

From Theory to Practice in
Transactional Composition of Web Services?

Roberto Bruni1, Gianluigi Ferrari1, Hernán Melgratti1, Ugo Montanari1,
Daniele Strollo2, and Emilio Tuosto1

1 Dipartimento di Informatica,
Università degli Studi di Pisa, Italy

email: {bruni,giangi,melgratt,ugo,etuosto}@di.unipi.it
2 Istituto Alti Studi IMT Lucca, Italy

email: daniele.strollo@imtlucca.it

Abstract We address the problem of composing Web Services in long-running
transactional business processes, where compensations must be dealt with ap-
propriately. The framework presented in this paper is a Java API called Java
Transactional Web Services (JTWS), which provides suitable primitives for wrap-
ping and invoking Web Services as activities in long-running transactions. JTWS
adheres to a process calculi formalisation of long-running transactions, called
Naı̈ve Sagas, which fixes unambiguously the implemented compensation policy.
In particular, the primitives provided by JTWS are in one-to-one correspondence
with the primitives of Sagas, and they are abstract enough to hide the complex
details of their realization, thus favouring usability. Moreover, JTWS orchestrates
business processes in a distributed way.

1 Introduction

One of the emerging issues when aggregating Web Services (WS) is constituted by the
so-called long-running transactions (LRTs), i.e., the possibility of requiring a set of WS
interactions to be executed atomically. Note that the problem is not just to coordinate
the updates of a distributed repository (e.g., a database), since components are indepen-
dent and any of them is responsible for maintaining the consistency on local data. In
order to achieve atomicity, LRTs may use compensations, namely, ad-hoc activities that
are responsible for undoing the effects of partial executions when the overall orchestra-
tion cannot be completed. In fact, most of the languages proposed in recent years for
orchestrating WS (e.g., WSCL [30], BPML [6], WSFL [23], XLANG [31], BPEL4WS [4])
include primitives for handling LRTs. Noteworthy, all those proposals formalise the or-
chestration syntax but not the semantics, whose informal description can make the in-
tended behaviour of constructs ambiguous and can lead to different implementations of
the same language. (As an example, see the large list of open issues for BPEL4WS [5].)
Moreover, those proposals mix together many different concepts and programming con-
structs. Hence, it is difficult to establish a clear semantics for them because of the mutual
interactions of such different constructs.
? Research supported by the Project FET-GC II SENSORIA and by the Project HPRN-CT-2002-

00275 SEGRAVIS.

2 R. Bruni et al.

In this paper, we first take advantage of a formal framework for isolating and study-
ing LRTs and then we use an experimental framework for implementing and exercising
the theoretical choices in a WS scenario. We are aimed at building a framework for
coordinating transactional compositions of WS over a solid formal basis. The main
goal of our work is two-fold. Firstly, we provide application designers with a formally
specified language for defining transactional aggregations at a high level of abstrac-
tion, i.e., in terms of the involved WS and the control flow among them regardless of
low level details, e.g. distribution, asynchrony. Secondly, after selecting a coordination
infrastructure, we map high level transactional primitives into concrete orchestration
patterns. One of the main advantages of our approach lies in the reciprocal benefits that
theory and practice can gain in this case. For instance, several alternative semantics can
be given when composing parallel transactional flows [7]. The possibility of giving pro-
totype implementations of those semantics and apply them to realistic scenarios (like
WS applications) can help in evaluating and refining the theoretical models. Moreover,
applications deployed with the aid of formal methods are more robust.

The high level language we choose is Naı̈ve Sagas [9], a process calculus for com-
pensable transactions, while the orchestration infrastructure we propose is Java Trans-
actional Web Services (JTWS) [27], an execution platform that supports the transactional
capabilities of Naı̈ve Sagas. Indeed, JTWS embeds the transactional policies of Naı̈ve
Sagas into a framework for programming WS.

From the existing calculi for LRTs [13,12,14,16,9,3,22,8,15,18,25,24], we have
chosen Naı̈ve Sagas because it exposes the orchestration mechanism behind LTRs In
fact, activities in a saga are described at the high level of abstraction, where the elemen-
tary actions are not interpreted. Transactional flows are processes built by composing
with the standard parallel and sequential composition plus the compensation pair con-
struct. Given two actions A and B, the compensation pair A÷B corresponds to a process
that uses B as compensation for A. Intuitively, A÷B yields two flows of execution: the
forward flow and the backward flow. During the forward flow, A÷B starts its execution
by running A and then, when A finishes: (i) B is “installed” as compensation for A, and
(ii) the control is forwardly propagated to the other stages of the transactions. In case
of a failure in the rest of the transaction, the backward flow starts so that the effects of
executing A must be rolled back. This is achieved by activating the installed compen-
sation B and afterward by propagating the rollback to the activities that were executed
before A. Note that B is not installed if A is not executed.

The execution platform JTWS is a Java implementation of the APIs defined in [27,21].
JTWS is based on a signal passing style of programming. Conceptually, JTWS is divided
in two levels: Java Signal Core Layer (JSCL) and Java Transactional Layer (JTL). The
former provides a set of primitives for defining and handling the flow of signals among
components. The latter, uses the primitives of JSCL to define the behaviour of trans-
actional constructs according to Naı̈ve Sagas. Basically, WS are wrapped into JTWS
components that exchange a fixed set of suitable signals. Similarly, JTWS fixes a precise
flow of signals for composed services. It is worth remarking that the JSCL layer provides
a general framework for implementing different transactional policies. Indeed, one can
easily change the behaviours of transactions by replacing the JTL layer. Therefore, we

Transactional Composition of Web Services 3

can prototype and experiment with different semantics for transactional flows without
changing the code of the application.

Related works. Several process calculi have been proposed to deal with different flavours
of transactions. Notably, models for ACID (i.e., usual database transactions) transactions
in Linda [17] have been proposed in [1,11,20,10]. Unlike Sagas, ACID transactions are
regarded as not suitable for computations that may elapse for a long period of time.
Similarly, our work differs in scope from [18], which is aimed at extending an object
oriented programming language with primitives for handling ACID transactions.

Another mainstream in transactional process calculi takes as starting point well-
known name passing calculi, like π and Join, and adds to them transactional features
like compensable nested contexts [3], timed transactions [22,24], interacting compens-
able transactions [8] and event scopes [25]. We prefer Sagas to those approaches be-
cause Sagas naturally abstracts away from low level computations and communication
patterns, while it highlights the composition structure of transactional processes. Simi-
larly, we prefer Sagas to approaches like [15], where the coordination mechanism relies
on the operations performs over a centralised log.

Sagas is much more in the spirit of StAC [12,13] and cCSP [14]. (We refer to [7] for
a detailed comparison.) We prefer Sagas to those proposals because it is more compact.

As far as the execution platform is concerned, our approach is different from the
existing implementations of orchestration languages such as Biztalk [2], Oracle BPEL
Process Manager [26] and WebSphere [28], because JTWS does not rely on an engine
that rules the execution of a composed process. Instead, JTWS translate transactional
primitives as suitable interaction patterns among services over a middleware. It is worth
noting that the coordination logic in JTWS is kept distributed (i.e., JTWS establishes a
kind of choreography [29] among involved services). In some sense, JTWS is similar in
spirit to [19]. Noteworthy, the work in [19] is aimed at specifying a middleware able to
implement several transactional models, while our work is main concerned at showing
how transactional models can be mapped into a concrete middleware.

2 Background: sagas calculus

In this section we introduce the formal basis for the implementation of the JTL package.
In particular, we exploit a process algebra for compensable flow composition that is
essentially the algebra of Naı̈ve Sagas in [9], but whose semantics is here presented in
the simpler style of compensating CSP (cCSP) [14].

2.1 Syntax

Sagas are built over a set of atomic activities Σ∪ {0,THROW}, where 0 (the nil ac-
tivity) and T HROW (the interrupting activity) are two distinguished elements. Atomic
activities are ranged over by A, B, ... The set of processes is defined as follows:

(NAÏVE SAGAS) S,T ::= A | [P] | S;T | S|T

(COMPENSABLE PROCESSES) P,Q ::= A÷B | P;Q | P|Q

4 R. Bruni et al.

COMPOSITION OF STANDARD TRACES

Sequential
{

p〈X〉;s = ps
p〈ω〉;s = p〈ω〉 when ω 6= X

Parallel p〈ω〉||q〈ω′〉 = {r〈ω&ω′〉 | r ∈ int(p,q)}, where
ω ! ! ! ? ? X

ω′ ! ? X ? X X

ω&ω′ ! ! ! ? ? X

and

int(p,〈〉) = {p}
int(〈〉,q) = {q}

int(〈x〉p,〈y〉q) = {〈x〉r | r ∈ int(p,〈y〉q)} ∪ {〈y〉r | r ∈ int(〈x〉p,q)}

TRACES OF Naı̈ve Sagas

Γ ` 0 = {〈X〉}
Γ ` A = {〈A,X〉} when A ∈ Σ∧Γ(A) = X

Γ ` A = {〈!〉} when A = THROW ∨ (A ∈ Σ∧Γ(A) =!)
Γ ` S;T = {s;t | Γ ` s ∈ S ∧ Γ ` t ∈ T}
Γ ` S|T = {s′ | s′ ∈ (s||t) ∧ Γ ` s ∈ S ∧ Γ ` t ∈ T}
Γ ` [P] = {p〈X〉 | Γ ` (p〈X〉,s) ∈ P} ∪ {ps | Γ ` (p〈!〉,s) ∈ P}

Figure 1. Trace semantics of Naı̈ve Sagas

A Naı̈ve Sagas is either a basic activity A, a transaction block enclosing a compens-
able process [P], the sequential composition S;T of sagas, or the parallel composition
S|T of sagas. A basic compensable process is a compensation pair A÷B where A is a
basic activity and B is its compensation. We write A as an abbreviation for A÷0. Com-
pensable processes can be composed either in sequence P;Q or in parallel P|Q. Without
loss of generality, we assume that any activity in Σ appears at most once in any saga
(resp. process), i.e. that different instances of the same action are named differently.

2.2 Semantics

The semantics is defined in terms of admissible execution traces. A trace for a saga is a
string s〈ω〉, where s ∈ Σ∗ is said the observable flow and ω ∈ Ω is the final event, with
Ω = {X, !,?} (X stands for success, ! for fail, and ? for yielding to a concurrent interrupt
and it is assumed that Σ∩Ω = /0). Hereafter, we let p,q,r range over Σ∗ and s, t range
over the set of traces Σ∗Ω. The sequential composition s; t concatenates the observable
flows of s and t only when s terminates with success, otherwise it is s. The composition
of two concurrent traces p〈ω〉||q〈ω′〉 corresponds to the set int(p,q) of all possible
interleavings of the observable flows p and q followed by the final event ω&ω′, where
the associative and commutative operator & defines the final event corresponding to the
parallel composition of traces. The set of traces is evaluated according to a scenario Γ :
Σ →{X, !} decreeing the success or failure of each basic activity. We write Γ ` S = S′

if S and S′ represent the same set of traces under the scenario Γ. We write Γ ` s ∈ S if
the set of traces associated to S under the scenario Γ includes s.

Figure 1 summarises the trace semantics of Naı̈ve Sagas. The definition for the
traces of sagas is straightforward. The most interesting definition is for a transaction

Transactional Composition of Web Services 5

COMPOSITION OF COMPENSABLE TRACES

Comp. pair
{

p〈X〉÷ s = (p〈X〉,s)
p〈ω〉÷ s = (p〈ω〉,〈X〉) when ω 6= X

Sequential
{

(p〈X〉,s);(t,t ′) = (pt,t ′;s)
(p〈ω〉,s);(t,t ′) = (p〈ω〉,s) when ω 6= X

Parallel

(p〈X〉,s)||(q〈X〉,t) = {(r〈X〉,s′) | r ∈ int(p,q) ∧ s′ ∈ (s||t)}
∪ {(r〈?〉,〈ω〉) | r〈ω〉 ∈ (ps||qt)}

(p〈ω〉,s)||(q〈ω′〉,t) = {(r〈ω&ω′〉,〈ω′′〉) | r〈ω′′〉 ∈ (ps||qt)}
when ω&ω′ ∈ {!,?}

TRACES OF COMPENSABLE PROCESSES

Γ ` A÷B = {s÷ t | Γ ` s ∈ A ∧ Γ ` t ∈ B}
Γ ` P;Q = {s;t | Γ ` s ∈ P ∧ Γ ` t ∈ Q}
Γ ` P|Q = {s′ | Γ ` s′ ∈ (s||t) ∧ Γ ` s ∈ P ∧ Γ ` t ∈ Q}

Figure 2. Trace semantics of compensable processes

block [P]. Note that any trace of a compensable process P is a pair (p〈ω〉,s), where
p〈ω〉 is the forward trace and s is the corresponding compensation trace. Then, the defi-
nition for [P] selects all successful traces of P (i.e., p〈X〉), and the traces corresponding
to the failed forward flows followed by their compensations, i.e., ps. A compensated
trace ps ending with X corresponds to an aborted execution that has been compensated
successfully. Instead, if the compensated trace finishes with !, then the execution of
some compensation failed. We refer to the latter case as to an execution that raises an
exception. Moreover, note that a trace that finishes with X has not enough information
to distinguishing whether it corresponds to the successful execution of the forward flow
(i.e., a commit) or to a successfully compensated flow (i.e., an abort with a complete
compensation). Note that all pairs whose forward traces end with ? are just discarded.

Figure 2 gives the semantics of compensable processes. The traces of a compen-
sation pair are just given by the pairs of traces for the forward and backward flows,
but the compensation is installed only if the forward activity ends with success. When
composing compensable traces in series, the forward trace corresponds to the sequen-
tial composition of the original forward traces, while compensations are executed in
the reverse order w.r.t. the associated forward activities. The parallel composition is
defined as suitable interleavings of the forward and the backward flows. The parallel
composition of two successful traces contains all the interleavings of the forward flows
compensated with the interleavings of the original compensations, and a set of yield-
ing traces. Yielding traces stand for the behaviours of processes P|Q in case they are
composed in parallel with a process that fails, for instance P|Q|THROW. Note that this
is the only case where yielding behaviours are generated in the semantics (in partic-
ular, neither backward traces, nor standard traces can ever contain the final event ?).
Finally, the parallel composition when at least one trace ends with ? or ! is defined as
the interleavings of the original compensated flows.

6 R. Bruni et al.

Prepare Order

Update Stock

Accept Order

Refuse Order

Prepare Order

Update Stock

Update Credit

Refund Money

Figure 3. A parallel saga for handling orders

The trace semantics can be used to prove interesting laws which hold under every
scenario. We write S ≡ T if for all Γ we have Γ ` S = T . For example, it can be readily
proved that sequential and parallel compositions of sagas (resp. compensable processes)
are associative and commutative under any scenario Γ. Other easy equivalences are:

0;P ≡ P;0 ≡ P THROW;P ≡ T HROW
0;S ≡ S;0 ≡ S|0 ≡ S THROW;S ≡ THROW

THROW ÷A ≡ THROW ÷0 [A÷A′|B÷B′|THROW] ≡ (A;A′)|(B;B′)

We describe here a small example illustrating the features of Naı̈ve Sagas.

Example 1 (Handling Purchase Orders). Consider the simple business process for han-
dling purchase orders depicted in Figure 3. The first activity Accept Order handles a
request from a client and it is compensated by Refuse Order, which will contact the
client to notify her/him that the order was cancelled. After that, both the balance of the
client’s account is updated and the order is prepared. The step Update Credit charges
the amount of the order to the balance of the client. This activity could fail, for instance
when the client has not enough credit to proceed, which will activate the compensation
installed so far (i.e., Refuse Order). Instead, if it succeeds, then the compensation Re-
fund Money is also installed. Refund Money is responsible for updating the balance with
the amount detracted previously. Finally, Prepare Order handles the packaging of the
order and updates the stock. Its compensation Update Stock will increment the stock
with the proper values. Using the obvious acronyms in place of activities, the saga for
handling purchase orders can be written as

HPO-saga
def

= [A.O.÷R.O.;(U.C.÷R.M.|P.O.÷U.S.)]

In a scenario Γ in which all activities are successful, the set of traces will be

Γ ` HPO-saga = {〈A.O.,U.C.,P.O.,X〉,〈A.O.,P.O.,U.C.,X〉)}

Instead, in a scenario Γ′ like Γ but where the client has not enough credit to proceed,
the activity Update Credit fails and thus

Γ′ ` HPO-saga = {〈A.O.,P.O.,U.S.,R.O.,X〉}

As a last scenario, consider Γ′′ like Γ′ but where upon failure of Update Credit the
compensation Update Stock of the activity Prepare Order fails because the goods cannot
be unpackaged without damage. Then, the saga will raise an exception:

Γ′′ ` HPO-saga = {〈A.O.,P.O., !〉}

Transactional Composition of Web Services 7

2.3 Discussion

The calculus we have presented is obtained by mixing the ingredients coming from two
different proposals [9,14]. For example, the use of scenarios comes from [9], while the
interleaving trace semantics is more in the style of [14]. For the sake of presentation,
we focus here just on parallel sagas by leaving out several other features considered
in [9,14], like exception handling, choices, and nesting.

The integration the two approaches is sustained by the detailed comparison carried
out in [7], where Sagas [9] and cCSP [14] are reconciled. In particular, it is shown that
for the sequential composition both approaches coincide in the way in which compen-
sations are installed and activated, while different compensation policies are used for
parallel composition. In fact, [9] proposes already two different semantics for parallel
compensations, called naı̈ve and revised. Nevertheless, none of them coincides with the
one in [14]. The key difference lies in the activation of sibling compensations in paral-
lel branches of a transaction when one of the branches compensates. In fact there are
several policies for notifying the abort to sibling processes. Roughly, such policies can
be characterised in terms of two orthogonal strategies: (i) whether the forward flow can
be interrupted to activate the compensation procedure as soon as possible or not; and
(ii) whether the compensation procedure is activated in a centralised or in a distributed
way. The combination of these strategies gives the following four different policies

No Interrupt & Centralized (emerged in [7]) ⊆ No Interrupt & Distrib. (Naı̈ve Sagas [9])

⊆ ⊆

Interrupt & Centralized (cCSP [14]) ⊆ Interrupt & Distrib. (Revised Sagas [9])

The main result in [7] is to relate the different semantics arising in the four cases,
which justifies the inclusion relations depicted above. Suitable counterexamples for
proving that Naı̈ve Sagas 6⊆ cCSP and cCSP 6⊆ Naı̈ve Sagas are given in [7].

The four strategies mentioned above correspond to alternative implementations for
the compensation mechanism. The policy adopted by the semantics in Figures 1 and 2
is no interruption and distributed compensation, a distributed procedure for compen-
sating parallel branches that may allow the execution of activities of the backward flow
even when parts of siblings forward flow are still in execution. As an example, the
aforementioned law [A÷A′ | B÷B′ | THROW] ≡ A;A′|B;B′ illustrates this policy. Note
that the forward flow is executed completely (i.e., A and B) but parallel branches are
independently compensated for, e.g. A′ can be executed even before B completes.

We conclude this section by remarking that our calculus is tailored to Naı̈ve Sagas,
and hence some syntactic assumptions and the semantics in Figures 1 and 2 are slightly
different w.r.t. the presentation in [7], where a uniform style of description for the four
policies has been preferred.

3 Java Transactional Web Services

In this section we describe JTWS, a Java-implementation of Naı̈ve Sagas based on the
APIs introduced in [27,21]. The programming pattern adopted in JTWS is based on

8 R. Bruni et al.

(a) JSCL generic gate (b) Transactional gate

Figure 4. Gates

signal passing. Basically, WS become JTWS components that interact by exchanging
suitable signals. It is possible to divide JTWS in two conceptual levels, JSCL and JTL:
the former provides the signal handling primitives that the latter uses to define the trans-
actional ones. Hereafter, JTWS components are called gates.

Signal core layer. The signal layer JSCL abstracts the primitive mechanisms for
defining and exchanging signals among gates. A signal represents an event that occurs
on a given gate, for instance, a service may notify a successful execution by emitting
a suitable signal. Like in the event-notification pattern, “handlers” are associated to
signals. Handlers must subscribe in order to be notified and are not necessarily unique,
i.e., a signal may have several associated handlers. Unlike the event-notification pattern,
JSCL gates behave as handlers and emitters for different signals at the same time.

The class SIGNAL defines the JSCL signals that carry some internal information
(e.g., sender/receiver identifiers, synchronous/asynchronous, timestamp...) and session
data. The session data can be accessed by invoking the methods for getting/setting the
session attributes (e.g., GETPARAM, SETPARAMVALUE, ID). (For a detailed presenta-
tion of the whole session and internal data APIs, the reader is referred to [27] . Details
therein are not necessary to understand the rest of the paper.)

Conceptually, a generic JTWS gate, graphically represented in Figure 4(a), controls
its internal resources and communicates with other gates by means of I/O ports where
signals of a specified type can be received/sent. Ports are an idealisation, indeed in
JTWS they are not effectively implemented as objects, but are characterised by the signal
types. Therefore, signals having different types corresponds to signals sent on different
ports. All the types of the input (or output) ports of a gate are pairwise distinct.

Ports are connected through links that carry signals from emitters to handlers. The
links in JSCL are typed, unidirectional and unicast (namely, links connect a single emit-
ter to a single handler). More complex scenarios (e.g., multi-casting, bi-directionality)
can be obtained by opportunely connecting links. For instance, multi-casting is achieved
by connecting the same emitter to several handlers (with as many links as the handlers).
As for the ports, links are not explicitly implemented in JTWS; links are effectively rep-
resented by writing the information about the handlers in the internal data of the signal.
The emitter e can create a link toward the handler h by executing e.CREATELINK(t,h)
that also specifies the type t of the link. Afterward, e can emit signals toward h with
the EMITSIGNAL method provided by the API. If many links exist between e and h, the
type of the emitted signal is used to determine which is the actual link to be used.

Transactional Composition of Web Services 9

Transactional layer. JTL represents a specialisation of JSCL focused on describing
the transactional aspects related to the forward and backward flows across gates. This
level fixes the set of the signals that gates may exchange and their semantics. According
to Naı̈ve Sagas, JTL gates must handle four flows of execution, which are represented
by the signals FORWARD, COMMIT, ROLLBACK and EXCEPTION. All of them are
exchanged on specific ports (see Section 4 for details).

The signal FORWARD encodes the forward flow of sagas and implements the normal
execution. The remaining signals encode the backward flows. More precisely, COMMIT

corresponds to the flow of the correct termination of a saga, while ROLLBACK and
EXCEPTION detect the failures of the saga. Indeed, ROLLBACK encodes the flow of
execution that starts when a normal execution fails and EXCEPTION encodes the flow
starting when a rollback flow fails.

A transactional gate (shortly T G) can be defined by specialising the class TRANS-
ACTIONALCOMPONENT and implementing the methods ONFORWARD, ONCOMMIT,
ONROLLBACK and ONEXCEPTION that handle the corresponding signals. The mecha-
nism to emit a signal is inherited from JSCL. The classes TRANSACTIONALSEQUENCE

and TRANSACTIONALPARALLEL provide the methods for creating transactional gates
by sequential and parallel composition of T Gs. Their public interfaces remain the same
as the one of T G so that they can be inductively composed, as shown in Sections 4.1
and 4.2. Moreover, they are equipped with the method addInternalComponent that
allows to add a new gate to an existing sequential or parallel gate.

4 Sagas in JTWS

The main ingredients of the translation from Naı̈ve Sagas to JTWS are: (1) the signals
representing the states of the transactions, (2) the atomic tasks representing the atomic
actions of Naı̈ve Sagas and (3) the transactional generic gates corresponding to sagas.

The signal EXCEPTION implements the final event ’!’ while ROLLBACK and COM-
MIT are the counterpart of ’X’, the final event decorating the traces that successfully
terminate either their forward or backward flows. Furthermore, ROLLBACK is used as
the (internal) signal for starting the compensation of a saga, while COMMIT represents
the normal termination. Hereafter, we assume that signal emissions do not fail.

At the JSCL level, the method onHandleSignal is overridden so that the appro-
priate method is invoked when a signal is received. For instance, when a ROLLBACK

is emitted, the onHandleSignal of all the registered handlers are called so that the
method associated to it (i.e., onRollback) is invoked.

4.1 Gates for compensation pairs and sequential composition

Transactional gates are objects of the class TG and are the building blocks of sagas,
which are obtained by gluing together transactional gates. Basically, a transactional gate
is a generalisation of the elementary step A÷B, graphically represented in Figure 4(b).
The atomic actions A and B are implemented as objects A and B, respectively, in a class
implementing the interface AtomicTask:

10 R. Bruni et al.

public class Step extends
GenericTransactionalGate {
private AtomicTask A = null;
private AtomicTask B = null;

public comp(AtomicTask A, AtomicTask B)
{this.A = A; this.B = B }

public int onForward(Signal signal) {
try {
if (A != null) then A.execute(signal);
signal.setType(SignalType.FORWARD);
emitSignal(signal);

} catch (AtomicActionException e) {
signal.setType(SignalType.ROLLBACK);
emitSignal(signal);

}
}
public int onCommit(Signal signal) {

signal.setType(SignalType.COMMIT);
emitSignal(signal);

}

public int onRollback(Signal signal) {
try {
if (B != null) then B.execute(signal);
signal.setType(SignalType.ROLLBACK);
emitSignal(signal);

} catch (AtomicActionException e) {
signal.setType(SignalType.EXCEPTION);
emitSignal(signal);

}
}
public int onException(Signal signal) {

try {
signal.setType(SignalType.EXCEPTION);
emitSignal(signal);

} catch (Object e) {
emitSignal(signal);

}
}

}

Figure 5. The class GenericTransactionalGate

public interface AtomicTask {
public abstract Object execute (Signal signal) throws AtomicActionException;

}

where we assume that an AtomicTask object starts its execution when its execute
method is invoked on a signal and throws an exception if a failure occurs.

The function comp(A,B) records A and B into a transactional gate as illustrated in
Figure 4(b). Intuitively, A starts its execution when a FORWARD signal is received on the
in port. Commenting on Figure 5, when the onForward method is executed, the gate
tries to run A; whenever the execution of A normally terminates, the FORWARD signal
is propagated. On the contrary, if A throws an exception, a ROLLBACK is emitted. The
other methods act similarly.

If A normally terminates its execution, comp(A,B) forwards on the out port the
signal for invoking the next gates in the saga. When a COMMIT signal is received on
the cmI port, the gate comp(A,B) forwards it on the cmO port.

If an exception occurs during the execution of A, then comp(A,B) emits a ROLL-
BACK on port rbO so that the gates waiting for the result of the saga can compensate.
Differently, A signal received on port exI informs that a previously executed compensa-
tion have raises an exception. For instance, if B catches an exception, it emits on its exO
port the signal EXCEPTION. Hence, the gate that receives it will backwardly propagate
EXCEPTION to the previous gates in the saga.

Transactional gates can be sequentially composed in an easy manner as illustrated
in Figure 6(a). An arrow from a port to another represents a link for a specific type
of signals from the emitter to the handlers. Hence, all the target gates of the arrow
have been registered as handlers for that signal. For instance, in Figure 6(a), the signals
emitted from Q on its cmO are handled by P, which receives them on the cmI port. As
explained in Section 3, the ports are associated with the proper methods that should be
executed when a signal is received on them; for instance, signals received on rbI are
associated with the onRollback method that activates the compensation of the gate.

Transactional Composition of Web Services 11

(a) Sequential sagas (b) Parallel sagas

Figure 6. Composition of sagas

Given two transactional gates P and Q, seq(P,Q) yields the transactional gate having
as in, cmO, rbO and exO ports those of P, while the ports out, cmI, rbI and exI are those
of Q. The behaviour of seq(P,Q) is as follows: any FORWARD signal received from the
in port of P is sent on the out port of P if it terminates normally, otherwise a ROLLBACK

is sent on the cmO port of P. Gate Q after receiving the FORWARD (i.e., P has executed
correctly) executes as any other gate. Notice that, in case Q fails its normal execution,
the ROLLBACK is handled by P, which starts its compensation and either backwardly
propagates the ROLLBACK (if the compensation succeeds) on the port rbO of P or emits
an EXCEPTION signal on the port exO of P (if the compensation of P fails).

Signals received from Q on its cmI and exI ports are simply propagated (on the
corresponding ports) to P, which backwardly propagates them to the rest of the saga.

4.2 Gates for parallel composition and sagas

The behaviour of a parallel saga is the most complex among the coordination constructs
of Naı̈ve Sagas. The function par yields the transactional gate obtained by composing
in parallel a (finite) number of transactional gates. For simplicity, we illustrate par in
the case of the parallel composition of two gates P and Q, as illustrated in Figure 6(b)
(for simplicity we connect some ports by using reference symbols £, @ and * instead
of drawing a line). The case where more than two gates are composed in parallel is
analogous and equivalent to compose P | Q with R.

Function par uses two auxiliary gates: the Trigger and the Collector. These
gates are transparent to the users. Note that the Trigger and the Collector are not
transactional gates themselves. On the invocation signal, the Trigger simply triggers
all the gates of the parallel saga. The Collector manages the result of the parallel saga
and interfaces the intermediate results of P and Q with the transactional gates outside the
saga. As shown in Figure 6(b), Collector has the ports for receiving/sending signals
to P and Q and those for external gates cmI, cmO, rbI, rbO, etc.

The parallel saga is activated when Trigger sends the FORWARD received from its
in port to its out port. According to our assumption, P and Q start their executions. At
this point several cases are possible depending on the results from P, Q and the signals

12 R. Bruni et al.

from the gates external to the parallel saga. In order to forward the invocation signal, the
Collector waits for the invoke signals from P and Q. When those signals are received,
Collector waits for the rest of the saga to communicate the result.

1. If a COMMIT is received on port cmI, then it is forwarded on cmO’ to P and Q
which forward it on their cmO ports to Collector. Once all the commit signals are
collected, a COMMIT is emitted on the port cmO of Collector.

2. If a ROLLBACK is received on port rbI, then it is forwarded on rbO’ to P and Q
which activate their compensations. At this point, either P and Q signal a ROLL-
BACK on their rbO ports or one of them emits a exception on exO. In the former
case, analogously to the previous case, the rollback is propagated on the rbO port of
Collector. If one of P or Q (or both of them) emits an exception, then Collector
propagates an exception signal on exO instead of a rollback one on cmO.

3. If an EXCEPTION is received on port exI, then it is forwarded on rbO’ to P and
Q (which activate their compensations). At this point, the signals from P and Q are
ignored and Collector emits an exception signal on exO.

Either P or Q might fail their normal execution and emits a ROLLBACK signal. Con-
sider that P emits a ROLLBACK signal. In this case, the simplest scenario is when also
Q emits a ROLLBACK: Collector will simply emit a ROLLBACK of its rbO port. If
Q sends an FORWARD signal, as soon as Collector receives it replies with a ROLL-
BACK for Q. Afterward, if Q sends the second ROLLBACK, Collector proceeds as in
the previous case; on the contrary, Q might reply with an EXCEPTION signal. In this
case, Collector signals an exception on its exO port.

By closure(P), any saga can be seen as a method invocation. This is obtained by
simply connecting the out port of the gate P with its cmI port. The saga is invoked by
sending a signal on the in port of P. The control is returned when P emits a signal either
on port cmO or on rbO. An exception is raised if P emits a signal on port exO.

Finally, we summarise the mapping from Naı̈ve Sagas to JTWS as follows:

[[A÷B]] = comp(A,B) [[P;Q]] = seq([[P]], [[Q]])
[[P|Q]] = par([[P]], [[Q]]) [[[P]]] = closure([[P]])

5 A Case Study

In this section, we exemplify the use of JTWS to accomplish the task of providing trans-
actional behaviour to WS composition. Our case study scenario will focus on the de-
velopment of an application combining two overlay networks, namely the Internet and
a telecommunication network. The application provides a SMS Taxi Booking facil-
ity. The basic idea of the application is that registered customers can book a taxi by
sending a SMS text message to the Taxi call-centre. The customer gets a SMS reply
back from the taxi company confirming the booking along with the estimated arrival
time, place, fare and vehicle details. Moreover, the full amount of the fare at the end
of the journey will be payed on-line by exploiting the registered information about cus-
tomer credit card. This application has been designed, deployed, and executed within
a framework that integrates WS, a rich set of telecommunication services (including

Transactional Composition of Web Services 13

Figure 7. SMS Taxi Booking Service

call/session control, messaging features, presence and location features) and WS for
telecommunications (Parlay X WS) [27]. Our aim is to show the adequacy of JTWS (and
the underlying process calculus Naı̈ve Sagas) for designing LRTs. Indeed, our case
study offers a test-bed for the programming features of JTWS.

Figure 7 illustrates the overall structure of the application. The SMS Taxi Booking
service is structured into three stages. The first stage treats the taxi booking activities.
The second stage manages the communications for the confirmation of the booking.
Finally, the last stage handles the taxi payment service. We focus on the implementation
of the first and third stages, which involve non-trivial transactional facets. The saga
implementing the first stage is just the sequential composition of several services:

[ReceivedSMS÷SendSMSErr; UserProfile; LocateUser; SearchTC; MakeCall]

The ReceiveSMS service is the access gateway of the application and it is activated
upon receipt of the SMS message. Its main activity consists in generating the activation
signal for all the other services, which check whether the customer is authorised to
access the service (UserProfile), determine the location of the user (LocateUser),
select the Taxi Company (SearchTC) and finally set up a call between the taxi company
and the customer (MakeCall). Note that the ReceiveSMS compensation (sendSMSErr)
is indeed the only compensation of the whole sequence: it will be executed in case of
the failure of the booking (an appropriate error message will be sent to the user). The
compensations of the other services are all empty, indeed none of them modifies the
local state and their failures just activate the emission of the ROLLBACK signal.

The saga in Figure 8 describes the more interesting implementation of the third stage
of the application. Intuitively, after having retrieved the reservation data, the services
for the payment of the fare are activated. This is done by the parallel execution of
two activities: one performs the money transfer to the taxi company account (Bank),
the other charges the fare on the customer credit card (CrediCard). In both cases, the
compensations of failures restore the data on the corresponding account.

Our experimentation has shown that Naı̈ve Sagas and JTWS provide a natural setting
to design and deploy transactional business processes at a high level of abstraction.
Indeed, the coordination details are hidden inside the JSCL implementation.

14 R. Bruni et al.

seq (
comp (UserProfile, null),
comp (RetrieveReservation, LogFailure),
par (
comp (Bank, RestoreAmount),
comp (CreditCardMgr, RestoreAmount)

),
comp(SendSMS, null)

)

Figure 8. Stage3: The On-line Payment

6 Concluding Remarks

Starting from a formal specification of parallel sagas we have presented JTWS, a Java
API that provides the basic primitives for composing WS in (compensable, parallel)
LRTs. The implementation is conceptually separated in two layers: JSCL and JTL. The
former is a general framework for building networks of gates connected by typed sig-
nals. The latter is a specialised variant of JSCL where gates come equipped with few
carefully selected signals that are tailored to the treatment of WS transactions. The
underlying JSCL layer makes the implementation fully distributed. The overall con-
tribution is a setting for designing business process transactions where three level are
reconciled: (1) a visual/graphical representation of parallel sagas, (2) a process calcu-
lus description in bijective correspondence with sagas diagrams, and (3) an executable,
distributed translation of symbolic processes.

One interesting result of our experimentation is that level 2 is crucial for linking
business analyst designs (level 1) to their actual implementations (level 3). Indeed, as
already observed in [7], the process calculus formalisation forces us to deal with design
choices that are not so evident at level 1 (e.g. centralised vs. distributed interrupt and
compensation). Furthermore, level 3 can test and ensure that the design choices made
at level 2 are really implementable / feasible.

As future work, we intend to exploit the flexibility of JSCL to implement and exper-
iment with the alternative design choices identified in [7], including advanced features
like nesting, speculative choice and alternative activities to provide a full-fledged trans-
actional framework.

References

1. B. Anderson and D. Shasha. Persistent linda: Linda + transactions + query processing. Re-
search Directions in High-Level Parallel Programming Languages, vol. 574 of Lect. Notes
in Comput. Sci., pp. 93–109. Springer, 1992.

2. BizTalk Server Web site. http://www.microsoft.com/biztalkserver.
3. L. Bocchi, C. Laneve, and G. Zavattaro. A calculus for long-running transactions. Proc. of

FMOODS’03, vol. 2884 of Lect. Notes in Comput. Sci., pp. 124–138. Springer, 2003.
4. BPEL Specification (v.1.1). http://www.ibm.com/developerworks/library/ws-bpel.
5. BPEL and BTP issues list. http://www.choreology.com/external.
6. Business Process Modeling Language. http://www.bpmi.org/BPML.htm.

Transactional Composition of Web Services 15

7. R. Bruni, M. Butler, C. Ferreira, T. Hoare, H. Melgratti, and U. Montanari. Comparing two
approaches to compensable flow composition. To appear in Proc. of CONCUR 2005.

8. R. Bruni, H. Melgratti, and U. Montanari. Nested commits for mobile calculi: extending
Join. Proc. of IFIP-TCS 2004, pp. 569–582. Kluwer, 2004.

9. R. Bruni, H. Melgratti, and U. Montanari. Theoretical foundations for compensations in flow
composition languages. Proc. of POPL 2005, pp. 209–220. ACM Press, 2005.

10. R. Bruni and U. Montanari. Concurrent models for Linda with Transactions. Mathematical
Structure in Computer Science, 14(3):421–468, Cambridge University Press, 2004.

11. N. Busi and G. Zavattaro. On the serializability of transactions in javaspaces. Elect. Notes
in Th. Comput. Sci., vol. 54. Elsevier, 2001.

12. M. Butler, M. Chessell, C. Ferreira, C. Griffin, P. Henderson, and D. Vines. Extending the
concept of transaction compensation. IBM Systems Journal, 41(4):743–758, 2002.

13. M. Butler and C. Ferreira. An operational semantics for StAC, a language for modelling
long-running business transactions. Proc. of Coordination 2004, vol. 2949 of Lect. Notes in
Comput. Sci., pp. 87–104. Springer, 2004.

14. M. Butler, T. Hoare, and C. Ferreira. A trace semantics for long-running transactions. Proc.
of 25 Years of CSP, vol. 3525 of Lect. Notes in Comput. Sci., pp. 133–150. Springer, 2005.

15. T. Chothia and D. Duggan. An architecture for secure fault-tolerant global applications.
Theor. Comput. Sci., 322(3):567–613, 2004.

16. V. Danos and J. Krivine. Reversible communicating systems. Proc. of CONCUR 2004, vol.
3170 of Lect. Notes in Comput. Sci., pp. 293–307. Springer, 2005.

17. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

18. A. Hosking, S. Jagannathan, J. Vitek, and A. Welc. A semantic framework for designer
transactions. Proc. of ESOP 2004, vol. 2986 of Lect. Notes in Comput. Sci., pp. 249–263.
Springer, 2004.

19. I. Houston, M. Little, I. Robinson, S. Shrivastava, and S. Wheater. The corba activity service
framework for supporting extended transactions. Softw. Pract. Exper., 33(4):351–373, 2003.

20. S. Jagannathan and J. Vitek. Optimistic concurrency semantics for transactions in coordi-
nation languages. Proc. of Coordination 2004, vol. 2949 of Lect. Notes in Comp. Sci., pp.
183–198. Springer, 2004.

21. Java Transactional Web Services. http://www.di.unipi.it/˜etuosto/jtws.html.
22. C. Laneve and G. Zavattaro. Foundations of web transactions. Proc. of FoSSaCS 2005, vol.

3441 of Lect. Notes in Comp. Sci., pp. 282–298. Springer, 2005.
23. F. Leymann. Web Services Flow Language (v.1.0). http://www-306.ibm.com/software/

solutions/webservices/pdf/WSFL.pdf.
24. M. Mazzara and S. Govoni. A case study of web services orchestration. Proc. of Coordina-

tion 2005, vol. 3454 of Lect. Notes in Comput. Sci., pp. 1–16. Springer, 2005.
25. M. Mazzara and R. Lucchi. A framework for generic error handling in business processes.

Proc. of WS-FM 2004, Elect. Notes in Th. Comput. Sci., vol. 105, pp. 133–145. Elsevier,
2004.

26. Oracle BPEL Process Manager. http://www.oracle.com/technology/bpel.
27. D. Strollo. Composizionalità di transazioni e Web Services nell’ambito della telefonia mo-

bile. Master’s thesis, Dipartimento di Informatica, Pisa, 2005. In Italian.
28. WebSphere. http://www-306.ibm.com/software/info1/websphere/index.jsp.
29. Web Services Choreography Description Language (v.1.0). http://www.w3.org/TR/

ws-cdl-10.
30. Web Services Conversation Language (v.1.0). http://www.w3.org/TR/wscl10/.
31. Web Services for Business Process Design (XLANG). http://www.gotdotnet.com/

team/xml_wsspecs/xlang-c/default.htm.

