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Abstract

Tile logic extends rewriting logic, taking into account rewriting with side-effects
and rewriting synchronization. Since rewriting logic is the semantic basis of several
language implementation efforts, it is interesting to map tile logic back into rewriting
logic in a conservative way, to obtain executable specifications of tile systems. The
resulting implementation requires a meta-layer to control the rewritings, so that
only tile proofs are accepted. However, by exploiting the reflective capabilities
of the Maude language, such meta-layer can be specified as a kernel of internal
strategies. It turns out that the required strategies are very general and can be
reformulated in terms of search algorithms for non-confluent systems equipped with
a notion of success. We formalize such strategies, giving their detailed description
in Maude, and showing their application to modeling uniform tile systems.

1 Introduction

The evolution of a process in a concurrent system often depends on the be-
haviours of other cooperating processes. For example, in some critical states,
a process must have the opportunity to check incoming communications from
many sources, without granting a privilege to some source or to a partic-
ular kind of input. Thus, a specification language for concurrent systems
cannot leave out of consideration some mechanism for expressing (guarded)
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non-deterministic choices in the body of a process. Such a mechanism should
allow local choices to be coordinated, affecting the global evolution of the
system.

The tile model [17,19] is a formalism for modular descriptions of concurrent
systems. Basically, a set of rules defines the behaviour of certain modules (a
module is just an open, e.g., partially specified, configuration of the system),
which may interact through their interfaces. Then, the behaviour of a system
as a whole consists of a coordinated evolution of its sub-modules. Each rule
has the form:

o o
o P
o o
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—

7
S

a
also written s— s’

, ', stating that the initial configuration s of the system can
evolve to the final configuration s’ producing an effect b, but the step is allowed
only if the subcomponents of s evolve to the subcomponents of s’, producing
the trigger a. The vertices o of the tile are called interfaces. More complex
rules can be generated by composing tiles horizontally (through side effects),
vertically (building conditional computations of a certain component), and in
parallel (concurrent steps).

By analogy with rewriting logic [24], where a logic theory is associated
to a term rewriting system in such a way that each computation represents
a sequent entailed by the theory, the tile model also comes equipped with
a purely logical presentation [19], where tiles are just considered as special
sequents subject to certain inference rules. The entailment relation is speci-
fied by simple inference rules, and equivalent computations yield exactly the
same sequent. In this sense, tile logic is a logic of concurrent systems with
synchronization mechanismes.

Tile logic extends rewriting logic (in the non-conditional case), taking into
account rewriting with side effects and rewriting synchronization. On the other
hand, since there exist several languages based on rewriting logic (Cafe [16],
ELAN [3], Maude [9]), the implementation of a conservative mapping of tile
logic into rewriting logic would facilitate the execution and development of tile
specifications. This topic has been extensively investigated in [26,6]. From
a practical point of view, the mapping becomes effective provided that the
rewriting engine is able to select, among all the possible rewriting computa-
tions, those interpreting tile logic derivations. For this purpose, we exploit the
reflective capabilities [10,11] of the Maude language [9,8] developed at SRI,
defining suitable internal strategies [12], which can help the user to collect
and analyze the possible computations and results. A key point is that the
internal strategies needed to embed tile systems in rewriting logic are for the
most part general meta-strategies for nondeterministic rewriting systems. We
give a precise description of such strategies, and of their application to the
implementation of a large class of tile systems (called uniform tile systems).

The structure of the paper is as follows. In Section 2 we give a survey of tile
logic and its translation into rewriting logic, recalling the results from [26,6]. In
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Section 3 we address the issue of non-confluent rewrite systems, and propose
a meta-layer of internal strategies, written in a self-explanatory Maude-like
notation, for collecting results and embedding tile systems, and in Section 4
we formalize their application to uniform tile systems, and in particular to the
simple yet interesting example of finite CCS.

The definition of internal strategies to control nondeterministic rewritings
in the tile system translations constitutes the main contribution of this paper.
The importance of similar mechanisms is well-known, and other languages
(e.g., ELAN), have built-in constructs to deal with general forms of nondeter-
minism. Nevertheless, our approach is rather general (it is parametric w.r.t. a
user-definable success predicate) and allows the application of several visiting
policies, different from the depth-first (with backtracking) algorithms that are
usually preferred in a built-in implementation for efficiency reasons, but that
could diverge also in the presence of solutions.

This work is part of our ongoing research on general mechanisms for the
rewriting implementation of interesting classes of tile systems. An extensive
presentation of this topic can be found in [6] (other references are [26] and the
forthcoming PhD thesis of one of the authors [5]).

2 Mapping Tile Logic into Rewriting Logic

The notions of configuration and effect come naturally equipped with op-
erations of parallel and sequential composition. In particular they form two
monoidal categories having the same class of objects. The use of categories of-
fers a convenient characterization of configurations and effects also in terms of
algebraic theories [21]. The free algebraic theory associated to a (one-sorted)
signature Y is called the Lawvere theory for ¥, and is denoted by Ly: the
objects are underlined natural numbers, the arrows from m to n are in a one-
to-one correspondence with n-tuples of terms of the free ¥-algebra with (at
most) m variables, and composition is term substitution. It has been shown
n [24], that a rewriting theory R yields a cartesian 2-category® Lz, which
does for R what a Lawvere theory does for a signature. Gadducci and Mon-
tanari pointed out in [18] that if side-effects are also introduced, then double
categories [14,1,20] should be considered in place of 2-categories. A double
category can be informally described as the superposition of a horizontal and
a vertical category of cells, the former defining effect propagations, and the
latter describing state evolutions. Then, in the same way as the term algebra
is freely generated by a signature, and the initial model of rewriting logic is
freely generated from the rules of the rewriting system, the tiles freely gener-
ate a double category which gives the natural operational characterization®
of the system, in the spirit of initial model semantics.

2 A 2-category [20,22] is a category C such that, for any two objects a, b, the class C[a, b] of
arrows from a to b in C, also forms a category and satisfies particular composition properties.

3 Tiles are double cells, configurations are horizontal arrows, effects are vertical arrows,
and objects model connections between the somehow syntactic horizontal category and the
dynamic vertical evolution.
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Though we do not want to stress here the elegance, expressiveness and
advantages of tile logic as a computational paradigm, a simple example is
necessary to show how tiles can help in formally reasoning about process
algebras. Let us consider the usual action prefiz operation, denoted by u._.
The corresponding tile is represented below and can be composed horizontally
with the identity cell of any process P to model the transition p.P - P
associated to the action prefix.

[e] (o)
id\L W
[e]

Let nzl be the inactive process, and consider the process p = pq.p9.nel. If
the process p tries to execute py before executing py it gets stuck, because
there is no tile having py as trigger and pq._ as initial configuration. In a
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non-conditional rewriting system, this is not necessarily true, because rewrit-
ing steps can be freely contextualized (and instantiated). This problem is
well-known, and some ad-hoc solutions have been already proposed in the lit-
erature [23,28]. Our methodology offers a unifying view for many analogous
situations. The basic idea is to “stretch” tiles into ordinary rewriting rules,
preserving the capacity to distinguish between configurations and effects:

a
ey o
Sbs Odﬂo'

In [26,6], the comparison between tile logic and rewriting logic takes place
by embedding their categorical models in a recently developed, more general
framework, called partial membership equational logic (PMEqtl) [25]. Indeed,
using PMEqtl, it is possible to define an extended version of 2-categories,
where the distinction between effects and configurations can be expressed
through membership predicates. PMEqtl is particularly suitable for the em-
bedding of categorical structures, firstly because the sequential composition
of arrows is a partial operation, and secondly because membership predicates
over a poset of sorts allow the objects to be modelled as a subset of the arrows
and arrows as a subset of cells. Moreover, the tensor product construction
illustrated in [26] can be easily expressed in PMEqtl, yielding a convenient
formulation of monoidal double categories. As a main result, given a tile sys-

tem R, a sequent 3%}3’ is entailed by R in tile logic (written R S;Z)S/) if
and only if the sequent s;b = a; s’ is entailed by the stretched version of R
in rewriting logic and its proof satisfies some additional constraints (see [6]).
Moreover, for a large class of tile systems (called uniform) the additional con-
straints can be verified just by inspecting the border of the sequent. It follows
that a typical query in a tile system is: “derive all (some of) the tiles with a
given horizontal source s and vertical target 6”. A surprising feature in the
translation of a tile system is that queries start with a vertical target rather
than with a source. If the vertical arrows are terms, then this is the only
correct procedure. However, for CCS-like process algebras, we realized that
the vertical and horizontal dimensions can be swapped in such a way that the

queries are of the kind “derive all one-step transitions for a given agent P”.
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This is possible because the vertical signature consists of unary actions. So
we can: (1) reverse the vertical arrows in the tile system and then (2) rotate
clockwise the tiles by 90 degrees before their translation in ordinary rewrite
rules, as illustrated below for the action prefix tile:

L3 otso iy 024 o e
e Wiy =0 =B e 50005
id 070 070 o?o w
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Let us examine the different 2-cell translations. The cell (a) on the left states
that if we force the process u.P to perform a p action, it succeeds. The other
cell (b) states that process wu.P may perform the action p. Therefore, an
implementation using (a)-rules can only test CCS processes, whereas using
(b)-rules, all the possible behaviours of a CCS process can be collected. In
both cases we must explore the tree of nondeterministic rewritings until a
correct final configuration is reached.

3 Dealing with Nondeterminism

The theoretical results summarized in the previous section, cannot be applied
to get an immediate rewriting implementation of tile systems, because of the
additional constraints that the proofs of the rewriting computations must sat-
isfy. Indeed, a tile computation coordinates the activities of each module,
whereas the coordination layer is missing in the stretched version. In partic-
ular, the absence of side effects allows each module to evolve separately, but
if the local choices are not correct, their synchronization could become unfea-
sible. Therefore, we need a methodological approach to drive computations
along correct paths. In this section we illustrate the more general problems
arising in a non-confluent rewrite system, and a solution based on internal
strategies in reflective languages.

3.1 Nondeterministic Rewriting Systems

In rewriting logic, nondeterminism can arise whenever multiple rewritings are
enabled for the same term. For example the conditional rewriting rules

crl t(&) => t,(&) if Gy (&)

<;r1 t (@) => t,(&) if G, (&)

describe a system in which the terms matching t(#) can be nondeterminis-
tically rewritten into n different terms (in what follows the conditions G; (&)
are called guards, and we say that a guard is satisfied if it is evaluated to
true and that it fails if it is evaluated to false). If several guards among
the G;(Z) are satisfied, then the rule to be applied is chosen by the rewrite
engine accordingly to some general policy. We can distinguish between three
nondeterministic mechanisms, namely conditional choice, don’t know nonde-
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terminism, and don’t care nondeterminism.

» Conditional choice: the guards are sequentially processed according to
their listing order. The first satisfied guard, say G; (&), selects its corre-
sponding -th rule for the rewriting. Using conditional choice the program-
mer knows which rule will be chosen if more than one is satisfied. On the
other hand, due to the explicit priority ordering on the clauses, the use of
conditional choice can result into a non-fair policy.

* Don’t care (dc) nondeterminism: in this case, if any (not necessarily
the first) of the guards is satisfied, then the corresponding rule can be
applied. Here the main assumption is that whatever choice will be selected,
the system will continue to behave correctly. For instance, this approach
is well suited whenever the Church-Rosser property holds. At the semantic
level, dc nondeterminism can overcome the drawback of conditional choice,
but the programmer has less control over the computation flow.

* Don’t know (dk) nondeterminism: sometimes it is not enough to ex-
plore just one branch of the nondeterministic computations, because many
problems (e.g., in Artificial Intelligence or in Operations Research) are cur-
rently solvable only by resorting to some sort of search. In this case the
nondeterminism leads to a parallel exploration of the enabled branches.
However, performance considerations suggest alternative visiting policies
(e.g., depth first with backtracking instead of breadth first). Under some
assumption (e.g., finiteness of the tree) the user may explore all branches,
and collect all the solutions. According to dk nondeterminism, if only one
clause, say G; (&), is satisfied, then the rewriting is said to be determinate
and the 2-th rule is applied. If more than one clause are satisfied, then the
statement is said to be nondeterminate and the alternative computation
paths are explored concurrently .

Now let us suppose that the system comes equipped with a general notion
of success and failure which is represented by a predicate ok(_), defined over
terms. We say that a term ¢ is final if ok(¢) € {true,false}. Moreover,
a computation ¢ of the system is successful if ¢ reaches a final term ¢ such
that ok(f) = true and for every term t’ visited by ¢ ok(#') # false. A
computation ¢ is failing if ok(#’) = false for some term t' visited by c.
Obviously, all the failing computations must be discarded (e.g., as soon as a
failure is detected the system stops, and a new run with different choices is
considered); dk nondeterminism allows exploring all the alternatives.

For efficiency reasons, only dc nondeterminism is implemented in Maude’s
default interpreter. This means that whenever multiple reductions are possible
the system arbitrarily executes one of them in a fair top-down fashion, and the
user has virtually no control over computations, because the order in which
the clauses are listed is not important, or more generally, because although
execution paths can be traced, it is difficult to understand how the default
strategy determines each choice in a complex example (moreover, in rewriting
logic the rules can be applied also to proper subterms, and not only to the
“top” of the tree-like structure of terms). However, since Maude is a reflective

6
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language, it is possible to overcome this limitation by importing the meta level
of some specification, and controlling the computation with suitable (meta-
programmed) strategies [12]. We are mostly interested in strategies for dk
nondeterminism.

3.2 A Strategy Kernel Language in Maude

Given a logical theory T, a strategy is any computational way of looking for
certain proofs of some theorems of T'. An internal strategy language is a
theory-transforming function S that sends each theory 7' to another theory
S(T) in the same logic, whose deductions simulate controlled deductions of
T. Given a logic, we say that it is reflective, relatively to a class C of theories,
if we can find inside C a universal theory U where all the other theories in the
class C can be simulated, i.e., there exists a representation function

(k) U{T} x s(T) — s(U)

TeC

where s(7') denotes the set of meaningful sentences in the language of a theory
T, such that for each T € C and ¢ € s(T): T+ p < U T F ¢. Therefore,
the strategies S(U) for the universal theory are particularly important, since
they represent, at the object level, strategies for computing in the universal
theory. Moreover, since U itself is representable (U € C), we get a reflective
tower: T <= UFrTFp<—UFUFTFp---

The class of finitely presentable rewrite theories has universal theories,
making rewriting logic reflective [10,7]. A rewrite theory T' consists of a signa-
ture X, a set F of equations, and a set of labelled rewrite rules. The deductions
of T are rewrites modulo £ using such rules, and the meaningful sentences
are rewrite sequents t = ', where t and ¢’ are X-terms. Let C be the class of
finitely presentable rewrite theories, and let U be a universal theory in C. The
representation function (_F _) encodes a pair consisting of a rewrite theory
T in C and a sentence t = t' in T as a sentence (T,f) = (T,¢) in U, in
such a way that T F t = t' <= U k- (T,7) = (T, %), where the function (_)
recursively defines the representation of rules, terms, etc. as terms in U.

Maude [9,8] supports an arbitrary number of levels of reflection and gives
the user access to important reflective capabilities, including the possibility
of defining and using internal strategy languages, whose correctness relies on
a basic reflective kernel, that is, on some basic functionality provided by the
universal theory U. In particular, the Maude implementation supports meta-
programming of strategies via a built-in module META-LEVEL. For example,
such a module provides sorts Term and Module, so that the representations
f and T of a term ¢ and a module 7" have sorts £ : Term and 7' : Module.
Then, the declaration META-LEVEL[7'] imports the module META-LEVEL, de-
clares a new constant T of sort Module, and adds an equation making T equal to
the representation of 7' in META-LEVEL. Therefore, we can regard META-LEVEL
as a module-transforming operation that maps a module 7' to another mod-
ule META-LEVEL [7"] that is a definitional extension of UU. In particular two
important operations are defined:
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The first is meta-reduce(7,7): it takes the metarepresentations T of a
module 7" and ¢ of a term ¢ and evaluates as follows: (a) first ¢ is converted to
the term it represents; (b) then this term is fully reduced using the equations
in T'; (c) the resulting term ¢, is converted to a meta-term which is returned
as the result.

The second operation is meta-apply(7,Z,l,n): it takes the metarepre-
sentations of a module T', of a term ¢, and of a label [ and a natural number
n, then it evaluates as follows: (a) first ¢ is converted to the term it repre-
sents; (b) then this term is fully reduced using the equations in 7'; (c) the
resulting term ¢, is matched against all rules with label [, with matches that
fail to satisfy the condition of their rule discarded; (d) the first n successful
matches are discarded; (e) if there is an (n + 1)-th match, its rule is applied
using that match; otherwise {error*,empty} is returned (empty represents
the empty substitution); (f) if a rule is applied, the resulting term ¢’ is fully
reduced using the equations in T'; (g) the resulting term ¢/ is converted to a
meta-term which is returned as a result, paired with the match used in the

reduction (the operator {_,_} is used to construct the pair).

-_—0 -

Remark 3.1 To make easier the notation, we have used a simpler syntax than
the one in the Maude implementation, where meta-apply has an additional
argument representing a substitution o (possibly empty) for the variables in
the rules of 7' labelled by [, to be applied before the matching with ¢.

3.3  Collection of rewritings

In this section, we specify a strategy language able to support dk nondetermin-
ism, which consists of a module-transforming operation ND-SEM that extends
the strategy kernel. In particular, we define three different functionalities
whose correctness can be easily derived from the correctness of meta-apply.

The first functionality, called first, takes as arguments the metarepresen-
tations of a module T', of a term ¢, of a label [, and a natural number n and
evaluates to the sequence of terms containing the first n successful rewritings
of ¢ in T using rules labelled by [. If no rewrite is possible, then the empty
list nilSeq is returned. If only m rewritings are possible, with m < n, then
the sequence contains only the corresponding m terms.

A second functionality, called 1last, can collect an unbounded number of
possible rewritings. Since the presentation of the theory T is finite and also
the term ¢ that one wants to rewrite is a finite term, it follows that there are
always a finite number of possible (one step) rewritings for the term ¢ in 7.
However, it is common that the number of possible rewritings is unknown by
the user, so that the first operation does not give much help. The function
last takes as arguments the meta-representations of a module 7', of a term
t of T and of a label [, and a natural number n. Its evaluation returns the
term sequence of all the possible rewritings of ¢ in 7', except the first n, using
rules with label {. This can be immediately generalized (when n = 0) to a
function allRew taking as arguments the meta-representations of T', ¢t and [
and returning all the successful rewritings of ¢ in 7' using rules with label [.

8
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Notice that the specification level is not affected by the meta-extensions. For
lack of space, we can present only part of the Maude code.

mod ND-SEM is protecting META-LEVEL .
sort TermSeq . subsort Term < TermSeq .
op nilSeq : -> TermSeq .
op seq : TermSeq TermSeq -> TermSeq [assoc id: nilSeq]
ops first last : Module Term Label Nat -> TermSeq .
op allRew : Module Term Label -> TermSeq ...
endm

Remark 3.2 The attribute [assoc] states that the operator seq used to
build term sequences is associative. This piece of information is used by
the Maude engine that matches the equations in the module regardless of
how parentheses are left- or right-associated. Moreover the simpler syntax
seq(ty,ty...,1,) can be used for any n € IN, n > 1, exploiting the associativ-
ity of seq. Similarly, the attribute id: nilSeqsays that nilSeqis the identity
for seq. In general, the Maude engine can rewrite modulo different combina-
tions of associativity, commutativity, identity (left-, right-, or two sided), and
idempotency. Therefore, data structures as lists, sets, and multisets can be
naturally represented in Maude.

Now, we have the basis for the definition of a module TREE, extending
ND-SEM by breadth-first and depth-first visit mechanisms for the tree of non-
deterministic rewritings in 7'. A strategy expression in TREE has either the
form rewWith(7,7,S) where S is the rewriting strategy that one wishes to
compute, or the form failure, which means that something has gone wrong.
As the computation of a given strategy proceeds, ¢ is rewritten in 7" according
to S (and S is reduced into the remaining strategy to be computed). In case
of termination, S becomes the trivial strategy idle. In what follows, we as-
sume the existence of a user-definable predicate ok(_) for expressing success
or failure at the object level, as defined in Section 3.1.

mod TREE is protecting ND-SEM .

sorts TermSet Strategy StrategyExpression .

subsort Term < TermSet .

op isIn : Term TermSet -> Bool .

op emptySet : -> TermSet .

op set : TermSet TermSet -> TermSet [assoc comm id: emptySet]

op idle : -> Strategy . op failure : -> StrategyExpression .

op rewWith : Module Term Strategy -> StrategyExpression .

ops breadth depth : Label -> Strategy .

ops rewWithBF rewWithDF : Module TermSeq TermSet Label ->
StrategyExpression .

var T : Module . vars f { : Term . var n : Nat

var T'S : TermSet . vars T'L TL' : TermSeq . var [ : Label .

eq set(t,t) =1 .

eq rewWith(7,7,breadth(l)) = rewWithBF(7,7,emptySet,])

eq rewWithBF(TﬂnilSeq,Tﬁﬂ?) = fajlure .

9
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eq rewWithBF(Tiseq(fﬂTL),QTS,D =
if isIn(?,7S) then rewWithBF(7T,TL,TS,])
else (if meta-reduce(T,’ok[?]) == ’true
then rewWith(7,%,idle)
else (if meta-reduce(T,’ok[t]) == ’false
then rewWithBF(T,TL,set(?,TS),l)
else rewWithBF(Tﬂseq(ﬂiL,allRew(Tif,?)),
set (7,TS),D)

fi) fi) fi .
TTﬁzeXpresﬁon,rewWith(Tﬂf,breadth(b) rewrites a term ¢ in 7" using rules
with label [, and exploring all the possibilities “in parallel” (using the breadth-
first visit) until a solution is found. The function rewWithBF takes as argu-
ments the metarepresentation of a module 7', a sequence of metaterms T'L, a
set of metaterms T'S and the representation of a label [. The set T'S represents
the set of already visited terms. The sequence T'L contains the terms that have
not been checked yet. If the second argument is the empty sequence, then the
function evaluates to failure (i.e., no solution is reachable, because all the
possible computations fail). If there is at least one element ¢ in the sequence,
such that ¢ € T'S and ok(¢) = false, then all the possible rewritings of ¢ in
T via rules with label [ are appended to the rest of the list (e.g., the sequence
of terms is managed as a queue). If ok(t) = true, then t is a solution, the
evaluation returns rewWith(7,7,idle) and we are done

The implementation of the strategy depth(l) for the depth-first visit of

the tree is very similar to the previous one (and thus omitted), except that
the sequence T'L in rewWithDF (T ,T'L,TS,[) is managed as a stack instead of
as a queue. This solution does not correspond exactly to the classical notion,
because once a term t is selected, all of its possible rewritings are calculated.
To improve efficiency, we define the following variant: the stack contains pairs
of the form (¢,7), where ¢ is a term and i is a natural number. When such
a pair is selected, it means that only the first ¢ — 1 rewritings of ¢ have been
already inspected and that the i-th rewriting ¢; of ¢ (if any) should be examined
next. The advantage of this strategy is that the stack remains smaller in size,
because each rewriting is computed by need. We use the name bcktr for this
strategy, because it implements a sort of backtracking mechanism. Since this
strategy yields the same result as the depth strategy, in what follows we do
not specify which one is used when a depth-first visit is involved.

sorts Pair PairSeq .

subsort Pair < PairSeq .

op nilPair : -> Pair . op pair : Term Nat -> Pair .

op seqPair : PairSeq PairSeq -> PairSeq [assoc id : nilPair]

op rewWithBT : Module PairSeq TermSet Label ->
StrategyExpression .

op bcktr : Label -> Strategy .

var PL : PairSeq .

eq rewWith(7,7,bcktr(l)) = rewWithBT(Tﬁpair(f,O),emptySet,h

10



ALV L, AV A AV A, AL AR A ALY AL

eq rewWithBT(T,nilSeq,TSj) = fajlure .
eq rewWithBT(T,seanir(pair(f,n) L,PL),TS,D =
if isIn(?,7S) then rewWithBT(7,PL,TS,D)

else (if meta-reduce(T,’ok[?]) == ’true
then rewWith(7,%,idle)
else (if meta-reduce(7,’ok[{]) == ’false

then rewWithBT(T,PL,set(Z,75),0)
else (if meta-apply(T,%,l,n) == {error*,empty}
then rewWithBT(7T,PL,set(?,TS),[)
else rewWithBT(Tﬂseanir(
pair(extTerm(meta—apply(71%,7ﬂ1)),O),
pair(f,succ(n)),}jL),set(fﬂTSQ,i)
fi) fi) fi) fi .

Using these strategies, the solution (if any) is processed in a deterministic
way. It is also possible to define a nondeterministic visit mechanism of the
tree, where the nondeterminism is due to the choice of the term to be rewritten
from the list of already reached terms. Once a term ¢ is selected from the list,
there are two possibilities. If ¢ is successful, then we can discharge all the
other branches, and ¢ is returned as a solution. If ¢ is not successful then
the computation proceeds by exploring also the rewritings of t. If we only
select terms that are not successful, then at some point we will reach either
an empty list of terms to be checked, or the list containing all the successful
states. Notice that there is only one solution of this kind, and that all the
computation paths leading to that solution have always the same length. It
follows that the meaningful nondeterminism consists in selecting a successful
term from the list, because it can lead to different final states. Since we look
for some control mechanism over nondeterministic computations, we could
use a rewriting rule (with label aux) instead of an equation. The resulting
evaluation strategy is: “Recursively expand any term that is not a solution
and eventually choose one of the solutions (if any)”. It follows that at the
meta-meta-level, only one step of meta-rewriting is needed, to find a solution,
and that the operation allRew can be used in the module ND-SEM[TREE[7']]
tocoﬂectaﬂthelnetasohnjons(thathavetheibrnlrewWith(Tif,idle)\Nﬁh
ok(t) = true in 7). We use an auxiliary predicate okSeq to recognize the
sequences of solutions.

op nondet : Label -> Strategy .
op rewWithND : Module TermSeq TermSet Label ->
StrategyExpression .

op okSeq : Module Term -> Bool .

eq okSeq(7,nilSeq) = true .

eq okSeq(Tiseq(fﬂTL)) =
if meta-reduce(7,’ok[t]) == ’true then okSeqCT,T[O
else false fi .

eq rewWith(7,7,nondet()) = rewWithND(T,7,emptySet,])

eq rewWithND(7',nilSeq,T'S,l) = failure .

11
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ceq rewWithND(7T',seq(TL,7,TL"),TS,I) =
if isIn(¢,7'S) then rewWithND(T,seq(TL,TL’),TSJ)
else (if meta-reduce(T,’ok[f]) == ’false
then rewWithND(T',seq(T'L,TL"),set(,1S5),])
else rewWithND(T, seq(TL,allRew(f,?) ,TLY,
set(7,75),D)
fi) fi
if meta-reduce(7,’ok[?]) =/= ’true .
crl [aux] : rewWithND(T,seq(7TL,t,TL"),TS,I) =>
rewWith(7,7,idle)
if okSeq(T,seq(TL,f,TL’))

To summarize: given a nondeterministic rewriting specification 7' (con-
taining the success predicate ok), then: (1) the module ND-SEM[7] allows
collecting and analyzing all the possible one-step rewritings of a term; (2) the
module TREE[7'] allows analyzing one solution among those reachable from
a term, and the chosen solution depends on the adopted strategy; and (3)
the module ND-SEM[TREE[7']] allows collecting and analyzing all the possible
(topmost) solutions reachable from a term.

4 Nondeterminism and Uniform Term Tile Systems

Let R be a tile system, and let R’ denote its translation in rewriting logic
(as described in Section 2). The tile system R is called uniform if for each
sequent s;b = a; s’ entailed in R’ such that s, s’ are horizontal arrows and

a, b are vertical arrows, then there exists a sequent s_:)s’ entailed by R. It
follows that a general notion of success for uniform tile systems consists of
VH configurations (in the sense of a Vertical arrow followed by a Horizontal
arrow), and the general strategies presented in Section 3 can be immediately
applied to compute tile systems. In this section we show how to employ the
membership assertions of Maude to model uniform term tile systems (tTS).
If both configurations and effects are terms over two distinct (unsorted)
signatures Xy and Yy, then we can assume a standard representation [6] of

basic tiles having the form

-

<y
| =—o0 |3
=<3
|

—
g

(with he Ts, (X,)™, g € Ts,(Xy), v € Ts, (X)), and u € Tx, (X,,), where
Xi = {z1,...,x;} is a chosen set of variables, totally ordered by z; < z;, iff
—>§Z§ (g), where the number of variables in the

“upper-left” corner of the tile is made explicit (the values m and k can be

J1 < j2) as sequents n < <}_£>

retrieved from the lengths of the term vectors decorating the tile). Since se-
quential composition of terms is just substitution, then the translation of such
a tile returns the rule u[h/Z] = g[#/], where ¢[17/Z] denotes the simultaneous
substitution of each w; for z; in ¢.

12
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Given a uniform tTS R, we can define a rewrite theory R whose equational
part in membership equational logic has the poset of sorts illustrated below:

The sort W informally contains the variables of the system as constants; the
sort H contains the terms over the signature ¥y and variables in W (similarly
for the sort V); the sort HV contains those terms over the signature ¥ gy and
variables in W such that they are decomposable as terms over the signature
Yy applied to terms over Xy (similarly for VH); sorts QH, QV, QHV, and QVH are
quoted versions of sorts H, V, HV, and VH (we will denote the quoted version
of a signature g by Ygs, assuming that the operators of the latter are the
syntactically quoted version of the operators in ¥g). The sort U contains terms
over the signature Xy yyugwy: and variables in W. As summarized above, we
introduce the corresponding operations and membership assertions, for each
h € ¥y and v € Xy and their quoted version (with A of arity n and v of
arity m). We also add two operations for transforming a term into its quoted
version and vice versa, together with the adequate membership assertions.
Then, we introduce an operator top(_) to mark the term to be rewritten and
two rules to begin and terminate the rewriting computation. The basic rules
are the quoted and stretched versions of the tiles in R. Then, Theorem 4.1
may be easily proved via a simple inspection of the rules in R.

ops h gh : U" => U . ops vaqv : U" -=> U . vars &1'-* Tpazr : U .

cmb h(zy,...,z,) : Hiff zy ... z, : H .

cmb v(zy,...,2p) : Viff z; ... z,, : V .

cmb h(zy,...,z,) : VH iff =y ... z, : VH .
cmb v(zy,...,2,,) : HV iff z; ... z,, : HV .
cmb gh(zy,...,z,) : QH iff 2, ... z, : QH .
cmb qv(zy,...,x,) : QV iff =y ... x, : QV .
cmb gh(zy,...,z,) : QVH iff z; ... z, : QVH .
cmb qv(zy,...,x,) : QHV iff 2 ... z, : QHV .

ops quote unquote top : U -> U .
cmb quote(zy) : QH iff z; : H .

cmb quote(zy) : QV iff z; : V .

cmb quote(z;) : QHV iff z; : HV .
cmb quote(z;) : QVH iff z; : VH .
cmb quote(zy) : W iff z; : W .

cmb unquote(zy) : H iff z; : QH .
cmb unquote(zy) : V iff z; : QV .
cmb unquote(zy) : HV iff z; : QHV .
cmb unquote(zy) : VH iff z; : QVH .
cmb unquote(zy) : W iff z; : W .

13
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eq quote(h(xy,...,x,)) = gh(quote(x,),...,quote(x,))
eq quote(v(zy,...,x,)) = qv(quote(zy),...,quote(z,,))

ceq quote(zy) = xy if =y : W .
eq unquote(qh(zy,...,x,)) = h(unquote(xy),...,unquote(z,))
eq unquote(qv(zy,...,x,)) = v(unquote(xy),...,unquote(z,,))

ceq unquote(zy) = zy if =y : W .
crl top(xy) => top(quote(wxy)) if z; : HV .
crl top(zy) => top(unquote(z;)) if z; : QVH .

rl qu<q_)h<$1: CEE :xn)) => qV(q_é(Il: CE :xn))

Theorem 4.1 ([6]) Given a uniform tTS R, then

RFna <]_{>%><g> e RFE topu(h)) = top(g(¥)).
A simple predicate ok that uses the membership expressivity of Maude to
distinguish VH states, gives the right notion of success for uniform tTS and

allows the immediate application of the search strategies defined in Section 3.3:
ceq ok(top(zy)) = true if z; : VH .

Remark 4.2 If the tTS is not uniform, then the actual proof term decorating
the derivation has also to be taken into account. Consequently, the meta-
strategies need to be changed in order to record not only the state, but also
the derivation steps which led to that state. This means that the structure of
the meta-state would become huge very fast during the execution, affecting the
computations, that would become very slow. Since at present we do not have
any meaningful examples of non-uniform systems we are not really interested
in having such an implementation.

4.1  Ezxample: Finite CCS

Due to space limitation, we illustrate the application of the internal strategies
described in the previous sections only for the simple example of finite CCS.
We refer the reader to [6] for a more interesting example dealing with the tile
system proposed by Ferrari and Montanari in [15] for located CCS [4].

Milner’s Calculus for Communicating Systems (CCS) [27] is among the
more well-known and studied concurrency models. We present here an exe-
cutable tile specification for a fragment of CCS, called finite C'CS.

Let A (ranged over by «) be the set of basic actions, and A the set of
complementary actions (with A = A and AN A = ). We denote by A
(ranged over by )) the set A UA. Let 7 € A be a distinguished action,
and let Act = AU {7} (ranged over by p) be the set of actions. Then, a
finite CCS process is a term generated by the following grammar (including
inactive process, action prefix, restriction, relabelling, nondeterministic sum,
and parallel composition):

P:u=nil | wP | P\ | Ple/B] | P+ P | P|P.
We let P, () range over the set Proc of processes. A transition system Txog C

Proc x Act x Proc (presented in SOS style) usually describes the operational
14
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semantics of CCS. Assuming the reader familiar with the subject, we skip its
formal definition. As usual we write P = @ instead of (P, u,Q) € Toes,
meaning that a process P may perform an action g becoming (). We adapt
the tile system for CCS proposed in [19] to settle the following tT'S.

Definition 4.3 [tTS for finite CCS] The tTS Rees has the signature ¥4 =
{p:1 — 1| pu € Act} as horizontal signature, the signature ¥p of CCS
processes as vertical signature, and the following basic tiles:

(z1) ‘ 3 (z1]z2)
acty : 1< (1) g (1)) 12 9 (M), Maa)) o= (7(21)
‘ (1) ‘ (z1]z2)
(2 29 (pln), wa) o= () s 29 (plan), w2) Soms (@)
(z2) (z1|za)

Hu 29 (@, pl2a)) o (@) e 209 (e () e (ulen)
resua 19 (p(a1)) onor (u(an) (F g ¢ {a,a))

Blx1) if p=a

relyas: 1a (p(e) S 4y with £ = { B(ay) if p = a

wa = LS REL)) Gy Blas) it p=a
p(x1) otherwise

Here, the vertical dimension is associated with process descriptions, and
the horizontal dimension represents the (opposite of the) dynamic evolution of
the system (we say opposite, because the arrows representing the actions per-
formed by the system are reversed from their computational-driven intuitive
direction). For the reader already acquainted with the Gadducci and Mon-
tanari’s tile system, the previous definition may appear somewhat confusing,
because the two dimensions are swapped in a counterintuitive way. The rea-
son is that the direct translation of our system in a Maude module allows
collecting the possible evolutions of an agent, whereas the ordinary definition
would allow only the test of executable actions (as explained in Section 2).
Analogously to [19], the following result holds, establishing the correspondence
from the set-theoretic view of the traditional SOS semantics for CCS, and the
sequents entailed by Reces.

Theorem 4.4 The tTS Rees is uniform, and for any CCS agents P, () and
for any action p:

P Q < Reesh 04 <>%><M(x1)>.

It follows that a suitable imp}ementation of Reces can be obtained by
considering the rewriting system Rccs as defined in Section 4. We sketch the
Maude description of the module CCS.

mod CCS is sorts W H V VH HV U QH QV QVH QHV .
subsorts W< HV < VHHV < U .

subsorts W < QH QV < QVH QHV < U .

sorts Channel Act . subsort Channel < Act .
ops quote unquote top : U -> U .

15
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op a : Nat -> Channel . op tau : -> Act .

op bar : Channel -> Channel .

ops nil gnil : -> U . ops pre qpre : Act U -> U .
ops res gqres : U Channel -> U .

ops rel gqrel : U Channel Channel -> U .

ops plus par gqplus gpar : U U -> U .

ops obs qobs : U Act -> U .

vars P () : U . var A : Act . vars ' D : Channel .
eq bar(bar(C)) = C .

mb nil : V .

cmb pre(A,P) : Vif P : V .

cmb res(P,C) : Vif P : V .

cmb rel(P,C, D) : Vif P : V .

cmb plus(P,()) : Vif P : Vand ) : V .
cmb par(P,Q)) : Vif P : Vand Q : V .
cmb obs(P,A) : Hif P : H .

mb nil : HV .

cmb pre(A,P) : HV if P : HV .

cmb res(P,C) : HV if P : HV .

cmb rel(P,C,D) : HV if P : HV .

cmb plus(F,()) : HV if P : HV and () : HV .
cmb par(P,Q)) : HV if P : HV and () : HV .
cmb obs(P,A) : VH if P : VH .

mb gnil : QV .

cmb gpre(A,P) : QV if P : QV ...

*** we omit the rest of similar membership axioms
**%* relative to the quoted operators

cmb quote(P) : QH if P : H .

cmb quote(P) : QV if P : V .

cmb quote(P) : QVH if P : VH .

cmb quote(P) : QHV if P : HV .

cmb quote(P) : W if P : W .

eq quote(nil) = gnil .

eq quote(pre(A,P)) gpre(A,quote(P))

eq quote(res(P,()) = gres(quote(P),C) .

eq quote(rel(P,C,D)) = grel(quote(P),C,D)

eq quote(plus(P,)))) = gplus(quote(P) ,quote(R)))
eq quote(par(P,Q)) gpar (quote(P) ,quote(()))
eq quote(obs(P,A)) qobs(quote(P),A)

ceq quote(P) = P if P : W .

cmb unquote(P) : H if P : QH .

cmb unquote(P) : V if P : QV ...

**%*k we omit the rest of similar axioms and equations

**%* relative to the operator ’unquote’

16
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crl [gr] : top(P) => top(quote(P)) if P : HV .

crl [gr] : top(P) => top(unquote(P)) if P : QVH .

rl [qr] : gqpre(A,P) => qobs(P,A) .

crl [gr] : gres(qobs(P,A),C) => qobs(qres(P,(),A)
if A =/= C and A =/= bar(()

crl [gr] : qrel(qobs(P,A),C,D) => qobs(qrel(P,C,D),A)
if A =/= C and A =/= bar(()

crl [gr] : qrel(qobs(P,A),C,D) => qobs(qrel(P,C,D),D)
if A == .

crl [gr] : qrel(qobs(P,A),C,D) => qobs(qrel(P,C,D) ,bar(D))
if A == bar(C)

rl [qr] : gplus(qobs(F,A),Q) => qobs(P,A) .

rl [qr] : gplus(@),qobs(P,A)) => qobs(P,A) .

rl [qr] : gpar(qobs(P,A),Q)) => qobs(qpar(F,Q)),A) .

rl [qr] : gpar(Q),qobs(P,A)) => qobs(qpar(Q),P),A) .

crl [qr] : gpar(qobs(P,(C),qobs(Q),D)) => qobs(gpar(F,Q) ,tau)
if C == bar(D)

op ok : U -> Bool .

ceq ok(top(P)) = true if P : VH .

endm

The code exactly corresponds to the translation illustrated in section 4,
but we use a more verbose syntax for the operators of the tTS. In particular,
we assume that: the denumerable set of basic actions is {a(¢) | 7 € IN}, the
special action 7 is denoted by tau, the inactive process nil is denoted by
nil, the action prefix p.P is denoted by pre(u, P), the restriction P\« is
denoted by res(P,a) the relabelling Pla/f3] is denoted by rel(P,a,3), the
nondeterministic sum P+() is denoted by plus(P, Q)), the parallel composition
P|Q is denoted by par(P,(Q), and the dynamic evolution u(P) is denoted
by obs(P,u). Notice that the predicate ok is exactly the one illustrated in
Section 4 for a generic uniform tTS.

Remark 4.5 The sort W is necessary for executing partially specified queries
(in this case the process variables that are used must be declared as constants
having sort W).

Example 4.6 We show the result of a computation in ND-SEM[TREE[CCS]],
collecting the successful evolutions of the process (aq.nil 4+ az.nil)|a;.nil. The
meta-meta-notation could require some acquaintance with meta-translations,
but some tools will soon be available to perform automatic translations. No-
tice that all the possible interleaving computations of the initial process are
collected (the last answer corresponds to the idle computation).

Maude> rew allRew(’rewWith[’_[_]1[’’top,’_[_1[’’par,’_,_["_[_1L
»oplus,’_,_[P_[.10’pre,’_,_["_[_1["’a,’’1],?’nil]],
[0 pre,’_,_[’_[_1["’a,”’2],’’ni1]]]],
»_[L10pre,’_,_[’_[ 10 ’bar,’ _[_1[’’a, *1]1],7’ni1]1]11]],

'nondet[’’qrl],’aux) .
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rewrites: 26822 in 719ms cpu (729ms real) (37252 rewrites/second)
result TermSequence: seq(

*x% aq(nel|ag.nel)

‘rewWith [P _[_1 [’ top, (°_[_1["’0bs,C’_,_[C_[_I1[’par,("_,_L
»onil, C_[_10pre, O, _[C_[10[bar,(’_[_1["’a,??11)1),’nill)
DD, _[10a,’11)1)1)1),idle],

*x% aq(aq(nil|nel))

‘rewWith[ (P _[_1[? top, (°_[_1["’0bs,(’_,_[C’_[_1["?0bs,("_,_L
¢C_[10’par,C_,_[’’nil,’’nil])]),C _[_1[’’bar, (" _[_1["’a,’’1])
DD, _[10a,’11)1)1)1),idle],

*x% a1 (aq(nil|nel))

‘rewWith[ (P _[_1[? top, (P_[_1["’0bs,(’_,_[C’_[_I1[?0bs,("_,_L
C_[ 10 par,C’_,_["’nil,’’nil])]),C _[_1[a,’?11)1) 1),
C_C[10var,CC_[_10a,2211)1)1)1)1),idle],

*x% 7(nil|nl)

‘rewWith[ (P _[_1[° top, C°_[_1["’0bs,C’_,_[C_[_I1[’par,(’_,_L
’’nil,’’nil])]),’’taul)])]),’idle],

*x% ay(nel|ay.nel)

‘rewWith[ (P _[_1[? top, (°_[_1["’0bs,C’_,_[C_[_I1[’par,(’_,_L
»onil, [0 pre, C_, _[C_[10[°bar,(’_[_1["’a,??11)1),’nill)
DD, _[10a,’2]1)1)1)]1),idle],

*x% ay(aq(nil|nel))

‘rewWith[ (P _[_1[? top, (°_[_1["’0bs,(’_,_[C_[_1["?0bs,("_,_L
¢C_[10par,C_,_[’’nil,”’nil])1),C _[_1["’bar, (" _[_1[’’a,’’1])
DD, _[10a,’2]1)1)1)]1),idle],

*x% a1 (ag(nil|nel))

‘rewWith[ (P _[_1[? top, (P_[_1["’0bs,(’_,_[C’_[_I1[?0bs,("_,_L
C_[ 10 par,C’_,_["’nil,’’nil])]),C _[_1[a,’?2])1)1),C_[_1L
Vbar, (C_[_1[7a,’’11)1)1)1)1),’ idle],

*x% a1 ((aq.nil 4+ ag.nil)|nil)

‘rewWith[ (P _[_1[? top, (°_[_1["’0bs,C’_,_[C_[_1[’par,("_,_L
C_[I0plus,C_,_[C_[10pre,C_,_[C_[_1["’a,’’1]),’ nill)
D,C_[10pre,C_,_[C_[_1["a,’’2]),’’nil1])1)]1)1),nil])]),
C_[10var, CC_[_1[7’a,’711)1)1)1)1) ,id1le],

*x% (ay.nil + ag.nel)|ag.nil

‘rewWith [ (P _[_1[° top, CC_[_1["’par,C’_,_[C_[_I1["’plus,(’_,_L
C_[10pre, C_,_[C_[10a,?21]1),’’nil])]),C’ _[_1[’ ’pre,(

L, [COZI e, 221D, 0id ] DD, C LI D pre, O, _[C_[]L
“bar,(P_[_1[’’a,’’11)]1),7’nil])]1)1)1)]1),’idle])

5 Concluding Remarks

We have implemented and experimented in Maude with the translation of
uniform tile systems, using internal strategies to control the intrinsic nonde-
terminism of the specification. The implementation of finite CCS is extensively
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discussed and an example illustrates how to compute tiles at the meta-meta-
level of the specification. Our experiments are encouraging, since Maude seems
to offer a good trade-off between rewriting kernel efficiency and layer swapping
management (from terms to their meta-representations and viceversa).
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