. Reisig. Petri Nets. Springer-Verlag, 1985.

19. G. Ristori. Modelling Systems with Shared Resources via Petri Nets . PhD thesis
TD 05/94, Department of Computer Science, University of Pisa, 1994.

20. V. Sassone. An Axiomatization of the Algebra of Petri Net Concatenable Pro-
cesses. Theoretical Computer Science, vol. 170, n.1-2, pp 277-296, 1996.

21. G. Winskel. Event Structure Semantics of CCS and Related Languages. In Pro-
ceedings of ICALP ‘82, LNCS, n. 140, pages 561-567. Springer-Verlag, 1982.

22. G. Winskel. Petri Nets, Algebras, Morphisms and Compositionality. Information
and Computation, 72:197-238, 1987.

A Symmetric, Strict Monoidal Categories

A symmetric, strict monoidal category [12], ssmc for short, is a quadruple (C, ®, €, y)
where C is the underlying category (with composition _;_ and identity id, for
each object z), functor ® : C x C — C is the tensor product, object e of C is
called the unit object, the diagrams

CXCXC%CXC c (17€)CXC<671) c
1X®¢/ \1’® \¢/
1 1
CXCT>C C

commute (where (_,_) denotes the pairing of functors induced by the cartesian
product of categories), and natural transformation v : ; ® 2 = 2 ® 1 is an
isomorphism called symmetry satisfying the Kelly-MacLane coherence azioms
Yeay,: = (ide @ Yy 2); (Yo,- @ idy), and vz 457y « = idegy (for any objects z, y
and z). A symmetric strict monoidal functor is a functor Fig : C — C’ which
preserves the monoidal structure and the symmetries.

Let SSMC be the category of symmetric strict monoidal categories and
symmetric strict monoidal functors. We denote with SSMC® the full subcat-
egory of SSMC consisting of the monoidal categories whose objects form free
commutative monoids.

