
WRLA 2008

Hierarchical Design Rewriting with Maude 1

Roberto Bruni and Alberto Lluch Lafuente and Ugo Montanari2

Department of Computer Science, University of Pisa, Pisa, Italy

Abstract

Architectural Design Rewriting (ADR) is a rule-based approach for the design of dynamic software architec-
tures. The key features that make ADR a suitable and expressive framework are the algebraic presentation
and the use of conditional rewrite rules. These features enable, e.g. hierarchical (top-down, bottom-up
or composition-based) design and inductively-defined reconfigurations. The contribution of this paper is
twofold: we define Hierarchical Design Rewriting (HDR) and present our prototypical tool support. HDR
is a flavour of ADR that exploits the concept of hierarchical graph to deal with system specifications com-
bining both symbolic and interpreted parts. Our prototypical implementation is based on Maude and its
presentation serves several purposes. First, we show that HDR is not only a well-founded formal approach
but also a tool-supported framework for the design and analysis of software architectures. Second, our il-
lustration tailored to a particular algebra of designs and a particular scenario traces a general methodology
for the reuse and exploitation of ADR concepts in other scenarios.

Keywords: Maude, Rewriting Logic, SOS, Graphs, Software Architectures.

1 Introduction

Software architectures [10,27] describe the overall structure of software systems in
terms of components, their logical interrelationship and their spatial distribution.
They represent the organisational blueprint for the system to be designed and often
also for the process of building it. In particular, software architectures define the
communication and coordination mechanisms among components. Architectural
styles establish the rationale for certain classes of architectures, e.g. patterns that
should be fulfilled also in the presence of reconfigurations. Software architectures
are particularly useful for model-driven development of composite systems, since
they may focus on some of the relevant aspects, amenable for a specific analysis,
while inessential details may be abstracted away during the generative process.

An interesting application area of the software architecture concept is within
the service-oriented computing (SOC) approach, which poses serious challenges to

1 This work has been partly supported by the EU within the FETPI Global Computing, project IST-2005-
016004 SENSORIA (Software Engineering for Service-Oriented Overlay Computers) and by the Italian
FIRB Project Tocai.it.
2 Email:bruni,lafuente,ugo@di.unipi.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:lafuente@di.unipi.it,bruni@di.unipi.it,ugo@di.unipi.it

Bruni Lluch Lafuente Montanari

the software engineer in terms of scalability, open-endedness and dynamic recon-
figuration. We think that formal models are needed to guide the otherwise error-
prone development of complex applications that span over heterogeneous platforms.
Moreover, particular care is required for the integration of languages and models at
different levels of abstraction during the design, deployment and run-time phases.

Architectural Design Rewriting. The application of model driven develop-
ment methodologies to service-oriented platforms is the subject of EU-IST-FET-
GC2 project SENSORIA. Within SENSORIA, we study the role of architectural
styles defined in terms of well known concepts of algebraic semantics, like Meseguer’s
rewriting logic [23] and Plotkin’s structural operational semantics (SOS) [25]. Our
approach is based on a design methodology called Architectural Design Rewriting
(ADR), which has been conceived in the spirit of initiatives like [20] that promote
the conciliation of software architectures and process calculi by means of graphi-
cal methods. ADR is able to model, within the same formalism, design, execution
and reconfiguration. The general idea of ADR was first presented in [6]. In [5] we
showed the expressiveness and flexibility of the approach by applying ADR to the
design and reconfiguration of the SENSORIA Reference Modelling Language [14],
an emergent paradigm inspired by the Service Component Architecture.

In ADR, an architectural style is an algebra where the values (i.e. the archi-
tectures) are usually graph structures representing components and their intercon-
nections, typed by an interface which expresses the external connection capabilities
for composing larger architectures. The operators are themselves graph structures
with holes (referenced via variables), and the application step consists of replac-
ing variables with values by respecting the connection capabilities and by possibly
simplifying (i.e. reducing to normal form) the resulting graph structure. ADR can
exploit different kinds of graph structures, depending on the applicative domain.
For example, in one of its more general forms, such graph structures can contain
special nodes representing some parameters of the system taking values over a finite
domain, special edges representing constraints over the admissible assignments to
certain groups of nodes and the simplification phase can involve performing con-
sistency checks, merging nodes, and solving adjacent constraints. Other examples
are given by taking relational structures over nodes as edges, or by taking algebraic
theories as nodes and theory morphisms as edges.

The basic idea of ADR is to internalise most design details within the algebra
defining the architectural style, and to offer a much more abstract (and simpler)
tool to the software engineer who takes care of the software life cycle. In particular,
a software architecture is likely to be inadequate to describe the state of a system in
its life cycle, since design information which is needed in the reconfiguration phases
might have been abstracted away. On the other end, if the full architectural infor-
mation is kept, then it is likely that many useless details are recorded. Representing
partial architectural information and finding a good balance of meta-information to
record is a challenge that affects the effectiveness and efficiency of the approach.

Run time behaviour is modelled in ADR by possibly decorating components
with their memory values and by applying conditional rewrite rules, or SOS rules,
representing the desired communication semantics in a process calculi style.

Similarly, reconfiguration is also represented by suitable rewrite rules. Local re-

2

Bruni Lluch Lafuente Montanari

configurations are defined by ordinary rewrite rules, while global reconfigurations
(e.g. reconfigurations which must apply inductively to all substructures) are ex-
pressed via conditional rewrite rules or via SOS rules. The main advantages of
such mechanisms is that complex reconfiguration schemes can be defined induc-
tively at any level of abstraction and that style-guarantees during reconfiguration
or execution are ensured by construction.

Contribution. In this paper we introduce a flavour of the ADR approach,
called Hierarchical Design Rewriting (HDR) which has hierarchical graphs as the
underlying algebra of designs. While in previous ADR papers only flat graphs were
considered, in HDR the idea is to allow also the insertion of nested graphs within
the edges of the base graph model, taking advantage of the presence of symbolic
operators (whose application is modelled as an explicit substitution, i.e. without
the simplification phase) besides ordinary interpreted operators. This allows the
representation of partial architectural information and also provides a neat visual
representation of designs. However, in this paper we propose for the first time
the role of derived operators as a disciplined and efficient way to deal with partial
architectural information.

We describe a methodology for implementing HDR specifications in Maude [9],
that can serve as a useful executable support for the HDR approach. The method-
ology is illustrated on the basis of a toy case study on spam filtering, which has
been selected to concentrate the attention on the main features of the approach.

The choice of Maude is mainly motivated by the fact that: (i) built-in mem-
bership equational theories directly support typability of architectures, (ii) rewrite
rules directly support reconfigurations based on conditional term rewriting, (iii)
standard techniques for encoding labelled transitions defined via SOS rules (needed
to support inductively defined reconfigurations) also exist [28], and (iv) built-in
tools such as the LTL model checker can be used to perform verification.

Structure of the paper. Section 2 gives the basic background on ADR and
discussed the issue of partial architectural information. Section 3 presents our im-
plementation of the graph structures underlying HDR. Section 4 shows how to write
HDR specifications. Section 5 illustrates how to analyse HDR prototypes with ad-
hoc and built-in mechanisms such as rewriting strategies or the LTL model checker.
Section 6 draws some conclusion and sketches our future research programme on
ADR. We assume the reader has some familiarity with the Maude syntax.

2 Architectural Design Rewriting

In this section we mainly give brief overview of the key features of ADR and in-
troduce a discussion on the use derived operators to represent partial architectural
information. We refer the reader to [5,6] for a more detailed presentation and ad-
ditional examples.

Roughly an ADR system can be presented as a (many-sorted) process algebra
interpreted over a particular semantic domain. The idea is that architectural designs
are modelled by suitable typed hypergraphs called designs, which are the values
of the domain. Designs come equipped with their symbolic proofs of construction
called design terms, which are the process terms of the process algebra. The interest

3

Bruni Lluch Lafuente Montanari

Fig. 1. Type graph of the spam filter example.

is thus restricted to style-conformant designs, i.e. those designs for which at least
one corresponding design term can be found. Finally, reconfigurations are defined
over design terms instead of actual architectures, taking advantage of the algebraic
presentation to define them inductively as ordinary term rewrite and conditional
SOS rules. One of the main objectives of ADR is the ability to guarantee by
construction that reconfigurations are style-preserving.

Type graphs and designs. The use of graphs to model architectural designs
has been quite popular in the literature (e.g. [2,24]) and it combines the user-friendly
visual representation with formal models for graph rewriting. As explained below,
we shall rely on hypergraphs, where a single (hyper)edge can be attached to one,
two or many nodes, but will omit the prefix ‘hyper’ for simplicity.

A design is a well-formed architecture with a typed interface (represented by a
distinguished edge) and an internal structure (called the body graph). The interface
is an abstract view of the design as a single component, thus hiding its internal
representation (except for those nodes that are exposed in the interface). More
precisely, we shall fix a vocabulary T of architectural elements (called a type graph)
and then define designs as suitable T -typed graphs.

We recall that a graph is tuple G = 〈V,E, θ〉 where V is the set of nodes, E is the
set of edges and θ : E → V ∗ is the tentacle function. Given a graph T (called the
type graph), a T -typed graph is a pair 〈G, tG : G → T 〉, where G is the underlying
graph and tG : G→ T is a graph morphism.

We distinguish two kinds of edges in the type graph: terminals T and non-
terminals NT . Likewise string grammars, terminal edges represent basic, non-
refinable, concrete components of the architecture, while non-terminal edges, rep-
resent complex, refinable, abstract components. From now on we assume that all
our graphs are T -typed and omit to mention it explicitly (the type graph will be
always clear from the context).

Definition 2.1 A design is a triple d = 〈Ld, Rd, id〉, where Ld is the interface
graph consisting of a single non-terminal edge (called interface) whose tentacles are
attached to distinct nodes; Rd is the body graph; and id : VLd

→ VRd
is the total

function associating body nodes to interface nodes.

A design d is partial (resp. concrete) if Rd contains (resp. does not contain)
non-terminal edges. In service-oriented applications dealing with partial designs is
natural and essential: the architecture of services is only instantiated when needed
after a proper discovery, selection and binding.

4

Bruni Lluch Lafuente Montanari

Fig. 2. Example of a filtered client design in the spam filter scenario.

The different classes of edges used in the spam-filtering example are represented
in the type graph drawn in Figure 1, where an explicit numbering or naming of
tentacles is avoided under the assumption that the order of tentacles leaving each
edge is given by considering the leftward tentacle as the first one and the remaining
tentacles as clockwise ordered.

Our graphical notation uses plain boxes and boxes with title bar for terminals
and non-terminals, respectively. In particular, among terminals we assume that a
set of basic filtering units {filteri}i∈I is available that can mark message headers
with spam likeliness information by applying different criteria, possibly on different
parts of the message (sender, subject, body, etc.). Moreover we assume that other
two terminal edges mux and dmux are available, respectively for dispatching and
for collecting messages. The non-terminals account for generic filters (Filter),
multiplexers (Mux) and demultiplexers (Dmux), a plain mail client (Client) and a
filtered mail client (Fclient).

Our visual representation of a design is obtained by drawing the interface edge
as an outermost box filled with the body graph. Dashed lines denote the nodes
exposed in the interface. An example of a design of type Fclient is in Figure 2.

Architectural styles, design productions and design terms. An architec-
tural style consists of a vocabulary of architectural elements (the type graph) and
a set of design productions indicating how they can be interconnected.

Definition 2.2 A production is a tuple p = 〈Lp, Rp, ip, lp〉 where 〈Lp, Rp, ip〉 is a
design with np occurrences of non-terminal edges in Rp that are mapped by the
bijection lp on the segment [1, 2, . . . , np].

Each production p has an obvious functional reading p : A1×A2×. . .×Anp → Ap,
where × has precedence on →, Ap is the type of the interface and Ak is the type of
the k-th non-terminal edge ek of Rp (i.e. ek = l−1

p (k)). In fact, p can be considered as
the obvious graph pasting that, when applied to a tuple of designs 〈d1, d2, . . . , dnp〉
(of types A1, A2, . . . Anp , respectively), returns a design p(d1, d2, . . . , dnp) of type
Ap obtained by replacing each non-terminal edge ek in Rp with the graph Rdk

(preserving the correspondence of tentacles).
However, it should be evident that ADR modelling has at least two options

regarding the level of abstraction: the purely symbolic initial algebra associated
with productions, where the non-terminals become sorts and each p becomes an
operator of the signature, or the fully evaluated algebra of concrete designs, where
the construction proof is abandoned and the only additional information retained
concerns the sort of the design, i.e. its interface.

Productions admit the same compact graphical representation as designs, the

5

Bruni Lluch Lafuente Montanari

Fig. 3. Some design productions of the spam filter scenario.

only differences are the name and type of the operation in the title bar and the
total ordering of the non-terminals in the body graph, which again we assume to
be implicitly given by the occidental reading direction.

Some interesting productions of our spam-filtering example are depicted in Fig-
ure 3. The top-left production is filter and defines a basic spam filter. Actually,
since we might be interested in having different classes of spam filters we shall
use a parametrised version filteri. The nearby seq production takes any two
designs of type Filter and compose them in series, so that their filtering and
header-marking activities will be carried out sequentially. Production par com-
poses any two designs of type Filter in parallel, introducing dedicated Mux and
Dmux components, respectively to dispatch messages to the two filters and to col-
lect their responses. Note that the results of sequential and parallel compositions
are yet designs of type Filter. The bottom-left production bypass defines the
empty filter. Finally, a filtered client is obtained by prefixing a client with a fil-
ter via the bottom-right production wrap. According to this syntax, the design
term wrap(seq(filter1, par(filter2, mux, dmux, filter3)), client) describes the
Fclient design in Figure 2.

Reconfigurations as rewrites. Reconfigurations are defined over design terms
instead of actual architectures to exploit the algebraic presentation of ADR.

A local reconfiguration rule is just a rewrite rule l → r. There is a very simple
sufficient condition for enforcing style preservation, namely that both l and r are
terms of the same type. Then, it is possible to apply the rule in any larger archi-
tecture C[η], where η assigns design terms to variables and where C[] is any term
with one hole (a context) with the same type as l. After the reconfiguration, the
well-typed architecture C[rη] is obtained.

For example, rule swap : seq(x1,x2)→ seq(x2,x1) reconfigures a series of two
filters by swapping the elements of the sequence. The graphical representation of
the interpreted rule is given in Figure 4.

Reconfigurations as SOS rules. Reconfiguration rules of the form l → r as

6

Bruni Lluch Lafuente Montanari

Fig. 4. An unconditional rewrite rule for swapping two sequential filters.

Fig. 5. A conditional rewrite rule to serialise a filter.

defined above can be applied in any enclosing context and with any arguments. In
case certain local changes in the architecture are subordinated to the corresponding
adaptation of the adjacent environment we can use conditional reconfiguration rules,
expressing that a composed architecture can be rewritten only if its sub-components
are suitably transformed first. This step makes the formalism very powerful. Simple
conditional rewrites take the form:

t1
a1→ t′1 . . . tn

an→ t′n

l
a→ r

meaning that, given an assignment η, the architecture lη can be reconfigured accord-
ing to rη only if each tiη can be reconfigured to t′iη. The labels better discriminate
the various kinds of reconfigurations that are taking place. Moreover, transition
labels make it possible to change the type of the rewritten design (see [5,6] for
examples), while this is not allowed when unlabelled rules are considered.

For instance, suppose one needs to define a reconfiguration to completely serialise
an arbitrary filter. This can be done in SOS style by the following rules (Figure 5
illustrates rule par2seq):

filter2seq: filter
2seq
−→ filter seq2seq:

x1
2seq
−→ x3 x2

2seq
−→ x4

seq(x1,x2)
2seq
−→ seq(x3,x4)

par2seq:
x1

2seq
−→ x3 x2

2seq
−→ x4

par(x1,x5,x6,x2)
2seq
−→ seq(x3,x4)

wrap2seq: x1
2seq
−→ x3

wrap(x1,x2) −→ wrap(x3,x2)

Partial information as hierarchical designs and derived operators. The
reconfiguration rules just already suggest the convenience to deal with partial ar-
chitectural information. For instance, if all the reconfigurations deal with filters
it is not necessary to keep the information about the construction of multiplexers,
demultiplexers and clients.

One way to achieve this is by just by evaluating those part of the architecture
whose structure is no more useful. In the example, one could evaluate every term of
type Mux, Dmux and Client resulting in a hierarchical design. But a more disciplined
way is to use derived operators. For instance, suppose we want to consider just single

7

Bruni Lluch Lafuente Montanari

Fig. 6. Derived operator dpar.

multiplexers and demultiplexers. Then we can define a derived operator dpar as
dpar(x1,x2) = par(x1,mux,dmux,x2), which is represented in Figure 6.

We now have a binary parallel operator that abstracts away from multiplexers
and lets the software architect and the reconfiguration mechanisms concentrate on
the filters. For instance, the rule par2seq becomes simpler:

par2seq :
x1

2seq
−→ x3 x2

2seq
−→ x4

dpar(x1,x2)
2seq
−→ seq(x3,x4)

Another possible derived operator for parallelising filters could be convenient in
a situation where no multiplexer and demultiplexer are used at all since we accept
that the first parallel filter that picks up the message is responsible for filtering it,
i.e. we pass from a scenario where both parallel filters are used to a scenario where
some of the parallel filters is applied.

3 Implementing Hierarchical Design Rewriting

The big picture of our implementation is represented in Figure 7. We have im-
plemented a set of modules DESIGN-* implementing the ADR-based algebra of hi-
erarchical designs. These are built on a couple of modules implementing graph
related concepts: graphs, graph morphisms, etc. Concrete scenarios, like that of
spam filters, follow our ADR methodology and are intended to be interpreted in one
ADR-suited algebra. In this section we will focus on our running example scenario
and the algebra of designs described in the previous section.

We shall offer a methodology to develop ADR-based languages and use them
for the design and analysis of software systems. For this purpose we will travel
through our implementation from the low level of graphs to the algebra of designs
to the design of a simple scenario. Due to obvious space restrictions we shall include
flashes of Maude code, only. However the complete specification of our prototypical
implementation can be downloaded [6]. In particular, we neglect the declaration of
variables which are identified since all of them are suffixed with a natural number
and their type is clear from the context.

3.1 Graphs

Though not inherent to ADR we believe that it is worth giving some hints on our
implementation of graphs in Maude which is given by a couple of functional modules
GRAPH-*. Such modules import various standard Maude modules to deal with maps,
sets and lists, for instance.

The module GRAPH-CONSTRUCTORS contains the definition of the main sorts of

8

Bruni Lluch Lafuente Montanari

Fig. 7. Module hierarchy of the implementation of ADR in Maude.

the algebra of graphs which are Node, Edge, Tentacle (a view for lists of edges),
Graph and [Graph].

Sort Graph is intended to represent well-formed graphs, while its kind [Graph]
might also include bad-formed graphs. Below we see the operation to construct
graphs. It sticks to our formal model, i.e. it constructs a graph from a set of nodes,
a set of edges and a map from edges to lists of nodes.

op graph : Set{Node} Set{Edge} Map{Edge,Tentacle} -> [Graph] .

It is easy to see that not any such tuple defines a proper graph, i.e. the tentacle
function might relate edges and nodes that are not part of the graph. That is
why the operation returns the kind and not the sort of Graph. Well-formedness is
defined by a membership equation which assigns sort Graph to a term constructed
via graph whenever the domain of the tentacle function is contained in the set of
edges and the codomain in the set of nodes. This check is computed via function
domcodom.

cmb graph(N1,E1,M1) : Graph if domcodom(N1,E1,M1) .

Note that also other graph operators could (but should not) produce bad-formed
graphs. This mechanism serves also for debugging purposes, i.e. obtaining a bad-
shaped graph is a sign of possible bugs. This technique is applied in almost all our
modules. Thus we will not explain it again. It suffices to note that kinds are used to
refer to possibly bad-formed structures and for each of them there is a membership
axiom to determine well-formedness.

The functional module GRAPH-MORPHISMS implements graph morphisms. Below
we see the signature of the constructor of graph morphisms: it takes two graphs
and two pairs of mappings (from nodes to nodes and edges to edges) and returns a
graph morphism.

op morphism : Graph Map{Node,Node} Map{Edge,Edge} Graph -> [GraphMorphism] .

Further modules implement utilities like composition functions for morphisms,
membership equations for isomorphisms or the refreshment of graphs w.r.t to an-
other one (i.e. renaming of the items of a graph to not clash with those of another
one). This operation is fundamental in the implementation of the hyperedge re-
placement operation.

9

Bruni Lluch Lafuente Montanari

3.2 Hierarchical Designs

The algebra of hierarchical designs consists of two sorts tDesign and hDesign that
correspond to well-formed typed flat designs and hierarchical designs, respectively.

Flat and hierarchical designs have constructors tdesign and hdesign. Opera-
tion tdesign constructs a flat design from a pair of graph morphisms (that respec-
tively correspond to the typed interface and body of a design), the map of interface
nodes to the body nodes and the list of non-terminal edges in the body.

op tdesign : GraphMorphism GraphMorphism Map{Node,Node} List{Edge} -> [tDesign] .
op hdesign : tDesign List{hDesign} -> [hDesign] .
op apply : hDesign -> hDesign .

Operation hdesign takes as argument a flat design and a list of hierarchical
designs. The idea is that the i-th hierarchical design corresponds to the i-th non-
terminal of the flat design.

The main operation over hierarchical designs consists of flattening the first non-
terminal edge, i.e. substituting the non-terminal edge by the corresponding hierar-
chical design. The operation is called apply (in honour of the analogy of making
effective the symbolic application) and it basically implements the concept of type-
consistent hyper-edge replacement [16].

Further operations are based on it to flatten designs at will. In particular,
operation flat performs all possible applications to a hierarchical design such that
if no symbolic occurrence is present the design is completely flattened.

3.3 Further implementation issues

In order to reason about structural properties of graphs and designs we have im-
plemented a Courcelle’s monadic second-order logic of graphs [11]. Roughly, allows
to quantify over graph items and sets of graph items, to compare items, etc. The
logic is expressive enough to express reachability, for instance.

To facilitate debugging activities and to offer a visual representation of our
internal graph and design structures we have implemented modules that export to
various graphical formats such as dot [15] and GraphML [4] so that we can then
use visual tools such as Graphviz [15] and yEd [12]. In these paper we are using
the latter due to the nice result in layouting hierarchical graphs.

There are several performance-related issues that might be worth discussing.
Unfortunately, we do not have space for treating all of them in their deserved deep-
ness. We want, however, mention one ADR-inherent interesting issue which regards
the use of membership equations. We note that in the low level modules GRAPH-*
there are a lot of checks that are superfluous since well-formedness is guaranteed in
ADR by the way in which operations are interpreted at the higher levels. Having
checked the well-formedness for the interpretations once, most equational axioms
could be bypassed with a considerable saving during the rewrite and reduction steps,
specially during the evaluation of flattening functions.

10

Bruni Lluch Lafuente Montanari

4 Specification with HDR

4.1 Symbolic specification

The first thing to do when designing a scenario is to define the signature of the
architectural style. Below we see an excerpt of module FILTER-STYLE which defines
the sorts for our example and the signature of the various operations. It is worth
noticing the relation with the style vocabulary, i.e. the type graph (see Figure 1).
In general, one should define a sort for each non-terminal edge.

sorts Mux Dmux Filter Client Fclient .
...
ops mux bypass : -> Mux [ctor] .
ops demux bypass : -> Dmux [ctor].
ops bypass filter : -> Filter [ctor] .
op seq : Filter Filter -> Filter [assoc id: bypass frozen ctor] .
op par : Filter Filter -> Filter [frozen ctor] .
op wrap : Filter Client -> Fclient [ctor frozen].
op client : -> Client [ctor].

Observe that for some of them we have introduced axioms and attributes. For in-
stance the fact that a bypass is the identity element of seq, the operation that puts
two filters in sequence. The axiomatisation of the free algebra is not always triv-
ial and depends on the axiomatisation of the intended interpreted algebra: axioms
should not identify symbolic terms as equivalent if the corresponding evaluations are
not equivalent. In particular we want to work with designs up to isomorphism and
this means that our symbolic axioms should not identify non-isomorphic designs.

The axiomatisation of the symbolic algebra might be a complicated and error-
prone task. The readers are invited to test this by reasoning why we did not define
par to be commutative and associative and to figure out what axioms would hold
for a derived operator where multiplexers and demultiplexers are bypassed.

It is also worth noticing that some operations are declared to be frozen. This
is needed to encode SOS-based reconfiguration rules as we shall see. Recall that a
frozen operators inhibit rewrite at their subterm arguments [7].

Once fixed the signature we can already define a module
FILTER-RECONFIGURATION with reconfiguration rules that act at the sym-
bolic level of abstraction. Recall that ADR combines both rewriting logic and
SOS-like rewriting rules.

As an example of an ordinary rewrite rule consider the operation that swaps a
sequence of filters. The graphical representation can be seen in Figure 4.

rl [swap] : seq(x1,x2) => seq(x2,x1) .

In ADR one can design more complex reconfigurations like the one that takes an
arbitrarily complex filter and serialises it. We see below how this is implemented in
Maude. Our encoding of SOS follows [28]. Recall, that in our notation unlabelled
rules correspond to reactive rules while labelled ones are in SOS style. Here label
refers to the SOS label, i.e. the prefix of the target used in SOS rules, while the
name of the rule refers to the Maude label (the tag between the brackets).

Thus, a first set of rules has the purpose of propagating unlabelled rules so that
they can be applied in any context. This is necessary since operations are declared
to be frozen. Below we see the propagating rules for context seq.

crl [prop] : seq(x1,x2) => seq(x3,x2) if x1 => x3 .
crl [prop] : seq(x1,x2) => seq(x1,x3) if x2 => x3 .

11

Bruni Lluch Lafuente Montanari

Terms are rewritten into their serialised version prefixed with label 2seq. For in-
stance, a filter is trivially serialised into a filter via rule filter2seq. Rewriting
ser and par occurrences require both their arguments to be appropriately rewritten
with label 2seq. This is performed by rules seq2seq and par2seq. A last unlabelled
rule wrap2seq allows to rewrite a wrapped client given that its filter is serialised.
The last rule is unlabelled and thus closes the SOS inference. This means that it
can be applied in any larger context where the filtered client can occur.

rl [filter2seq] : filter => {’2seq}filter .
crl [seq2seq] : seq(x1,x2) => {’2seq}seq(x3,x4)
if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .

crl [par2seq] : par(x1,x5,x6,x2) => {’2seq}seq(x3,x4)
if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .

crl [wrap2seq] : wrap(x1,y1) => wrap(x2,y1) if x1 => {’2seq} x2 .

Recall that Figure 5 depicts the graphical representation of rule par2seq.

4.2 Interpreted Specification

The next step to do is to give the interpretation of the abstract view in the selected
ADR-based algebra. We show our choice for handling the algebra of hierarchical
designs. Module FILTER-DESIGN starts defining the type graph that constitutes our
architectural vocabulary (see Figure 1).

eq typegraph = graph((filterpoint) ,
(filter-ed , Filter-ed , Fclient-ed, Client-ed, client-ed, mux-ed,
dmux-ed, Mux-ed, Dmux-ed),

(filter-ed |-> filterpoint filterpoint ,
Filter-ed |-> filterpoint filterpoint,
mux-ed |-> filterpoint filterpoint filterpoint ,
dmux-ed |-> filterpoint filterpoint filterpoint ,
Mux-ed |-> filterpoint filterpoint filterpoint ,
Dmux-ed |-> filterpoint filterpoint filterpoint ,
Fclient-ed |-> filterpoint , Client-ed |-> filterpoint ,
client-ed |-> filterpoint)) .

To avoid confusion we do not overload operations and sorts and prefer to use
suffix with -ed for each type of edge.

Next, for each design production we define a constant (with name suffixed with
-dp) consisting of the design that corresponds to the design production. For instance
seqdp is the design defined below. Note how edges e(1),e(2) are the non-terminals
of type Filter that correspond to the arguments of the operation.

eq seq-dp = tdesign(morphism(graph((n(1) , n(2)),e(1),(e(1) |-> n(1) n(2))),
(n(1) |-> filterpoint , n(2) |-> filterpoint),
(e(1) |-> filterse),
typegraph),

morphism(graph((n(1) , n(2) , n(3)),
(e(1) , e(2)),(e(1) |-> n(1) n(3) , e(2) |-> n(3) n(2))),
(n(1) |-> filterpoint , n(2) |-> filterpoint ,
n(3) |-> filterpoint),

(e(1) |-> Filter-ed , e(2) |-> Filter-ed),
typegraph),

(n(1) |-> n(1) , n(2) |-> n(2)),
(e(1) e(2))) .

Now, for each operation f we define an interpreted version f-i. We prefer to
do like this instead of using equations in order to be free to combine symbolic and
interpreted operations and to have rewrite rules to interpret or uninterpret (i.e.
typing) at will. We see below how we use the constants we mentioned above and
the operation flat to define the interpreted operations.
eq bypass-i = hdesign(bypassdp,nil) .
eq filter-i = hdesign(filterdp,nil) .
eq seq-i(x1,x2) = flat(hdesign(seqdp,(x1 x2))) .

12

Bruni Lluch Lafuente Montanari

eq par-i(x1,x2,x3,x4) = flat(hdesign(pardp,(x1 x2 x3 x4))) .
eq wrap-i(x1,y1) = flat(hdesign(wrapdp,(x1 y1))) .

The design in Figure 2 is the result of evaluating:
wrap-i(seq-i(filter-i,par-i(filter-i,mux-i,dmux-i,filter-i)),client-i)

4.3 Derived operators and Partially Interpreted Designs

We now return to the issue of considering partial architectural information. As we
already stated, one way to deal with it is to just evaluate some parts of a design
term. In order to have design terms that mix evaluated and symbolic parts we need
to declare the sorts of our style algebra to be subsorts of hDesign. For instance, a
term like
\texttt{iwrap(seq(filter, par(filter, imux, imux, filter)), iclient)}

preserves architectural information of filters only.
It is worth noticing that a partially interpreted term is, implicitly, a derived op-

erator. However, if one does not use an explicit symbolic operator, writing rules and
matching them becomes cumbersome and inefficient. We believe that a disciplined
way of dealing with partial information is by means of suitable derived operators,
which can be seen as encoding of atomic design steps.

Consider, for example, the variant of the scenario that we suggested in Section 2
where one is interested in single multiplexers and demultiplexers only. We define
the signature for dpar.

op dpar : Filter Filter [ctor].

The declaration as constructor and the direction of the equation are not an
accident: we want now the derived operator to be in normal form, to be able to use
it efficiently in the left-hand side of reconfigurations.

Its interpreted version can now be given directly or in terms of the initial algebra.
eq dpar-i(x1,x2) = par-i(x1,mux-i,dmux-i,x2) .

We can now adapt the reconfiguration to serialise parallel filters:
crl [par2seq] : dpar(x1,x2) => {’2seq}seq(x3,x4) if x1 => {’2seq} x3 /\ x2 => {’2seq} x4 .

4.4 Further specification issues

ADR is well suited for a design-by-refinement approach. In order to automatise the
procedure we can implement a module FILTER-REFINEMENT where we give a rewrite
theory that simulates the refinement process. In the code excerpt below we see how
we can construct all possible design terms of type Filter. Constant Filter-nt
stands for a non-terminal symbol of type Filter. The rules then can be seen as
the context-free graph grammar view of our design productions. For instance, rule
seq refines a filter as a sequence of filters.

op Filter-nt : -> Filter [ctor] .
rl [bypass] : Filter-nt => bypass .
rl [filter] : Filter-nt => filter(0) .
rl [filter] : Filter-nt => filter(1) .
...
rl [seq] : Filter-nt => seq(Filter-nt,Filter-nt) .
rl [par] : Filter-nt => par(Filter-nt,Mux-nt,Dmux-nt,Filter-nt) .

In general, the construction of such a rewrite theory for a given set of productions
is straightforward: all one needs is a non-terminal symbol for each sort and a

13

Bruni Lluch Lafuente Montanari

rule Σ-nt => f(Σ1-nt,...,Σn-nt) for each operation f : Σ1 ... Σn -> Σ.
A useful application of such rewrite theories is that of model finding via rewrite
strategies [21].

Following the analogy of the design, where we have an abstract view and an
interpreted one, we have can also implement specification mechanisms tailored to
the symbolic level. A possible approach is to follow the same principles as standard
spatial logics (e.g. [8]) where each operation of the algebra has modal operator as
counterpart. A more ad-hoc approach consists of defining ad-hoc properties directly
(and thus more efficiently).

For instance, we can implement a binary predicate !> to be used as proposition
in the built-in LTL model checker. Predicate f1!>f2 holds whenever f2 does not
precede f1. It is based on predicate appears. The predicate appears(f1) holds if
the filter f1 is used. Below, we see the implementation of the satisfaction relation
|= for predicate !>.

op _ !> _ : Filter Filter -> Prop .
eq wrap(f1,c1) |= f2 !> f3 = f1 |= f2 !> f3 .
eq bypass |= f1 !> f2 = true .
eq filter(id1) |= f1 !> f2 = true .
eq seq(fp1,fp2) |= f1 !> f2

= fp1 |= f1 !> f2
and fp2 |= f1 !> f2
and not (fp1 |= appears(f2) and fp2 |= appears(f1)) .

eq par(f1,m1,d1,f2) |= f3 !> f4
= f1 |= f3 !> f4 and f2 |= f3 !> f4 .

5 Analysis with ADR

In this section we give a brief illustration on how we can use an ADR specification to
analyse software architectures. A typical software analysis activity is model finding,
i.e. to look for models violating or satisfying some properties in order to better
understand and eventually correct the kind of architectures (e.g. the style) under
consideration. As we have already mentioned, model finding is supported in our
implementation of ADR by rewrite theories simulating the design-by-refinement
process.

Suppose for instance, that we are interested in finding configurations where filter
occurrences satisfy some ordering constraints. We start defining some strategies
regarding the refinement process: nt-refinement(n) requires to perform n non-
terminal refinement steps, insert-filter introduces a filter. Strategy (amatch
Filter-nt ? fail : idle) ensures that no filter remains undefined. In order
to ensure that the resulting design satisfies the desired ordering constraints we can
combine the match strategy operator with the satisfaction of predicates. In the
example below, for instance, we require (occurrences of) filter 0, 1 and 2 to appear
such that filter 1 does not precede filter 0, filter 2 does not precede filter 1 and filter
0 precedes (<) filter 2.

Maude> srew in FILTER-MODELCHECK : FClient-nt using nt-refinment(3); insert-filter *;
(amatch Filter-nt ? fail : idle) ;
match fk1 such that modelCheck(fk1, appears(filter(2))

/\ appears(filter(1)) /\ appears(filter(0))
/\ filter(0) !> filter(1)
/\ filter(1) !> filter(2)
/\ filter(0) < filter(2)) .

...
Solution 1
rewrites: 821950 in 3292ms cpu (3289ms real) (249665 rewrites/second)
result FClient: wrap(seq(filter(0), filter(1), filter(2)), Client-nt)

14

Bruni Lluch Lafuente Montanari

...
Solution 7
rewrites: 2580108 in 11184ms cpu (11191ms real) (230681 rewrites/second)
result FClient: wrap(par(filter(1), Mux-nt, Dmux-nt, seq(filter(0), filter(2))), Client-nt)

No more solutions.
rewrites: 2948352 in 12300ms cpu (12307ms real) (239688 rewrites/second)

We obtain 7 different configurations. We can choose one of them, say the last,
and verify if some of the ordering constraints are invariantly preserved by reconfig-
urations. For instance, we can drop the requirement regarding filters 2 and 0 from
the invariant and, of course, we exclude the swap rule from our reconfigurations (it
would lead to all possible orderings).

Maude> red modelCheck(
wrap(par(filter(1), Mux-nt, Dmux-nt, seq(filter(0), filter(2))), Client-nt),
[] (filter(0) !> filter(1) /\ filter(1) !> filter(2))) .

...
rewrites: 16466 in 88ms cpu (88ms real) (187103 rewrites/second)
result ModelCheckResult:
counterexample(
{wrap(par(filter(1), Mux-nt, Dmux-nt, seq(filter(0), filter(2))), Client-nt),’prop}
...
{wrap(par(filter(1), mux, dmux, par(filter(0), mux, dmux, filter(2))), Client-nt),’parall})

The model checker returns a counterexample. Indeed, the serialisation of filters
can violate some of the ordering properties. Now, we could ask whether there is
some configuration satisfying the model constraints as well as the invariant. This
time we combine rewriting strategies with the LTL model checker:

Maude> srew in FILTER-MODELCHECK : FClient-nt using nt-refinment(3); insert-filter *;
(amatch Filter-nt ? fail : idle) ;
match fk1 such that modelCheck(fk1, appears(filter(2))

/\ appears(filter(1)) /\ appears(filter(0))
/\ [] (filter(0) !> filter(1)/\ filter(1) !> filter(2))
/\ filter(0) < filter(2)) .

...
Solution 1
rewrites: 927963 in 3640ms cpu (3641ms real) (254918 rewrites/second)
result FClient: wrap(seq(filter(0), filter(1), filter(2)), Client-nt)

Solution 2
rewrites: 1842210 in 8304ms cpu (8306ms real) (221832 rewrites/second)
result FClient: wrap(seq(par(filter(0), Mux-nt, Dmux-nt, filter(1)), filter(2)), Client-nt)

Solution 3
rewrites: 3121703 in 14156ms cpu (14158ms real) (220507 rewrites/second)
result FClient: wrap(seq(filter(0), par(filter(1), Mux-nt, Dmux-nt, filter(2))), Client-nt)

No more solutions.
rewrites: 3635581 in 15716ms cpu (15719ms real) (231315 rewrites/second)

We see that there are three possible such configurations. By an exhaustive
analysis of the respective state spaces using command search we can indeed confirm
that the invariant holds.

6 Conclusion

We have presented a prototypical implementation of Hierarchical Design Rewriting
(HDR), a flavour of ADR [5] with the concept of hierarchical design, which allows
for system specifications where some parts remain at the most abstract level and
others are interpreted. More precisely, we have explained how we are experimenting
with our algebra of hierarchical designs in Maude and have illustrated the use of
HDR for the development of a simple spam-filter architecture scenario.

We believe that the presentation of our prototypical implementation offers sev-

15

Bruni Lluch Lafuente Montanari

eral contributions. First, we show that ADR is not only a well-founded theoretical
approach but also a tool-supported framework for the design and analysis of soft-
ware architectures. Second, for the sake of this presentation, even if we concentrate
on one particular algebra of designs and one particular scenario, we trace a method-
ology for developing other ADR-suited algebras and scenarios. Last but not least,
we offer a further validation of the suitability of rewriting logic as a formalism for
the development and analysis of software systems.

Related Work. Our approach has been mainly inspired by graph-based ap-
proaches to architectural styles [17,24]. Indeed, ADR recast the work presented [17]
in algebraic terms, enriching it with standard rewrite mechanisms.

We have also taken inspiration from initiatives that promote the conciliation
of software architectures and process calculi by means of graphical methods [20]
and the unifying treatment of software refactoring, synthesis and development as
algebras over programs [3].

ADR also shares concepts with various approaches ranging from process calculi
that deal with reconfigurable component based architectures (e.g. [1]) to graphical
representation of concurrent systems such as those based on Synchronized Hyper-
edge Replacement [13] or Bigraphs [18].

Maude has already been used in approaches to software architectures. For in-
stance, in [19] Maude is used to model and verify software architectures given in
LfP, a system description language with hierarchical behaviour. Another example
is [26] where a rewriting semantics of the CBabel architecture description language
is defined.

ADR does not marry a particular model or language and its principles could be
applied to the above mentioned approaches. For instance, one could try to define
ADR architectural styles for SHR or Bigraph-based specifications.

Current and Future Work. We plan to work further on our prototypical
implementation. We are also interested in a deeper treatment of specification and
verification features with a special focus on model checking techniques to tackle the
state space problem, e.g by considering equational abstractions [22] guided by the
hierarchy. We will also work on validating the usability and expressiveness of ADR
by implementing encodings of various of the process calculi that are being developed
within SENSORIA, with a special regard to those that consider SOC-related aspects
such as sessions, transactions and compensations.

References

[1] N. Aguirre and T. S. E. Maibaum. Hierarchical temporal specifications of dynamically reconfigurable
component based systems. ENTCS, 108:69–81, 2004.

[2] L. Baresi, R. Heckel, S. Thöne, and D. Varró. Style-based modeling and refinement of service-oriented
architectures. Software and Systems Modeling, 5(2):187–207, June 2006.

[3] D. S. Batory. Program refactoring, program synthesis, and model-driven development. In
S. Krishnamurthi and M. Odersky, editors, Proceedings of the 16th International Conference on
Compiler Constuction (CC’07), volume 4420 of LNCS, pages 156–171. Springer, 2007.

[4] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. Marshall. GraphML progress report:
Structural layer proposal. In Proceedings 9th International Symposium on Graph Drawing (GD ’01),
volume 2265 of LNCS, pages 501–512. Springer, 2002. http://graphml.graphdrawing.org/.

16

http://graphml.graphdrawing.org/

Bruni Lluch Lafuente Montanari

[5] R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Service oriented architectural design. In
Proceedings of the 3rd International Symposium on Trustworthy Global Computing (TGC’07), volume
4912 of LNCS, pages 186–203. Springer, 2007.

[6] R. Bruni, A. Lluch Lafuente, U. Montanari, and E. Tuosto. Style based reconfigurations of software
architectures. Technical Report TR-07-17, Dipartimento di Informatica, Università di Pisa, 2007. See
http://www.albertolluch.com/adr.html.

[7] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theor. Comput. Sci.,
360(1-3):386–414, 2006.

[8] L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Information and Computation,
186(2):194–235, 2003.

[9] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L. Talcott. All About
Maude — A High-Performance Logical Framework. How to Specify, Program and Verify Systems in
Rewriting Logic, volume 4350 of LNCS. Springer, 2007.

[10] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little. Documenting Software
Architectures: Views and Beyond. Pearson Education, 2002.

[11] B. Courcelle. The expression of graph properties and graph transformations in monadic second-
order logic. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, pages 313–400. World Scientific, 1997.

[12] yEd graph editor homepage. http://www.yworks.com/en/products_yed_about.htm.

[13] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, and E. Tuosto. Synchronised hyperedge replacement
as a model for service oriented computing. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P.
de Roever, editors, 4th International Symposium on Formal Methods for Components and Objects
(FMCO’05), volume 4111 of LNCS, pages 22–43. Springer, 2005.

[14] J. L. Fiadeiro, A. Lopes, and L. Bocchi. A formal approach to service component architecture. In
Proceedins of the 3rd International Workshop on Web Services and Formal Methods (WS-FM’06),
volume 4184 of LNCS, pages 193–213. Springer, 2006.

[15] E. R. Gansner and S. C. North. An open graph visualization system and its applications to software
engineering. Software Practice and Experience, 30(11):1203–1233, 2000. http://www.graphviz.org/.

[16] A. Habel. Hyperedge Replacement: Grammars and Languages. Springer Verlag, 1992.

[17] D. Hirsch and U. Montanari. Shaped hierarchical architectural design. ENTCS, 109:97–109, 2004.

[18] O. H. Jensen and R. Milner. Bigraphs and mobile processes. Technical Report 570, Computer
Laboratory, University of Cambridge, 2003.

[19] C. Jerad, K. Barkaoui, and A. Grissa-Touzi. Hierarchical verification in Maude of LfP software
architectures. In F. Oquendo, editor, ECSA, volume 4758 of Lecture Notes in Computer Science,
pages 156–170. Springer, 2007.

[20] B. König, U. Montanari, and P. Gardner, editors. Graph Transformations and Process Algebras
for Modeling Distributed and Mobile Systems, 6.-11. June 2004, volume 04241 of Dagstuhl Seminar
Proceedings. IBFI, Schloss Dagstuhl, Germany, 2005. http://www.dagstuhl.de/04241/.

[21] N. Mart́ı-Oliet, J. Meseguer, and A. Verdejo. Towards a strategy language for Maude. ENTCS,
117:417–441, 2005.

[22] J. Meseguer, M. Palomino, and N. Mart́ı-Oliet. Equational abstractions. In F. Baader, editor,
Proceedings of the 9th International Conference on Automated Deduction (CADE’03), volume 2741 of
LNCS, pages 2–16. Springer, 2003.

[23] J. Meseguer and G. Rosu. The rewriting logic semantics project. TCS, 373(3):213–237, 2007.

[24] D. L. Métayer. Describing software architecture styles using graph grammars. IEEE Transactions on
Software Engineering, 24(7):521–533, 1998.

[25] G. D. Plotkin. The origins of structural operational semantics. J. Log. Algebr. Program., 60-61:3–15,
2004.

[26] A. Rademaker, C. de O. Braga, and A. Sztajnberg. A rewriting semantics for a software architecture
description language. Electr. Notes Theor. Comput. Sci., 130:345–377, 2005.

[27] M. Shaw and D. Garlan. Software Architectures: Perspectives on an emerging discipline. Prentice Hall,
1996.

[28] A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in Maude. Journal of
Logic and Algebraic Programming, 67(1-2):226–293, 2006.

17

http://www.albertolluch.com/adr.html
http://www.yworks.com/en/products_yed_about.htm
http://www.graphviz.org/
http://www.dagstuhl.de/04241/

	Introduction
	Architectural Design Rewriting
	Implementing Hierarchical Design Rewriting
	Graphs
	Hierarchical Designs
	Further implementation issues

	Specification with HDR
	Symbolic specification
	Interpreted Specification
	Derived operators and Partially Interpreted Designs
	Further specification issues

	Analysis with ADR
	Conclusion
	References

