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Abstract

We propose a modular high-level approach to the specification of transactions in rewrit-
ing logic, where the operational and the abstract views are related by suitable adjunctions
between categories of tile theories and of rewrite theories.
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1 Introduction

The enormous growth of the World Wide Web has increased the demand for global
computing applications, where the “orchestration” of the flow of data and of mo-
bile processes is a key issue. While synchronous communication on the web is
unrealistic, and thus asynchronous formal models are preferred, many applications
often require a coordination layer between distributed components that are designed
and implemented separately (e.g. in e-commerce or on-line auction systems). For
this purpose, platforms like BizTalk and Javaspaces exploit a centraliaes-

action managelTM) to guarantee the so-called ACID—Atomicity, Consistency,
Isolation, and Durability—properties (e.g. if a transaction aborts then a consistent
configuration must be restored). Nevertheless, TM’s are not a panacea, since their
presence raises several questions that involve both theoretical aspects and pragmat-
ics (perhaps even ethics). For example: (1) the lack of a formal abstract model; (2)
the heavy task overload on the servers running TM’s; and (3) when two or more
organizations are involved in a transaction, which TM should take control?
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Figure 1.LTs vs reduction semantics illustrated.

In this paper, we propose a high-level specification formalism for distributed
transactions together with a meta-theoretic approach, where two views are kept
distinct, but are formally related: (i) an abstract view, where transactions are seen as
atomic activities that can take place independently from the rest of the system; and
(ii) a refined view, where the coordination layer is made explicit. These two views
reflect the two principal ways for defining the dynamics of many calculi: (a) by
defining a rewriting (or “reduction”) semantics over terms up to a suitable structural
congruence (in the style of tt@HAM [1] or, more generallyrewriting logic [13]);
and (b) by means débeled transition systen{sTs) specified in thesosstyle [17],
where transition labels are the means for coordinating system components.

A typical example that illustrates the different flavor of (a) and (b) is given by
the elementargcslike calculus with inactive proces3 action prefixy._ (with
actionsp € AW AW {1}) and parallel composition | _, whose two semantics are
compared in Figurél (actually, reductions under action prefix must be forbidden).
Suppose that a proceBdn the calculus above is used to model a network through
which the user€); and Q. are willing to communicate on a certain chanael
Then thesosrules of theLTs semantics specify how the communication must be
propagated through the network, while the rewriting semantics just assumes that the
network can be rearranged in such a way @aandQ. can locally “shake-hands.”

Thanks to their generality as specification and logical frameworks, we choose
rewriting logic andtile logic as suitable candidates for the formal modeling of the
views (i) and (ii) above, respectively.

Rewriting logic RL) [13] not only supports the reduction paradigm, but also
exploits proof terms of rewrites as first class citizens, endowing the system with an
algebra of computations that can be further abstracted to characterize behavioural
equivalences. Furthermore, proof terms precisely characterize concurrent computa-
tions. These features make an expressive semantic framework for concurrency,
parallelism and interaction, and for representing other logics.

Tile logic (TL) [10] is an extension oRL that links the most interesting features
of LTs and reduction semantics. Tile logic exploits a three-dimensional view of
concurrent systems: the horizontal dimension (space) is devoted to the modeling
of states and components; the vertical dimension (time) models labeled steps; and
the third dimension (concurrency) accounts for the distribution of activities and re-
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sources. This separation of concerns makes it possible to select different flavors
of TL simply by fine tuning the algebraic structure of the elements in space and
time and by fixing their interplay. Recent applicationstaf concern an interac-

tive view of Logic Programming7] and a meta-theory of concurrent semantics
centered around causal and spatial asp@}tg his paper proposes a further appli-
cation area, namely the semantics of distributed transactions.

There are two more reasons motivating our choice. The first motivation is
that, under reasonable circumstances,specifications can be translated to exe-
cutablerL specifications, by exploiting reflection and meta-strate@g®[control
rewrites (see e.glB,4/2]). Since transactions are essentially “selected” computa-
tion patterns, they can be directly translated in meta-strategies that bridge the gap
between the refined and the abstract level. The second reason is that the simplest
class of tile theories (callexero-safe nejswhere both configurations and observa-
tions are multisets of basic elements, has already been shown to extend ordinary P/T
Petri nets (that are just a special case of rewrite theories) with the notion of concur-
rent transaction. Hence a generalization of this net-based account of transactions
to arbitrary tile and rewrite theories yields a high-level and expressive specifica-
tion formalism that is amenable to a large field of applications for which the net
modeling would not fit adequately or would require complex encodings.

The main reference for zero-safe netsfs Besides ordinary places, callsth-
ble, zero-safe nets come equipped wittro placeswhich are empty in any stable
marking; atransactionis a concurrent computation which may use zero tokens as
triggers, but defines an evolution between stable markings only. The abstract view
of a zero-safe nd\l is an ordinary P/T Petri net whose places are the stable places
of N, and whose transitions are the basic transactioré. dfhe relation between
zero-safe nets and their abstract counterparts is expressed by a categorical coreflec-
tion. The paper3] presents a distributed implementation of zero-safe nets, where
centralized TM's are replaced by a fully distributed commit algorithm. Note that
it is the interpreter’s task to guarantee that transactions are executed correctly (or
aborted if they cannot be completed). The ideas proposed in this paper can be used
as a basis for more general distributed transaction algorithms. In fact, we generalize
the relationship between zero-safe nets and P/T Petri nets to tile theories (system
design level) and rewrite theories (abstract level) to define a general framework for
transactions, where: (1) the low-level view of the system is given by a tile machine
running under the ACID properties of transactions; (2) the high-level view of the
system is an ordinary rewrite theory generated by the (refined) tile theories, such
that there is one rewrite rule for each concurrent transaction of the tile machine.

Our main result is the definition of a coreflection between the category of
rewrite theories and the category of tile theories with suitable refinement mor-
phisms. This leads to a conceptual clarification of lmwandRL are related and
gives a faithful description of the effective communication mechanism needed in
rewrite rules to model coordination. As an example, we give a formal justification
for the claim that in passing from theas to the reduction semantics in Figuie
there is a loss of information about the way in which synchronization is achieved.
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Structure of the paper. In 82, we fix the categorical presentation of rewrite the-
ories @ 2.1) and of tile theories§2.2). In 8§83, we recall the theory of zero-safe

nets and the algebraic constructions carried oubsjnip 84, we extend the zero-

safe approach to tiles, studying the algebraic constructions for computational and
abstract models. It is worth noting that the construction for zero-safe nets now be-
comes just a special case of the more general theory developed in this paper. Our
technique is illustrated by a simple example§ib. Conclusions are drawn 6.
AppendicesA andB recall some preliminary notion about double categories and
adjunctions, respectively. Moreover, two tables by the end Appdidixnmarizes

all the categories and all the constructions discussed in the paper.

2 Computads and categories of computations

2.1 Rewriting logic and 2-computads

The main ingredients akL are the signature of configuratioksthe set of struc-
tural axiomsE, and the set of rewrite rulegR over the congruence classgls (of
2-termst modulo the axioms if£). Then, proof terms form a cartesian 2-category
generated by the rewrites Rivia simple inference rules (see e.@2/13)).

Here, we give a more abstract presentation of rewriting logic by taking config-
urations in a (strict) monoidal catego€. We assume that the reader has some
familiarity with category theory. An arrowW with domaind(f) = a and codomain
c(f) =bis written f:a — b. We denote each identity by the object name itself, ar-
row composition (in diagrammatic order) by_, the monoidal tensor product by
_®_ and its unit element bg. Since we always considstrict monoidal categories
and functors, in the following we shall omit the word “strict.”

The standard case follows by taking@ghe Lawvere theory’s g associated
with the equational theory>, E) [11]. Roughly, the cartesian category g has
underlined natural numbers as objecisépresents a set witlhordered variables
for which we use standard names..., xn), and the tuples of (equivalence classes
of) terms|t]g as arrows {:n — mis anm-tuple of terms oveky, ..., X,), with com-
position given by term substitution. The cartesian producLog gives the ten-
sor product® on configurations. We use the terminolo2acomputadsborrowed
from [18,19], for this abstract flavor of rewrite theories.

Definition 2.1 A 2-computads a 4-tupleC = (C,R/1,r), whereC is the monoidal
category of configuration® is a set ofrule namesandl,r:R — C are the source

and target functions denoting the lefthand side and the righthand side of each rule
r € R, with the constraints that: (HI(r)) =d(r(r)), and (2)c(I(r)) = c(r(r)).

Note that if C has only one object (the und), then sequential composition
coincides with the tensor product (by monoidality and functorialitgdf and the
constraints (1-2) of Definitio.1 are trivially satisfied.

From the computational point of view, the arrowsdrare the configurations of
the system, which can be composed in paraligl §nd sequentially;. Domains
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Figure 2.The cells inrw(C).

and codomains model, respectively, the input and output interfaces of components.
Aruler € Rmodels a basic reduction from the configuratiar) tor(r). Each re-
ductionr can take place independently from the context wheneresides, thus any
configurationf;1(r); g can be rewritten td;r (r); g by applyingr. Moreover, given

two rulesry,r2 € Rand the configurationsgry);1(r2) andl(r1) ®1(r2), then concur-

rent reductions are possible that lead to);r(r2) andr(r1) ®@r(rz), respectively.

This yields a 2-category whose cells are concurrent computations.

Definition 2.2 Given a 2-computad = (C,R |, r), the monoidal 2-category(()
has the same objects and arrowgCasand cells defined by the inference rules in
Figure2(a) modulo the laws of monoidal 2-categories in Figadce) (valid when-
ever both sides of the equations are correctly defined cells).

Compositions: and- are callechorizontalandvertical, respectively, according
to the graphical convention of composing configurations horizontally from left to
right and computations vertically from top to bottom. For example, the rewyrite
with argumentd and inside the contextis denoted by the proof termhxr x g:

/l(r)\
a——d(I(r)  uw () —2—b
S

Definition 2.3 A 2-computad morphisimetween(C1,Ry,l1,r1) and(Cz, Ro,12,r2)

is a pair(¢’,%) where¢: C1 — C» is a monoidal functor, an#: Ry — Ry is a func-

tion such that forany € Ry: (1) € (11(r)) =12(2(r)) and (2)€ (r1(r)) =r2(Z2(r)).

We let2Comp be the category whose objects are 2-computads and whose arrows
are 2-computad morphisms (with obvious identities and pairwise composition).
Moreover, we denote bl¥Comp° the full subcategory dCompwhose objects are
2-computads with a commutative monoidal category of configurations (i.e., where
the tensor product is commutative).

2-computadg” are related to their computations(C) via an adjunction.
5
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initial input interface o S .o initial output interface

u a v

final input interface © —5 > © final output interface
, . u
Figure 3.The tilea:s— t.
v

Proposition 2.4 Let2MCat be the category of monoidal 2-categories (as objects)
and monoidal 2-functors (as arrows). The obvious forgetful funéta2MCat —
2Comp has a left adjoint%,: 2Comp — 2MCat with .7,(C) ~ rw(C).

2.2 Tile logic and D-computads

Tiles extend ordinary rewrite rules with the possibility of changing the input and
output interfaces during system evolution. The way in which they are changed is ex-
pressed by arrows in a vertical category. More generally, vertical arrows model the
information passed between interfaces. Graphically, this amounts to representing
rules as rectangles, whence the naitee The tile in Figure3 is writteno:s — t,

and states that thmitial configurations can evolve to thénal configuratiort,vpro-
ducing theeffectv when thetrigger u is provided by the components connected to
the input interface o$. The arrowss, u, v andt form theborder of a and are con-
ventionally denoted by the initials of the four main compass points €cg. = ).

Definition 2.5 A D-computads a 7-tupleD = (H,V,T,n,s,w,e), whereH is the
monoidal category of configurationg,is the monoidal category of observatiois,

is a set ottile namesn,s. T — H, andw,e:T — V are the (bidimensional) source
and target functions denoting, respectively, the initial and final configurations, the
trigger, and the effect of each titec T, with the constraints that:

(i) the categorie$! andV have the same objects;
(i) d(n(r)) =d(w(r)), foranyr € T;

(iii) c(n(r)) =d(e(r)), foranyr € T;
(iv) d(s(r)) =c(w(r)), foranyr € T;
(V) c(s(r)) =c(e(r)), foranyr € T.

It is immediate that any 2-computad is just a particular D-computad whose ver-
tical categoryV of observations is the discrete category of objects in the horizontal
categoryH (by takingC = H andl = n andr = s). Note that tile rewrites cannot
be applied in arbitrary contexts. For example, thertitn be applied td;n(r);g
only if its triggerw(r) can be coordinated with, and its effece(r) with g:

gifﬂd(n(r)) —n(r—sc(n(r)) —9—>b
W(”J I le(r)
2o d(S(r) s e(S(r))

Like rewrite rules, tiles can be composed horizontally, vertically, and in parallel
to generate larger steps. The three compositions are illustrated in BigDree to
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Figure 4.Horizontal, parallel and vertical tile compositions.
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Figure 5.The cells intl(D).

space limitation, we refer t®[15,2] for the theory of ordinary and monoidal double
categories. For the reader’s convenience, some basics are recalled in Apdendix
Roughly, the elements of monoidal double categories are cells analogous to the
rectangle in Figur@ and have two sequential compositions (horizontal and vertical)
and a tensor product, all the operations being mutually functorial.

Definition 2.6 Given a D-computad = (H,V,T,n,s,w,e), the monoidal double
categorytl(D) has horizontal 1-categomy, vertical 1-category/, and (double)
cells defined by the inference rules in Figgrenodulo the laws of monoidal double
categories (cf.2,15] for details).

Definition 2.7 A D-computad morphistetweenD; andD; is atriple(s#, 7 ,.7)
such that’#:H1 — Hy and?:V1 — V» are monoidal functors, anéd: Ty — T is
a function such that:

(i) the functorss# and? coincide on objects;
(i) 2(ny(r)) =na(7(r)), for anyr € Ty;
(iiiy (s1(r)) =s(7 (1)), for anyr € Ty;
(iv) 7 (wa(r)) =wa(7(r)), for anyr € Ty;
(v) ¥ (ew(r)) = ex(7(r)), foranyr € Ty,

We let DComp denote the category whose objects are D-computads and whose
arrows are D-computad morphisms. Moreover, we denot®®gmp°® the full
subcategory oDComp consisting of D-computads whose configurations and ob-
servations are commutative monoidal categories.

A D-computad? is related to the monoidal double categtiyD) of its com-
7
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putations via an adjunction.

Proposition 2.8 Let DMCat be the category of monoidal double categories (as
objects) and monoidal double functors (as arrows). The obvious forgetful functor
%4:DMCat — DComp has a left adjoint#y with .Z4(D) ~ tl(D).

3 Review of the zero-safe approach

P/T Petri nets are graphs whose set of nodes is the free commutative ngnoid
over the place§, and whose arcs are called transitionsPé{ri net morphisnis a
graph morphism that in addition preserves the monoidal structure of markings (i.e.
a graph morphism whose node component is a monoid morphism). The category
Petri has Petri nets as objects and Petri net morphisms as arrows.

SinceS” can be regarded as a monoidal category having a unique object (the
unit €), the elements 08" as arrows, and composition given bym' = ma m,
then P/T Petri nets can be regarded as 2-computads by a direct translation of tran-
sitions into rewrite rules. In fact, eache S” exactly defines a multiset of places
(marking and any transitiobwith pre-semand post-satf can be seen as a rewrite
t:m— . Note that rewrites can be applied (concurrently) inside any larger multi-
set (seelg] for the RL specification of several kinds of nets).

Proposition 3.1 The categoryetri is isomorphic to the full subcategory2€omp”
(and hence o2Comp) whose objects are 2-computads of the fg8h, T,1,r).

A zero-safe netd] is a P/T Petri net whose set of placBss partitioned into
two disjoint subsets oftableplacesL andzeroplacesZ, and whose transitions in
a transactional way, as we explain below.

The key idea is that transitions can be fired only as part of transactions that
lead from stable markings (i.e. elementd.6f) to stable markings. Starting from a
stable marking, the net computes by firing transitions that can fetch tokens of both
kinds. After each firing, only the zero tokens in the post-set are made available
for the successive firings: the stable tokens in the post-set will be made available
to the system only at commit time, when no zero token involved in the transaction
is left. This assumption introduces a coordination mechanism between transitions
that can be implemented in distributed langua@ps\While zero tokens are useful
at the specification level for modeling coordination, at the abstract level the system
can be viewed as an ordinary P/T Petri net, whose places are the stable places of
the system and whose transitions are the basic transactions. The advantage is that
the zero-safe specification is in general simpler and more natural than its abstract
view (finite specifications can yield infinitely many transactions). Furthermore, the
abstract view can be defined via a categorical adjunction as recalled belovbjtom [

For example, let us consider the zero-safe net with two stable pdeaedb, a
zero placez and two transitions;:a — zé b andt:bé z— a. Then, if the initial
marking isa, no transaction can be performed, as the tokeh produced by a
firing of t; would not be available immediately, and thgsvould not be enabled.
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Instead, if the initial marking i&& b thent; can be fired first and then the token
initially present inb can be used together with the tokenziproduced byt; to
enable; and close the transaction (whose commit releases fresh tokamsab).

Let ZPetri be the category of zero-safe nets and the obvious graph homomor-
phisms between them (preserving place partitioning to stable and zero), with the
additional condition that distinct zero places have disjoint multisets as images.

The first step is to define a categdtfCatZPetri of zero-safe nets whose set
of transitions has a (commutative) monoidal operatigra horizontal sequential
operation« (that concatenates on zero places only and behaves as the parallel com-
position on stable pre- and post-sets), and identities, quotiented out by suitable
axioms. The morphisms dfiCatZPetri are zero-safe net morphisms preserving
all the additional structure. Horizontal composition allows building transactions
that exploit the flow of zero tokens. There is an adjunction betwHegiri and
HCatZPetri. We letZ: ZPetri — HCatZPetri denote the free functor.

The second step is the characterization of basic transactions: given a transition
a of a net inHCatZPetri, we say thati:m — m' with m andm stable isprime
if it cannot be decomposed as the concurrent execution of two other non-trivial
transitions. Formallyn is prime ifa # e and if wheneven = 31 ® B2 then; =
eV B2 =e. Given a zero-safe n@, prime arrows inZ'(N) are shown to exactly
model the (basic) transactionsNf defining an implementation of the abstract net.
Hence, aefinement morphisi#:N; — N is a zero-safe net morphisgd: N; —

Z (N2) that maps transitions either to prime arrows or to transitions,of

In the example discussed above, we hgvet:a®b®z— bd zd a, while

t1 xtr:ad® b — bda (the token inz produced byt; is consumed by). Moreover,
t; xtp is a prime arrow (the only one), while e(d; ®t1) * (o ®@t2):a®bdadb —
b@adbdais nota prime arrow because it can be decomposéd &) @ (i1 xtp).
Hence the abstract net has two placaridb) and one transitiohha®b — b a
which can be mapped by a refinement morphism to the prime dgrety. (We
refer to B] for more detailed examples.)

The third step is the definition of the catega$N of zero-safe nets (as ob-
jects) and refinement morphisms (as arrows). In fact, refinement morphisms can be
composed via a lifting that preserves primality. The catedratyi is a coreflective
subcategory oZSN. Moreover, the right adjoint%: ZSN — Petri maps zero-safe
nets to their abstract counterparts, and the counit of the adjunction maps transitions
of the abstract net to the transactions they represent. The properties of adjunctions
show thatZ and.<7; are the “best” feasible constructions (up to isomorphism).

4 Zero-safe rewrite theories

We first explain in detail the analogy between zero-safe nets and tiles, and then
generalize the constructions 5] fto tiles and rewrite theories.

9
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4.1 Zero-safe nets as tiles

As noticed at the begininning of Secti@nthe free commutative monoi@® over

the placesS can be seen as a category with a unique olged¥loreover, ifL is

the set of stable places adds the set of zero places of a zero-safe net, it is easy
to see thaf{LwZ)® ~ L® x Z%. We already noticed that P/T Petri nets are just
2-computads of the forniL®, T,1,r), for | andr the pre- and post-set functions,
and that the notion of net morphism coincides with that of 2-computad morphism
(Proposition3.1). Analogously, a zero-safe net can be regarded as the D-computad
(L®,Z%,T,n,s w,e) where: (i) the pre-set dfe T isn(t) & w(t); and (ii) the post-
setoft € T iss(t) ¢ e(t). Then, it can be easily verified that the additional algebraic
structure of transitions in the objects idCatZPetri is just given by the ordinary
identity, parallel and horizontal composition of tiles (but note that here the parallel
composition is commutative). For example gjfb; are stable placeg,is a zero
place,t;:a; % by is a transition frong; to by ® zandty: a % b, is a transition

from az @ zto by, then their horizontal compositidp*ty: a;; az % by; b, forms a
transaction frona; ®a; = a;;ax to by by = by; bo.

However, at the morphism levdlComp is more permissive thadPetri, be-
cause the images of two distinct vertical arrows (e.g. zero places) are not neces-
sarily disjoint multisets. This property is central to the lifting of refinement mor-
phisms used IrZSN for arrow composition. ThugPetri is strictly included in
the full subcategory odbComp whose objects are all the D-computads of the form
(L®,Z% T,n,s,w,e). To make the correspondence more precise, we can restrict D-
computad morphisms to satisfy an extended notion of the disjoint image property.

Definition 4.1 A D-computad morphisni.7Z’, ',.7) from Dy to D; is disjoint if

the functor? is injective on objects and faithful on arrows. We calomp the
category of D-computads as objects and disjoint D-computad morphisms as ar-
rows, and we leZComp® denote the full subcategory @Comp whose objects

are D-computads over commutative monoidal categories of configurations and ob-
servations.

Proposition 4.2 The categoryZPetri is naturally isomorphic to the full subcate-
gory ofZComp® whose objects are D-computads of the faqty, Z% T, n, s, w, e).

As exemplified by the constructioth(2), D-computads have standard hori-
zontal and parallel compositions, hence we can define the cateigatZComp,
where: (1) the objects are D-computads whose set of tiles possesses a monoidal op-
eration® and horizontal compositior with horizontal identities for observations
(but neither the vertical compositiomor the vertical identities for configurations
are considered); and (2) the arrows are disjoint D-computad morphisms preserv-
ing all the additional structure. We |&tCatZComp® be the full subcategory of
HCatZComp whose D-computads have a commutative parallel composition

Proposition 4.3 The categorHCatZPetri is isomorphic to the full subcategory of
HCatZComp® whose objects are D-computads of the fatit, Z% T,n,s,w, e).

10
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Proposition 4.4 There is an obvious adjunction betweg@omp andHCatZComp

that builds the horizontal computations of tiles. Wedetenote the free functor.
Analogously, there is an adjunction betweg@omp® and HCatZComp® and we

let 2° denote the corresponding free functor. Then, the diagram of functors and
obvious embeddings

ZPetri —z HCatZPetri

ZCompCT HCatZComp®

commutes (up to natural isomorphism).

In Section4.2 we show how to generalize the notion of refinement morphism
in such a way that the coreflection betwdgtri (abstract view) andSN (specifi-
cation view) can be properly extended to rewrite and tile theories.

4.2 From tiles to transactional rewrite rules

The idea is that, starting from a given configuration, double computads can begin
rewriting it, producing observations that must be coordinated in the continuation
of the transaction. Enabled rewrites can be executed concurrently. A transaction
Is completed when all actions have been coordinated (the global trigger and effect
must be identities, as the transaction can be executed in isolation). At the abstract
level, each transaction is thus an ordinary rewrite rule. The bidimensional repre-
sentation of tiles marks a clear distinction between system configurations and the
structure involved in the coordination of rewrites. Conceptually, this resembles the
zero-safe approach, and the abstract view can be defined by generalizing the alge-
braic construction based on refinement morphisms. The first step is to generalize
the notion of primality, so as to characterize the basic transactions.

Definition 4.5 Given a tilea of a D-computad irHCatZComp, we say thatt is
prime if it cannot be decomposed as the concurrent execution of two other non-
trivial tiles. Formally,a:s % t, o # eis prime ifa andb are identities and

a=PR®pB2 = Pr=evp=e

Unfortunately the above constraint is not strong enough for guaranteeing that
prime arrows represent atomic activities. In fact, supposecthaf3; « 32 with (31
andf3; prime, such that the trigger @6 (and hence the effect @, which must be
equal) is an identity arrow, then it would not be correct to assumehand 3,
are interacting in the same transactions (unfssr 32 are object identities). The
difference w.r.t. the case of zero-safe nets is due to the fact théCatZPetri, if
o = 1% B2 and the trigger of3, is e (the only possible identity), them = 31 ® B2
and the normal constraint can be applied. To guarantee atomicity, we must avoid
any possible embedding between basic transactions.

11
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Definition 4.6 A prime tile o1:s1 % t, is elementaryf
1
01 =B1* (U1 ®A2® U2) x B2 With 02: S %tz — O1=02V02=ay.
2

Sincex and® are the only operations for composing tilesH@atZPetri, the
contextf x (U ® - ® Up) * B2, whereu; andu; are suitable horizontal identities,
models the more general situation for embedding a transaction inside another. Of
course, identities of objects lik& are not considered as transactions and can be
used in elementary tiles.

Definition 4.7 A computad refinement morphism’: D, — D, is a disjoint D-
computad morphismz: Dy — 2[D»] sending tiles either to tiles @b, or to ele-
mentary elements a¥[D»)].

Lemma 4.8 Given a computad refinement morphis#: D, — 7», let us denote
by 4 2[D1] — 2[D»] its unique extension iRiCatZComp by means of the ad-

junction 2. Then,.# preserves elementary tiles.

Proof (Sketch) We must show that, ifi is elementary inZ[ D], then.Z (a) is
also elementary. We fix a representatiorooés the horizontal composition of
tiles of the formu; ® a; @ v; for i = 1..n, where theaj’s are basic tiles inD; and
then we proceed by contradiction by showing that if

() = (A (W) © A (@) &M (W) ) 5on (A (U) © A () @ () )

Is not elementary, then, by exploiting the faithfulness of disjoint D-computad mor-
phisms,a also can be shown to be non-elementary, contradicting the hypothesis.
(The key fact is that each (a;) must be a basic tile ab,, by elementarity ofr.)

Thanks to Lemma.&, the composition of two computad refinement morphisms
M. D1 — Do and .#>. D> — D3 is defined as the morphisma#y; .75, and it is
again a computad refinement morphism. Thus, together with the obvious identities,
computad refinement morphisms form a category.

Definition 4.9 The categoryRComp has D-computads as objects and computad
refinement morphisms as arrows.

The analogy between nets and computads can now be fully exploited, leading
to the main result of the paper.

Theorem 4.10 The categor2Compis a coreflective subcategory BComp.

Proof (Sketch) First we show that the obvious inclusion of 2Compinto RComp
is full and faithful. If D is a 2-computad, then the elementary arrows/0D)] are
just the rewrite rules ofp. This means that, given any 2-computatis and D-,
any computad refinement morphism is just a 2-computad morphism. On the other
hand, it is obvious that any 2-computad morphism is also a computad refinement
morphism, because it maps transitions into transitions. Next, we must show that
- has a right adjointzy. Given a D-computad = (H,V,T,n,s,w,e), let .<74| D]

12
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1 pol 1ep AA
actyi X1 7X1  lparyiX | X X1 | X2 rpar, X | Xo X1 | X2 comy:Xi | X2 PRSER.

Figure 6.Tiles for thesosrules in Figurel

be the D-computad having the same horizontal 1-catego®,dhe discrete ver-
tical 1-category given by the objects ¥f and as tiles all the elementary tiles of
2|9D] (with obvious borders). Since the vertical 1-category:gf?] is discrete,

it is obvious that its tiles are ordinary rewrite rules, and therefeggD] is just a
2-computad. The mappingj can be extended to a functor by mapping each com-
putad refinement morphism?: D, — D into its lifted version, with domain re-
stricted to the tiles inzg[D4]. The definition is correct, because the lifting preserves
the “elementary” property. The proof of adjunction follows from the definition of
computad refinement morphism.

The right adjointery characterizes the abstract behaviours of D-computads by
associating with a D-computaft = (H,V,T,n,s,w, e), a 2-computadzy[ D] hav-
ing the same horizontal 1-category @f and as rewrite rules all the elementary
tiles of 2[D] (the counit maps rewrite rules @#;| D] to the tile transactions they
represent).

An analogous construction is possible also when a commutative tensor prod-
uct of tiles is considered, yielding the categ®Zomp® of which 2Comp° is a
coreflective subcategory. We denotedsff the corresponding right adjoint.

Finally, the coreflection dPetri in ZSN becomes just a special case of the more
general coreflection betwe@Comp® andRComp°.

Proposition 4.11 The diagram of functors and straightforward embeddings

ZSN— % petyi

~

RComp®———2Comp
d

commutes (up to natural isomorphism).

5 Example

To illustrate our construction, let us consider again the simple process calculus
defined in the Introduction (see Figut® The D-computad_CS corresponding
to theLTs can be easily defined by a straightforward translation ofsthe rules
(see examples ir2|15]). We take the free cartesian category (Lawvere theory)
Proc generated by the process signature as the category of configurations. The
vertical category is obtained by taking the free monoidal category over the actions
U (regarded as arrows frofinto 1). The tiles are illustrated in Figu@

Let us assume that a transaction should be given by the synchronization of two
processes. In this case, after the synchronizatiort #etion should not be prop-
agated further, as the rest of the system can evolve independently. For this reason,

13
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elementary transactionsvherel <i < j <n)

O AN O i

synchronization contex{svherel .k > 0 andi,r > 1)

= WIRL
Liz= [4] Rigi= [ne1]
Li o= (L] [bg4]) Riukis = (Rl Lnsrsea])
Lit o= (4] |RY) Raic 5= (lnea] [ Rppq )

Figure 7.CCS abstract transactions.

in the rulecom we define the effect of a synchronization to be just an identity. Note
that this solution can introduce reductions under action prefixes, in the same way
as the rulesyncin Figure/l. To prevent such reductions the standard solution is

to introduce a “top” operator and enforce rewriting at the top (or use order-sorted
theories that distinguish between sequential and concurrent processes). Here, for
the sake of simplicity, we assume that action prefix is declaredragenoperator,

so that the rewrite engine (e.g. the Maude interpreter) cannot rewrite under action
prefixes.

By applying the construction?y to CCS we obtain a 2-computady|CCS] that
models the atomic reductions available at the abstract level of the system. The
rewrite rules ingeg[CCS| are the elementary tiles @#[CCS]. A generic (stable)
state is an arbitrary parallel composition of sequential processes (i.e., @ither
processes guarded by action prefix). Since reductions cannot be performed under
action prefixes, the relevant part of the state can be depicted as a binary tree (internal
nodes are labeled by parallel composition as in the ordinary view of terms as trees)
whose leaves are labeled by sequential processes.

A generic transaction requires the occurrence of two complementary tiles, say
act) andacty, in two leaves of the tree, the subsequent propagation of their obser-
vationsA andA toward the top of the tree (vibpar,, rpar,, lpary, andrpary),
until their first common ancestor (i.e. the node associated with the least parallel
composition enclosing both sequential processes) receives the two triggers and can
coordinate them viaom,. All the other nodes in the tree do not actively participate
in the transaction. _

Each transaction has the for@{xy,...,A.Xi,...,A.Xj,...,Xn] = C[Xq,...,Xa] for a
suitable context€ with nholes, built using only parallel composition, which defines
the binary synchronization tree going from the two interacting componextand
A.Xxj to the first common parallel operator enclosing them. It is worth noting that
each elementary transaction is uniquely determined by its left-hand side.

Formally, the interesting contexts for elementary transactions are defined by the
grammar in Figur&. As sketched in Figur&, a contextC;" defines a synchro-
nization tree withn leaves (the holes of the context), whaeandjth leaves want
to interact (withj =i+ m). Since the root is the first common parallel operator
enclosing the above leaves, it follows that it can be divided into two subtfges:

14
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ij—i
cy!

] —— i) — ] —— ] =[]

Figure 8.Synchronization contexts, graphically (whgre- i+ +r andn= j + k).

containing the first +1 leaves; andR{, | P containing the remaining-+ k leaves,

with | +r = m. The two subtrees are characterized by the fact that at every branch-
ing one child is a hole, while the other child is the subtree containing one of the
two interacting positions. For example, we have the derivations below:

C5°— L | Rp— ([-a] | Rip) [R50 — ([a] | (Rio|[]) | REp—

(
([a] | (-2 [-a])) IR§ 0 — ([-a] | ([-2] | [-a)) | ([-a] | REg) —
([ ] [ (2] [ [=) [ ([-a] [ [8])

Ce°— L3I R3 o =" ([-a] | [-2]) RS0 =" ([a] | [-2]) | ([-a] | ([-a] | [8])

On the other hand, the conteXts| | [-2]) | (([-3] | [-4]) | [-5]) cannot be generated
from (Cg’s, because the subterjis] | [-4] is inessential to the transaction between
the secondi(= 2) and fifth (j =i+ 3) holes.

Thus, the abstract view of the D-computad is a 2-computad with infinitely many
rewrite rules, one for each possible (binary) synchronization tree connecting two
complementary action prefixes.

For example the transactien= <act)\ ®1® actx) (lpar)\ ®)_\) x comy, de-

fines a reductionA.xy | X2) | AX3 = (X1 | X2) | X3 (obtained by taklng[C12

L1 | RS 20), While B = <act;\ ®l®act)\) ()\ ®rpar)\) * com, defines a reduc-

tion A.xq | (X2 | )\.X3) = X1 | (X2 | X3) (obtained by takingjé’2 —L}| Rio)

Note that concurrent transactions can take place under parallel composition (but
not under prefixes, which are frozen). This is because, once an elementary trans-
actiona has been closed by the titem,, the context where it is embedded does
not take part in that transaction (lmybeing elementary) but can participate in other
transactions disjoint from.

If we take configurations ifProc/ = (i.e. processes modulo associativity, com-
mutativity and identity of parallel composition), then the abstract 2-computad has
still infinitely many rewrite rules (the same as before), but now many of them have
the same lefthand and righthand sides. For example, the transactomf above
are now two distinct ways of performing the reductiary | X2 | A.x3 = X1 | X2 | X3.

Finally, the relationship between[CCS/ =] and the reduction system in Fig-
urel can be expressed by the 2-computad morphism that sends trsyng|€i.e.
obtained as an instance(ﬁ;’l) in Figure1'to the transactioflact) ® acty) * comy,
showing that this is just a possible way of synchronizing two processes.

15
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6 Conclusion

We have extended the zero-safe approaclbjaio the more general framework of

tile and rewrite theories. The coreflection between the abstract and the specification
view relates the two principal operational models basedreand reductions and
provides a systematic general approach to the definition of transactions. In fact, the
universal property of coreflections guarantees that the abstract system is the best
possible representation (among rewrite theories) of the concurrent transactions of
its corresponding tile theory. It is worth noting that the representation results for
zero-safe nets presented B} how follow from the more general constructions de-
fined here. Let us finally mention that the horizontal composition of D-computads
has some analogies with conditional rewriting logic, but we leave the study of the
precise correspondence between these two specification options for future work.
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A Monoidal Double Categories

A double categorys an internal category i€at, the category of categories (as
objects) and functors (as arrows). Morévay, they can be defined as below:

Definition A.1 A double categoryonsists of a collectiom, b, c, ... of objects a
collectionh, g, f,... of horizontal arrows a collectionv,u,w, ... of vertical arrows
and a collectioru, 3,y, ... of cells

Objects and horizontal arrows form therizontal 1-categorywith identity a
for each object, and composition ; _. Similarly, objects and vertical arrows form
thevertical 1-categorywith identity a for each object, and composition ; _ .

Cells are assignélorizontal sourceandtarget(which are vertical arrows) and
vertical sourceandtarget (which are horizontal arrows); furthermore sources and
targets must beompatible in the sense that they must form a square-shaped dia-
gram like the one below, for which we use the notatioh % s}
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Cells can be composed both horizontally @nd vertically () as follows: if
a:h % g B:f % k, andy.g % p, thena xB: h; % g;k, anda -y:h % p.

Moreover, given a fourth ced: k % g, the followingexchange lavholds:

(a-y)«(B-0) = (axB)-(yx9)
Under these rules, cells form both a horizontal category and avertical category, with
identitiesly : a—> candl":h —> h, respectively. Gived": h —> hand19:g —>

g, the equatloriLh %19 = 19 must hold (and similarly for vertlcal composmon of
horizontal identities).

Furthermore, horizontal and vertical identities of identities coincide, e
12 and are denoted just tay(analogously1" and1, are just denoted bly andv).

A double functors: D1 — D3 is a 4-tuple of functions (one for objects, one for
horizontal arrows, one for vertical arrows, and one for cells), preserving identities
and compositions of all kinds. We |&Cat be the category of double categories
(as objects) and double functors (as arrows).

Definition A.2 A monoidal double categorig a double categor equipped with
a double functow: D x D — D (thetensor producgtand with an objece (theunit)
such that: (1)® x 1p);® = (1p X ®);®, and (2)(ex 1p);® = (1p x €); ® = 1p.

A monoidal double category can be equivalently defined either as an internal
category inMCat, the category of monoidal categories (as objects) and monoidal
functors (as arrows), or as an internal monoi@®i@at (see [L5]).

A monoidal double functois a double functor that (strictly) preserves tensor
product and unit. The category of monoidal double categories (as objects) and
monoidal double functors (as arrows) is call@8ICat.

B Categories and Constructions

For the reader’s convenience, in this Appendix we summarize in two tables the
relevant categories and constructions between them that are discussed in the paper.
We recall that the notion of adjunction is an elegant categorical tool for estab-
lishing a correspondence between categories. There are several equivalent defini-
tions of adjunction. Probably, the more “constructive” presentation consists of the

scenario with two categories andB and a functor#:A — B. Then, given an
objectb € B we would like to find the objeca € A that “better approximateds
via.#, where:

 approximationmeans the existence of a morphignfrom .%(a) tob in B;

* best approximationmeans that any other approximatiéh.# (a’) — b via an
objecta’ € A can be expressed in terms bfand (the image of) a uniquely de-
termined morphism from’ to a (the so-callediniversal propertyas formalized
below).

18
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A Gy FZ(G)®2—b B
g 7@ 4
a 7 (@)

Figure B.1.The left adjoint% .

When best approximations exist for all objectsByfthen they can be used to rep-
resent the relevant structureBfinsideA itself (from the point of view of%).

Definition B.1 Let A andB be two categories and let: A — B be a functor. We
say that¥ is aleft adjointif for each objectb € B there exist an objeds, € A
and an arrove,: .# (Gp) — b € B, such that for any objeet€ A and for any arrow
0:.7 (a) — b € B, there is a unique arrog.a — Gp € A, such thag = .#(9); &p
(see FigureB.1).

A consequence of this fact is the existence of a backward furgt8r— A
that maps each objebtinto its best approximatiof®,. To see this point, note that
given an arrowh: b — b’ € B, then the composite arrosy; h: .7 (Gp,) — b factorizes
throughegy via the image of a unique arrow. G, — Gy € A (by definition of
adjoint f = &p; h). Hence the functo¥ can be defined by letting (h) = f.

The functor¥ is called theright adjoint of .7, and we write.# 4 ¥. The
collectione = {gp }pep is called thecounit of the adjunction and defines a natu-
ral transformation fron¥/;.%# to 1g. Dually, it is possible to define a collection

—

of “least upper” approximationg = {na:a — 4(.#(a)) faca, wherena = id z a),
which defines a natural transformation frdmto .7 ;% (calledunit).

An important property of adjunctions is the preservation of universal construc-
tions: left adjoints preserve colimits, and right adjoints preserve limits. Since
(co)limits can be seen as the categorical way of expressing operations, adjunctions
guarantee to some extent a “compositional” interpretation for such operations.

The typical situation involves a categdBythat has more structure th@n and
a forgetful functor¢ that project®8 to A, deleting the extra structure. 3f has left
adjoint.#, then.# defines the best way of adding that extra structur&.to

Reflectiomrandcoreflectionare two particularly kinds of adjunction, where, re-
spectively, the counit and the unit define natural isomorphisms, yielding optimal
approximations. When the unit is a natural isomorphism, thean be seen just as
subcategory oB, with the left adjoint# being the inclusion functor. Thus, core-
flection is the ideal situation from the semantics point of view. In fact, the typical
situation involves a category of operational modglthat contains a subcategory
of abstract model#\, with ¢(b) being the abstraction di. Then, the universal
property of coreflections means that there is a natural isomorphisms between the
observations of any concrete modbeind of its abstract counterp&#tb), i.e. that
b is the same a¥(b) when observed from the abstract point of view defined\by
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Category Objects Arrows
Cat categories functors
MCat strict monoidal categories strict monoidal functors
2MCat strict monoidal 2-categories strict monoidal 2-functors
DCat double categories double functors
DMCat || strict monoidal double categories  strict monoidal double functors
Petri P/T Petri nets Petri net morphisms
ZPetri zero-safe nets (disjoint) zero-safe net morphisms
HCatZPetri zero-safe nets with (disjoint) net homomorphisms
enriched transitionéx, ®,id)
ZSN zero-safe nets refinement morphisms

2Comp, 2Comp°

2-computads

2-computad morphisms

DComp, DComp®

D-computads

D-computad morphisms

ZComp, ZComp®

D-computads

disjoint D-computad morphisms

HCatzComp,
HCatZComp®

D-computads with

enriched tileg*, ®,id)

disjoint D-computad homomorphisms

RComp, RComp*

D-computads

computad refinement morphisms

Construction Description Original to this contribution’.{
F2
2Comp, L ' 2MCat Adjunction No (seell5))
U
Zd
DComp, L ' DMCat Adjunction No (seellq))
U
Fa
ZPetri __L_' HCatZPetri Adjunction No (seel§])
’ Coreflection No (seeld])

Petri, 1 “ZSN
oy

ZPetri < ZComp®“— ZComp

Full and faithful inclusions

Yes (Propositioi.2)

HCatZPetri —— HCatZComp® Full and faithful inclusion Yes (Propositioi.3)
Z

ZComp, L ' HCatZComp Adjunction Yes (Propositioi.4)
@C

ZComp®_ L " HCatZComp® Adjunction Yes (Propositioiat.4)

ZSN“— RComp*“— RComp

Full and faithful inclusions

Yes (Propositiont.11)

Petri & 2Comp° < 2Comp

Full and faithful inclusions

No (seell4])

7

2Comp, 1 "RComp Coreflection Yes (Theoren#.10)
Ay
jc

2Comp°, L ’RComp® Coreflection Yes (Propositioi#.11)
g
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