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Abstract. Cook and Misra’sOrc is an elegant language for orchestrating dis-
tributed services, able to cover e.g. van der Aalst’s workflow patterns. We aim to
understand the key novel features ofOrc by comparing it with variations of Petri
nets. The comparison shows thatOrc hides powerful mechanisms for name han-
dling (creation and passing) and for atomic distributed termination. Petri nets with
static topology can encodeOrc under severe restrictions while the full language
(up to a more realistic cancellation strategy) can be encoded inJoin (that can be
seen as a higher-order extension of Petri nets). As an overall result, we promote
Join calculus as an elegant language embedding orchestration and computation.


1 Introduction


Service Oriented Computing and its most successful current realisation based on Web
Services are challenging science and technology in laying foundations, techniques and
engineered development for supporting just-in-time assembly of complex business pro-
cesses according to the publish-find-bind paradigm. Main issues are concerned with,
e.g., security, behavioural description of services with the integration of functional and
non-functional requirements, trade-off between network awareness and network trans-
parency, dynamic binding and reconfiguration, model-driven development.


A common theme to all these aspects is service composition. The difference w.r.t.
classic program or process composition here is that beside answering the question on
“how to compose services”, one has to provide languages and logic for “describing
composite services” and “use composition as a specification requirement for querying
service repositories”. Descriptions should be accurate enough to guarantee that dynam-
ically found and bound composite services behave well.


The termsorchestrationandchoreographywere coined to describe two different fla-
vors of service compositions: orchestration is about describing and executing a single
view point model, while choreography is about specifying and guiding a global model.
Though the difference between the two terms can be sometimes abused or blurred, sub-
stantially orchestration has a more centralised flavor, as opposed to the more distributed
vision of choreography. The typical example is that of a ballet: the choreographer fixes
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the overall scheme for the movements of all dancers, but then each dancer orchestrates
her/his own movements. Roughly, from a formal modelling viewpoint, orchestration is
mainly concerned with the regulation of control and data flow between services, while
choreography is concerned with interaction protocols between single and composite
services. In this paper we focus on orchestration, but with an eye left to choreography.


Cook and Misra’sOrc [20,19] is a basic programming model for structured orches-
tration of services, whose primitives meet simplicity with yet great generality. The basic
computational entities orchestrated byOrc expressions aresites: upon invocation, a site
can publish at most one response value. A site call can be an RMI, a call to a monitor
procedure, to a function or to a web service. A site computation might itself start other
orchestrations, store effects locally and make (or not) such effects visible to clients.


Orc has three composition principles. The first one is the ordinary parallel composi-
tion f |g (e.g., the parallel composition of two site calls can produce zero, one or many
values). The other two, sequencing and asymmetric parallel composition, take inspira-
tion from universal and existential quantification, respectively. In the sequential expres-
sion f > x > g, a fresh copyg[v/x] of g is executed foranyvaluev returned byf , i.e., a
sort of pipeline is established betweenf andg. The evaluation of the asymmetric paral-
lel expressionf wherex :∈ g is lazy: f andg start in parallel, but all sub-expressions of
f that depend on the value ofx must wait forg to publishonevalue. Wheng produces
a value it is assigned tox and that side of the orchestration is cancelled.


As a workflow language,Orc can encode all most common workflow patterns [11].
Contrary to many other process algebras,Orc neatly separates orchestration from com-
putation:Orc expressions should be considered as scripts to be invoked, e.g., within
imperative programming languages using assignments such asz :∈ e, wherez is a vari-
able and theOrc expressionecan involve wide-area computation over multiple servers.
The assignment symbol :∈ (due to Hoare) makes it explicit thate can return zero or
more results, one of which is assigned toz.


This papers tries to characterise the distinguishing features ofOrc by carrying a
comparison with two other main paradigms, namely Petri nets andJoin calculus as
suitable representatives of workflow and messaging models, respectively. (The basics
of Orc, Petri nets andJoin are recalled in § 2.) Petri nets are a foundational model of
concurrency, hence their choice as a reference model for carrying the comparison is
well justified. The choice ofJoin instead of, e.g., the maybe more popular pi-calculus,
might appear less obvious, so it is worth giving some explanation.


First, the multiple input prefix ofJoin looks more suitable than the single pre-
fix of pi-calculus to smoothly model many orchestration patterns. For example, con-
sider the process that must wait for messages on bothx andy or in either one of the
two. This is coded inJoin as x〈u〉|tok〈〉 . P1 ∧ y〈v〉|tok〈〉 . P2 ∧ x〈u〉|y〈v〉|tok〈〉 . P3


and by assuring there is a unique messagetok〈〉, whereas the pi-calculus expression
x(u).P1 +y(v).P2 +x(u).y(v).P3 used, e.g., in [23] is a less faithful encoding, because:
(i) in the third sub-expression multiple inputs must be arbitrarily sequentialised and
(ii) the third alternative can be selected even if a message arrives onx but none ar-
rives ony, causing a deadlock. Of course one can still use the more precise translation
x(u).(P1 + y(v).P3)+ y(v).(x(u).P3 +P2) but it is immediately seen that combinatorial
explosion would make the encoding unreadable when larger groups of actions and more
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complex patterns are considered. Second,Join adheres to a locality principle ensuring
that extruded names cannot be used in input by the process that received them (they
can only output values on such ports). This feature is crucial for deploying distributed
implementations [10,7] and it is not enforced in the full pi-calculus. Third, but not last,
in [9], Join has been envisaged as some kind of higher-order version of Petri nets mak-
ing it easier to reconcile all views analysed here.


Our contribution shows that:


– In absence of mobility, P/T nets can encodeOrc expressions when mono-sessions
are considered.


– Serialised multi-sessions require reset nets [6,12] (as shown in § 3).
– TheJoin calculus encodesOrc primitives in a rather natural way (as shown in § 4,


the only verbosity is due to the encoding of variables, which is also very simple).


The last item shows thatOrc primitives can be seen as syntactic sugar forJoin
processes. Therefore, as an overall result, we would like to promoteJoin as an elegant
language integrating workflow orchestration, messaging, and computation (see § 5).


2 Background


2.1 Orc


This section briefly recapsOrc, borrowing definitions from [20] (apart from minor syn-
tactical differences).Orc relies on the notion of asite, an abstraction amenable for
being invoked and for publishing values. Each site invocation tos elicits at most one
value published bys. Sites can be composed (by means of sequential and symmet-
ric/asymmetric parallel composition) to form expressions. The difference between sites
and expressions is that the latter can publish more than one value for each evaluation.


The syntax ofOrc is given by the following grammar


D ::= E(x1, . . . ,xn) ∆ f


e, f ,g ::= 0
∣∣ M〈p1, . . . , pn〉


∣∣ E〈p1, . . . , pn〉
∣∣ f > x > g


∣∣ f |g
∣∣ f wherex :∈ g


wherex1, . . . ,xn are variables,M stands for site names andE for expression names. We
consider a set of constantsC ranged over byc and the special sitelet(x1, . . . ,xn) that
publishes the tuple〈c1, . . . ,cn〉. A value is either a variable, a site name or a constant
(values are ranged over byp1, p2, . . .).


The expressionsg where x :∈ f and f > x > g bind the occurrences ofx in g (in
g wherex :∈ f , the expressiong is said to be in the scope ofx :∈ f ). The occurrences of
variables not bound are free and the set of free variables of an expressionf is denoted by
fn( f ). In the following, all definitionsE(x1, . . . ,xn) ∆ f are well-formed, i.e.,f n( f ) ⊆
{x1, . . . ,xn} andx1, . . . ,xn are pairwise distinct. We write~x for x1, . . . ,xn and f [c/x] for
the expression obtained by replacing the free occurrences ofx in f with c.


The operational semantics ofOrc is formalised in Figure 1 as a labelled transition
system with four kinds of labels: (1) a site call eventM(~c,k), representing a call to site
M with arguments~c waiting for response on the dedicated handlerk; (2) a response
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let(c) !c−→ 0
(LET)


k globally fresh


M〈~c〉 M(~c,k)−→ ?k
(SITECALL )


?k
k?c−→ let(c)


(SITERET)
E(~x) ∆ f


E〈~p〉 τ−→ f [~p/~x]
(DEF)


f
!c−→ f ′


f > x > g
τ−→ ( f ′ > x > g) |g[c/x]


(SEQPIPE)
f


l−→ f ′ l 6=!c


f > x > g
l−→ f ′ > x > g


(SEQ)


g
l−→ g′


g| f
l−→ g′ | f


(SYM L)
f


l−→ f ′


g| f
l−→ g| f ′


(SYM R)
g


l−→ g′


g wherex :∈ f
l−→ g′ wherex :∈ f


(ASYML)


f
l−→ f ′ l 6=!c


g wherex :∈ f
l−→ g wherex :∈ f ′


(ASYMR)
f


!c−→ f ′


g wherex :∈ f
τ−→ g[c/x]


(ASYMPRUNE)


Fig. 1.Operational semantics ofOrc.


eventk?c, sending the responsec to the call handlerk (there is at most one such event
for eachk); (3) a publish event !c; (4) an internal eventτ.


A declarationD specifies an expression nameE, the formal parametersx1, . . . ,xn


and the bodyf , like for usual function or procedure declarations. The bodyf of an
expression declaration can be the expression 0 (i.e., a site which never publishes any
value), the invocation of a siteM〈p1, . . . , pn〉, or an expression callE〈p1, . . . , pn〉. Calls
to sites are strict (actual parameters are evaluated before the call) while expression calls
are non-strict. Expressionsf andg can be sequentially composed withf > x> g which
first evaluatesf and then, for each valuev published byf , evaluates a new copy of
g wherex is replaced withv (if f never publishes any value, no freshg will ever be
evaluated). Expressions can be composed with the symmetric and asymmetric parallel
operators. The former is writtenf |g; it evaluatesf andg in parallel and publishes the
values thatf andg publish (we remark that there is no interaction betweenf andg and
that usual monoidal laws for| with 0 as neutral element hold). The latter, calledwhere-
expression, is writteng where x :∈ f . The evaluation ofg where x :∈ f proceeds by
evaluatingf andg in parallel. Expressionf is meant to publish a value to be assigned
to x and all the parts ofg depending onx must wait until such a value is available.
Evaluation off stops as soon as any value, sayv, is published. Then,v is assigned tox
so that all the parts ing depending ofx can execute, but the residual off is cancelled.


Example 2.1.We borrow from [20] some of interesting examples ofOrc declarations.


– Assume thatCNN andBBC are two sites that return recent news when invoked
while siteEmail(a,m) sends an email containing messagem to the addressa. (No-
tice that an invocation toEmail changes the receiver’s mailbox).


– DeclarationNotify(a) ∆ (CNN|BBC) > x > Email(x,a) specifies a service for no-
tifying last news fromCNN and BBC. By rule SEQPIPE, the news from bothCNN
andBBCare notified in two different emails.


– Another interesting example isMailOnce(a) ∆ Email(x,a) wherex :∈ (CNN|BBC)
specifying serviceMailOnce(a) that notifies addressa with only one of the news
selected either fromCNN or fromBBC.
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An Orc program represents an orchestratorO executed in a host sequential program;
O is a pair〈D,z :∈ E(~p)〉 whereD is a set of definitions,z a variable of the host pro-
gram,E〈~c〉 is anOrc expression call where(i) E is an expression name defined inD


and(ii) ~c are the actual parameters. The notationz :∈ E〈~c〉 specifies that even ifE〈~c〉
might publish any number of values,z will be bound to just one of them. The types of
values published byE〈~c〉 are left unspecified, however it is assumed that they can be
dealt with in the hosting program (see § 2.2 of [20]).


2.2 Petri Nets


Petri nets, introduced in [21], have become a reference model for studying concurrent
systems, mainly due to their simplicity and the intrinsic concurrent nature of their be-
haviour. They rely on solid theoretical basis that allows for the formalisation of causal-
ity, concurrency, and non-determinism (in terms of non-sequential processes or unfold-
ing constructions). Petri nets are built up fromplaces(denoting resources types), which
are repositories oftokens(representing instances of resources), andtransitions, which
fetch and produce tokens. We assume an infinite setP of resource names is fixed.


Definition 2.1 (Net).A netN is a 4-tuple N= (SN,TN,δ0N,δ1N) where SN ⊆ P is the
(nonempty) set of places,a,a′, . . ., TN is the set of transitions,t,t′, . . . (with SN∩TN =
/0), and the functionsδ0N,δ1N : TN →℘f(SN) assign finite sets of places, called respec-
tively source and target, to each transition.


Place / Transition nets(P/T nets) are the most widespread model of nets. The places
of a P/T net can hold zero, one or more tokens and arcs are weighted. Hence, the state
of the P/T net is described in terms ofmarkings, i.e., multisets of tokens available in the
places of the net. Given a setS, a multisetoverS is a functionm : S→ N (whereN is
the set of natural numbers). The set of all finite multisets overS is denoted byMS and
the empty multiset by/0.


Definition 2.2 (P/T net). A marked place / transition Petri net(P/T net) is a tuple N=
(SN,TN,δ0N,δ1N,m0N) where SN ⊆ P is a set of places, TN is a set of transitions, the
functionsδ0N,δ1N : TN →MSN assign respectively, source and target to each transition,
and m0N ∈MSN is the initial marking.


Given a transitiont ∈ T, •t = δ0(t) is its presetandt• = δ1(t) is its postset. Let
N be a net andu a marking ofN; then a transitiont ∈ TN is enabled at uiff •t(a) ≤
u(a),∀a ∈ SN. We say a markingu evolves tou′ under thefiring of the transitiont
written u[t〉u′, iff t is enabled atu andu′(a) = u(a)− •t(a)+t•(a),∀a ∈ S. A firing
sequencefrom u0 to un is a sequence of markings and firings s.t.u0[t1〉u1 . . .un1[tn〉un.


Reset nets[6] extend P/T nets with specialreset arcs. A reset arc associating a
transitiont with a placea causes the placea to reset whent is fired.


Definition 2.3 (Reset net).A reset netis a tuple N= (SN,TN,δ0N,δ1N,m0N,RN), where
(SN,TN,δ0N,δ1N,m0N) is a P/T net and RN : TN →℘f(SN) defines reset arcs.


The condition for the enabling of a reset transition is the same as for ordinary P/T
nets, while their firings are defined as follows:u evolves tou′ under thefiring of the
reset transitiont, written u[t)u′, if and only if t is enabled atu and∀a ∈ SN : u′(a) =
u(a)− •t(a)+t•(a) if a 6∈ RN(t), andu′(a) = 0 otherwise.
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(OPEN) A,B ::= 0 | x〈~y〉 | defS D in A | A|B D,E ::= J.P | D∧E (DEF)


(PROC) P,Q ::= 0 | x〈~y〉 | def D in P | P|Q J,K ::= x〈~y〉 | J|K (PAT)


(a) Syntax


rn(x〈~y〉) = {~y} dn(x〈~y〉) = {x}
rn(J|K) = rn(J)] rn(K) dn(J|K) = dn(J)]dn(K)


fn(J.P) = dn(J)∪ (fn(P)\rn(J)) dn(J.P) = dn(J)
fn(D∧E) = fn(D)∪ fn(E) dn(D∧E) = dn(D)∪dn(E)


fn(0) = /0 xn(0) = /0
fn(x〈~y〉) = {x}∪{~y} xn(x〈~y〉) = /0


fn(defS D in A) = (fn(D)∪ fn(P))\dn(D) xn(defS D in A) = S]xn(A)
fn(A|B) = (fn(A)\xn(B))∪ (fn(B)\xn(A)) xn(A|B) = xn(A)]xn(B)


(b) Free, Defined, Bound and Received names


(STR-NULL ) S 0 � S
(STR-JOIN) S P | Q � S P,Q
(STR-AND) D ∧ E S � D,E S
(STR-DEF) S defS′ D in P � Dσ S]S′ Pσ σ a globally fresh renaming ofdn(D)\S′


(RED) J.P S Jσ τ−→ J.P S Pσ


(EXT) S x〈~u〉 S′x〈~u〉−→ S]S′ x is free, andS′ are the local names in~u not in S


(INT) {x}]S
x〈~u〉−→ {x}]S x〈~u〉 ~u contains free, extruded and fresh names


(c) Semantics


Fig. 2. Open-join Calculus.


2.3 Join Calculus


This section summarises the basics of theOpen-join [15], a conservative extension of
Join [14] equipped with the notion of weak bisimulation used in § 4. We rely on an
infinite set of namesx,y,u,v, . . . each carrying fixed length tuple of names (denoted as
~u). A sorting discipline that avoids arity mismatch is implicitly assumed and only well-
sorted terms are considered. Open processesA, processesP, definitionsD and patternsJ
are defined in Figure 2(a). AJoin process is either the inert process 0, the asynchronous
emissionx〈~y〉 of message on portx that carries a tuple of names~y, the processdef D in P
equipped with local ports defined byD, or a parallel composition of processesP|Q. An
open processA is like aJoin process, except that it has open definitions at top-level. The
open definitiondefS D in P exhibits a subsetSof names defined byD that are visible
from the environment: theextruded names. Open processes are identified with ordinary
Join processes when the setSof extruded names is empty. Adefinitionis a conjunction
of elementary reactionsJ.P that associatejoin-patterns Jwith guarded processes P.


The sets of defined namesdn, received namesrn, free namesfn and extruded names
xnare shown in Figure 2(b) (] denotes the disjoint union of sets). Note that the extruded
names of two parallel processes are required to be disjoint because they are introduced
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by different definitions. Similarly, the extruded namesSof defS D in A are disjoint from
the extruded names ofA. As usual, patterns are required to be disjoint.


The semantics of theOpen-join calculus relies on theopen reflexive chemical ab-
stract machinemodel (OpenRCHAM) [15]. A solution of an OpenRCHAM is a triple
(R,S,A), written R S A, whereA is a multiset of open processes with disjoint sets
of extruded names,R is a multiset of active definitions s.t.dn(R)∩ xn(A) = /0, and
S ⊆ dn(R) is a set of extruded names (fn, dn andxn lift to multisets in the obvious
way). Moves are distinguished betweenstructural� (or heating/cooling), which stand
for the syntactical rearrangement of terms, and reductions→, which are the basic com-
putational steps. The multiset rewriting rules forOpen-join are shown in Figure 2(c).
Rule STR-NULL states that 0 can be added or removed from any solution. RulesSTR-
JOIN andSTR-AND stand for the associativity and commutativity of| and∧, because
, is such.STR-DEF denotes the activation of a local definition, which implements a


static scoping discipline by properly renaming defined ports byglobally freshnames.
Reduction rules are labelled either by (i) internal reductionτ, (ii) output messages


Sx〈~u〉 on the free portx that extrude the setSof local names, or (iii)x〈~u〉 denoting the
intrusion of a message on the already extruded local namex. Rule RED describes the
use of an active reaction rule (J.P) to consume messages forming an instance ofJ (for
a suitable substitutionσ, with dom(σ) = rn(J)), and to produce a new instancePσ of its
guarded processP. Rule (EXT) consumes messages sent on free names; these messages
may extrude some namesS′ for the first time, thus increasing the set of extruded names.
Rule (INT) stands for the intrusion of a message on a defined-extruded name. We remark
that rules are local and describe only the portion of the solution that actually reacts.
Hence, any rule can be applied in a larger context.


3 Orc vs Petri Nets


In this section we sketch an intuitive explanation ofOrc basic orchestration primitives
in terms of Petri nets. At first glance, the composition patterns available inOrc can seem
easily representable using (workflow) Petri nets. Assume that eachOrc expressionf is
represented by a suitable netNf with two distinguished placesin f (for getting tokens in
input that activate the net) andoutf for publishing tokens. A pipeline between the nets
Nf andNg can be obtained by adding just one transition fromoutf to ing. Similarly, the
parallel composition ofNf andNg can be obtained by adding placesin f |g andoutf |g
with three transitions: (i) fromin f |g to in f and ing, (ii) from outf to outf |g, and (iii)
from outg to outf |g. Finally asymmetric parallel composition can be obtained by adding
a placewhf ,g with just one token in it and no incoming arc, together with a transition
from outf andwhf ,g to ing (so that such transition can be fired at most once).


However it is easy to realise that the modelling is not as simple as above. Take Ex-
ample 2.1, where two instances ofEmail( ,a) can concurrently run whenNotify(a) is
invoked. If site invocation is modelled by passing the control-flow token to the net rep-
resentingEmail, then the tokens of two different sessions can be mixed! Apart from the
cumbersome solution of representing sessions identifiers within tokens, there are two
possible solutions to the multi-session problem (i.e., the possibility of re-using parts of
the net when for different invocations). The first is to replicate the net corresponding to
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Fig. 3.Net for the invocation of a siteM


the body of an expression for each invocation, while the second is using dynamic nets,
where fresh ports of the net can be released during the execution. The first alternative is
considered here, while § 4 provides an encoding ofOrc in Join, as a linguistic counter-
part of dynamic nets [9]. Another problem is that expressions can carry arguments, so
that more than one input place can be needed (e.g., one for each variable).


In this section we shall focus onOrc−, a simplified fragment ofOrc, where recur-
sion is avoided and values are not considered. Avoiding recursion is necessary in order
to have finite nets, indeed each invocation will result in a new instance of the body of
the defined expression. Petri nets can encodeOrc− expressions in absence of mobility
and when each expression is evaluated at most once (i.e., when mono-session are con-
sidered). Multi-sessions require reset arcs and can only be dealt with by serialising the
accesses to the re-used part of the net. We prefer to keep the presentation of the Petri
net semantics at an informal level. A more technical presentation is postponed to § 4,
where the concurrent multi-session problem is tackled by establishing a strong formal
correspondence between observational semantics ofOrc and its encoding inJoin.


Since recursion is banned fromOrc− programs, invocations to site (resp. expres-
sions) can be enumerated and we writeM j〈x1, . . . ,xn〉 (resp.E j〈x1, . . . ,xn〉) to denote
the j-th invocation to siteM (resp. expressionE). The main difference w.r.t.Orc, is that
Orc− uses names (i.e., variables) only for passing signals. For instance, the sequential
operator ofOrc− is simplified asf >> g. This implies that variables are only required
for site invocations and asymmetric parallel composition, saywherez :∈ g. In the for-
mer case, variables are used to render the strict policy of site invocation in the Petri net
encoding. In the latter case,zwill be used as the output place for the net representingg.


Let 〈D,z :∈ E(~p)〉 be anOrc− program. The encoding of anOrc− expressionf into
Petri nets is denoted as[[ f ]]fi,foD wherefi andfo are distinguished places (entry and
exit points of f ). The idea is that fi is the place for the activation off and fo is the
place for returning the control. Data dependencies/flows due to asymmetric parallelism
are rendered by places associated with variable names, which may coincide with output
places of other parts of the net (to store results).


We first consider the translation[[ M j〈x1, . . . ,xn〉 ]]Minvocj,MresjD of the j-th invocation
to siteM (see Figure 3). The placesM andMlock are shared by all the invocations and
Mlock is meant as a lock mechanism for serialising multiple concurrent invocations to
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Fig. 4.A schema of net for[[ f wherez :∈ g ]]i,oD .


M. Indeed,Mcallj is enabled only ifMlock contains a token as it initially does. The
invocation takes place whenMinvocj and all placesx1, . . . ,xn contain a token (i.e., the
actual parameters have been evaluated). Moreover, bothMretj andMvoidj put a token
into Mlock once they are fired so that the next invocation can proceed. Remarkably,
Mretj andMvoidj are mutually exclusive:Mretj models the case in whichM returns
a value, whileMvoidj the case in which no value is returned to the invoker.


If E〈z1, . . . ,zn〉 ∆ f ∈D, the j-th invocation ofE, sayE j〈x1, . . . ,xn〉, is translated as
[[ E j〈x1, . . . ,xn〉 ]]i,oD = [[ f [x1/z1, . . . ,xn/zn] ]]


i,o
D . For the remaining constructs ofOrc−,


the simplest case is[[ 0 ]]i,oD which is the net with a single transition whose preset is
the placei and whose postset is empty. For the sequential operator,[[ f >> g ]]i,oD =
[[ f ]]i,o


′


D ∪ [[ g ]]o
′,o


D whereo′ is a fresh place and where given two netsN1 andN2, we
write N1∪N2 for the net whose set of places (resp. transitions) is the union of the places
(resp. transitions) ofN1 andN2 and, for each transitiont in N1 andN2, the preset (resp.
postset) oft is the union of the presets (resp. postset) oft in N1 andN2. For the parallel
operator, given two fresh placesi1 andi2, [[ f |g ]]i,oD = [[ f ]]i1,oD ∪ [[ g ]]i2,oD ∪N whereN
is the net made by a single transition with preseti and postset{i1,i2}.


Where-expressions, sayf where z :∈ g, require some subtlety, because their evalu-
ation requires thatg terminates when a value forz is available. In our encoding, this is
modelled by resetting all the places ofg.


[[ f wherez :∈ g ]]i,oD = [[ f ]]i1,oD ∪ [[ g ]]i2,zD ∪R (1)


wherei1,i2 are two new places andR is a net for connecting[[ f ]]i1,oD and[[ g ]]i2,zD and
for resetting the places of[[ g ]]i2,zD . More precisely,Rcontains


1. the placei together with two fresh placess andr and a token ins;
2. a fresh transitiont such that•t = {i,s} andt• = {i1,i2,r};
3. a fresh transitiontz such that•tz = {z,r} andtz• includess and the set of all the


places in[[ f ]]i1,oD corresponding to the occurrences ofz in f , moreover, for each
placep in [[ g ]]i2,zD (includingi2 andz), there is a reset arc fromp to tz.


A pictorial representation of[[ f wherez :∈ g ]]i,oD is given in Figure 4 where the bold
boxes represent the nets forf andg; the double arrow is the set of arcs described in 3
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and the crossed double arrow is the set or reset arcs described in 3. Placess andr
serialise the activation off andg. When a token is available onz, thentz can be fired:
it distributes the token to all the occurrences ofz in f , resetsg and enables further
activation of the net by restoring the token ins.


Reset arcs are not needed if just mono-sessions are considered. As an alternative to
reset arcs, inhibitor arcs [13] could have been used. However, the netR in (1) would
have been more complex.


4 EncodingOrc in the Join Calculus


When encodingOrc− either into reset or inhibitor nets, different evaluations of cer-
tain expressions are computed sequentially (e.g., site calls, where-expressions). Since
in general it is possible to write expressions involving an unbounded number of concur-
rently executing sessions, it is evident that any static net topology will either introduce
some serialisation or mix tokens from different sessions.


In this section, we propose an encoding of fullOrc into Join in which different
evaluations of the same expression can be computed concurrently. This is achieved by
taking advantage of the reflexive mechanism provided byJoin and dynamic nets that
allows for the dynamic creation of places and transitions. The main strategy of the
encoding is to associate a fresh portion of a net to any evaluation of anOrc expression.
That is, if the evaluation of an expressionf can be represented by a netNf , we assure
that any evaluation off is performed by a fresh copy ofNf . In this way confusions
among concurrent evaluations of the same expression are avoided.


Definition 4.1. LetO = 〈D,z:∈E(P)〉 be anOrc orchestrator. Then, the corresponding
Join process is PO = {[O]}, where{[ ]} is inductively defined in Figure 5.


We comment on the definitions in Figure 5. AnyOrc definitionD ∈ D becomes a
local definition{[D]} of the correspondingJoin processPO, while the initial expression
z :∈ E(p1, . . . , pn) becomes the active process{[E(p1, . . . , pn)]}z. Note that the initial
expressionE(p1, . . . , pn) is encoded by considering a contextz (i.e., the channelz en-
codes the homonymous variable). In this way,PO will send a messagez〈v〉 for any value
v obtained during the evaluation ofE(p1, . . . , pn). Any Orc definitionE(x1, . . . ,xn) ∆ f
is translated as a basic ruleE(q1, . . . ,qn,z).{[ f ]}z, wherez is a fresh name used for re-
turning the values produced during the evaluation off , i.e.,z is used for implementing
the usual continuation passing style ofJoin.


All remaining rules define the translation of expressions. In particular, the inertOrc
expression 0 is translated as the inertJoin process 0, while the constant expressionc
is encoded asz〈c〉, i.e., as the assignment of the unique valuec to z. Differently, the
encoding of an expression consisting of a variablex is translated as a messagex〈z〉. In
fact, as we will see later, we associate anyOrc variable with a basicJoin definition that
answers any messagex〈z〉 with z〈v〉 if x has been assigned a valuev. Moreover, any
requestx〈z〉 will be blocked until a value is assigned tox.


The invocationM(p1, . . . , pn) of a serviceM is translated as a process that starts
by evaluating all actual parameterspi . Since actual parameters can be only constants
or variables, the evaluation of{[pi ]}yi will finish by producing messagesyi〈xi〉 on fresh
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{[O = 〈D,z :∈ E(P)〉]} = def
V


D∈D {[D]} in {[E(P)]}z


{[E(q1, . . . ,qn) ∆ f ]} = E(q1, . . . ,qn,z).{[ f ]}z with z 6∈ {q1, . . . ,qn}
{[0]}z = 0
{[c]}z = z〈c〉
{[x]}z = x〈z〉


{[M(p1, . . . , pn)]}z = def y1〈x1〉| . . . |yn〈xn〉.def k〈v〉|tok〈〉.z〈v〉
in M〈x1, . . . ,xn,k〉 | tok〈〉


in {[p1]}y1| . . . |{[pn]}yn


{[X(p1, . . . , pn)]}z = def y1〈x1〉| . . . |yn〈xn〉|y〈M〉.def k〈v〉|tok〈〉.z〈v〉
in M〈x1, . . . ,xn,k〉 | tok〈〉


in {[p1]}y1| . . . |{[pn]}yn|{[X]}y
{[E(p1, . . . , pn)]}z = def ∧p∈{p1,...,pn}∩C f wdp〈k〉.k〈p〉


in E(Lp1M, . . . ,LpnM,z)
whereLpiM = pi if pi 6∈ C andLpiM = fwdpi


otherwise
{[ f | g]}z = {[ f ]}z | {[g]}z


{[ f > x > g]}z = def w〈v〉. def x〈y〉 | valx〈u〉.y〈u〉 | valx〈u〉
in {[g]}z | valx〈v〉


in {[ f ]}w


{[g wherex :∈ f ]}z = def x〈y〉 | valx〈u〉.y〈u〉 | valx〈u〉
∧ w〈v〉 | tok〈〉.valx〈v〉
in {[g]}z | {[ f ]}w | tok〈〉


Fig. 5.Encoding of anOrc Orchestrator inJoin.


namesyi . Hence, the unique local definition is enabled only when all actual parameters
have been completely evaluated. Moreover, the firing of the local rule creates two fresh
ports:k andtok and a unique firing rule. Channelk indicates the port where the orches-
trator awaits the answers of the invoked service (We assume the definition of any site to
be extended in order to receive this extra parameter.) Channeltok assures that just one
answer is considered for any invocation. In fact, there is only one messagetok〈〉, which
is consumed (and it is not generated anymore) when the first message onk is received.


In case the name of the invoked service is the variableX, thenX has to be evaluated
before the invocation, just like any other actual parameter. The name of the siteM will
be returned as he value ofX on porty.


The use of anOrc definitionE(p1, . . . , pn) differs from the invocation of a service
in the fact that definitions are called by following a lazy evaluation, i.e., parameters are
not evaluated before the call. Hence, invocations ofE can take place even though some
of the formal parametersp1, . . . , pn have not been initialised. The local portsf wdp in-
troduced by the encoding ifp∈ C allow the constant parameters to be used as variables
inside the expression definingE (see Example 4.1).


The encoding of a parallel compositionf |g corresponds to the parallel composition
of the encodings off andg. Note that both encoded expressions produce results on the
same channelz. On the other hand, the sequential compositionf > x > g is translated
as a process that starts by evaluating{[ f ]}w (i.e., the encoding off ) whose values will
be sent as messages to the local portw. Hence, any message onw corresponds to the
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activation of a new evaluation ofg. In fact, the local definition, which is enabled with
a messagew〈v〉, will create a fresh copy of the encoding ofg, which will evaluateg by
considering the particular valuev produced byf .


The last rule handles the translation of asymmetric parallel composition. Note that
the encodings off and g are activated concurrently. Unlike sequential composition,
there is a unique copy of{[g]} and a unique instance of the variablex. In fact, asymmet-
ric composition requires to evaluateg just for one value off . The unique messagetok
assures that only one value produced by{[ f ]} will be set to the variablex.


Example 4.1.LetO= 〈{d},z:∈ Invoke(StockQuote,Sun)〉, with d : Invoke(m,n) ∆ m(n).
The correspondingJoin process is as follows.


{[O]}= def Invoke〈m,n,z〉 . def y1〈x1〉|y〈M〉 . def k〈v〉 | tok〈〉.z〈v〉
in M〈x1,k〉 | tok〈〉


in n〈y1〉 | m〈y〉
in def f wdStockQuote〈k〉.k〈StockQuote〉


∧ f wdSun〈k〉.k〈Sun〉
in Invoke〈 f wdStockQuote, f wdSun,z〉


Note the difference when calling a local definition (i.e.,Invoke) and when invoking
a service (i.e.,StockQuote). In particular, actual parameters are not evaluated when call-
ing a local definition. Moreover, a new forwarder is created for any constant parameter.
In this case, the portsf wdStockQuoteand f wdSun are introduced and are used as actual
parameters. In this way the definition ofInvokemay handle all its parameters as if they
were variables. In fact, when ruleInvoke〈m,n,z〉 . . . . is fired by consuming the token
Invoke〈 f wdStockQuote, f wdSun,z〉, then the argumentsm and n are evaluated by send-
ing the messagesf wdSun〈y1〉 and f wdStockQuote〈y〉, which will return the corresponding
constants, i.e., the messagesy1〈Sun〉 andy〈StockQuote〉 will be produced.


The remaining part of this section is devoted to show the correspondence amongOrc
processes and their encoded form. The following definition introduces the equivalence
notion we will use to compareOrc processes with their encoded form, which is a kind
of weak bisimulation. In the following, given anOrc label α, the correspondingJoin
label is denoted withα and it is defined asMk(v) = {k}M〈v,k〉, k?v = k〈v〉, !v = /0z〈v〉.


Definition 4.2 (Weak Bisimulation).LetO = 〈D,z :∈ E(p1, . . . , pn)〉 be an orchestra-
tor, and P be aJoin process. We callweak bisimulationany relationR satisfying the
following condition:O R P iff


1. O
α−→ O′ andα 6= τ then P→∗ α−→ P′ andO′ R P′


2. O
τ−→ O′ then P


τ−→∗P′ andO′ R P′


3. P
α−→ P′ andα 6= k〈v〉 thenO→∗ α−→ O′ andO′ R P′


4. P
k〈v〉−→ P′ then either (i)O


k?v−→ O′ andO′ R P′, or (ii) O 6k?v−→ andO R P′


5. P
τ−→ P′ thenO


τ−→∗ O andO R P′


The largest relationR is said the weak bisimilarity and it is written≈.
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All rules but the fourth one are quite standard. In fact, rule 4 handles the case in
which a Join process performs an intrusion on an already extruded name. The only
possibility is when the process receives an answer for a site call. Hence, such step


should be mimicked by the orchestrator (i.e., the conditionO
k?v−→ O′). Nevertheless,


this situation may take place only when the first answer is received. In fact, theJoin
encoding of anOrc site call ignores all the answers following the first one. On the other
end, the open semantics ofJoin allows for the intrusion of those messages (even if
they cannot be exploited). Hence, the weak bisimulation says that the intrusion of extra


answers does not change the behaviour of the encoded form (i.e.,O 6k?v−→ andO R P′).
In the following, we show that there exists a weak bisimulation amongOrc orches-


trators and their encoded form when considering a non-killing version ofOrc, that is, a
version in which asymmetric composition does not imply the killing of the residual of
f . In fact we consider the following version of the rule (ASYMPRUNE).


f
!c−→ f ′


g wherex :∈ f
τ−→ g[c/x] | (0 wherez :∈ f ′)


(NOTK ILL -WHERE)


Note thatg is evaluated as in ordinaryOrc just for one value produced byf . Neverthe-
less, the residualf ′ of f is allowed to continue its execution, but the obtained values
are thrown away since 0 appears as the left-hand-side of the clausewhere. We remark
that (NOTK ILL -WHERE) does not significantly altersOrc’s semantics and it can be en-
visaged as an implementation of theg where x :∈ f construct that simply ignores all
values published byf but the first one.


Lemma 4.1 (Correspondence).When considering ruleNOTK ILL -WHERE, O≈ {[O]}.


Proof (Sketch).The proof follows by coinduction, showing that the following relation
R is a weak bisimulation.


R= {(O,P)|{[O]} τ−→ ∗P}∪{(O′,P′)|O α−→ O′and{[O]} τ−→ ∗ α−→ τ−→ ∗P′}


Actually the proof is up-to strong-bisimulation [15] onJoin processes, since we
consider terms up-to the relation≡e defined below


1. if P 
∗ Q thenP≡e Q, i.e.,P andQ are structural equivalent;
2. P≡e P|def D in 0, i.e., useless definitions are removed; and
3. if Q≡ defS D in def{k} k〈~v〉|tok〈〉.z〈v〉 in R | k〈~u〉 →∗ Q′ impliesQ′ ≡ defS D′ in


def{k} k〈~v〉|tok〈〉.z〈~v〉 in R′ | k〈~u〉 andP≡ defS D in R→∗ defS D′ in R′ andtok 6∈
f n(R), thenP≡e Q, i.e., intruded messages that do not alter the behaviour of the
process can be removed.


Note that≡e is a strong bisimulation (proved by standard coinduction).


Finally, we show that the computed values of ordinaryOrc orchestrators corre-
sponds with the computed values of their encoded form.


Theorem 4.1. O→∗ !v→O′ iff {[O]}→∗ z〈v〉→P


Proof (Sketch).The proof follows by (i) showing that the results computed byOrc and
its not killing version are the same and (ii) by using Lemma 4.1.
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5 Concluding remarks


Orchestration paradigms can be roughly categorised into three key trends:


– technology-driven languages: all XML dialects and standardisation efforts (e.g.,
WS-BPEL [8], XLANG [27], WSFL [16]);


– model oriented: workflow aspects are prominent (e.g., Petri nets [24,3], YAWL [4]);
– process algebraic or messaging-based: the orchestration is ruled by communication


primitives (e.g., CCS [17], pi-calculus [18], andJoin calculus [14]).


A few years ago, when the series of WS-FM Workshop started, each trend contained
several proposals substantially separated from the other two trends, with different back-
ground, scope and applications. For example, a still ongoing debate [25,1,2] adverses
the use of workflow to that of pi-calculus and it has led to the establishment of an
expert forum (the Process Modelling Group [22]) to investigate how the two differ-
ent approaches can solve typical service composition challenges, like van der Aalst et
al.’s workflow patterns[28,5], and compare the solutions. Workflow enthusiasts advo-
cate that name mobility and message passing are not really necessary, while pi-calculus
enthusiasts are confident that mobility aspects play a prominent role in dynamic assem-
bling of services. The discussion has led also to the combined use of ideas from both
world, like in the case of SMAWL [26], a CCS variant.


We have investigated the modelling of the orchestration languageOrc in Petri nets
and theJoin calculus.Orc is an interesting proposal that can hardly fit in the orches-
tration categories discussed above. Our comparisons have allowed us to identify some
key features ofOrc, that are not so evident from its original definition. First, pipelin-
ing, site calls and asymmetric parallel composition involve dynamic creation of names
and links, that cannot find a natural encoding in Petri nets with static topology, unless
seriously restrictingOrc. Second, the pruning associated with asymmetric conflict is a
rather peculiar and powerful operation not common in process calculi. In fact, one can
argue that it is also not very realistic to impose atomic cancelling of complex activities
in a distributed setting (especially when side effects due to e.g. name passing and extru-
sion could have taken place). Nevertheless, from the point of view of process calculi,
cancelling can be rendered as equivalent to the disabling of the input ports where the
cancelled activities could send their data. In Petri nets andJoin the disabling is mod-
elled by void tokens that enable just one occurrence of certain events, butJoin has the
advantage of not introducing cleaning activities and serialisation of site calls, which are
instead necessary for dealing with multiple invocations in the Petri net encodings of § 3.


Finally, we mention thatJoin appears to be adequate as coordination language since
it can suitably encodeOrc. Remarkably,Join, despite its thinness, also results a re-
spectable language for choreography and computing. Finally,Join is perhaps also more
suitable as coordination/orchestration language than e.g. pi-calculus because its join-
pattern construct yields more flexible and convenient communication patterns.


Acknowledgement.The authors thank the anonymous reviewers for their valuable com-
ments and suggestions that contributed to improve this work.
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