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Abstract

Tile logic is a framework to reason about the dynamic evolution of concurrent sys-
tems in a modular way, and it extends rewriting logic (in the unconditional case) by
rewriting synchronization and side effects. The subject of this dissertation concerns
some interesting tile models of computation such that the mathematical structures
representing configurations (i.e., system states) and effects (i.e., observable actions)
have in common some auxiliary structure (e.g., for tupling, projecting, etc.). In
particular, two such logics (called process and term tile logic respectively) are fully
discussed, where net-process-like and usual term structures are employed. The cate-
gorical models for the two logics are introduced in terms of suitable classes of double
categories. Then, the new model theory of 2F'VH-categories is proposed to relate the
categorical models of tile logic and rewriting logic. This is particularly important,
because rewriting logic is the semantic basis of several language implementation
efforts (Cafe, ELAN, Maude), and therefore a conservative mapping of tile logic
back into rewriting logic can be useful to get executable specifications of tile sys-
tems. The new model theory required to relate the two logics is presented in partial
membership equational logic, a recently developed framework, which is particularly
suitable to deal with categorical structures. The comparison yields a correct rewrit-
ing implementation of tile logic that uses a meta-layer to make sure that only tile
proofs are performed. Exploiting the reflective capabilities of the Maude language,
such meta-layer is specified in terms of internal strategies. Some detailed examples
illustrating the implementation of tile systems for interesting concurrent process
calculi conclude the presentation.
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Overview

The present dissertation is about the theoretical and implementation aspects
of a formalism, namely the tile model [20,22], for modular descriptions of con-
current system behaviours. The more practical part concerns the realization
in Maude [11] (a reflective language recently developed at SRI International
and based on rewriting logic [28,29]) of general meta-strategies for computing
tile specifications. The theoretical part provides a categorical semantic setting
that is also important to prove the correctness of the implementation. This
presentation is based on a joint work with José Meseguer and Ugo Monta-
nari [8], and will constitute most part of my PhD Thesis [5].

The notion of tile model relies on the use of a set of rules (called tiles)
to define the behaviour of certain basic modules, which may interact through
their interfaces (a module can be imagined just as a partially specified state of
the system). Then, the behaviour of a whole system is defined as a coordinated
evolution of its submodules. Graphically, a tile has the form

0 0
| b
O——>0
and textually it is written s—,7s', stating that the initial configuration s of the
system can evolve to the final configuration s’ producing an effect b, which can

be observed by the rest of the system. However, such a step is allowed only if
the subcomponents of s (which is in general an open configuration) evolve to

s
—

the subcomponents of s’, producing the effect a, which acts as the trigger of
the rule. The vertices o of the tile are called interfaces (each configuration has
both an input and an output interface). Tiles can be composed horizontally
(through side effects), vertically (computational evolutions of a configuration),
and in parallel (concurrent steps) to generate larger rules. It is evident that
the tile model extends rewriting logic (in the unconditional case), taking into
account side effects and rewriting synchronization (in unconditional rewriting
systems, both triggers and effects are just identities; therefore, rewriting steps
may be applied freely, i.e., without interacting with the rest of the system),
and can be naturally equipped with observational equivalences and congru-
ences based on effects. These aspects are very important, for example, when
modelling process algebras via a rewrite system, because the behaviour of most
process algebras depends on the interaction between agents and “the rest of
the world”.

By analogy with rewriting logic, where a logic theory is associated to a term
rewriting system in such a way that each concurrent computation represents
a sequent entailed by the theory, the tile model also comes equipped with
a purely logical presentation [22], where tiles are just considered as special
(decorated) sequents subject to certain inference rules. Given a tile system, the
associated tile logic is obtained by adding some auxiliary tiles and then freely
composing in all possible ways (i.e., horizontally, vertically and in parallel)
both auxiliary and basic tiles. Auxiliary tiles may be necessary to represent
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consistent rearrangements of the interfaces. Their role will be made more
precise in the following part of the present overview.

In the recent literature, tiles have been used with success for modelling
in detail several classes of applications, extending the SOS specification ap-
proach [34] to open and heterogeneous systems. Applications range from coor-
dination languages, where triggers and effects naturally represent coordination
protocols, to mobile processes, where free and bound names, and name extru-
sion must be handled.

In [33], a simple coordination model based on graph rewriting and syn-
chronization is presented, using a class of tiles whose configurations are terms
and whose effects are the elements of the free monoid over a set of basic obser-
vations. The hard computational problem of tile synchronization (which is in
general NP-complete) is reduced to a distributed version of constraint solving,
for which effective approaches exist. As an another example, tile models for
most process algebras [22] have process terms as configurations, and elements
of the free monoid of actions (which are unary symbols) as observations.

The simplest possible interpretation of structured configurations and ob-
servations is considered in [6,7], and consists of P/T net markings. As an
important result, horizontal composition in the tile model yields a notion of
transition synchronization, an important feature for compositionality, which is
missing in ordinary nets (where only token synchronization is provided), and
usually achieved through complex constructions.

Since models of computation based on the notion of free and bound names
are widespread, the notion of name sharing is essential for several applications,
ranging from logic programming, A-calculus and process algebra with restric-
tion (or name hiding mechanisms) to mobile processes (where local names
may be communicated to the external world, thus becoming global names).
We can think of names as links to communication channels, or to objects,
or to locations, or to remote shared resources, or, also, to some cause in the
event history of the system. In general, names can be freely a-converted,
because the only important information they offer is the sharing of common
resources. A main advantage of tiles is that data structures for configurations
and effects are not restricted to be syntactic terms. A small variation over
ordinary terms which has proved very expressive is term graphs [15]: they are
a reference-oriented generalization of the ordinary (value-oriented) notion of
term, where the sharing of subterms can be specified also for closed (i.e., with-
out variables) term graphs (terms can share variables, but shared subterms of
closed terms can be freely copied, always yielding an equivalent term).

Such structures have been shown useful in [17] to define a tile model for
the (asynchronous) w-calculus [32] (one of the most studied mobile calculi),
and in [18] to represent both the operational and the abstract semantics of
CCS with locations [3] within the tile model. In both cases, the general no-
tion of tile bisimilarity [22] is employed to quotient out configurations, thus
recovering the ordinary abstract semantics. Name extrusion and explicit han-
dling make the transition system for the m-calculus infinite branching and
require special notions of bisimulation. However, extrusion does not present
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any problem and can be specified using finite branching if one uses tiles whose
configurations and effects are term graphs. Indeed, term graphs can handle
names as wires, i.e., every sharing connection must be defined and explicit
naming is not necessary. In the case of CCS with locations, sharing is used
within configurations for modeling the parallel composition operator _ | _ of
the process algebra, which, in this context, means sharing the same location.
Within observations, sharing means that two events share the same cause, or,
equivalently, that the same location has two different sublocations.

The main issue of this presentation is the study of a conservative embed-
ding of tile logic into rewriting logic, focusing on the case in which config-
urations and effects rely on common auxiliary structures (e.g., for tupling,
projecting or permuting interfaces). This is useful because there exist several
languages based on rewriting logic (Cafe [19], ELAN [2], Maude [11]), and the
implementation of such a mapping immediately supports the execution of tile
specifications.

Asillustrated above, the notions of configuration and effect are very general
here: the only requirement is that they come equipped with operations of
parallel and sequential composition. To give a formal definition of auxiliary
structure we can assume that they form two monoidal categories having the
same class of objects. In particular, a general and convenient categorical
characterization of configurations and effects can be given in terms of algebraic
theories [25,26,24]. The free algebraic theory associated to a (one-sorted)
signature ¥ is called the Lawvere theory for ¥, and is denoted by Ly: the
objects are underlined natural numbers, the arrows from m to n are in a one-
to-one correspondence with n-tuples of terms of the free X-algebra with (at
most) m variables, and composition is term substitution. In a certain sense,
a Lawvere theory is just an alternative presentation of a signature, because
the additional structure (for tupling, projecting and permuting the elements
of a tuple) is generated in a completely free way: only the operators of the
signature contain information, whereas the other constructors add nothing
but auxiliary structure. From this point of view, the use of a wires and bozxes
notation turns out to be very useful for a visual and intuitive understanding
of the role played by the auxiliary structure: variables are represented by
wires (we assume an implicit total order of the variables involved) and the
operators of the signature are denoted by boxes labelled with the name of
the operators. For instance, the term f(x1, g(x3), h(21,a)) over the signature
Y={a:0—1,9g:1—1,h:2—1,f:3 — 1} and variables z; < z,
admits the following graphical representation:

1
9 f o
a h

It should be obvious that wire duplications (e.g., of z1) and crossing of wires
(e.g., of x2 and a copy of x1) are auxiliary, in the sense that they belong to
any wires and boxes model, independently from the underlying signature. It
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follows that, if we use the wires and boxes notation for configurations and
effects, then this kind of operations (e.g., rearrangements of wires) belongs to
both dimensions (i.e., they are shared). Moreover, consistent rearrangements
of wires on both dimensions do not change the meaning of a rule, but only
its interface. To illustrate this point, let us consider a simple tile system,
where the above signature ¥ is the signature of configurations, the signature
of effects is ¥ = {s: 1 — 1, : 2 — 1}, and the basic tiles are:

23 —[hf— w1

Then, one may expect that the configuration f(a,z1,g(x2)) is able to evolve
to h(z1,22), producing an effect s (as a result of the horizontal composition,
or synchronization, of the two tiles). However, it is impossible to compose
the tiles in the obvious way without rearranging the interfaces, because the
arguments of the trigger ¢ of the second tile are separated by a variable in the
initial input interface (notice the crossing of wires), while the first tile applies
the effect to adjacent arguments (notice that it is always possible to put an
idle component in parallel with the first tile to model the second argument of
f). Thus we have the following naive characterization of auxiliary tiles:

Auxiliary tiles coincide with the consistent rearrangements of interfaces in
both dimensions, where consistency means that the composition of the wire
transformations induced by the initial configuration and the effect of the
tile is equivalent to the composition of the wire transformations due to the
trigger and the final configuration.

Algebraic theories provide a clear mathematical representation of auxiliary
constructors as suitable natural transformations, whose components are called
symmetries, duplicators, and dischargers. This result will be very useful to
relate our naive definition with a more formal definition.

Lawvere theories introduce a very general notion of model (i.e., a chosen
functor from Ly to a cartesian category with chosen products) and model
morphism (i.e., a natural transformation between two models). This fact has
been well-exploited in the categorical semantics of rewriting systems. In fact,
in the field of term rewriting, the states are terms over a certain signature
(i.e., arrows of the associated Lawvere theory), and rewriting steps are tran-
sitions between two terms (with variables). It has been shown in [28] that
a rewriting theory R yields a cartesian 2-category® Lg, which does for R

2 A 2-category [23,27] is a category C such that, for any two objects a, b, the class C[a, b] of
arrows from a to b in C, forms a (vertical) category. The arrows of these hom-categories are
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what a Lawvere theory does for a signature (i.e., models can be defined as 2-
product-preserving 2-functors). Gadducci and Montanari pointed out in [21]
that if also side-effects are to be taken into consideration during the rewrit-
ing process, then double categories [16,1,23] should be considered as a natural
model. A double category can be informally described as the superposition of
a horizontal and a vertical category of cells, the former defining effect prop-
agations, and the latter describing state evolutions. Then, in the same way
as the term algebra is freely generated by a signature, and the initial model
of rewriting logic is freely generated from the rules of the rewriting system,
the tiles freely generate a (monoidal) double category which constitutes the
natural operational characterization® in the spirit of initial model semantics.

Two main interesting cases of shared auxiliary structures are considered
here, yielding the notions of process tile logic and term tile logic:

o Flat (i.e., any two sequents having the same “border” are identified, thus no
emphasis is given upon the axiomatization of logic proofs) versions of process
tile logic have been shown to be especially useful for defining compositional
models of computation of mobile calculi, and causal and located concurrent
systems [17,18]. The auxiliary tiles of process tile logic express consistent
permutations of interfaces along the horizontal and vertical structures.

o Term tile logic represents the obvious extension of term rewriting logic.
Connections between the two logics are particularly interesting because in
both logics the underlying cartesian category structure manifests itself at
the level of syntax, allowing the use of the standard term notation with
term substitution as composition. The auxiliary tiles of term tile logic
allow consistent permutations of interfaces along the horizontal and vertical
structures (as for process tile logic), consistent free copying, and consistent
projections on subcomponents.

The natural semantics of process and term tile logics are given in terms
of suitable classes of double categories whose equational axioms identify intu-
itively equivalent tile computations. For this purpose, the notions of symmet-
ric strict monotdal double category and cartesian double category with consis-
tently chosen products are introduced. As far as we know these definitions
are original, because previous attempts (based on internal constructions) for
analogous notions have led to asymmetric models, where the auxiliary struc-
ture (i.e., symmetries, duplicators, and dischargers) is fully exploited in one
dimension only. We believe that this should not be the case, both conceptu-
ally and for the kind of applications we have in mind; therefore we developed
an alternative approach, following the idea of hyper-transformations [16] for
many-fold categories, and exploiting the results for double categories. In par-

called cells and satisfy particular composition properties. For example, the category Cat of
categories and functors is a 2-category (Cat[C,C'] is the category having the functors from
C to €' as objects, and the natural transformations between such functors as arrows).

3 The tiles are cells, the contexts are arrows of the 1-horizontal category, the side-effects are
the arrows of the vertical 1-category, and 0-objects model connections between the somehow
syntactic horizontal category and the dynamic vertical evolution.
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ticular, we define the notion of generalized transformations (behaving the same
in both dimensions), and assert the coherence of the two ways of transform-
ing the structure. Then, we instantiate the definition to the special cases of
symmetries, duplicators, and dischargers, in a similar way as it happens for
the 1-dimensional case. Moreover, by doing that, we give evidence for the
usefulness of axiomatizing the resulting double categories, thus allowing for
the definition of more significant models than the flat ones. Actually such
models could also take into account the structure of proofs. This approach
motivates the following formal characterization of auxiliary tiles:

Auxiliary tiles for process and term tile logic are suitable generalized trans-
formations respecting some coherence equations, where coherence means
that they are uniquely defined.

The comparison between tile logic and rewriting logic is carried out by em-
bedding their corresponding categorical models in a recently developed, more
general framework, called partial membership equational logic (PMEqtl) [30,4].
PMEqtl is particularly suitable for the modelling and the embedding of cat-
egorical structures, firstly because the sequential composition of arrows is a
partial operation (it is defined if and only if the target of the first argument is
equal to the source of the second argument), and secondly because member-
ship predicates over a poset of sorts allow modelling the objects as a subset
of the arrows and arrows as a subset of cells (as it is usually done in category
theory). Moreover, the tensor product construction illustrated in [31] can be
easily formulated in PMEqtl, yielding a convenient definition of monoidal dou-
ble categories as the tensor product of the theory of categories (twice) with
the theory of monoids. To accomplish the comparison, we define an extended
version of 2-category, called 2FVH-category, that provides a systematic con-
nection between models of tile logic and of rewriting logic. The idea is to
“stretch” double cells into ordinary 2-cells as pictured below, mantaining the
capability to distinguish between configurations and effects, whereas the aux-
iliary structure becomes shared, i.e., it belongs to both classes.

0 o s o] b
al lb o/)u_\o
L N

Doing this, 2EVH-categories are able to simulate — in the sense that the
algebraic structure of the original double categories is recoverable in terms
of operations on 2-cells — the structure of double categories, where both the

horizontal and vertical 1-categories share some non-trivial structure other than
objects. In this translation we must be careful about two issues, namely, the

s
—

possible identification of distinct double cells, and the possible existence of
2-cells having correct horizontal-vertical partition of the source and vertical-
horizontal partition of the target, but which do not represent any double cell.
From the facts that: (1) each arrow of a 2-category can be viewed as an
identity 2-cell, (2) each auxiliary operator is a shared arrow, and (3) auxiliary
tiles are consistent (in the sense that the composition of s with b is equivalent
to the composition of @ with s), it follows that 2EVH-categories allow for a
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third characterization of auxiliary tiles:

Auxiliary tiles coincide with the possible square-shaped decompositions of
the identity 2-cells associated to auxiliary constructors.

An important result states the equivalence of the three different definitions
of auxiliary tiles that we have sketched in this overview.

Though the results are very satistying from a theoretical perspective, they
cannot be applied directly to rewriting implementations of tile systems, be-
cause we are interested only in correct tile computations. Indeed, we need
suitable meta-strategies to control the possible nondeterminism contained in
a tile specification and also in its translation. To overcome this difficulty, we
make use of the reflective capabilities of Maude to define suitable internal
strategies [14,12,13,10], that can help the user to control the rewritings and
to collect (some of) the possible (correct) results. The key point is that the
internal strategies defined here for simulating tile systems can also be thought
of as general meta-strategies for nondeterministic rewriting systems. We have
experimented with Maude some executable tile specifications for finite CCS
and for located CCS, and have successfully developed and applied general
internal strategies to analyze tile computations (see also [9]).
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