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Abstract. Recently there has been a growing interest towards algebraic
structures that are able to express formalisms different from the stan-
dard, tree-like presentation of terms. Many of these approaches reveal a
specific interest towards their application in the “distributed and con-
current systems” field, but an exhaustive comparison between them is
difficult because their presentations can be quite dissimilar. This work
is a first step towards a unified view, which is able to recast all those
formalisms into a more general one, where they can be easily compared.
We introduce a general schema for describing a characteristic normal
form for many algebraic formalisms, and show that those normal forms
can be thought of as arrows of suitable concrete monoidal categories.

1 Introduction

Since models of computation based on the notion of free and bound names
are widespread, the notion of name sharing is essential for several applications
ranging from logic programming, A-calculus, functional programming and pro-
cess algebra with restriction (or name hiding mechanisms) to mobile processes
(where local names may be communicated to the external world, thus becoming
global names). We can think of names as links to communication channels, or
to objects, or to locations, or to remote shared resources, or also to some cause
in the event history of the system. In general, names can be freely a-converted,
because the only important information they offer is sharing.

An informal “wire and box notation” gives an intuitive understanding of the
name sharing mechanism, and of the role played by auziliary term-structure:
Wires represents variables and the operators of the signature are denoted by
boxes labeled with the corresponding operation symbols. For instance, the term
f(z1,9(z2), h(z1,a)) over the signature ¥ = {a:0 — 1,9:1 — 1,h:2 —
1,f :3 — 1} and variables z;, 2, admits the graphical representation
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Notice that wire duplications (e.g., of x1) and wires swapping (e.g., of 22 and a
copy of 1) are auxiliary, in the sense that they belong to any wire and box model,
independently from the underlying signature. The properties of the auxiliary
structure are far from trivial and could lead to somehow misleading system
representations, when their interpretation is not well formalized. For example,
let us consider the wire and box diagrams ¢; and c¢; in the picture below:
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In a value-oriented interpretation, both ¢; and ¢y yield the same term h(a,a).
Instead, in a reference-oriented interpretation, ¢; and ¢y define different situa-
tions: in the former the two arguments of the h operator are uncorrelated, while
in the latter they point to the same shared location.

Term graphs [32] are a reference-oriented generalization of the ordinary
(value-oriented) notion of term, where the sharing of sub-terms can be speci-
fied also for closed (i.e., without variables) terms.! The distinction is made pre-
cise by the axiomatization of algebraic theories: Terms and term graphs differ
for two axioms, representing, in a categorical setting, the naturality of transfor-
mations for copying and discharging arguments [8]. Many other mathematical
structures have been proposed, for expressing formalisms different from the or-
dinary tree-like presentation of terms. They range from the flownomial calculus
of Stefanescu [6,34], to the bicategories of processes of Walters [18,19], to the
pre-monoidal categories of Power and Robinson [28], to the action structures of
Milner [24], to the interaction categories of Abramsky [1], to the sharing graphs
of Hasegawa [16] and to the gs-monoidal categories of Corradini and Gadducci [7,
8], just to mention a few (see also [9,11,15,29]). All these structures can be seen
as enrichments of symmetric monoidal categories, which give the basis for the
description of a distributed environment in terms of a wire and box diagram.

We propose a schema for describing normal forms for this kind of structures,
generalizing the one in [12] (and that bears some similarity to the equational
term graph of [2]), thus obtaining a universal framework where each structure
finds its unique standard representation. We describe distributed spaces as sets
of assignments over sets of variables, distinguishing between four different kinds
of assignment, each representing a basic functionality of the space, namely input
and output interfaces, basic modules, and connections. Changing the constraints
on the admissible connections is the key to move between formalisms. We call
J-spaces the distributed spaces over a signature X', and show that the classes of
J-spaces we are interested in always form a symmetric monoidal category. We
then establish a sort of triangular correspondence between various formalisms
proposed in the literature (usually in a set-theoretical way), different classes of
J-spaces and suitable enriched symmetric monoidal categories.

! Terms may share variables, but shared sub-terms of a closed term can be freely
copied, always yielding an equivalent term.



The structure of the paper is as follows: In Section 2 we give a categorical ac-
count of the various formalisms presented in the literature that we want to embed
in our concrete normal-form representation. All of them are suitably enriched
symmetric monoidal categories. In section 3 we formally define Y-spaces, and
equip them with two operations of parallel and sequential composition, yield-
ing a monoidal category structure. In Section 4 we show how it is possible to
have a normal form representation for net processes, relations, labeled partial
orders, partitions, and contextual nets using suitable classes of X-spaces. We
want to remark that all the classes under consideration are characterized by
simple restrictions on the admissible links of X-spaces. In Section 5 we draw
some conclusion and sketch a promising future research aimed at the integration
of the mathematical structures considered in this paper via an implementation
of their uniform normal form representations offered by X-spaces.

2 A categorical view for different formalisms

We recall here a few categorical definitions, which allow to recast the usual notion
of term over a signature in a more general setting. Moreover, the progressive
enrichment of a basic theory with different auxiliary mathematical constructors
generates a great variety of different model classes, where the usual notions of
relation, partial order, partition, and many other can be represented.

Definition 1 (Signatures). A many-sorted hyper-signature X over a set Sy
of sorts is a family {Ew,w’}w,w’ES*E of sets of operators. If Sy, is a singleton, we
denote the hyper-signature X by the family { Xy m}n,men.

We usually omit the prefix “hyper”. When it is clear from the context that
a set S is the underlying set of sorts of a signature X', we drop the subscript _y .

Definition 2 (Graphs). A graph G is a 4-tuple (Og, Ag, 0o, 01), where Og is
the set of objects, Ag is the set of arrows, and 8y, 0 : Ag — Og are functions,
called respectively source and target. We use the standard notation f : a — b
to denote an arrow f with source a and target b. A graph G is with pairing if
Og is a monoid.

A many-sorted signature X' over S is a graph with pairing G5, where its
objects are strings on S (Og; = S*, string concatenation _-_ yields the monoidal
operator, and the empty string € is the neutral element), and its edges are the
operators of the signature (i.e., f:w — w' € Ag, iff f € X, ).

A chain of structural enrichments enhances the expressiveness of different
classes of models, e.g., the usual algebraic notion of terms over a signature.
However, we are interested in weaker theories, where name sharing finds a nat-
ural embedding. The first enrichment is common to all the formalisms we will
consider, and introduces the sequential and parallel compositions between arrows
together with all the arrows necessary for arbitrary permutations of objects (cor-
responding to the swappings of wires in the wire and box presentation). Then,
the models of the resulting symmetric theory of X are just suitable symmetric
monoidal categories [21] (i.e., also equipped with the X-structure).



Definition 3 (Symmetric Monoidal Categories). A monoidal category is
a triple {C,_ ® _,e), where C is the underlying category, . ® _: C x C — C is
a functor satisfying the associative low (t1 ® t2) ® t3 = t1 Q (t2 ® t3), and e
is an object of C satisfying the identity law t ® e = t = e ® t, for all arrows
t,t1,t2,t3 € C. A symmetric monoidal category is a 4-tuple (C,_® _,e,v), where
(C,-® _,e) is a monoidal category, and v : 1 ® 2= 2® 1 :CxC —Cisa
natural transformation satisfying the coherence arioms
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A functor F : C — C' between two (symmetric) monoidal categories is called
monoidal if F(t; ® t2) = F(t1) ® F(t2), and F(e) = €'; it is symmetric if
F(ep) = 'y}(a)’F(b). We denote by SMCat the category of symmetric functors.

Among the uses of symmetric monoidal categories as a semantics framework,
we recall the characterization of concatenable processes for Petri nets in [10], and
the description of a basic network algebra for data-flows in [3, 34].

2.1 Enriching the Monoidal Structure

The constructive definition of algebraic theories [20] as enriched monoidal cat-
egories dates back to the mid-Seventies [17,27], even if it has received a new
stream of attention in these days. In our opinion, it separates very nicely the
auxiliary structure from the X-structure (better than the ordinary description
involving the meta-operation of substitution). Moreover, the naturality axioms
for duplicator and discharger express a controlled form of data-sharing and data-
garbaging. If these axioms are missing, then the corresponding theory, called gs-
monoidal, is the natural framework for the representation of term-graphs rather
than terms, as shown in [8].

Definition 4 (Share and GS-Monoidal Categories). A share category is
a 5-tuple (C,_® _,e,v,V), where {C,_Q _,e,7) is a symmetric monoidal category
and V : 1 = 4 ® 4 : C — C is a transformation such that V. = e, and
satisfying the coherence axioms (the first two diagrams express a sort of “output”
associativity and commutativity for the duplicator, and the third diagram tells
how the duplicator of a composed object a ® b can be obtained by composing the
duplicators of the subcomponents)
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A share functor F' : C — C' between two share categories is a symmetric functor
such that FI(V,) = VQ«*(@)' We denote by ShCat the category of share functors.



A gs-monoidal category is a 6-tuple (C,_®_,e,v,V, 1), where (C,_® _,e,7y, V)
is a share category, and!:1 = e :C — C is a natural transformation such that
le = e and satisfying the coherence axioms (the first diagram says that creating
two links to a and then discharging one of them just yields the identity on a, the
second diagram expresses the monoidality of the discharger)
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A gs-monoidal functor F' : C — C' is a share functor such that F(!,)

_
TF(a)
We denote by GSCat the category of gs-monoidal functors.

Interesting applications often require the presence of the categorical opposite
of duplicators, which may be used to express a sort of data-matching. Analo-
gously, co-dischargers are introduced to represent the explicit creation of data.
Several combinations are then possible, where only some of the operators are
considered, and their mixed compositions are differently axiomatized, ranging
from the match-share categories of [14] to the dgs-monoidal categories of [13,
18]. Here we just sketch a survey of the categorical framework, and briefly com-
ment their role in the literature and the main differences between similar models.
We start with what we call a r-monoidal category: One of the various extensions,
albeit with a different name, proposed in [5,33, 34].

Definition 5 (R-Monoidal Categories). A r-monoidal category is an 8-tuple
{C,-®_,e,v,V,, A 1) such that (C,-®_,e,v,V,!) and {C°P, _®%e, P, A°P {°P)
are both gs-monoidal categories, and satisfying the additional coherence axioms
(expressing the interplay between the gs and co-gs structures)
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A r-monoidal functor F : C — C' is a gs-monoidal functor such that also F°P
is so. We denote by RMCat the category of r-monoidal functors.

The axioms we considered naturally embed the properties of relations, and
the (partial) algebraic structure of r-monoidal categories yields a useful mathe-
matical tool for their representation [5]. A stronger version of the axiom involving
the composite A;V is the basis for a different family of structures. In a certain
sense, the stronger axiom establishes that duplicators and co-duplicators embed
a sort of transitive and symmetric closure of the relation, i.e., it does not matter
how two objects are connected, but just the fact that they are connected.



Definition 6 (Match-Share Categories). A match-share category is a 6-
tuple (C,_® _,e,7,V,A) such that (C,-® _,e,7v,V) and {C°P,_ ®°% e,~v°P, A°P)
are both share categories, and satisfying the additional coherence axioms
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A match-share functor F : C — C' is a share functor such that also F°P is so.
We denote by MShCat the category of match-share functors.

Match-share categories have been introduced in [14], and used to embed the
algebraic properties of processes for contextual nets [25]. They are the basis for
a class of categories where suitable models of partition-based structures can live.

Definition 7 (Part-Monoidal Categories). A part-monoidal category is
an 8-tuple (C,- ® _,e,v,V,, A, f) such that both (C,_ ® _je,v,V,!) and
(CoP,_ Q%P e,y°P, A% {°P) are gs-monoidal categories, {C,-® _,e,v,V,A) is a
match-share category, and satisfying the additional coherence axiom
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A part-monoidal functor F : C — C' is a gs-monoidal functor such that also
F°P js so. We denote by PartMCat the category of part-monoidal functors.

Differently from the previous structures, part-monoidal categories, as far as
we know, has never been explicitly analyzed in the literature. The leading idea is
that a generic arrow from a1 ® - - -®a, t0 b1 ®- - -Qb,,, (where the a;’s and the b;‘s
are “basic” objects) represents some kind of partition of {ay,...,an, b1, ..., bm }.
For example, the axiom A,;!, =!,®!, of r-monoidal categories does not hold
for partitions, because in the partition Ag;!, both a sources belong to the same
class, whereas in partition !,®!, they belong to disjoint classes.

3 The general model: Y-spaces

We introduce now a concrete representation for the several formalisms discussed
in the previous sections. It can be thought of as a normal form presentation of
the less formal wire and box diagrams illustrated in the introduction. Basically,
we split the operative components from the logical connectivity of a diagram.
The typical operative components of a distributed system are the input and
output interfaces, and the basic functional modules (n-to-m transforming black-
boxes which give the building blocks of the wire and box notation). The way these
components can interact constitutes the logical part of the system. Suitable link-
channels can faithfully express this connectivity-related aspect. As a matter of
notation, we write z : s to say that the variable z has sort s.



Definition 8 (X-Spaces). Let X be a signature. A X-assignment over a bipar-
tite set Z = XY (X is called the set of names, and Y the set of results) of
typed variables is any of the following sentences, where the x’s, the y’s and the
z’s range over X, Y and Z respectively.

Generator: zi1...Tp |—f>>y1---ym , where x; : 8; fori = 1..n, y; : 59 for 3 =
l..m, and f € X, with w = 81...8,, and w' = §}...s),,
Link: 21+ 22, where z1 : s and 23 : s,
Input: O+ yy...y,, where n >0,
Output: z1...Zn+—= 0O, where n > 0.
We say that a variable z is used (respectively assigned) if it appears in the left-
hand (respectively right-hand) side of a sentence.
A distributed space over X is a set G of Y-assignments such that

1. G contains exactly one input sentence O+ a;,(G), denoted by in(G),
2. G contains ezxactly one output sentence Qoyut(G) = 0O, denoted by out(G),

3. all the variables in in(Q), out(G) and gen(G) = { T1.--Zn Py € G}
are different,

4. all the variables in link(G) = { 21— 22 € G} occur also in either gen(G),
in(G) or out(G).

Given a distributed space G, its flow relation Fg is the pre-order induced over
variables by (the reflexive and transitive closure of) the set of sentences; its
link-flow relation LFg is the pre-order induced over variables by the set of links.

We call X-spaces the equivalence classes of distributed spaces over X up to
a-conversion. Abusing the notation, we denote a generic 3 -space by the same
symbols of the distributed spaces in the equivalence class it represents.

X -spaces yield a monoidal category. Indeed, let G be any X-space, and let
st : V* — S* be the function mapping a list of typed variables into the corre-
sponding list of types, e.g. st(z1...25,) = 81...8, if 2; : s; for i = 1...n. The objects
are the elements of S* (the free monoid over the set of sorts S), while each G is
viewed as an arrow G : st(@n(G)) — st(out (G))-

The parallel composition of two X-space G and G is always defined, yielding
as a result the Y-space G; ® G2 that can be constructed as follows: Choose two
distributed spaces in the classes of G; and G5 such that their underlying sets of
variables are disjoint (we can assume without loss of generality that G1 and G,
are already variable-disjoint), then take the following distributed space

ain(G1 ® G2) = ajn(G1) - ain(Ga),
Qout(G1 ® Ga) = Aout(G1) - Aout(G2),
gen(G1 ® G2) = gen(G1) U gen(G2),
link(G1 ® G3) = link(G1) U link(G3),
where _ - _ denotes ordinary string concatenation.

Proposition 1. Let G1, G2 be two X-spaces. Then G1 ® G2 is a X'-space.



The empty X-space Ge = { O+ €, e O}, where € denotes the empty
list of variables, is the unit element for parallel composition.

Proposition 2. Let G be a X-space. Then GG, =G =G. QG.

The sequential composition of G; and Gs is defined if and only if
st(aout(G1)) = st(ain(G2)). As before, we assume G; and G to be variable-
disjoint and take the distributed space G1; G2 defined by

azn(Gl; G2) = azn(Gl);
Qout (Gly G2) = Qout (GQ);
gen(G1; Ga) = gen(G1) U gen(Ga),

lmk(Gl, Gg) = [lmk(Gl)/aout(Gl)][lmk(Gg)/am(Gz)],

where the composition of links is defined as

[L]_/X][LQ/Y] = I]_ UI2UFfw UFbw UD1UD2

(but in all the cases we consider, except for partitions in Section 4.5 and Section
4.6, the three sets Fy,, D1, and Dy are empty), and if we denote by X[i] the
i-th variable of the list X, the formal definition of each subset of links is

L ={z+—2 €L},

I, ={z2+—2z, € L,},
Fro ={%2—2 | 21— X[i] € Ly, Y[i]— 22 € Ly},
Foy={22r—=2 | 22+=YTi] € Ly, X[i]==2 € L1},

Dy ={z+2z | 2a+=X[i], X[j]—=2] € Ly, Y[i]—Y][j] € L2}
Dy={z2r=2z, | 22r=YTi], Y[j]— 2§ € Lo, X[i]— X[j] € L1}.

with 21,2] € X and 23,25 ¢ Y.

Intuitively, variables in ay:(G1) and a;,(G2) are removed from the composi-
tion G1; G2, but their ingoing and outgoing links are propagated to the remaining
variables, with respect to the matching oyt (G1)[i] ¢ @in(G2)[i], for i = 1...n, of
the variables in the “merged” interfaces of G; and G,. Therefore, link(G1;G2)
contains: (1) the internal links I; of Gy, and I of Ga, i.e. those links not involv-
ing removed variables, (2) the forward and backward fusion links Fy,, and Fy,,
and (3) the forward and backward derived links D; and D,, propagating links
involving only removed variables. However, as said before, most of the classes of
J-spaces that we consider are acyclic, and define an intuitive information flow
from left (in(G)) to right (out(G)): in this case, Fy, U D1 U Dy = (.

Proposition 3. Let Gi, G2 be two X-spaces, such that st(a,ut(G1)) =
st(ain(G2)). Then G1;G2 is a X-space.



For each w € S* the X-space G, such that st(ai(G)) = st(aw(G)),
gen(G) = 0 and link(G) = { ain(G)[i] — aout(G)[i] | i = 1...|w|}, behaves
as the identity with respect to the sequential composition.

Proposition 4. Let G be a X-space. Then G; Gs4(a,.. (@) = Gst(ain(@)); G =G

Also the other properties of monoidal categories (e.g., G, ® Gt = Gu.wr,
and (G1;G)) ® (G2;GY) = (G1 ® G2); (G} ® GY), giving the functoriality of the
tensor product _® _) are trivially satisfied by the definitions.

4 A Unified View For Nets, Relations and Partitions

In this section we show that all the models presented in Section 2 can be charac-
terized as suitable X-spaces, simply imposing different requirements over the set
of links. Moreover, such properties are preserved by the parallel and sequential
composition as defined in Section 3, so that those spaces can be considered as
concrete representations of their categorical counterparts.

4.1 Symmetric Monoidal

We begin by providing the class of X-spaces which characterize symmetric
monoidal categories: its elements must satisfy a tight requirement over links.

Definition 9 (Symmetric Y-space). A ¥-space G is called symmetric if and
only if each variable is used and assigned exactly once in G, and the flow relation
induced by the assignment in G is acyclic.

Or, in other words, the flow relation is actually a partial order.

Proposition 5. If G is a symmetric X -space, then

the only kind of link sentences allowed consists of sentences of the form
Y=z wherey is a result and x is a name,

— no result can be discharged in G,

— no name can be created in G,

parallel and sequential composition of symmetric X -spaces yield symmetric
X-spaces.

Note that the restrictions always imply that F,,, = D; = Dy = ), whenever
two symmetric spaces are sequentially composed. To show that each symmetric
JX-space G defines a concrete symmetric monoidal category, we have to show
what the symmetries are. For each pair of string w,w’ € S*, with |w| = n, and
|w|" = m, we define the symmetric Z-space G, as follows: Let Y and X be two
lists of (pairwise disjoint) names such that |Y| = |X|=n+m, Y[i] : (w-w')[¢],
and X[i] : (w' - w)[é] for ¢ = 1...n + m, then

Gouw ={0r—=Y, X+ OyU{Y[i]—X[i+m] |i=1.n}U

U{Y[i]— X[i—n] |i=n+1l.n+m).



Theorem 1. Symmetric X-spaces are the arrows of a concrete symmetric
monoidal category, which is (isomorphic to) the one freely generated by X.

Proof sketch. From the last property of Proposition 5, we have just to show that
the family of X-spaces {Gu v }wwes+ i a natural isomorphism from 3 ® -
to _» ® _1, and verifies the coherence axioms of Def. 3. This can be easily done
by exploiting the definition of G, .- and applying the definition of parallel and
sequential composition. The initiality result relies on previous characterization
results for symmetric monoidal categories as suitable Petri processes [31,30], to
which our spaces are equivalent. |

4.2 GS-Monoidal

As illustrated in Section 2, gs-monoidal categories are symmetric monoidal cate-
gories enriched with suitable transformations for copying and discharging infor-
mation, which lack the naturality axiom. In our setting, this enrichment reflects
into a relaxation of the previous constraints over symmetric X-spaces.

Definition 10 (GS-Monoidal X-space). A X-space G is called gs-monoidal
if and only if each variable is assigned exactly once in G, and the flow relation
induced by the assignment in G is acyclic.

Proposition 6. If G is a gs-monoidal X'-space, then

— the only kind of link sentences allowed consists of sentences of the form
Y= wherey is a result and x is a name,

— mno name can be created in G,

— parallel and sequential composition of gs-monoidal X-spaces yield gs-
monoidal X -spaces.

The characterization of duplicators and dischargers is intuitive. For each
string w € S*, with |w| = n, we define the gs-monoidal X-spaces G2, and G?, as
follows: Let Y and X be list of names such that |Y| = n, | X| = 2n, Y[i] : w[i],
X[i] : w[i], and X[i 4+ n] : w[i], for 4 = 1...n. Then

G?J:{D|—>> Y, er—= I:I},
G2 ={0rY, X+ O}U{Y[i]— X[i] |i=1.n}U

U{Y[i]—=X[i+n] |i=1.n},
where we recall that € denotes the empty list of variables.

Theorem 2. GS-Monoidal X -spaces are the arrows of a concrete gs-monoidal
category, which is (isomorphic to) the one freely generated by X.



Proof sketch. From the last property of Proposition 6, we have just to show that
the families of X-spaces {G2},cs+, and {G?},cs+ are transformation from
to .1 ® 1, and to G, respectively, verifying the coherence axioms of Def. 4. This
can be easily done exploiting the definition of G2, and G°. As an important
remark, it is trivial to verify that the naturality axioms are not satisfied by
{G?} es+, and {G%},cs+. To show the initiality of our model we rely on
the results of [8], since gs-monoidal X-spaces offer a concrete mathematical

structure corresponding to a normalized representation for gs-graphs. O

The main result of [8] states that the free gs-monoidal category over a (ordi-
nary) signature is isomorphic to the class of (ranked) term graphs labeled over it.
Such a property is exploited in [7] to give an inductive, algebraic account of term
graph rewriting. It is in this setting that we recover the intuitive interpretation
of copying and discharging as suitable operations over graphical structures.

Also the open graphs of [26] form a free gs-monoidal category: The one gen-
erated by the one-sorted signature X' such that X, = 0if k #0, and Xy 0 = Ly,
for h € IN, where L = {Lp}nen is the set of labels for the edges of the graph.
Therefore, they find a normalized presentation in terms of X-spaces.

4.3 Relations

Due to the presence of both co-duplicators and co-dischargers in the relational
model, we have no restriction on the number of ingoing and outgoing links in
the corresponding version of X-spaces. The weaker constraint considered here
just involves the global structure of the link sentences.

Definition 11. A X-space G is called relational if and only if its link sentences
have the form Y= x where y is a result and x is a name, and the flow relation
induced by the assignments in a relational X -space G is acyclic.

For example, in a relational Y-space, each variable can be assigned and used
as many times as necessary.

Proposition 7. The parallel and sequential composition of relational X -spaces
yield relational X-spaces.

For each string w € S*, with |w| = n, we define the relational Y-spaces @Z,

and @g as follows: Let Y and X be list of names such that |Y| = 2n, | X| = n,
Y[i] : w[i], Y[i + n] : w[d], and X[i] : w[é], for ¢ = 1...n. Then

G) = {0 ¢ x+— O},
G ={0r Y, X+— O}yU{Y[i]— X[i] |i=1..n}U
U{Y[i+n]— X[i] |i=1.n},

Families {éi }wes+, and {éﬂ}we s+ are the co-duplicators and the co-dischargers.



Theorem 3. Relational X'-spaces are the arrows of a concrete r-monoidal cat-
egory, which is (isomorphic to) the one freely generated by X.

Therefore, relational Y'-spaces define an initial relational model for .

Theorem 4. Given any two strings w,w' € S*, the class of relational X-spaces
G from w to w' such that gen(G) = 0 is isomorphic to the class of possible
type-preserving relations between the components of w and those of W'.

The proof relies on Theorem 3 and on the results of [5, 34].

4.4 Partial Orders

If 3 is a one-sorted signature that contains only unary operators, then we may
use relational Y-spaces for the representation of labeled partial orders.

Definition 12. A relational X-space G is called pos-space if Sz, = {s}, and
5=15,,.

Let (P,C,¢, A), where £ : P — A, be a generic partial order labeled over
the set A, and let us consider the ¥-spaces over the signature ¥y = {a: 1 —
1|a € A}. In a similar fashion to the proposal of [14], the basic ingredients are
the X 4-spaces in the family {G,}sca, where

Gy, ={0= Y, TH=Y, T 0, Y1 =T, Y =21 , Y1 = T1 }.

Intuitively, each Y-space GG, represents the label a in parallel with an identity.
The presence of the links Y1 — z and %1+ %1 , acting as a duplicator of the
input position, together with the presence of the links ¥ 1 and %1+ 21,
acting as a match in the output position, creates a sort of implicit transitive
closure of identities whenever the sequential composition is applied. As a result,
the ordering relation of the partial order, say between e and €', is represented
by propagating a copy of the identity of e in parallel with e’. The X 4-space
associated to P is obtained by composing the G,’s following the intuitive corre-
spondence with the labeled elements of P.

Example 1. The X s-space G%;Gy; G?; (Gy ® Gc);§2; Gb;éo corresponds to the
partial order in Fig. 1. The explicit construction for a sub-term is given in Fig. 2.

Proposition 8. Let G be a pos, -space. Then the class of arrows in the hom-set
Gle, €] are in one-to-one correspondence with the partial orders labeled on A.

We believe that our characterization of partial orders as “closed elements”
of an axiomatically defined algebra of relations is new.
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Fig. 1. A partial order P = {e;};=1..4 with labels over the set A = {a,b,c}.
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Fig. 2. Step-by-step illustration of Gu; G?; (Gp ® Ge); 62; Gy. For simplicity we adopt
a self-explanatory vector notation for the input and output variables.



4.5 Partitions
The most complex class of X'-spaces we consider gives a framework for partitions.

Definition 13. A X-space G is called partition space if and only if the link-flow
relation is an equivalence relation.

Proposition 9. The parallel and sequential composition of partition spaces yield
partition spaces as a result.

Due to the peculiar nature of partition space, symmetries, (co)duplicators,
and (co)dischargers still exist, but the constraints of partition spaces force some
of them to have a richer structure than the one previously considered. In fact,
they can be obtained freely adding link sentences, in order to obtain the minimal
equivalence relation.

For each pair of string w,w’ € S*, with |w| = n, and |w|' = m, the partition
space Gy . (which plays the role of the symmetry) is explicitly described as
follows: Let Y and X be list of (pairwise disjoint) names such that Y| = |X| =
n+m, Y[i]: (w-w')[i], and X[i] : (0" - w)[i] for i = 1...n + m. Then

Gouw ={0—=Y, X+= 0O}U{ Y[ X[i—n] |[i=n+1l.n+m}U
U{Y[i|—=X[i+m] |i=1.n}U{X[i+m]—Y][i] |i=1.n}U
U{X[i—n]—=YTi] |i=n+1l.n+m}

where we skipped all the reflexive links, for the sake of readability. For each
string w € S*, with |w| = n, the partition spaces G2, and GY, are as follows: Let

Y and X be list of names such that |Y| = n, |X| = 2n, Y[i] : w[i], X[i] : w[d],
and X[i + n] : w[i], for i = 1...n. Then

GY={D0— Y, er— O},

G2 ={0Y, Xt O}U{ Y] X[i] |i=1.n}U
U{Y[]—=X[i+n] |[i=1.n}U{X[{]=X[i+n] |i=1.n}U
U{X[i]—Y[i] |i=1.n}U{X[i+n]—Y][i] |i=1.n}uU
U{ X[i+n]— X[i] |i=1.n}

And similarly for their co-version.

Theorem 5. Partition spaces are the arrows of a concrete part-monoidal cate-
gory which is isomorphic to the one freely generated from X.

Next correspondence theorem justifies the name part-monoidal.

Theorem 6. Let G be a relational X -space with no generators. Then for each
sort s and each n,m € IN the class of arrows in the hom-set G[s",s™] are in
one-to-one correspondence with the partitions over {1...n +m}.

We believe that our algebraic characterization of partitions is new.



4.6 Contextual Nets

As a last case we consider a subclass of partition X-spaces, which embeds pro-
cesses of contextual nets.

Definition 14. A partition X -space G is called contextual if and only if each
variable is used and assigned at least once in G.

Proposition 10. If G is a contextual X -space, then

— no result can be discharged in G,

— mno name can be created in G,

— parallel and sequential composition of contextual X'-spaces yield contextual
X -spaces.

Theorem 7. Contextual X -spaces are the arrows of a concrete match-share cat-
egory, which is (isomorphic to) the one freely generated from X.

Contextual nets extend ordinary Petri nets with read arcs, following the
paradigm of read-write access to shared resources, where readers are allowed
to progress in parallel. The axioms of match-share categories faithfully embed
the compositional properties of contextual net processes [14]. In fact, the basic
process associated to a transition ¢ (with pre-set °t, context t and post-set t*)
corresponds to the arrow ¢(t) = (*t® V;); (t®1); (t* ® Ay), where t : *t @7 —
t* Q. Intuitively this means that first a copy of the resources in the context
t is created, then the firing of ¢ consumes both its pre-set and a copy of the
context, producing its post-set and a fresh copy of the context, which is then
matched (and thus identified) with the initial copy left. For example, consider two
transitions ¢; and t2 such that t/I =qa= t;, then the following diagram commutes,
and represents the concurrent access of ¢; and 2 to the shared context a.

2 @c(ta)

VI *ts t13A% o5

. L] L] L] tl®a®t2 L Ll L] L]
t1®a® *ta —— *11®a®a®a® *ta ——— {1 ®a®a®a®l;, —— 11 Qa®i,

% 4y ®a®t; //

c(t1)®t3

It follows that creating a copy of the context, firing ¢;, matching the con-
texts, creating another copy of the context, firing t2 and matching the contexts
(upper path in the diagram) is equivalent to creating two copies of the context,
concurrently firing ¢; and ¢, and matching the three copies of the context left,
namely the one produced by #;, the one produced by ¢, and the initial one (cen-
tral path), and this is also equivalent to creating a copy of the context, firing
t2, matching the contexts, creating another copy of the context, firing ¢; and
matching the contexts (lower path in the diagram).



5 Conclusion

We have investigated many of the numerous algebraic structures related to the
“concurrent and distributed systems” representation, which have been proposed
in the recent literature. Since all of them admit a presentation in terms of en-
riched symmetric monoidal categories, we have looked for a unifying concrete
framework based on the same concepts. This has led us to a precise characteri-
zation of four fundamental aspects of an abstract distributed system: the input
and output interfaces, the basic functionalities provided by the system (i.e., the
constructors) and the links for the connection of subsystems.

As a main result, many of the algebraic approaches found in the literature
are precisely characterized in our framework by considering different restrictions
on the link sentences. We plan to show how these representation results allow
for a uniform translation of these theories into a suitable specification formalism
already available for partial algebras [22], as proved for a class of these structures
in [23,4], the main point being the availability of tools supporting executability.
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