
Electronic Notes in Theoretical Computer Science 71(2002)
URL: http://www.elsevier.nl/locate/entcs/volume71.html 20 pages

Tiling transactions in rewriting logic1

Roberto Brunia,2 Jośe Meseguerb and Ugo Montanaria

a Computer Science Department, University of Pisa, Italy.
{bruni,ugo }@di.unipi.it

b CS Department, University of Illinois at Urbana-Champaign, USA.
meseguer@cs.uiuc.edu

Abstract

We propose a modular high-level approach to the specification of transactions in rewrit-
ing logic, where the operational and the abstract views are related by suitable adjunctions
between categories of tile theories and of rewrite theories.

Key words: tile logic, rewriting logic, category theory, transactions,
zero-safe nets, Petri nets.

1 Introduction

The enormous growth of the World Wide Web has increased the demand for global
computing applications, where the “orchestration” of the flow of data and of mo-
bile processes is a key issue. While synchronous communication on the web is
unrealistic, and thus asynchronous formal models are preferred, many applications
often require a coordination layer between distributed components that are designed
and implemented separately (e.g. in e-commerce or on-line auction systems). For
this purpose, platforms like BizTalk and Javaspaces exploit a centralizedtrans-
action manager(TM) to guarantee the so-called ACID—Atomicity, Consistency,
Isolation, and Durability—properties (e.g. if a transaction aborts then a consistent
configuration must be restored). Nevertheless, TM’s are not a panacea, since their
presence raises several questions that involve both theoretical aspects and pragmat-
ics (perhaps even ethics). For example: (1) the lack of a formal abstract model; (2)
the heavy task overload on the servers running TM’s; and (3) when two or more
organizations are involved in a transaction, which TM should take control?

1 Research supported by IST-2001-32747 Projectagile, by the Italian MIUR Projectcometa,
and by ONR Grant N00014-02-1-0715.
2 The first author is also supported by an Italiancnr fellowship for research on Information
Sciences and Technologies, and by the CS Department of the University of Illinois at Urbana-
Champaign.

c©2002 Published by Elsevier Science B. V.

http://www.elsevier.nl/locate/entcs/volume71.html�
mailto:bruni@di.unipi.it,ugo@di.unipi.it�
mailto:meseguer@cs.uiuc.edu�

Bruni, Meseguer and Montanari

µ.P
µ−→ P

(actµ)

P
µ−→ P′

P |Q µ−→ P′ |Q
(lparµ)

P
µ−→ P′

Q | P µ−→Q | P′
(rparµ)

P
λ−→ P′ Q

λ̄−→Q′

P |Q τ−→ P′ |Q′ (comλ)

structural congruence

(ass) P | (Q | R) ≡ (P |Q) | R
(sym) P |Q ≡ Q | P

(id) P | 0 ≡ P

rewrite rules

(syncλ) λ.P | λ̄.Q ⇒ P |Q

Figure 1.LTS vs reduction semantics illustrated.

In this paper, we propose a high-level specification formalism for distributed
transactions together with a meta-theoretic approach, where two views are kept
distinct, but are formally related: (i) an abstract view, where transactions are seen as
atomic activities that can take place independently from the rest of the system; and
(ii) a refined view, where the coordination layer is made explicit. These two views
reflect the two principal ways for defining the dynamics of many calculi: (a) by
defining a rewriting (or “reduction”) semantics over terms up to a suitable structural
congruence (in the style of theCHAM [1] or, more generally,rewriting logic [13]);
and (b) by means oflabeled transition systems(LTS) specified in theSOSstyle [17],
where transition labels are the means for coordinating system components.

A typical example that illustrates the different flavor of (a) and (b) is given by
the elementaryCCS-like calculus with inactive process0, action prefixµ. (with
actionsµ∈ A] Ā]{τ}) and parallel composition | , whose two semantics are
compared in Figure1 (actually, reductions under action prefix must be forbidden).
Suppose that a processP in the calculus above is used to model a network through
which the usersQ1 and Q2 are willing to communicate on a certain channela.
Then theSOSrules of theLTS semantics specify how the communication must be
propagated through the network, while the rewriting semantics just assumes that the
network can be rearranged in such a way thatQ1 andQ2 can locally “shake-hands.”

Thanks to their generality as specification and logical frameworks, we choose
rewriting logic andtile logic as suitable candidates for the formal modeling of the
views (i) and (ii) above, respectively.

Rewriting logic (RL) [13] not only supports the reduction paradigm, but also
exploits proof terms of rewrites as first class citizens, endowing the system with an
algebra of computations that can be further abstracted to characterize behavioural
equivalences. Furthermore, proof terms precisely characterize concurrent computa-
tions. These features makeRL an expressive semantic framework for concurrency,
parallelism and interaction, and for representing other logics.

Tile logic (TL) [10] is an extension ofRL that links the most interesting features
of LTS and reduction semantics. Tile logic exploits a three-dimensional view of
concurrent systems: the horizontal dimension (space) is devoted to the modeling
of states and components; the vertical dimension (time) models labeled steps; and
the third dimension (concurrency) accounts for the distribution of activities and re-

2

Bruni, Meseguer and Montanari

sources. This separation of concerns makes it possible to select different flavors
of TL simply by fine tuning the algebraic structure of the elements in space and
time and by fixing their interplay. Recent applications ofTL concern an interac-
tive view of Logic Programming [7] and a meta-theory of concurrent semantics
centered around causal and spatial aspects [6]. This paper proposes a further appli-
cation area, namely the semantics of distributed transactions.

There are two more reasons motivating our choice. The first motivation is
that, under reasonable circumstances,TL specifications can be translated to exe-
cutableRL specifications, by exploiting reflection and meta-strategies [8] to control
rewrites (see e.g. [15,4,2]). Since transactions are essentially “selected” computa-
tion patterns, they can be directly translated in meta-strategies that bridge the gap
between the refined and the abstract level. The second reason is that the simplest
class of tile theories (calledzero-safe nets), where both configurations and observa-
tions are multisets of basic elements, has already been shown to extend ordinary P/T
Petri nets (that are just a special case of rewrite theories) with the notion of concur-
rent transaction. Hence a generalization of this net-based account of transactions
to arbitrary tile and rewrite theories yields a high-level and expressive specifica-
tion formalism that is amenable to a large field of applications for which the net
modeling would not fit adequately or would require complex encodings.

The main reference for zero-safe nets is [5]. Besides ordinary places, calledsta-
ble, zero-safe nets come equipped withzero places, which are empty in any stable
marking; atransactionis a concurrent computation which may use zero tokens as
triggers, but defines an evolution between stable markings only. The abstract view
of a zero-safe netN is an ordinary P/T Petri net whose places are the stable places
of N, and whose transitions are the basic transactions ofN. The relation between
zero-safe nets and their abstract counterparts is expressed by a categorical coreflec-
tion. The paper [3] presents a distributed implementation of zero-safe nets, where
centralized TM’s are replaced by a fully distributed commit algorithm. Note that
it is the interpreter’s task to guarantee that transactions are executed correctly (or
aborted if they cannot be completed). The ideas proposed in this paper can be used
as a basis for more general distributed transaction algorithms. In fact, we generalize
the relationship between zero-safe nets and P/T Petri nets to tile theories (system
design level) and rewrite theories (abstract level) to define a general framework for
transactions, where: (1) the low-level view of the system is given by a tile machine
running under the ACID properties of transactions; (2) the high-level view of the
system is an ordinary rewrite theory generated by the (refined) tile theories, such
that there is one rewrite rule for each concurrent transaction of the tile machine.

Our main result is the definition of a coreflection between the category of
rewrite theories and the category of tile theories with suitable refinement mor-
phisms. This leads to a conceptual clarification of howTL andRL are related and
gives a faithful description of the effective communication mechanism needed in
rewrite rules to model coordination. As an example, we give a formal justification
for the claim that in passing from theLTS to the reduction semantics in Figure1
there is a loss of information about the way in which synchronization is achieved.

3

Bruni, Meseguer and Montanari

Structure of the paper. In § 2, we fix the categorical presentation of rewrite the-
ories (§ 2.1) and of tile theories (§ 2.2). In § 3, we recall the theory of zero-safe
nets and the algebraic constructions carried out in [5]. In § 4, we extend the zero-
safe approach to tiles, studying the algebraic constructions for computational and
abstract models. It is worth noting that the construction for zero-safe nets now be-
comes just a special case of the more general theory developed in this paper. Our
technique is illustrated by a simple example in§ 5. Conclusions are drawn in§ 6.
AppendicesA andB recall some preliminary notion about double categories and
adjunctions, respectively. Moreover, two tables by the end AppendixB summarizes
all the categories and all the constructions discussed in the paper.

2 Computads and categories of computations

2.1 Rewriting logic and 2-computads

The main ingredients ofRL are the signature of configurationsΣ, the set of struc-
tural axiomsE, and the set of rewrite rulesR over the congruence classes[t]E (of
Σ-termst modulo the axioms inE). Then, proof terms form a cartesian 2-category
generated by the rewrites inR via simple inference rules (see e.g. [12,13]).

Here, we give a more abstract presentation of rewriting logic by taking config-
urations in a (strict) monoidal categoryC. We assume that the reader has some
familiarity with category theory. An arrowf with domaind(f) = a and codomain
c(f) = b is written f :a→ b. We denote each identity by the object name itself, ar-
row composition (in diagrammatic order) by; , the monoidal tensor product by
⊗ and its unit element bye. Since we always considerstrict monoidal categories

and functors, in the following we shall omit the word “strict.”
The standard case follows by taking asC the Lawvere theoryLΣ,E associated

with the equational theory(Σ,E) [11]. Roughly, the cartesian categoryLΣ,E has
underlined natural numbers as objects (n represents a set withn ordered variables
for which we use standard namesx1, ...,xn), and the tuples of (equivalence classes
of) terms[t]E as arrows (f :n→m is anm-tuple of terms overx1, ...,xn), with com-
position given by term substitution. The cartesian product ofLΣ,E gives the ten-
sor product⊗ on configurations. We use the terminology2-computads, borrowed
from [18,19], for this abstract flavor of rewrite theories.

Definition 2.1 A 2-computadis a 4-tupleC = (C,R, l, r), whereC is the monoidal
category of configurations,R is a set ofrule names, andl, r :R→ C are the source
and target functions denoting the lefthand side and the righthand side of each rule
r ∈ R, with the constraints that: (1)d(l(r)) = d(r(r)), and (2)c(l(r)) = c(r(r)).

Note that if C has only one object (the unite), then sequential composition
coincides with the tensor product (by monoidality and functoriality of⊗), and the
constraints (1–2) of Definition2.1are trivially satisfied.

From the computational point of view, the arrows inC are the configurations of
the system, which can be composed in parallel (⊗) and sequentially (;). Domains

4

Bruni, Meseguer and Montanari

f :a→ b∈ C
f : f ⇒ f

(id)

r ∈ R
r: l(r)⇒ r(r)

(gen)

α1: f1 ⇒ g1, α2: f2 ⇒ g2

α1⊗α2: f1⊗ f2 ⇒ g1⊗g2
(par)

αi : fi ⇒ gi , i = 1,2, c(f1) = d(f2)
α1∗α2: f1; f2 ⇒ g1;g2

(hseq)

α: f ⇒ g, β:g⇒ h

α ·β: f ⇒ h
(vseq)

(a) Inference rules.

α ·g = f ·α = α

α∗b = a∗α = α

f ;g = f ∗g

α⊗e = e⊗α = α

(α1 ∗α2) · (β1 ∗β2) = (α1 ·β1)∗ (α2 ·β2)

(α1 ∗α2)⊗ (β1 ∗β2) = (α1⊗β1)∗ (α2⊗β2)

(α1 ·α2)⊗ (β1 ·β2) = (α1⊗β1) · (α2⊗β2)

(b) Equations.

Figure 2.The cells inrw(C).

and codomains model, respectively, the input and output interfaces of components.
A rule r ∈ R models a basic reduction from the configurationl(r) to r(r). Each re-
ductionr can take place independently from the context wherel(r) resides, thus any
configurationf ; l(r);g can be rewritten tof ; r(r);g by applyingr. Moreover, given
two rulesr1, r2∈Rand the configurationsl(r1); l(r2) andl(r1)⊗ l(r2), then concur-
rent reductions are possible that lead tor(r1); r(r2) andr(r1)⊗ r(r2), respectively.
This yields a 2-category whose cells are concurrent computations.

Definition 2.2 Given a 2-computadC =(C,R, l, r), the monoidal 2-categoryrw(C)
has the same objects and arrows asC, and cells defined by the inference rules in
Figure2(a)modulo the laws of monoidal 2-categories in Figure2(b) (valid when-
ever both sides of the equations are correctly defined cells).

Compositions∗ and· are calledhorizontalandvertical, respectively, according
to the graphical convention of composing configurations horizontally from left to
right and computations vertically from top to bottom. For example, the rewriter,
with argumentsf and inside the contextg is denoted by the proof termf ∗ r ∗g:

a f
// d(l(r))

l(r)
##

⇓r

r(r)
;;

c(l(r)) g
// b

Definition 2.3 A 2-computad morphismbetween(C1,R1, l1, r1) and(C2,R2, l2, r2)
is a pair(C ,R) whereC :C1→C2 is a monoidal functor, andR:R1→R2 is a func-
tion such that for anyr ∈R1: (1)C (l1(r)) = l2(R(r)) and (2)C (r1(r)) = r2(R(r)).
We let2Comp be the category whose objects are 2-computads and whose arrows
are 2-computad morphisms (with obvious identities and pairwise composition).
Moreover, we denote by2Compc the full subcategory of2Compwhose objects are
2-computads with a commutative monoidal category of configurations (i.e., where
the tensor product⊗ is commutative).

2-computadsC are related to their computationsrw(C) via an adjunction.

5

Bruni, Meseguer and Montanari

◦ s //

u
²²

α
initial input interface ◦

v
²²

initial output interface

◦ t
//final input interface ◦ final output interface

Figure 3.The tileα:s
u−→
v

t.

Proposition 2.4 Let 2MCat be the category of monoidal 2-categories (as objects)
and monoidal 2-functors (as arrows). The obvious forgetful functorU2:2MCat →
2Comphas a left adjointF2:2Comp→ 2MCat with F2(C)' rw(C).

2.2 Tile logic and D-computads

Tiles extend ordinary rewrite rules with the possibility of changing the input and
output interfaces during system evolution. The way in which they are changed is ex-
pressed by arrows in a vertical category. More generally, vertical arrows model the
information passed between interfaces. Graphically, this amounts to representing
rules as rectangles, whence the nametile. The tile in Figure3 is writtenα:s

u−→
v

t,

and states that theinitial configurationscan evolve to thefinal configurationt, pro-
ducing theeffectv when thetrigger u is provided by the components connected to
the input interface ofs. The arrowss, u, v andt form theborderof α and are con-
ventionally denoted by the initials of the four main compass points (e.g.n(α) = s).

Definition 2.5 A D-computadis a 7-tupleD = (H,V,T,n,s,w,e), whereH is the
monoidal category of configurations,V is the monoidal category of observations,T
is a set oftile names, n,s:T → H, andw,e:T → V are the (bidimensional) source
and target functions denoting, respectively, the initial and final configurations, the
trigger, and the effect of each tiler ∈ T, with the constraints that:

(i) the categoriesH andV have the same objects;

(ii) d(n(r)) = d(w(r)), for anyr ∈ T;

(iii) c(n(r)) = d(e(r)), for anyr ∈ T;

(iv) d(s(r)) = c(w(r)), for anyr ∈ T;

(v) c(s(r)) = c(e(r)), for anyr ∈ T.

It is immediate that any 2-computad is just a particular D-computad whose ver-
tical categoryV of observations is the discrete category of objects in the horizontal
categoryH (by takingC = H and l = n andr = s). Note that tile rewrites cannot
be applied in arbitrary contexts. For example, the tiler can be applied tof ;n(r);g
only if its triggerw(r) can be coordinated withf , and its effecte(r) with g:

a f //

²²

d(n(r)) n(r) //

⇓rw(r)
²²

c(n(r)) g //

e(r)
²²

b

²²

? // d(s(r)) s(r) // c(s(r)) // ?

Like rewrite rules, tiles can be composed horizontally, vertically, and in parallel
to generate larger steps. The three compositions are illustrated in Figure4. Due to

6

Bruni, Meseguer and Montanari

◦ //

²²
α

◦ //

²²
β

◦
²²◦ // ◦ // ◦

◦ //

²²

◦
²²◦ //

²²

◦
²²

β
◦ // ◦◦ //α ◦

◦ //

²²
α

◦
²²◦ //

²²
β

◦
²²◦ // ◦

Figure 4.Horizontal, parallel and vertical tile compositions.

t:a→ b∈ H

t: t
a−→
b t

(hid)
α1:s1

u−→
w t1, α2:s2

w−→
v t2

α1∗α2:s1;s2
u−→
v t1; t2

(hseq)

u:a→ b∈ V

u:a
u−→
u b

(vid)
α1:s

u1−→
v1

q, α2:q
u2−→
v2

t

α1 ·α2:s
u1;u2−→
v1;v2

t
(vseq)

r ∈ T

r:n(r)
w(r)−→
e(r) s(r)

(gen)
α1:s1

u1−→
v1

t1, α2:s2
u2−→
v2

t2

α1⊗α2:s1⊗s2
u1⊗u2−→
v1⊗v2

t1⊗ t2

(par)

Figure 5.The cells intl(D).

space limitation, we refer to [9,15,2] for the theory of ordinary and monoidal double
categories. For the reader’s convenience, some basics are recalled in AppendixA.
Roughly, the elements of monoidal double categories are cells analogous to the
rectangle in Figure3and have two sequential compositions (horizontal and vertical)
and a tensor product, all the operations being mutually functorial.

Definition 2.6 Given a D-computadD = (H,V,T,n,s,w,e), the monoidal double
categorytl(D) has horizontal 1-categoryH, vertical 1-categoryV, and (double)
cells defined by the inference rules in Figure5, modulo the laws of monoidal double
categories (cf. [2,15] for details).

Definition 2.7 A D-computad morphismbetweenD1 andD2 is a triple(H ,V ,T)
such thatH :H1→ H2 andV :V1→ V2 are monoidal functors, andT :T1→ T2 is
a function such that:

(i) the functorsH andV coincide on objects;

(ii) H (n1(r)) = n2(T (r)), for anyr ∈ T1;

(iii) H (s1(r)) = s2(T (r)), for anyr ∈ T1;

(iv) V (w1(r)) = w2(T (r)), for anyr ∈ T1;

(v) V (e1(r)) = e2(T (r)), for anyr ∈ T1.

We let DComp denote the category whose objects are D-computads and whose
arrows are D-computad morphisms. Moreover, we denote byDCompc the full
subcategory ofDComp consisting of D-computads whose configurations and ob-
servations are commutative monoidal categories.

A D-computadD is related to the monoidal double categorytl(D) of its com-

7

Bruni, Meseguer and Montanari

putations via an adjunction.

Proposition 2.8 Let DMCat be the category of monoidal double categories (as
objects) and monoidal double functors (as arrows). The obvious forgetful functor
Ud:DMCat → DComp has a left adjointFd with Fd(D)' tl(D).

3 Review of the zero-safe approach

P/T Petri nets are graphs whose set of nodes is the free commutative monoidS⊕
over the placesS, and whose arcs are called transitions. APetri net morphismis a
graph morphism that in addition preserves the monoidal structure of markings (i.e.
a graph morphism whose node component is a monoid morphism). The category
Petri has Petri nets as objects and Petri net morphisms as arrows.

SinceS⊕ can be regarded as a monoidal category having a unique object (the
unit e), the elements ofS⊕ as arrows, and composition given bym;m′ = m⊕m′,
then P/T Petri nets can be regarded as 2-computads by a direct translation of tran-
sitions into rewrite rules. In fact, eachm∈ S⊕ exactly defines a multiset of places
(marking) and any transitiont with pre-setmand post-setm′ can be seen as a rewrite
t:m→m′. Note that rewrites can be applied (concurrently) inside any larger multi-
set (see [16] for the RL specification of several kinds of nets).

Proposition 3.1 The categoryPetri is isomorphic to the full subcategory of2Compc

(and hence of2Comp) whose objects are 2-computads of the form(S⊕,T, l, r).

A zero-safe net [5] is a P/T Petri net whose set of placesS is partitioned into
two disjoint subsets ofstableplacesL andzeroplacesZ, and whose transitions in
a transactional way, as we explain below.

The key idea is that transitions can be fired only as part of transactions that
lead from stable markings (i.e. elements ofL⊕) to stable markings. Starting from a
stable marking, the net computes by firing transitions that can fetch tokens of both
kinds. After each firing, only the zero tokens in the post-set are made available
for the successive firings: the stable tokens in the post-set will be made available
to the system only at commit time, when no zero token involved in the transaction
is left. This assumption introduces a coordination mechanism between transitions
that can be implemented in distributed languages [3]. While zero tokens are useful
at the specification level for modeling coordination, at the abstract level the system
can be viewed as an ordinary P/T Petri net, whose places are the stable places of
the system and whose transitions are the basic transactions. The advantage is that
the zero-safe specification is in general simpler and more natural than its abstract
view (finite specifications can yield infinitely many transactions). Furthermore, the
abstract view can be defined via a categorical adjunction as recalled below from [5].

For example, let us consider the zero-safe net with two stable placesa andb, a
zero placez and two transitionst1:a→ z⊕b andt2:b⊕z→ a. Then, if the initial
marking isa, no transaction can be performed, as the token inb produced by a
firing of t1 would not be available immediately, and thust2 would not be enabled.

8

Bruni, Meseguer and Montanari

Instead, if the initial marking isa⊕b thent1 can be fired first and then the token
initially present inb can be used together with the token inz produced byt1 to
enablet2 and close the transaction (whose commit releases fresh tokens ina andb).

Let ZPetri be the category of zero-safe nets and the obvious graph homomor-
phisms between them (preserving place partitioning to stable and zero), with the
additional condition that distinct zero places have disjoint multisets as images.

The first step is to define a categoryHCatZPetri of zero-safe nets whose set
of transitions has a (commutative) monoidal operation⊗, a horizontal sequential
operation∗ (that concatenates on zero places only and behaves as the parallel com-
position on stable pre- and post-sets), and identities, quotiented out by suitable
axioms. The morphisms ofHCatZPetri are zero-safe net morphisms preserving
all the additional structure. Horizontal composition allows building transactions
that exploit the flow of zero tokens. There is an adjunction betweenZPetri and
HCatZPetri . We letZ :ZPetri → HCatZPetri denote the free functor.

The second step is the characterization of basic transactions: given a transition
α of a net inHCatZPetri , we say thatα:m→ m′ with m andm′ stable isprime
if it cannot be decomposed as the concurrent execution of two other non-trivial
transitions. Formally,α is prime if α 6= e and if wheneverα = β1⊗β2 thenβ1 =
e∨β2 = e. Given a zero-safe netN, prime arrows inZ (N) are shown to exactly
model the (basic) transactions ofN, defining an implementation of the abstract net.
Hence, arefinement morphismR:N1 → N2 is a zero-safe net morphism̂R:N1 →
Z (N2) that maps transitions either to prime arrows or to transitions ofN2.

In the example discussed above, we havet1⊗ t2:a⊕b⊕ z→ b⊕ z⊕a, while
t1∗ t2:a⊕b→ b⊕a (the token inz produced byt1 is consumed byt2). Moreover,
t1∗ t2 is a prime arrow (the only one), while e.g.(t1⊗ t1)∗ (t2⊗ t2):a⊕b⊕a⊕b→
b⊕a⊕b⊕a is not a prime arrow because it can be decomposed as(t1∗t2)⊗(t1∗t2).
Hence the abstract net has two places (a andb) and one transitiont:a⊕b→ b⊕a
which can be mapped by a refinement morphism to the prime arrowt1 ∗ t2. (We
refer to [5] for more detailed examples.)

The third step is the definition of the categoryZSN of zero-safe nets (as ob-
jects) and refinement morphisms (as arrows). In fact, refinement morphisms can be
composed via a lifting that preserves primality. The categoryPetri is a coreflective
subcategory ofZSN. Moreover, the right adjointAz:ZSN→ Petri maps zero-safe
nets to their abstract counterparts, and the counit of the adjunction maps transitions
of the abstract net to the transactions they represent. The properties of adjunctions
show thatZ andAz are the “best” feasible constructions (up to isomorphism).

4 Zero-safe rewrite theories

We first explain in detail the analogy between zero-safe nets and tiles, and then
generalize the constructions in [5] to tiles and rewrite theories.

9

Bruni, Meseguer and Montanari

4.1 Zero-safe nets as tiles

As noticed at the begininning of Section3, the free commutative monoidS⊕ over
the placesS can be seen as a category with a unique objecte. Moreover, ifL is
the set of stable places andZ is the set of zero places of a zero-safe net, it is easy
to see that(L]Z)⊕ ' L⊕×Z⊕. We already noticed that P/T Petri nets are just
2-computads of the form(L⊕,T, l, r), for l and r the pre- and post-set functions,
and that the notion of net morphism coincides with that of 2-computad morphism
(Proposition3.1). Analogously, a zero-safe net can be regarded as the D-computad
(L⊕,Z⊕,T,n,s,w,e) where: (i) the pre-set oft ∈ T is n(t)⊕w(t); and (ii) the post-
set oft ∈ T is s(t)⊕e(t). Then, it can be easily verified that the additional algebraic
structure of transitions in the objects ofHCatZPetri is just given by the ordinary
identity, parallel and horizontal composition of tiles (but note that here the parallel
composition is commutative). For example, ifai ,bi are stable places,z is a zero
place,t1:a1

e−→
z

b1 is a transition froma1 to b1⊕z andt2:a2
z−→
e

b2 is a transition

from a2⊕z to b2, then their horizontal compositiont1∗ t2:a1;a2
e−→
e

b1;b2 forms a

transaction froma1⊕a2 = a1;a2 to b1⊕b2 = b1;b2.
However, at the morphism level,DComp is more permissive thanZPetri , be-

cause the images of two distinct vertical arrows (e.g. zero places) are not neces-
sarily disjoint multisets. This property is central to the lifting of refinement mor-
phisms used inZSN for arrow composition. ThusZPetri is strictly included in
the full subcategory ofDComp whose objects are all the D-computads of the form
(L⊕,Z⊕,T,n,s,w,e). To make the correspondence more precise, we can restrict D-
computad morphisms to satisfy an extended notion of the disjoint image property.

Definition 4.1 A D-computad morphism(H ,V ,T) from D1 to D2 is disjoint if
the functorV is injective on objects and faithful on arrows. We callZComp the
category of D-computads as objects and disjoint D-computad morphisms as ar-
rows, and we letZCompc denote the full subcategory ofZComp whose objects
are D-computads over commutative monoidal categories of configurations and ob-
servations.

Proposition 4.2 The categoryZPetri is naturally isomorphic to the full subcate-
gory ofZCompc whose objects are D-computads of the form(L⊕,Z⊕,T,n,s,w,e).

As exemplified by the constructiontl(D), D-computads have standard hori-
zontal and parallel compositions, hence we can define the categoryHCatZComp,
where: (1) the objects are D-computads whose set of tiles possesses a monoidal op-
eration⊗ and horizontal composition∗ with horizontal identities for observations
(but neither the vertical composition· nor the vertical identities for configurations
are considered); and (2) the arrows are disjoint D-computad morphisms preserv-
ing all the additional structure. We letHCatZCompc be the full subcategory of
HCatZComp whose D-computads have a commutative parallel composition⊗.

Proposition 4.3 The categoryHCatZPetri is isomorphic to the full subcategory of
HCatZCompc whose objects are D-computads of the form(L⊕,Z⊕,T,n,s,w,e).

10

Bruni, Meseguer and Montanari

Proposition 4.4 There is an obvious adjunction betweenZComp andHCatZComp
that builds the horizontal computations of tiles. We letD denote the free functor.
Analogously, there is an adjunction betweenZCompc andHCatZCompc and we
let Dc denote the corresponding free functor. Then, the diagram of functors and
obvious embeddings

ZPetri Z //

'
� _

²²

HCatZPetri
� _

²²

ZCompc
Dc

// HCatZCompc

commutes (up to natural isomorphism).

In Section4.2 we show how to generalize the notion of refinement morphism
in such a way that the coreflection betweenPetri (abstract view) andZSN (specifi-
cation view) can be properly extended to rewrite and tile theories.

4.2 From tiles to transactional rewrite rules

The idea is that, starting from a given configuration, double computads can begin
rewriting it, producing observations that must be coordinated in the continuation
of the transaction. Enabled rewrites can be executed concurrently. A transaction
is completed when all actions have been coordinated (the global trigger and effect
must be identities, as the transaction can be executed in isolation). At the abstract
level, each transaction is thus an ordinary rewrite rule. The bidimensional repre-
sentation of tiles marks a clear distinction between system configurations and the
structure involved in the coordination of rewrites. Conceptually, this resembles the
zero-safe approach, and the abstract view can be defined by generalizing the alge-
braic construction based on refinement morphisms. The first step is to generalize
the notion of primality, so as to characterize the basic transactions.

Definition 4.5 Given a tileα of a D-computad inHCatZComp, we say thatα is
prime if it cannot be decomposed as the concurrent execution of two other non-
trivial tiles. Formally,α:s

a−→
b

t, α 6= e is prime ifa andb are identities and

α = β1⊗β2 =⇒ β1 = e∨β2 = e.

Unfortunately the above constraint is not strong enough for guaranteeing that
prime arrows represent atomic activities. In fact, suppose thatα = β1∗β2 with β1

andβ2 prime, such that the trigger ofβ2 (and hence the effect ofβ1, which must be
equal) is an identity arrow, then it would not be correct to assume thatβ1 andβ2

are interacting in the same transactions (unlessβ1 or β2 are object identities). The
difference w.r.t. the case of zero-safe nets is due to the fact that inHCatZPetri , if
α = β1∗β2 and the trigger ofβ2 is e (the only possible identity), thenα = β1⊗β2

and the normal constraint can be applied. To guarantee atomicity, we must avoid
any possible embedding between basic transactions.

11

Bruni, Meseguer and Montanari

Definition 4.6 A prime tile α1:s1
a1−→
b1

t1 is elementaryif

α1 = β1∗ (u1⊗α2⊗u2)∗β2 with α2:s2
a2−→
b2

t2 =⇒ α1 = α2∨α2 = a2.

Since∗ and⊗ are the only operations for composing tiles inHCatZPetri , the
contextβ1 ∗ (u1⊗ ⊗u2) ∗β2, whereu1 andu2 are suitable horizontal identities,
models the more general situation for embedding a transaction inside another. Of
course, identities of objects likea2 are not considered as transactions and can be
used in elementary tiles.

Definition 4.7 A computad refinement morphismM :D1 → D2 is a disjoint D-
computad morphismM̂ :D1 → D [D2] sending tiles either to tiles ofD2 or to ele-
mentary elements ofD [D2].

Lemma 4.8 Given a computad refinement morphismM :D1 → D2, let us denote
by M̃ :D [D1]→ D [D2] its unique extension inHCatZComp by means of the ad-
junctionD . Then,M̃ preserves elementary tiles.

Proof (Sketch) We must show that, ifα is elementary inD [D1], thenM̃ (α) is
also elementary. We fix a representation ofα as the horizontal composition ofn
tiles of the formui ⊗αi ⊗ vi for i = 1..n, where theαi ’s are basic tiles inD1 and
then we proceed by contradiction by showing that if

M̃ (α) =
(
M (u1)⊗M (α1)⊗M (v1)

)
∗ ...∗

(
M (un)⊗M (αn)⊗M (vn)

)

is not elementary, then, by exploiting the faithfulness of disjoint D-computad mor-
phisms,α also can be shown to be non-elementary, contradicting the hypothesis.
(The key fact is that eachM (αi) must be a basic tile ofD2, by elementarity ofα.)

Thanks to Lemma4.8, the composition of two computad refinement morphisms
M1:D1 → D2 andM2:D2 → D3 is defined as the morphismM1;M̃2, and it is
again a computad refinement morphism. Thus, together with the obvious identities,
computad refinement morphisms form a category.

Definition 4.9 The categoryRComp has D-computads as objects and computad
refinement morphisms as arrows.

The analogy between nets and computads can now be fully exploited, leading
to the main result of the paper.

Theorem 4.10 The category2Comp is a coreflective subcategory ofRComp.

Proof (Sketch) First we show that the obvious inclusionI of 2Comp intoRComp
is full and faithful. If D is a 2-computad, then the elementary arrows ofD [D] are
just the rewrite rules ofD. This means that, given any 2-computadsD1 andD2,
any computad refinement morphism is just a 2-computad morphism. On the other
hand, it is obvious that any 2-computad morphism is also a computad refinement
morphism, because it maps transitions into transitions. Next, we must show that
I has a right adjointAd. Given a D-computadD = (H,V,T,n,s,w,e), let Ad[D]

12

Bruni, Meseguer and Montanari

actµ:µ.x1
1−→
µ x1 lparµ:x1 | x2

µ⊗1−→
µ x1 | x2 rparµ:x1 | x2

1⊗µ−→
µ x1 | x2 comλ:x1 | x2

λ⊗λ̄−→
1 x1 | x2

Figure 6.Tiles for theSOSrules in Figure1

be the D-computad having the same horizontal 1-category ofD, the discrete ver-
tical 1-category given by the objects ofV, and as tiles all the elementary tiles of
D [D] (with obvious borders). Since the vertical 1-category ofAd[D] is discrete,
it is obvious that its tiles are ordinary rewrite rules, and thereforeAd[D] is just a
2-computad. The mappingAd can be extended to a functor by mapping each com-
putad refinement morphismM :D1 → D2 into its lifted version, with domain re-
stricted to the tiles inAd[D1]. The definition is correct, because the lifting preserves
the “elementary” property. The proof of adjunction follows from the definition of
computad refinement morphism.

The right adjointAd characterizes the abstract behaviours of D-computads by
associating with a D-computadD = (H,V,T,n,s,w,e), a 2-computadAd[D] hav-
ing the same horizontal 1-category ofD and as rewrite rules all the elementary
tiles of D [D] (the counit maps rewrite rules ofAd[D] to the tile transactions they
represent).

An analogous construction is possible also when a commutative tensor prod-
uct of tiles is considered, yielding the categoryRCompc of which 2Compc is a
coreflective subcategory. We denote byA c

d the corresponding right adjoint.
Finally, the coreflection ofPetri in ZSN becomes just a special case of the more

general coreflection between2Compc andRCompc.

Proposition 4.11 The diagram of functors and straightforward embeddings

ZSN
Az //

'
� _

²²

Petri
� _

²²

RCompc
A c

d

// 2Compc

commutes (up to natural isomorphism).

5 Example

To illustrate our construction, let us consider again the simple process calculus
defined in the Introduction (see Figure1). The D-computadCCS corresponding
to theLTS can be easily defined by a straightforward translation of theSOS rules
(see examples in [2,15]). We take the free cartesian category (Lawvere theory)
Proc generated by the process signature as the category of configurations. The
vertical category is obtained by taking the free monoidal category over the actions
µ (regarded as arrows from1 to 1). The tiles are illustrated in Figure6.

Let us assume that a transaction should be given by the synchronization of two
processes. In this case, after the synchronization, theτ action should not be prop-
agated further, as the rest of the system can evolve independently. For this reason,

13

Bruni, Meseguer and Montanari

elementary transactions(where1≤ i < j ≤ n)

Ci, j−i
n [x1, ...,λ.xi , ..., λ̄.x j , ...,xn]⇒ Ci, j−i

n [x1, ...,xn]

synchronization contexts(wherel ,k≥ 0 andi, r ≥ 1)

Ci,l+r
i+l+r+k ::= (Li

l | Rr
i+l ,k)

L1
0 ::= [1] R1

n,0 ::= [n+1]

Li
l+1 ::= (Li

l | [i+l+1]) Rr
n,k+1 ::= (Rr

n,k | [n+r+k+1])

Li+1
l ::= ([1] | Ri

1,l) Rr+1
n,k ::= ([n+1] | Rr

n+1,k)

Figure 7.CCS abstract transactions.

in the rulecom we define the effect of a synchronization to be just an identity. Note
that this solution can introduce reductions under action prefixes, in the same way
as the rulesyncin Figure1. To prevent such reductions the standard solution is
to introduce a “top” operator and enforce rewriting at the top (or use order-sorted
theories that distinguish between sequential and concurrent processes). Here, for
the sake of simplicity, we assume that action prefix is declared as afrozenoperator,
so that the rewrite engine (e.g. the Maude interpreter) cannot rewrite under action
prefixes.

By applying the constructionAd to CCS we obtain a 2-computadAd[CCS] that
models the atomic reductions available at the abstract level of the system. The
rewrite rules inAd[CCS] are the elementary tiles ofD [CCS]. A generic (stable)
state is an arbitrary parallel composition of sequential processes (i.e., either0 or
processes guarded by action prefix). Since reductions cannot be performed under
action prefixes, the relevant part of the state can be depicted as a binary tree (internal
nodes are labeled by parallel composition as in the ordinary view of terms as trees)
whose leaves are labeled by sequential processes.

A generic transaction requires the occurrence of two complementary tiles, say
actλ andactλ̄, in two leaves of the tree, the subsequent propagation of their obser-
vationsλ andλ̄ toward the top of the tree (vialparλ, rparλ, lparλ̄, andrparλ̄),
until their first common ancestor (i.e. the node associated with the least parallel
composition enclosing both sequential processes) receives the two triggers and can
coordinate them viacomλ. All the other nodes in the tree do not actively participate
in the transaction.

Each transaction has the formC[x1, ...,λ.xi , ..., λ̄.x j , ...,xn]⇒ C[x1, ...,xn] for a
suitable contextCwith n holes, built using only parallel composition, which defines
the binary synchronization tree going from the two interacting componentsλ.xi and
λ̄.x j to the first common parallel operator enclosing them. It is worth noting that
each elementary transaction is uniquely determined by its left-hand side.

Formally, the interesting contexts for elementary transactions are defined by the
grammar in Figure7. As sketched in Figure8, a contextCi,m

n defines a synchro-
nization tree withn leaves (the holes of the context), whoseith and jth leaves want
to interact (with j = i + m). Since the root is the first common parallel operator
enclosing the above leaves, it follows that it can be divided into two subtrees:Li

l

14

Bruni, Meseguer and Montanari

Ci, j−i
n |

ssssssssssssssssss

JJJJJJJJJJJJJJJJJ

Li
l

Rr
i+l ,k

[1] i [i] l
[i+l] r [j] k

[n]

Figure 8.Synchronization contexts, graphically (wherej = i + l + r andn = j +k).

containing the firsti + l leaves; andRr
i+l ,k containing the remainingr + k leaves,

with l + r = m. The two subtrees are characterized by the fact that at every branch-
ing one child is a hole, while the other child is the subtree containing one of the
two interacting positions. For example, we have the derivations below:

C2,3
5 →L2

1 | R2
3,0→ ([1] | R1

1,1) | R2
3,0→ ([1] | (R1

1,0 | [3])) | R2
3,0→

([1] | ([2] | [3])) | R2
3,0→ ([1] | ([2] | [3])) | ([4] | R1

4,0)→
([1] | ([2] | [3])) | ([4] | [5])

C2,3
5 →L2

0 | R3
2,0→∗ ([1] | [2]) | R3

2,0→∗ ([1] | [2]) | ([3] | ([4] | [5]))

On the other hand, the context([1] | [2]) | (([3] | [4]) | [5]) cannot be generated
from C2,3

5 , because the subterm[3] | [4] is inessential to the transaction between
the second (i = 2) and fifth (j = i +3) holes.

Thus, the abstract view of the D-computad is a 2-computad with infinitely many
rewrite rules, one for each possible (binary) synchronization tree connecting two
complementary action prefixes.

For example the transactionα =
(
actλ⊗1⊗actλ̄

)
∗
(
lparλ⊗ λ̄

)
∗comλ de-

fines a reduction(λ.x1 | x2) | λ̄.x3 ⇒ (x1 | x2) | x3 (obtained by takingC1,2
3 →

L1
1 | R1

2,0), while β =
(
actλ⊗ 1⊗ actλ̄

)
∗

(
λ⊗ rparλ̄

)
∗ comλ defines a reduc-

tion λ.x1 | (x2 | λ̄.x3)⇒ x1 | (x2 | x3) (obtained by takingC1,2
3 → L1

0 | R2
1,0).

Note that concurrent transactions can take place under parallel composition (but
not under prefixes, which are frozen). This is because, once an elementary trans-
actionα has been closed by the tilecomλ, the context where it is embedded does
not take part in that transaction (byα being elementary) but can participate in other
transactions disjoint fromα.

If we take configurations inProc/≡ (i.e. processes modulo associativity, com-
mutativity and identity of parallel composition), then the abstract 2-computad has
still infinitely many rewrite rules (the same as before), but now many of them have
the same lefthand and righthand sides. For example, the transactionsα andβ above
are now two distinct ways of performing the reductionλ.x1 | x2 | λ̄.x3⇒ x1 | x2 | x3.

Finally, the relationship betweenAd[CCS/≡] and the reduction system in Fig-
ure1 can be expressed by the 2-computad morphism that sends the rulesyncλ (i.e.
obtained as an instance ofC1,1

2) in Figure1 to the transaction(actλ⊗actλ̄)∗comλ,
showing that this is just a possible way of synchronizing two processes.

15

Bruni, Meseguer and Montanari

6 Conclusion

We have extended the zero-safe approach of [5] to the more general framework of
tile and rewrite theories. The coreflection between the abstract and the specification
view relates the two principal operational models based onLTS and reductions and
provides a systematic general approach to the definition of transactions. In fact, the
universal property of coreflections guarantees that the abstract system is the best
possible representation (among rewrite theories) of the concurrent transactions of
its corresponding tile theory. It is worth noting that the representation results for
zero-safe nets presented in [5] now follow from the more general constructions de-
fined here. Let us finally mention that the horizontal composition of D-computads
has some analogies with conditional rewriting logic, but we leave the study of the
precise correspondence between these two specification options for future work.

Acknowledgment.We warmfully thank Narciso Martı́-Oliet for his many comments
on a preliminary draft of the paper, which have been very helpful in improving the
quality of our submission. We also thank the anonymous referees for their useful
suggestions.

References

[1] Berry, G. and G. Boudol,The chemical abstract machine, Theoret. Comput. Sci.96
(1992), pp. 217–248.

[2] Bruni, R., “Tile Logic for Synchronized Rewriting of Concurrent Systems,” Ph.D.
thesis, Computer Science Department, University of Pisa (1999).

[3] Bruni, R., C. Laneve and U. Montanari,Orchestrating transactions in join calculus, in
Proc. CONCUR 2002, Lect. Notes in Comput. Sci. (2002), to appear.

[4] Bruni, R., J. Meseguer and U. Montanari,Process and term tile logic, Technical Report
SRI-CSL-98-06, SRI International (1998).

[5] Bruni, R. and U. Montanari,Zero-safe nets: Comparing the collective and individual
token approaches, Inform. and Comput.156(2000), pp. 46–89.

[6] Bruni, R. and U. Montanari,Dynamic connectors for concurrency, Theoret. Comput.
Sci.281(1-2) (2002), pp. 131–176.

[7] Bruni, R., U. Montanari and F. Rossi,An interactive semantics of logic programming,
Theory and Practice of Logic Programming.1 (2001), pp. 647–690.

[8] Clavel, M. and J. Meseguer,Reflection and strategies in rewriting logic, in Proc.
WRLA’96, Elect. Notes in Th. Comput. Sci.4 (1996).

[9] Ehresmann, E.,Cat́egories structur̀ees: I–II, AnnalesÉcole Normal Superieur80
(1963), pp. 349–426.

[10] Gadducci, F. and U. Montanari,The tile model, in Proof, Language and Interaction:
Essays in Honour of Robin Milner, MIT Press, 2000. pp. 133–166.

16

Bruni, Meseguer and Montanari

[11] Lawvere, F.W.,Functorial semantics of algebraic theories, Proc. National Academy
of Sciences50 (1963), pp. 869–872.

[12] Meseguer, J.,Rewriting as a unified model of concurrency, Technical Report SRI-
CSL-90-02R, SRI International (1990).

[13] Meseguer, J.,Conditional rewriting logic as a unified model of concurrency, Theoret.
Comput. Sci.96 (1992), pp. 73–155.

[14] Meseguer, J. and U. Montanari,Petri nets are monoids, Inform. and Comput.88(2)
(1990), pp. 105–155.

[15] Meseguer, J. and U. Montanari,Mapping tile logic into rewriting logic, in Proc.
WADT’97, Lect. Notes in Comput. Sci.1376(1998), pp. 62–91.

[16] Meseguer, J., P.̈Olveczky and M.-O. Stehr,Rewriting logic as a unifying framework
for Petri nets, in Advances in Petri Nets: Unifying Petri Nets, Lect. Notes in Comput.
Sci.2128, Springer Verlag, 2001. pp. 250–303.

[17] Plotkin, G.,A structural approach to operational semantics, Technical Report DAIMI
FN-19, Aarhus University, Computer Science Department (1981).

[18] Street, R., Higher categories, strings, cubes and simplex equations, Applied
Categorical Structures3 (1995), pp. 29–77.

[19] Street, R.,Categorical structures, in: M. Hazewinkel, editor,Handbook of Algebra,
Elsevier Science, 1996. pp. 529–577.

A Monoidal Double Categories

A double categoryis an internal category inCat, the category of categories (as
objects) and functors (as arrows). More naı̈vely, they can be defined as below:

Definition A.1 A double categoryconsists of a collectiona,b,c, ... of objects, a
collectionh,g, f , ... of horizontal arrows, a collectionv,u,w, ... of vertical arrows
and a collectionα,β,γ, ... of cells.

Objects and horizontal arrows form thehorizontal 1-categorywith identity a
for each objecta, and composition ; . Similarly, objects and vertical arrows form
thevertical 1-category, with identitya for each objecta, and composition ; .

Cells are assignedhorizontal sourceandtarget (which are vertical arrows) and
vertical sourceandtarget (which are horizontal arrows); furthermore sources and
targets must becompatible, in the sense that they must form a square-shaped dia-
gram like the one below, for which we use the notationα:h

v−→
u

g.

a h //

αv
²²

b
u
²²

c g
// d

17

Bruni, Meseguer and Montanari

Cells can be composed both horizontally (∗) and vertically (·) as follows: if
α:h

v−→
u

g, β: f
u−→
w

k, andγ:g
z−→
x

p, thenα ∗β:h; f
v−→
w

g;k, andα · γ:h
v;z−→
u;x

p.

Moreover, given a fourth cellδ:k
x−→
y

q, the followingexchange lawholds:

(α · γ)∗ (β ·δ) = (α∗β) · (γ∗δ)

Under these rules, cells form both a horizontal category and a vertical category, with

identities1v : a
v−→
v

cand1h : h
a−→
b

h, respectively. Given1h : h
a−→
b

hand1g : g
b−→
c

g, the equation1h ∗1g = 1h;g must hold (and similarly for vertical composition of
horizontal identities).

Furthermore, horizontal and vertical identities of identities coincide, i.e.,1a =
1a and are denoted just bya (analogously,1h and1v are just denoted byh andv).

A double functorG :D1→D2 is a 4-tuple of functions (one for objects, one for
horizontal arrows, one for vertical arrows, and one for cells), preserving identities
and compositions of all kinds. We letDCat be the category of double categories
(as objects) and double functors (as arrows).

Definition A.2 A monoidal double categoryis a double categoryD equipped with
a double functor⊗:D×D→D (thetensor product) and with an objecte (theunit)
such that: (1)(⊗×1D);⊗= (1D×⊗);⊗, and (2)(e×1D);⊗= (1D×e);⊗= 1D.

A monoidal double category can be equivalently defined either as an internal
category inMCat , the category of monoidal categories (as objects) and monoidal
functors (as arrows), or as an internal monoid inDCat (see [15]).

A monoidal double functoris a double functor that (strictly) preserves tensor
product and unit. The category of monoidal double categories (as objects) and
monoidal double functors (as arrows) is calledDMCat .

B Categories and Constructions

For the reader’s convenience, in this Appendix we summarize in two tables the
relevant categories and constructions between them that are discussed in the paper.

We recall that the notion of adjunction is an elegant categorical tool for estab-
lishing a correspondence between categories. There are several equivalent defini-
tions of adjunction. Probably, the more “constructive” presentation consists of the
scenario with two categoriesA andB and a functorF :A → B. Then, given an
objectb ∈ B we would like to find the objecta ∈ A that “better approximates”b
via F , where:

• approximationmeans the existence of a morphismf from F (a) to b in B;
• best approximationmeans that any other approximationf ′:F (a′) → b via an

objecta′ ∈ A can be expressed in terms off and (the image of) a uniquely de-
termined morphism froma′ to a (the so-calleduniversal property, as formalized
below).

18

Bruni, Meseguer and Montanari

A Gb

a

ĝ

OO
F (Gb)

εb // b B

F (a)

F (ĝ)

OO

g

<<yyyyyyyyy

Figure B.1.The left adjointF .

When best approximations exist for all objects ofB, then they can be used to rep-
resent the relevant structure ofB insideA itself (from the point of view ofF).

Definition B.1 Let A andB be two categories and letF :A → B be a functor. We
say thatF is a left adjoint if for each objectb ∈ B there exist an objectGb ∈ A
and an arrowεb:F (Gb)→ b∈ B, such that for any objecta∈ A and for any arrow
g:F (a)→ b∈ B, there is a unique arroŵg:a→ Gb ∈ A, such thatg = F (ĝ);εb

(see FigureB.1).

A consequence of this fact is the existence of a backward functorG :B → A
that maps each objectb into its best approximationGb. To see this point, note that
given an arrowh:b→ b′ ∈B, then the composite arrowεb;h:F (Gb)→ b′ factorizes
throughεb′ via the image of a unique arrowf :Gb → Gb′ ∈ A (by definition of
adjoint f = ε̂b;h). Hence the functorG can be defined by lettingG (h) = f .

The functorG is called theright adjoint of F , and we writeF a G . The
collectionε = {εb}b∈B is called thecounit of the adjunction and defines a natu-
ral transformation fromG ;F to 1B. Dually, it is possible to define a collection
of “least upper” approximationsη = {ηa:a→ G (F (a))}a∈A, whereηa = îdF (a),
which defines a natural transformation from1A to F ;G (calledunit).

An important property of adjunctions is the preservation of universal construc-
tions: left adjoints preserve colimits, and right adjoints preserve limits. Since
(co)limits can be seen as the categorical way of expressing operations, adjunctions
guarantee to some extent a “compositional” interpretation for such operations.

The typical situation involves a categoryB that has more structure thanA, and
a forgetful functorG that projectsB to A, deleting the extra structure. IfG has left
adjointF , thenF defines the best way of adding that extra structure toA.

Reflectionandcoreflectionare two particularly kinds of adjunction, where, re-
spectively, the counit and the unit define natural isomorphisms, yielding optimal
approximations. When the unit is a natural isomorphism, thenA can be seen just as
subcategory ofB, with the left adjointF being the inclusion functor. Thus, core-
flection is the ideal situation from the semantics point of view. In fact, the typical
situation involves a category of operational modelsB that contains a subcategory
of abstract modelsA, with G (b) being the abstraction ofb. Then, the universal
property of coreflections means that there is a natural isomorphisms between the
observations of any concrete modelb and of its abstract counterpartG (b), i.e. that
b is the same asG (b) when observed from the abstract point of view defined byA.

19

Bruni, Meseguer and Montanari

Category Objects Arrows

Cat categories functors

MCat strict monoidal categories strict monoidal functors

2MCat strict monoidal 2-categories strict monoidal 2-functors

DCat double categories double functors

DMCat strict monoidal double categories strict monoidal double functors

Petri P/T Petri nets Petri net morphisms

ZPetri zero-safe nets (disjoint) zero-safe net morphisms

HCatZPetri zero-safe nets with (disjoint) net homomorphisms

enriched transitions(∗,⊗, id)

ZSN zero-safe nets refinement morphisms

2Comp, 2Compc 2-computads 2-computad morphisms

DComp, DCompc D-computads D-computad morphisms

ZComp, ZCompc D-computads disjoint D-computad morphisms

HCatZComp, D-computads with disjoint D-computad homomorphisms

HCatZCompc enriched tiles(∗,⊗, id)

RComp, RCompc D-computads computad refinement morphisms

Construction Description Original to this contribution?

2Comp
F2 //
⊥ 2MCat
U2

oo Adjunction No (see [15])

DComp
Fd //
⊥ DMCat
Ud

oo Adjunction No (see [15])

ZPetri
Z //
⊥ HCatZPetrioo Adjunction No (see [5])

Petri
� � //
⊥ ZSN

Az
oo Coreflection No (see [5])

ZPetri
� � // ZCompc � � // ZComp Full and faithful inclusions Yes (Proposition4.2)

HCatZPetri
� � // HCatZCompc Full and faithful inclusion Yes (Proposition4.3)

ZComp
D //
⊥ HCatZCompoo Adjunction Yes (Proposition4.4)

ZCompc
Dc

//
⊥ HCatZCompc

oo Adjunction Yes (Proposition4.4)

ZSN
� � // RCompc � � // RComp Full and faithful inclusions Yes (Proposition4.11)

Petri
� � // 2Compc � � // 2Comp Full and faithful inclusions No (see [14])

2Comp
� � I //

⊥ RComp
Ad

oo Coreflection Yes (Theorem4.10)

2Compc
� � I c

//
⊥ RCompc

A c
d

oo Coreflection Yes (Proposition4.11)

20

