
Static Detection of Logic Flaws in

Service-Oriented Applications ⋆

Chiara Bodei1, Linda Brodo2, and Roberto Bruni1

1 Dipartimento di Informatica, Università di Pisa, Italy
{chiara,bruni}@di.unipi.it

2 Dipartimento di Scienze dei Linguaggi, Università di Sassari, Italy
brodo@uniss.it

Abstract. Application or business logic, used in the development of
services, has to do with the operations that define the application func-
tionalities and not with the platform ones. Often security problems can
be found at this level, because circumventing or misusing the required
operations can lead to unexpected behaviour or to attacks, called ap-

plication logic attacks. We investigate this issue, by using the CaSPiS
calculus to model services, and by providing a Control Flow Analysis
able to detect and prevent some possible misuses.

1 Introduction

More and more web surfers use applications based on web service technology
for their transactions, such as bank operations or e-commerce purchases. The
increasing availability of information exchange over e-services comes at the price
of new security threats: new clever forms of attacks can come out at a rate that
is growing with growth in usage.

Among the many different kinds of attacks that a malicious hacker can launch
against web services applications, we here focus on the so-called application logic
attacks, which are tailored to exploit the vulnerabilities of the specific function-
alities of the application rather than the more general ones provided by the used
platform, i.e. they violate application or business logic (see e.g., [19, 11]). This
logic represents the functions or the services that a particular site provides, in
terms of the steps required to finalise a business goal, e.g. in an e-shop, the ap-
plication logic can establish that customers’ personal data necessary to complete
an order must be provided only after the shopping basket is completed. Logic
bugs in the application design may open dangerous loopholes that allow a user
to do something that isn’t allowed by the business, just by abusing or misusing
the functions of the application, even without modifying them. Unfortunately,
often security is not considered from the very beginning of the application de-
velopment: the focus is on what the user is expected and allowed to do and not
on the possible pathological usage scenarios that a goofy user may encounter

⋆ Research supported by the EU FET-GC2 Project IST-2005-016004 Sensoria, by
the Italian PRIN Project “SOFT” and by the Italian FIRB Project Tocai.it.

or a malicious user may exploit. For example, take a conference management
system handling blind peer reviews: a malicious author could insert the names
of “unfriendly” Program Committee members as co-authors of her/his paper to
make them in conflict and exclude their opinions from the discussion phase. The
fictitious co-authoring could then be removed in case the paper got accepted,
without compromising the overall consistency of the conference management
system and review process. Of course to prevent this misuse it could suffice to
notify all authors about the submission as part of the application logic.

Logical vulnerabilities are subtle, application specific, and therefore difficult
to detect. As usual, in the development of complex systems resorting to formal
methods can be helpful. In particular, we try to transfer and adapt some tech-
niques used in the field of network security (see e.g.,[10, 8]). We develop a Control
Flow Analysis for analysing the close-free fragment of CaSPiS [13, 15], a pro-
cess calculus recently introduced for modelling service oriented computing. The
key features of CaSPiS are a disciplined, built-in management of long-running
dyadic (and possibly nested) sessions between services and their clients, together
with data-flow and orchestration primitives such as the pipeline operator and
pattern-matching primitives that are suited, e.g., to deal with XML-like data
typical of web service scenarios. The analysis statically approximates the be-
haviour of CaSPiS processes, in terms of the possible service and communication
synchronisations. More precisely, what the analysis predicts encompasses every-
thing that may happen, while what the analysis does not predict corresponds
to something that cannot happen. The session mechanism is particularly valu-
able for the kind of analysis we use, because it guarantees that sibling sessions
established between different instances of the same service and the correspond-
ing clients do not interfere one with the other by leaking information, with two
main consequences: first, our analysis can focus on each client-server conversa-
tion separately and second, we can focus on the application logic, neither having
to commit on any specific implementation of sessioning over a certain platform
nor worrying about the analysis of such a realisation.

The analysis we propose borrows some ideas from [20, 7], because it exploits
the similarity between the nesting hierarchies introduced by session primitives
and the nesting hierarchies used in Ambients-like calculi. Furthermore to take
care of malicious users, we modify the classical notion of Dolev-Yao attacker [17]:
the attacker we are interested to model, that we call malicious customer, is an
insider or, more precisely, an accredited user of a service that has no control of
the communication channels, but that does not follow the intended rules of the
application protocol, e.g., (s)he can cheat or introduce inconsistent data.

We apply our framework to an example inspired by a known logic-flawed
application for e-commerce, where an abuse of functionality is possible, in which
the attacker unexpectedly alters data, therefore modifying the application be-
haviour. The CyberOffice shopping cart [23] could be attacked by modifying the
hidden field used for the price, within the web order form. The web page could
be indeed downloaded normally, edited unexpectedly outside the browser and
then submitted regularly with the prices set to any desired value, included zero

or even a negative value. If no data-consistency control was performed by the
server when the form was returned then the attack could be successful. Weak
forms of validation could lead to similar problems, like when checking all item
prices but not the total, or when checking goods price, but not the expedition
costs. Intuitively, the information exchange between the customer C and the e-
shop service S (and the data base DBI storing item prices) can be represented
by the following informal protocol narration (steps from 1. to 4.), that we borrow
from network security literature.

1. C → S : ItemA
2. S → DBI : Code, ItemA
3. DBI → C : OrderForm(Code, ItemA, PriceA)
4. C → S : PaymentForm(Code, ItemA, PriceA, Name, Cc)
...
Narration of the Protocol between Customer and E-shop Service

4′. C → S : PaymentForm′(Code, ItemA, FakedPriceA, Name, Cc)
Attack on Fourth Step

The customer chooses an item ItemA, receives its price PriceA inside an
OrderForm and can finalise the order by filling in a PaymentForm with per-
sonal data like Name and credit card information Cc. In the same form are
reported: the transaction Code, the item and its price (for simplicity, we assume
expedition expenses included). In case of pathological usage (step 4′), the re-
quired information is added on a forged copy of the payment form, where the
attacker has altered the price field, using the forged price FakedPriceA, instead
of the one received from DBI within the OrderForm.

When modelled in CaSPiS, our analysis of the e-shop service is able to detect
the possible price modification in harshly designed processes. The attack relies
on the fact that S does not check that the third field of the received form has
the correct value. This is because the application logic relies on step 4 to acquire
personal data and credit card information of the customer that are considered
as good enough credentials for establishing the “circle of trust” over the pending
commercial transaction and it does not expect that misuses may still arise. Fur-
thermore, to save on the number of exchanged messages, it delegates the DBI
service (likely running on a separate, dedicated server) to communicate the price
directly to the customer, so that S cannot perform any validation over it when
the form is returned. A possible fix to the problem would consists in having the
price information sent to S first and then redirected to the customer, so that
it could be easy for the server to match the price included in PaymentForm
against the one received by DBI, as shown below.

2′′. S → DBI : Code, ItemA
3′′. DBI → S : Code, ItemA, PriceA
4′′. S → C : OrderForm(Code, ItemA, PriceA)
5′′. C → S : PaymentForm(Code, ItemA, PriceA, Name, Cc)
...

Alternative Narration

Related Work. Recently some works have faced the issue of security in the com-
position and verification of web applications. In [5] the authors propose security
libraries, automatically analysed with ProVerif [6], using the WS-Security poli-
cies of [22]. WS ReliableMessaging is instead analysed in [24] with the AVISPA [3]
verification toolkit, initially developed to check properties of cryptographic pro-
tocols. Recently, in [12], security properties have been considered in an extension
of the π-calculus with session types and correspondence assertions [25]. In [1],
behavioral types are used to statically approximate the behavior of processes.
Building on [2, 15], the type system [18] for CaSPiS is instead introduced to ad-
dress the access control properties related to security levels. Safety properties of
service behaviour is faced in [4]. Services can enforce security policies locally and
can invoke other services respecting given security contracts. Formal reasoning
about systems is obtained by means of dynamic and static semantics.

The focus of our interest is in formalising the logic used to develop an ap-
plication and discovering its intrinsic weaknesses, due to a design practice that
does not consider security as a first-class concern.

Plan of the Paper. In Section 2, we present the calculus. In Section 3, we intro-
duce the Control Flow Analysis and the analysis of the malicious customer or
attacker. In Section 4, we apply our framework to the above shown example of
logic-flawed application for e-commerce. Section 5 concludes the paper. Proofs
of theorems and lemmata presented throughout the paper are reported in [9].

2 The Calculus

We introduce here the fragment of CaSPiS that is sufficient to handle our mod-
elling needs (i.e., without the constructs for handling session termination): it
is essentially the one considered in [15]. Due to space limitation, we refer the
interested reader to [13, 14] for the motivation around CaSPiS design choices, its
detailed description and many examples that witness its flexibility.

Syntax. Let N ∋ n, n′, ... be a countable set of names, that includes the set
Nsrv ∋ s, s′, ... of service names and the set Nsess ∋ r, r′, ... of session names,
with Nsrv ∩Nsess = ∅. We also let x range over variables (for service names and
data). We distinguish here between definition occurrences and use occurrences
of variables. A definition variable occurrence ?x is when x gets its binding value,
while a use occurrence x is when the value has been bound. We assume that a
variable cannot occur in both forms inside the same input, as in (..., ?x, ..., x, ...).
For the sake of simplicity, we let v range over values, i.e. names and use variables
and ṽ on tuples. In the second part of the paper, we shall use a more general
kind of input, including pattern matching. The syntax of CaSPiS is presented in
Fig. 1, where the operators occur in decreasing order of precedence.

As usual, the empty summation is the nil process 0 (whose trailing is mostly
omitted), parallel composition is denoted by P |Q and restriction by (νn)P . The
construct rp ⊲ P indicates a generic session side with polarity p (taking values

P, Q ::= processes

| s.P service definition
| v.P service invocation
| Σi∈IπiPi guarded sum
| rp ⊲ P session (considered as run-time syntax)
| P > (?x̃)Q pipeline (written P > x̃ > Q in the literature)
| (νn)P restriction
| P |Q parallel composition
| !P replication

p, q ::= +|− polarities

π, π′ ::= action prefixes

| (?x̃) input
| 〈ṽ〉 output

| 〈ṽ〉↑ return

Fig. 1. Syntax of CaSPiS

in {+,−}). Sessions are mostly intended as run-time syntax. In fact, differently
from other languages that provide primitives for explicit session naming and
creation, here all sessions are transparent to programmers as they can be built
automatically, resulting in a more elegant and disciplined style of writing pro-
cesses. A fresh session name r and two polarised session ends r− ⊲ P and r+ ⊲ Q
are generated (on client and service sides, resp.) upon each service invocation
s.P of the service s.Q. We say r− ⊲ P is the dual session side of r+ ⊲ Q and
vice versa. As P and Q share a session, their I/O communications are directed
toward the dual session side. We let p, q range over polarities and let p denote
the opposite polarity of p, where + = − and − = +. The prefix 〈ṽ〉↑ is used to
output values to the enclosing parent session and the pipe P > (?x̃)Q is a con-
struct that spawns a fresh instance Q[ṽ/x̃] of Q on any value ṽ produced by P .
Note that we use a slight modification of the pipeline P > Q introduced in [13],
similar to the variation considered in [15] and closer to Orc’s sequencing [16]: the
variables x̃ to be bound after pipeline synchronisation are included in a special
input (?x̃), called pipeline input preceding the right branch process.

We assume processes are designed according to some typical well-formedness
criteria: (i) the containment relation between session identifiers is acyclic (i.e. we
cannot have processes like rp ⊲ (P |rp ⊲ Q)); (ii) for each session identifier r, each
r+ and r− occurs once in the process and never in the scope of a dynamic
operator; (iii) in any summation Σiπi, all prefixes πi are of one and the same
kind (all outputs or all inputs or all returns).

Semantics. The reduction semantics of CaSPiS exploits a rather standard struc-
tural congruence ≡ on processes, defined as the least congruence satisfying the
clauses in Fig. 2. The binders for the calculus are (x̃).P for x̃ in P and (νn)P
for n in P , with standard notions of free names (fn) and bound names (bn) of

– (P/≡, |, 0) is a commutative monoid;
– !P ≡ P | !P ;
– (νn)0 ≡ 0, (νn)(νn′)P ≡ (νn′)(νn)P , (νn)(P | Q) ≡ P | (νn)Q if n 6∈ fn(P);
– rp ⊲ (νn)P ≡ (νn)(rp ⊲ P) if r 6= n;
– ((νn)P) > (?x)Q ≡ (νn)(P > (?x)Q) if n 6∈ fn(Q);

Fig. 2. Structural Congruence Laws

a process. Processes are considered equivalent up to the α-renaming of bound
names. We present the operational semantics of the calculus by means of re-
duction contexts. The one-hole context CJ · K is useful to insert a process P , the
result being denoted CJP K (process P replaces the hole inside the context), into
an arbitrary nesting of operators. Before describing the reduction rules, we need
to fix some terminology. Let us call dynamic operators any service definition
s.J · K, service invocation s.J · K, prefix πJ · K, left-sided pipeline P > (?x)J · K and
replication !J · K. The remaining operators are called static. The contexts we are
interested in are called static, and characterised by the fact that the hole occurs
in an actively running position and it is ready to interact (e.g. it is not under a
prefix): formally, we say that a context is static if its holes do not occur in the
scope of a dynamic operator. Moreover, we say that a context is session-immune
if its hole does not occur under a session operator, and pipeline-immune if its
hole does not occur under a right-sided pipeline operator. In the following we
let CJ · K range over static contexts, SJ · K over static session-immune contexts,
and PJ · K over contexts that are static, session-immune and pipeline-immune.
Roughly, a static session-immune context SJ · K can “intercept” concretion pre-
fixes but not abstraction and return prefixes, while a static, session-immune and
pipeline-immune context PJ · K cannot “intercept” any prefix. Analogous defini-
tions apply to the case of two-holes contexts CJ ·, · K. Below we let CrJ ·, · K be
a context of the form CJ rp ⊲ PJ · K, rp ⊲ SJ · K K (for some PJ · K and SJ · K), which
helps us to characterise the most general situation in which intra-session com-
munication can happen, and we write SrpJ · K for a context of the form rp ⊲ SJ · K

The reduction rules of CaSPiS are given in Fig. 3, where we assume that r
is fresh in Sync and that |x̃| = |ṽ|. It can be shown that reductions preserve all
well-formedness criteria mentioned above, in the sense that well-formed processes
always reduce to well-formed processes.

Naming conventions. To distinguish among different occurrences of the same
service, we assume to annotate each of them with a different index, as in s@k.
As a consequence, we can uniquely identify the fresh name used in case of syn-
chronisation on the same service, e.g., when the synchronisation happens on the
service s, on the occurrences s@k and s@m, then the session name is rp

s@m:k.
When unambiguous, we simply use s, s and rp

s .
To distinguish among different pipeline constructs, we annotate each pipeline

operator with a different label l ∈ L, as in >l. Also, we identify the left branch
with a label l0 and the right branch with l1. The same annotation l1 enriches

Sync CJ s.P, s.Q K → (νr)CJ r− ⊲ P, r+ ⊲ Q K
S Sync CrJ 〈ṽ〉P +

P
i
πiPi, (?x̃)Q +

P
j
πjQj K → CrJ P, Q[ṽ/x̃] K

S Sync Ret CrJ S
′
r′pJ 〈ṽ〉↑P +

P
i
πiPi K, (?x̃)Q +

P
j
πjQj K →

CrJ S
′
r′pJ P K, Q[ṽ/x̃] K

P Sync CJ PJ 〈ṽ〉P +
P

i
πiPi K > (?x̃)Q K → CJ Q[ṽ/x̃]|(PJ P K > (?x̃)Q) K

P Sync Ret CJ PJ SrpJ 〈ṽ〉P +
P

i
πiPi K K > (?x̃)Q K →

CJ Q[ṽ/x̃]|(PJ SrpJ P K K > (?x̃)Q) K
Struct P ≡ P ′ ∧ P ′ → Q′ ∧ Q′ ≡ Q ⇒ P → Q

Fig. 3. Reduction Semantics of CaSPiS

the variables x̃ affected by the pipeline input in the right branch of the pipeline,
as in P >l (?x̃l1)Q. Note that these annotations do not affect the semantics.

Furthermore, to simplify the definition of our Control Flow Analysis in Sec-
tion 3, we discipline the α-renaming of bound values and variables. To do it in
a simple and “implicit” way, we partition all the names used by a process into
finitely many equivalence classes and we use the names of the equivalence classes
instead of the actual names. This partition works in such a way that names from
the same equivalence class are assigned a common canonical name and conse-
quently there are only finitely many canonical names in any execution of a given
process. This is enforced by assigning the same canonical name to every name
generated by the same restriction. The canonical name ⌊n⌋ is for a name n;
similarly ⌊x⌋ is for a variable x. In this way, we statically maintain the iden-
tity of values and variables that might be lost by freely applying α-conversions.
Hereafter, when unambiguous, we shall simply write n (resp. x) for ⌊n⌋ (resp.
⌊x⌋).

Examples. Consider the following simplified specification of a bank credit request
service, where req is the service definition of the bank B.

B
def
= req@1.(?yba)val@3.〈yba〉(?wans)〈wans〉

↑

V
def
= val@4.(?zba)〈Ans〉

After the client invocation req@1, the bank waits for the client balance asset
Ba (as input to ?yba) that should be passed to the Validation service V , through
the service invocation val@3. The validation answer Ans is sent to B (as input
to ?wans) and forwarded to the client. Thus a typical client C can be defined as

C
def
= req@2.〈Ba〉(?xans)〈xans〉

↑

After the service invocation req, the overall system S
def
= C|B|V becomes S′,

S → S′ def
= (νrreq@1:2)(r−req@1:2 ⊲ 〈Ba〉(?xans)〈xans〉↑ |

r+
req@1:2 ⊲ (?yba)val@3.〈yba〉(?wans)〈wans〉

↑) | V

where rreq@1:2 is the freshly generated session and where the client protocol is
running on the left (the session side with negative polarity r−) and the service
protocol on the right (the session side with positive polarity r+). The two pro-
tocols running on opposite sides of the same session can now exchange data,
leading to S′′:

S′ → S′′ def
= (νrreq@1:2)(r−req@1:2 ⊲ (?xans)〈xans〉↑ |

r+
req@1:2 ⊲ val@3.〈Ba〉(?wans)〈wans〉↑) | V

The computation continues as follows:

S′′ → (νrreq@1:2)(r
−
req@1:2 ⊲ (?xans)〈xans〉

↑ |

(νrval@3:4)(r
+
req@1:2 ⊲ r−val@3:4 ⊲ 〈Ba〉(?wans)〈wans〉

↑) | r+
val@3:4 ⊲ (?zba)〈Ans〉))

→ (νrreq@1:2)(r
−
req@1:2 ⊲ (?xans)〈xans〉

↑|

(νrval@3:4)(r
+
req@1:2 ⊲ r−val@3:4 ⊲ (?wans)〈wans〉

↑)|r+
val@3:4 ⊲ 〈Ans〉))

→ (νrreq@1:2)(r
−
req@1:2 ⊲ (?xans)〈xans〉

↑|

(νrval@3:4)(r
+
req@1:2 ⊲ r−val@3:4 ⊲ 〈Ans〉↑)|r+

val@3:4 ⊲ 0))

→ (νrreq@1:2)(r
−
req@1:2 ⊲ 〈Ans〉↑|(νrval@3:4)(r

+
req@1:2 ⊲ r−val@3:4 ⊲ 0|r+

val@3:4 ⊲ 0))

Since the bank and validation service must typically handle more requests,
one can use their replicated versions !B and !V .

Now suppose several bank services B1, ..., Bn are available (together with
suitable verification services V1, ..., Vm, possibly shared by different banks), and
that a client wants to contact them all and be notified by email about their
answers Ansj (with j ∈ [1, m]) exploiting a suitable service email. Then the
client could be written as

(C1 | · · · | Cn) >l (?xl1
any−ans)email@0.〈xany−ans〉

where each Ci is the request to a specific bank service, i.e. it has the form
reqi.〈Ba〉(?xi)〈xi〉↑.

3 The Control Flow Analysis

We develop a Control Flow Analysis for the close-free fragment of CaSPiS,
borrowing some ideas from [20, 7]. Session primitives indeed introduce a nesting
hierarchy that resembles the ones used in Ambients-like calculi. Our analysis
uses the notion of enclosing scope, recording the current scope due to services,
sessions or pipelines. We say that P is in the scope of s@k if s@k is the immediate
enclosing service definition. Similarly for s@k, rp

s@m:k, and for l0 or l1. The aim of
the analysis is over-approximating all the possible behaviour of a CaSPiS process.
In particular, our analysis keeps track of the possible contents of scopes, in terms
of communication and service synchronizations. The result of analysing a process
P is a pair (I,R), called estimate for P , that satisfies the judgements defined by
the axioms and rules in the upper (lower, resp.) part of Table 1. The analysis is

defined in the flavour of Flow Logic [21]. The first component I gives information
on the contents of a scope. The second component R gives information about
the set of values to which names can be bound. Moreover, let σ, σ′ be scope
identifiers, ranged over by s@k, s@k, rp

s@m:k, l0, l1.
To validate the correctness of a proposed estimate (I,R) we state a set

of clauses operating upon judgements for analysing processes I,R |=σ P . The
judgement expresses that when P is enclosed within the scope identified by σ,
then (I,R) correctly captures the behaviour of P , i.e. the estimate is valid also
for all the states P ′, passed through a computation of P . More precisely:

– I : (⌊Nsrv⌋ ∪ ⌊Nsess⌋) ∪ L → ℘(⌊Nsrv⌋ ∪ ⌊Nsess⌋ ∪ L) ∪ ⌊Pref⌋, where ⌊S⌋
is the set of canonical names in S, ℘(S) stands for the power-set of the set
S and ⌊Pref⌋ is the set of action and service prefixes, defined on canonical
names. Here, σ ∈ I(σ′) means that the scope identified by σ′ may contain
the one identified by σ; π ∈ I(σ′) means that the action π may occur in the
scope identified by σ′.

– R : ⌊N⌋ → ℘(⌊N⌋) is the abstract environment that maps a variable to the
set of names it can be bound to, i.e. if v ∈ R(n) then n may take the value
v. We assume that for each free name n, we have that n ∈ R(n). Moreover,
we write R(x1, ..., xn) as a shorthand for R(x1), ...,R(xn). Without loss of
generality, we suppose to have all the variables distinct.

Validation. Following [20], the analysis is specified in two phases. First, we check
that (I,R) describes the initial process. This is done in the upper part of Table 1,
where the clauses amount to a structural traversal of process syntax.

The clause for service definition checks that whenever a service s@k is defined
in s@k.P , then the relative hierarchy position w.r.t. the enclosing scope must
be reflected in I, i.e. s@k ∈ I(σ). Furthermore, when inspecting the content
P , the fact that the new enclosing scope is s@k is recorded, as reflected by the
judgement I,R |=s@k P . Similarly for service invocation x@k: the only difference
is that when x is a variable, the analysis checks for every actual value s that can
be bound to x that s@k ∈ I(σ) and I,R |=s@k P . The clauses for input, output
and return check that the corresponding prefixes are included in I(σ) and that
the analysis of the continuation processes hold as well. There is a special rule
for pipeline input prefix, that allows us to distinguish it from the standard input
one. Note that the current scope has the same identifier carried by the variables.
Similarly, there is a rule for output prefixes occurring inside the scope of a left
branch of a pipeline. The corresponding possible outputs are annotated with
the label l0. The rule for session, modelled as the ones for service, just checks
that the the relative hierarchy position of the session identifier rp

s@m:k w.r.t. the
enclosing scope must be reported in I, i.e. rp

s@m:k ∈ I(σ). It is used in analysing
the possible continuations of the initial process.

All the clauses dealing with a compound process check that the analysis also
holds for its immediate sub-processes. In particular, the analysis of !P and that
of (νn)P are equal to the one of P . This is an obvious source of imprecision
(in the sense of over-approximation). The clause for pipeline deserves a specific

comment. It checks that whenever a pipeline >l is met, then the analysis of
the left and the right branches is kept distinct by the introduction of two sub-
indexes l0 for the left one and l1 for the right one. This allows us to predict
possible communication over the two sides of the same pipeline. Furthermore,
the analysis contents of the two scopes must be included in the enclosing scope
identified by σ. This allows us to predict also the communications due to I/O
synchronisations, involving prefixes occurring inside the scope of a pipeline.

In the second phase, we check that (I,R) also takes into account the dynam-
ics of the process under analysis, i.e. the synchronizations due to communica-
tions, services and pipelines. This is expressed by the closure conditions in the
lower part of Table 1 that mimic the semantics, by modelling, without exceeding
the precision boundaries of the analysis, the semantic preconditions and the con-
sequences of the possible actions. More precisely, preconditions check, in terms of
I, for the possible presence of the redexes necessary for actions to be performed.
The conclusion imposes the additional requirements on I and R, necessary to
give a valid prediction of the analysed action. In the clause for Service Synch,
we have to make sure that the precondition requirements hold, i.e.:

– there exists an occurrence of service definition: s@k ∈ I(σ);
– there exists an occurrence of the corresponding invocation s@m ∈ I(σ′);

If the precondition requirements are satisfied, then the conclusions of the clause
express the consequences of performing the service synchronisation. In this case,
we have that I must reflect that there may exist a session identified by r+

s@m:k

inside σ and by r−s@m:k inside σ′ , such that the contents (scopes, prefixes) of
s@m:k and of s@m may also be inside I(r+

s@m:k) and I(r−s@m:k), resp..
Similarly, in the clause for I/O Synch, if the following preconditions hold:

– there exists an occurrence of output in I(rp
s@m:k);

– there exists an occurrence of the corresponding input in the sibling session
I(rp

s@m:k).

then the values sent can be bound to the corresponding input variables: i.e.,
a possible communication is predicted here. Note that the rule correctly does
not consider outputs in the form 〈ṽ〉l0 , because they possibly occur inside a left
branch of a pipeline and therefore they are not available for I/O synchronisations.

The clause for Ret Synch is similar. The return prefix must be included in

rp
s@m:k, in turn included in I(rp′

s′@n:q), while the corresponding input must be

included in rp′

s′@n:q, i.e. in the sibling session scope of the enclosing session.
In the clause for Pipe I/O Synch, the communication can be predicted,

whenever the output and the pipeline input prefixes occur in the scope of the
same session identifier (same side, too), and furthermore the output occurs in
the left branch of a pipeline, while the pipeline input occurs in the right part of
the same pipeline. Note that only pipeline input prefixes are considered here.

Similarly, in the clause for Pipe Ret Synch. The only difference is that the
return prefix must occur in the session identified by rp

s@m:k, included in the same
scope that includes the corresponding pipeline input.

I,R |=σ s@k.P iff s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ x@k.P iff ∀s@m ∈ R(x) : s@k ∈ I(σ) ∧ I,R |=s@k P
I,R |=σ (?x̃).P iff (?x̃) ∈ I(σ) ∧ I,R |=σ P

I,R |=l1 (?x̃l1).P iff (?x̃l) ∈ I(l1) ∧ I,R |=l1 P
I,R |=σ 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉 ∈ I(σ) ∧ I,R |=σ P

I,R |=l0 〈x̃〉.P iff ∀ṽ ∈ R(x̃) 〈ṽ〉l0 ∈ I(l0) ∧ I,R |=l0 P
I,R |=σ 〈x̃〉↑.P iff ∀ṽ ∈ R(x) 〈ṽ〉↑ ∈ I(σ) ∧ I,R |=σ P
I,R |=σ Σi∈IπiPi iff ∀i ∈ I : I,R |=σ πiPi

I,R |=σ P |Q iff I,R |=σ P ∧ I,R |=σ Q
I,R |=σ !P iff I,R |=σ P
I,R |=σ (νn)P iff I,R |=σ P

I,R |=σ P >l (?x̃l1)Q iff l0, l1 ∈ I(σ) ∧ I,R |=l0 P ∧ I,R |=l1 (?x̃l)Q ∧
I(l0), I(l1) ⊆ I(σ)

I,R |=σ rp

s@m:k ⊲ P iff rp

s@m:k ∈ I(σ) ∧ I,R |=r
p

s@m:k P

(Service Synch) s@m ∈ I(σ) ∧ s@k ∈ I(σ′)
⇒ r+

s@m:k ∈ I(σ) ∧ I(s@m) ⊆ I(r+
s@m:k) ∧

r−s@m:k ∈ I(σ′) ∧ I(s@k) ⊆ I(r−s@m:k)

(I/O Synch) 〈ṽ〉 ∈ I(rp

s@m:k) ∧ (?x̃) ∈ I(rp

s@m:k)
⇒ ṽ ∈ R(x̃)

(Ret Synch) 〈ṽ〉↑ ∈ I(rp

s@m:k) ∧ rp

@m:k ∈ I(rp′

s′@n:q
) ∧ (?x̃) ∈ I(rp′

s′@n:q
)

⇒ ṽ ∈ R(x̃)

(Pipe I/O Synch) 〈ṽ〉l0 ∈ I(l0) ∧ (?x̃l1) ∈ I(l1)
⇒ ṽ ∈ R(x̃)

(Pipe Ret Synch) 〈ṽ〉↑ ∈ I(rp

s@m:k) ∧ rp

s@m:k ∈ I(l0)

∧ (?x̃l1) ∈ I(l1)
⇒ ṽ ∈ R(x̃)

Table 1. Analysis for CaSPiS Processes

I(∗) ∋ req@1, req@2, val@4

I(∗) ∋ r+
req@1:2, r

−
req@1:2, rval@3:4

I(req@2), I(r−req@1:2) ∋ 〈Ba〉, (?xans), 〈xans〉
↑

I(req@1), I(r+
req@1:2) ∋ val@3, (?yba)

I(val@3), I(r−val@3:4) ∋ 〈yba〉, (?wba), 〈wba〉
↑

I(val@4), I(r+
va@3:4) ∋ (?zba), 〈Ans〉

R(yba) ∋ Ba, R(zba) ∋ Ba
R(wans) ∋ Ans, R(xans) ∋ Ans

Fig. 4. Some Entries of the Example Analysis

Example 1. Now, we can show how the analysis works on our running example:

S
def
= B|V |C

B
def
= req@1.(?yba)val@3.〈yba〉(?wans)〈wans〉

↑

V
def
= val@4.(?zba)〈Ans〉

C
def
= req@2.〈Ba〉(?xans)〈xans〉

↑

The main entries of the analysis are reported in Fig. 4, where ∗ identifies the
ideal outermost scope in which the system top-level service scopes are. It is
easy to check that (I,R) is a valid estimate, i.e., that I,R |=∗ S, by following
the two stages explained above: we just illustrate some steps. We have indeed
that I,R |=∗ S holds if I,R |=∗ B, I,R |=∗ V and I,R |=∗ C. In particular,
I,R |=∗ A holds because req@1 ∈ I(∗) and I,R |=∗ C because req@2 ∈ I(∗).
Now, by (Service Synch), we have that req@1, req@2 ∈ I(∗) implies that

r+
req@1:2 ∈ I(∗) ∧ I(req@1) ⊆ I(r+

req@1:2) ∧

r−req@1:2 ∈ I(∗) ∧ I(req@2) ⊆ I(r−req@1:2)

Furthermore, by (I/O Synch), we have that Ba ∈ R(yba), because

〈Ba〉 ∈ I(r−req@1:2) (?yba) ∈ I(r+
req@1:2)

Similarly, we can obtain that R(xany−ans) includes Ansj , for each j ∈ [1, m].

Semantic Correctness. Our analysis is correct w.r.t. the given semantics, i.e. a
valid estimate enjoys the following subject reduction property.

Theorem 1. (Subject Reduction)
If P → Q and I,R |=σ P then also I,R |=σ Q.

This result depends on the fact that the analysis is invariant under the struc-
tural congruence, as stated below.

Lemma 1. (Invariance of Structural Congruence) If P ≡ Q and I,R |=σ P
then also I,R |=σ Q.

The above results are handled and proved in the extended version of the
calculus [9]. Currently, our analysis has not been implemented yet, but it could,
e.g., along the lines of the one in [20].

Modelling the Malicious Customer. We need to model a new kind of attacker,
different from the classical Dolev-Yao one [17], on which rely many systems for
the verification of security protocols. A Dolev-Yao attacker acts on an open
network, where principals exchange their messages. He/she can intercept and
generate messages, provided that the necessary information is in his/her knowl-
edge, which increases while interacting with the network. Our setting calls for a
different model, because our attacker is an accredited customer of a service that
has no control of the communication channels, apart from the ones established
by the sessions in which he/she is involved. Nevertheless, our attacker, that we
call malicious customer or M, does not necessarily follow the intended rules of
the application protocol and can try to use the functions of the service in an
unintended way, e.g., by sending messages in the right format, but with contents
different from the expected ones. Under this regard, our attacker is less powerful
of the Dolev-Yao one: M just tries to do everything that the application does
not prevent him/her to do. More precisely, M has a knowledge made of all the
public information and increased by the messages received from the service: the
attacker can use this knowledge to produce messages to be sent to the server.
We assume M is smart enough to send only messages in the expected format
in each information exchange. We extend our framework in order to implicitly
consider the possible behaviour of such an attacker or malicious customer. We
statically approximate the malicious customer knowledge, by representing it by
a new analysis component K. Intuitively, the clauses acting on K implicitly take
the attacker possible actions into account. The component K contains all the
free names, all the messages that the customer can receive, and all the messages
that can be computed from them, e.g. if v and v′ belong to K, then also the tuple
(v, v′) belongs to K and, vice versa, if (v, v′) belongs to K, then also v and v′

belong to K. Furthermore, all the messages in K can be sent by the customer. To
distinguish the customer actions, we annotate the corresponding prefixes with
M , as in πM , and we use a and b both for M or the empty annotation ǫ. As
a consequence, we need to slightly change the rules in Table 1, as shown in
Table 2, where only the more significant rules are reported. Consider the rule
(I/O Synch). Whenever the analysis predicts that a customer may send a certain
message ṽ, the analysis predicts that the same, possibly malicious, customer can
also send every other message ṽ′, obtained by synthetising the information in K,
provided that it is in the same format of ṽ. Whenever a customer may receive
an input, then the analysis predicts that the same, possibly malicious, customer
can also acquire the received message in K.

Analysis at Work In the following, we refer to the version of CaSPiS that includes
pattern matching into the input construct, as defined by the following syntax
(for a similar treatment see also [8]).

π, π′ ::= Prefixes

(D1, ..., Dk) input
〈E1, ..., Ek〉 output
〈E1, ..., Ek〉

↑ return

E ::= Terms

n names
x variables

D ::= Definition Terms

E terms
?x definition variables

I,R,K |=σ (?x̃)M .P iff (?x̃)M ∈ I(σ) ∧ I,R,K |=σ P

I,R,K |=σ (?x̃l)M .P iff (?x̃l)M ∈ I(σ) ∧ I,R,K |=σ P
I,R,K |=σ 〈x̃〉M .P iff ∀ṽ ∈ R(x̃) 〈ṽ〉M ∈ I(σ) ∧ I,R,K |=σ P

I,R,K |=σ 〈x̃〉↑M .P iff ∀ṽ ∈ R(x̃) 〈ṽ〉↑M ∈ I(σ) ∧ I,R,K |=σ P

(I/O Synch) 〈ṽ〉a ∈ I(rp

s@m:k) ∧ (?x̃)b ∈ I(rp

s@m:k)
⇒ ṽ ∈ R(x̃)

a = M ⇒ ∀ev′ ∈ K : ev′ ∈ R(x̃)
b = M ⇒ ṽ ∈ K

(Pipe I/O Synch) 〈ṽ〉↑a ∈ I(l0) ∧ (?x̃l1b) ∈ I(l1)
⇒ ṽ ∈ R(x̃)

a = M ⇒ ∀ev′ ∈ K : ev′ ∈ R(x̃l1)
b = M ⇒ ṽ ∈ K

(Knowledge Rule 1) v ∈ Nfn ⇒ v ∈ K
(Knowledge Rule 2) v1, ..., vk ∈ K ⇒ 〈v1, ..., vk〉 ∈ K
(Knowledge Rule 3) 〈v1, ..., vk〉 ∈ K ⇒ v1, ..., vk ∈ K

Table 2. Analysis for CaSPiS Processes in the Presence of a Malicious Customer

Our patterns are tuples of definition terms (D1, · · · , Dk) that have to be matched
against tuples of terms (E1, · · · , Ek), upon input. Note that, at run-time, each
Ei is a closed term. Intuitively, the matching succeeds when the closed terms,
say Di, elementwise match to the corresponding terms Ei, and its effect is
to bind the remaining terms Ej to the remaining variables. Actually, defini-
tion terms in (D1, . . . , Dk) can be partitioned into closed terms to be matched
and definition variables to be bound. We make the partition above explicit,
by using the auxiliary functions Term(D1, . . . , Dk) and Var(D1, . . . , Dk). They
work on the position of definition terms within the tuples in such a way that if
i ∈ Term(D1, . . . , Dk), then Di is a closed term, while if i ∈ Var(D1, . . . , Dk),
then Di is a definition variable. The new semantic rules for message exchange
take pattern matching into account, e.g., the (S Sync) rule becomes:

CrJ 〈E1, ..., Ek〉P +
P

i
πiPi, (D1, ..., Dk)Q +

P
j
πjQj K → CrJP, Q[Ẽ/D̃] K

if ∧i∈Term(D1,...,Dk) Ei = Di

Suppose to have the following process

(νr)(r− ⊲ 〈A, MA〉.P)|(r+ ⊲ (A, ?yB).Q)

In the input tuple (A, yB), we have that Term(A, ?yB) = 1 and Var(A, ?yB) =
2. Here the synchronisation succeeds, because the matching on the first term A
succeeds. As a consequence, the second term yB is bound to MA in the contin-
uation process (νr)(r− ⊲ P)|(r+ ⊲ Q[MA/yB]).

Extending the presented analysis in order to capture this kind of input con-
struct is quite standard (see e.g. [10, 8]). We recall the new CFA rules in Table 3,

where we use R(D) as a shorthand for R(x) when D =?x. For the sake of space,
we only report some of them.

I,R |=σ (D1, ..., Dk).P iff (D1, ..., Dk) ∈ I(σ) ∧ I,R |=σ P
I,R |=σ 〈E1, ..., Ek〉.P iff ∀v1, ..vk : vi ∈ R(Ei) 〈v1, ..vk〉 ∈ I(σ) ∧ I,R |=σ P

(I/O Synch) 〈v1, ..vk〉 ∈ I(rp

s@m:k) ∧ (D1, ..., Dk) ∈ I(rp

s@m:k)
∧

V
i∈Term(D1,...,Dk) vi = Di

⇒ ∧j∈Var(D1,...,Dk) vj ∈ R(Dj)

Table 3. Analysis for CaSPiS Processes

We assume that, in each information exchange, a malicious customer sends
messages in the expected format and successful w.r.t. the required pattern match-
ing, as can stated by the rule (I/O Synch) in the presence of the Malicious
Customer, modified to take the pattern matching into account.

(I/O Synch) 〈v1, ..vk〉
a ∈ I(rp

s@m:k) ∧ (D1, ..., Dk)b ∈ I(rp
s@m:k)

∧
V

i∈Term(D1,...,Dk) vi = Di

⇒ ∧j∈Var(D1,...,Dk) vj ∈ R(Dj)
...
a = M ⇒ ∀〈v′

1, ..v
′
k〉

a ∈ K :
∧

V
i∈Term(D1,...,Dk) v′

i = Di

⇒ ∧j∈Var(D1,...,Dk) v′
j ∈ R(Dj)

Price Modification Example. We are now ready to model and analyse the exam-
ple informally introduced in Section 1. The global system is composed by two
processes put in parallel, the e-shop service S and the customer C. Also a data
base DBI storing item prices is modeled:

(S | DBI) | C

Essentially, the e-shop S allows costumers to choose among several items itemi;
when the costumer returns its selection, S asks the DBI service for the price
of the selected item. In the first specification, shown below, the service S does
not check if the form sent by the costumer contains the right price, i.e. the one
computed by the DBI service, because the DBI sends the price directly to
the client, without sending it also to the bank. For the sake of readability, we
distinguish the part of the output tuples relative to the order form (payment
form, resp.) by writing: order form(...) (payment form(...), resp.).

S = !selling.
P

i
((itemi)(ν code)

(price db 〈itemi〉 (?xpricei
)〈order form(code, itemi, xpricei

)〉↑

|
(ok, payment form(code, itemi, ?ypricei

, ?yname, ?ycc)).PAY +
(no payment)))

DBI = !price db
P

i
((itemi)〈pricei〉)

C = selling. 〈itemi〉
M (order form(?z code, itemi, ?zpricei

))M

〈ok, payment form(z code, itemi, zpricei
, name, cc)〉M+

〈no payment〉M

In the second formulation, the service S′ matches the price sent by the customer
against the one provided by the DBI. The other processes are unmodified.

S′ = !selling.
P

i((itemi)(ν code)price db. 〈itemi〉 (?xpricei
)〈xpricei

〉↑ >l

(?yl1
pricei

) 〈form(code, itemi, ypricei
)〉

(ok, payment form(code, itemi, ypricei
, ?yname, ?ycc))) +

(no payment)

The main entries of the analysis of the first formulation are reported in
Fig 5. The variable ?yprice, used by S, may be bound to any value the cos-
tumer sends, in particular to any possible faked price value. This depends on
the fact that there is no pattern matching on the values received; more gen-
erally, no control on this part of input is made. Furthermore, note that since
〈ok, payment form(code, itemi, pricei, name, cc)〉M belongs to I(selling) and
faked price ∈ K, then 〈ok, payment form(code, itemi, faked price, name, cc)〉
can synchronise with the input (ok, payment form(code, itemi, pricei, name, cc)).

In the second formulation, the problem does not arise, because: (i) the DBI
sends the price to the bank that, in turn, forwards it to the client; (ii) the shop
service checks if the price returned by the costumer matches against the one
returned by the DBI component, thus avoiding the attack. The first fix has
to do with the overall design of the service. The second has to do with input
validation and, technically, is obtained by using pattern matching on the third
value received in the payment form, that should match with the price yl1

price, as
correctly predicted by the analysis of the second formulation, shown in Fig 6.

4 Conclusion

Often, component-based applications, i.e. those that are mostly implemented by
connected existing applications, as web services, only limit the analysis of their
component applications to the functionalities they actually use. A good practice
could be to consider all the functionalities an application offers, before including
it in the composition, in order to check all the possible inputs the overall web

I(selling), I(r+
sell) ∋ itemi, price db

I(price db), I(r−price) ∋ 〈itemi〉, (?xpricei
), 〈order form(code, itemi, pricei)〉

↑,
(ok, payment form(code, itemi, pricei, name, cc)),
(ok, payment form(code, itemi, faked price, name, cc)),
(no payment)

I(selling), I(r−sell) ∋ 〈item〉M , (order form(code, itemi, pricei))
M ,

〈ok, payment form(code, itemi, pricei, name, cc)〉M

〈no payment〉M

I(price db), I(r+
price) ∋ (itemi), 〈pricei〉

R(xpricei
),R(zpricei

) ∋ pricei

R(ypricei
) ∋ pricei, faked price

K ∋ pricei, faked price, payment form(code, itemi, pricei, name, cc),
payment form(code, itemi, faked price, name, cc)

Fig. 5. Some Analysis Entries of (S | DBI) | C

I(selling), I(r+
sell) ∋ (itemi), l0

I(l0) ∋ 〈itemi〉, price db

I(price db), I(r−price) ∋ 〈itemi〉(?xprice)〈price〉↑,

I(l1) ∋ (?yl1
price), 〈form(code, item, pricei)〉,

(ok, payment form(code, itemi, pricei, ?yname, ?ycc)),
(no payment)

R(xpricei
) ∋ pricei

R(yl1
pricei

) ∋ pricei

Fig. 6. Some Analysis Entries of (S′ | DBI) | C

service can eventually provide and to keep trace where data-validation is applied
or is missing.

We applied a Control Flow Analysis to an example inspired by a known
logic-flawed application for e-commerce, specified in service oriented calculus as
CaSPiS. Ours is a proof-of-concept work: we chose to detect the application
misuse, by analysing the static approximation of the behaviour of the system.
Our analysis can be easily specialised to capture specific properties of interest,
e.g., data integrity in this example. We do not describe the specialisation process
here, but only remark that the core of the analysis here introduced is preserved
(for a similar process, see, e.g., the analyses for the LySa calculus in [10, 8]).
Our proposal shows that the chosen level of abstraction of services and of their
features is suitable to investigate logic flaws. In fact, a calculus like CaSPiS ab-
stractly expresses the key aspects of service oriented computing as primitives,
without requiring any further codification, thus allowing us to focus on the se-
curity flaws that arise at the level of services, and to ignore those arising at
the level of the underlying protocols. Indeed different forms of basic interactions

are distinguished and regulated on their own (services are globally available,
while ordinary I/O communications are context sensitive); and sessions are an
implicit mechanism for enclosing the communications between a caller and its
callee, avoiding external interferences.

References

1. L Acciai, M. Boreale. Type Abstractions of Name-Passing Processes. In Proc. of International
Symposium on Fundamentals of Software Engineering (FSEN’07) , LNCS, vol 4767, pp. 302–
317. Springer, 2007.

2. L Acciai, M. Boreale. A Type System for Client Progress in a Service-Oriented Calculus. In
Concurrency, Graphs and Models , LNCS, vol 5065, pp. 642–658. Springer, 2008.

3. A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma,
P.C. Hem, O. Kouchnarenko, J. Mantovani, S. Mdersheim, D. von Oheimb, M. Rusinowitch,
J. Santiago, M. Turuani, L. Viganò, L. Vigneron. The AVISPA Tool for the Automated Validation
of Internet Security Protocols and Applications. In Proc. of CAV’05, LNCS, vol 3576, pp. 281–
285. Springer, 2005.

4. M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino. Semantics-Based Design for Secure Web Ser-
vices. Software Engineering, IEEE Transactions, Vol 34(1): 33–49, 2008.

5. K. Bhargavan, C. Fournet, A.D. Gordon Verified Reference Implementations of WS-Security
Protocols In Proc. of Web Services and Formal Methods (WS-FM 06), LNCS, vol 4184 pp.
88–10 Springer, 2006.

6. B. Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. Computer
Security Foundations Workshop (CSFW), 2001.

7. C. Bodei, A. Bracciali and D. Chiarugi. Control Flow Analysis for Brane Calculi. ENTCS,
227:59–75. Elsevier, 2009.

8. C. Bodei, L. Brodo, P. Degano, H. Gao. Detecting and Preventing Type Flaws at Static Time.
To appear in Journal of Computer Security, 2009.

9. C. Bodei, L. Brodo, R. Bruni. Static Detection of Logic Flaws in Service Applications. Technical
Report, Dipartimento di Informatica, Università di Pisa, 2009.

10. C. Bodei, M. Buchholtz, P. Degano, F. Nielson and H.R. Nielson. Static Validation of Security
Protocols. Journal of Computer Security, 13(3):347–390, 2005.

11. M. Bond, J Clulow. Extending Security Protocol Analysis: New Challenges. ENTCS, 125(1):13–
24. Elsevier, 2005.

12. E. Bonelli, A. Compagnoni, E. Gunter. Typechecking Safe Process Synchronization. In
Proc. Foundations of Global Ubiquitous Computing ENTCS, 138(1):3–22. Elsevier, 2005.

13. M. Boreale, R. Bruni, R. De Nicola, M. Loreti. Sessions and Pipelines for Structured Ser-
vice Programming. In Proc. of Formal Methods for Open Object-Based Distributed Systems
(FMOODS’08), LNCS, vol 5051, pp. 19–38, Springer, 2008.

14. R. Bruni. Calculi for service-oriented computing. In Proc. of 9th International School on For-
mal Methods for the Design of Computer, Communication and Software Systems: Web Ser-
vices (SFM’09), LNCS, vol 5569, pp. 1–41, Springer, 2009.

15. R. Bruni, L.G. Mezzina. Types and Deadlock Freedom in a Calculus of Services, Sessions and
Pipelines. In Proc. of Algebraic Methodology and Software Technology (AMAST’08), LNCS,
vol 5140, pp. 100–115, Springer, 2008.

16. D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and its semantic
properties. In Proc. of CONCUR’06, LNCS, vol 4137, pp. 477–491. Springer, 2006.

17. D. Dolev and A.C. Yao. On the Security of Public Key Protocols. IEEE TIT, IT-29(12):198–208,
1983.

18. M. Kolundzija. Security Types for Sessions and Pipelines. In Proc. of the 5th International
Workshop on Web Services and Formal Methods (WS-FM’08), LNCS, vol 5387, pp. 175–189,
Springer, 2009.

19. F. Nabi. Secure business application logic for e-commerce systems. Computers & Security
24(3):208–217, Springer, 2005.

20. F. Nielson, H. Riis Nielson, C. Priami, and D. Schuch da Rosa. Control Flow Analysis for
BioAmbients. ENTCS, 180(3):65–79. Elsevier, 2007.

21. H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic approach to static analysis.
The Essence of Computation: Complexity, Analysis, Transformation, LNCS, vol 2566, pp. 223–
244, Springer, 2002.

22. OASIS Technical Commitee. Web Services Security (WS-Security), 2006.
23. Neohapsis Archives. Price modification possible in CyberOffice Shopping Cart

http://archives.neohapsis.com/archives/bugtraq/2000-10/0011.html
24. M. Backes, S. Mödersheim, B. Pfitzmann, L. Viganò. Symbolic and Cryptographic Analysis of

the Secure WS-ReliableMessaging Scenario. In Proc. of Foundations of Software Science and
Computation Structures (FOSSACS 2006) LNCS, vol 3921, pp. 428–445, Springer.

25. T.Y.C. Woo, S.S. Lam. A semantic model for authentication protocols. In Proc. of IEEE Sym-
posium on Security and Privacy, 1993.

