Translating Orc Features into Petri nets
and the Join Calculus’

Roberto Brunt, Herrn Melgrattf, and Emilio Tuostd

1 Computer Science Department, University of Pisa, Italy.
2 |MT, Lucca Institute for Advanced Studies, Italia.
3 Department of Computer Science, University of Leicester, UK.
bruni@di.unipi.it, hernan.melgratti@imtlucca.it, et52@mcs.le.ac.uk

Abstract. Cook and Misra'sOrc is an elegant language for orchestrating dis-
tributed services, able to cover e.g. van der Aalst’s workflow patterns. We aim to
understand the key novel featuresdst by comparing it with variations of Petri
nets. The comparison shows titat hides powerful mechanisms for name han-
dling (creation and passing) and for atomic distributed termination. Petri nets with
static topology can encoderc under severe restrictions while the full language
(up to a more realistic cancellation strategy) can be encodadrir(that can be

seen as a higher-order extension of Petri nets). As an overall result, we promote
Join calculus as an elegant language embedding orchestration and computation.

1 Introduction

Service Oriented Computing and its most successful current realisation based on Web
Services are challenging science and technology in laying foundations, techniques and
engineered development for supporting just-in-time assembly of complex business pro-
cesses according to the publish-find-bind paradigm. Main issues are concerned with,
e.g., security, behavioural description of services with the integration of functional and
non-functional requirements, trade-off between network awareness and network trans-
parency, dynamic binding and reconfiguration, model-driven development.

A common theme to all these aspects is service composition. The difference w.r.t.
classic program or process composition here is that beside answering the question on
“how to compose services”, one has to provide languages and logic for “describing
composite services” and “use composition as a specification requirement for querying
service repositories”. Descriptions should be accurate enough to guarantee that dynam-
ically found and bound composite services behave well.

The termorchestratiorandchoreographywere coined to describe two different fla-
vors of service compositions: orchestration is about describing and executing a single
view point model, while choreography is about specifying and guiding a global model.
Though the difference between the two terms can be sometimes abused or blurred, sub-
stantially orchestration has a more centralised flavor, as opposed to the more distributed
vision of choreography. The typical example is that of a ballet: the choreographer fixes

* Research supported by the EU FET-GC2 IST-2004-16004 Integrated Prajesb&IA and
by the Italian FIRB Project ®CAI.IT.

2 R. Bruni, H. Melgratti, E. Tuosto

the overall scheme for the movements of all dancers, but then each dancer orchestrates
her/his own movements. Roughly, from a formal modelling viewpoint, orchestration is
mainly concerned with the regulation of control and data flow between services, while
choreography is concerned with interaction protocols between single and composite
services. In this paper we focus on orchestration, but with an eye left to choreography.

Cook and Misra'©rc [20,19] is a basic programming model for structured orches-
tration of services, whose primitives meet simplicity with yet great generality. The basic
computational entities orchestrated®se expressions argites upon invocation, a site
can publish at most one response value. A site call can be an RMI, a call to a monitor
procedure, to a function or to a web service. A site computation might itself start other
orchestrations, store effects locally and make (or not) such effects visible to clients.

Orc has three composition principles. The first one is the ordinary parallel composi-
tion f|g (e.g., the parallel composition of two site calls can produce zero, one or many
values). The other two, sequencing and asymmetric parallel composition, take inspira-
tion from universal and existential quantification, respectively. In the sequential expres-
sionf > x> g, a fresh copy[v/x] of g is executed fomnyvaluev returned byf, i.e., a
sort of pipeline is established betwetandg. The evaluation of the asymmetric paral-
lel expressiorf wherex:€ gis lazy: f andg start in parallel, but all sub-expressions of
f that depend on the value ®fmust wait forg to publishonevalue. Wherg produces
a value it is assigned toand that side of the orchestration is cancelled.

As a workflow languagerc can encode all most common workflow patterns [11].
Contrary to many other process algeb@sg; neatly separates orchestration from com-
putation: Orc expressions should be considered as scripts to be invoked, e.g., within
imperative programming languages using assignments sucteas wherezis a vari-
able and th®rc expressiore can involve wide-area computation over multiple servers.
The assignment symbok:(due to Hoare) makes it explicit thatcan return zero or
more results, one of which is assignedto

This papers tries to characterise the distinguishing featur&xmby carrying a
comparison with two other main paradigms, namely Petri netsJaimdcalculus as
suitable representatives of workflow and messaging models, respectively. (The basics
of Orc, Petri nets andoin are recalled in § 2.) Petri nets are a foundational model of
concurrency, hence their choice as a reference model for carrying the comparison is
well justified. The choice ofoin instead of, e.g., the maybe more popular pi-calculus,
might appear less obvious, so it is worth giving some explanation.

First, the multiple input prefix ofloin looks more suitable than the single pre-
fix of pi-calculus to smoothly model many orchestration patterns. For example, con-
sider the process that must wait for messages on baiidy or in either one of the
two. This is coded inJoin as x(u)|tok() > Py A y(v)[tok() > P2 A x{u)|y{v)|tok() > P3
and by assuring there is a unique messie), whereas the pi-calculus expression
X(U).Py+y(v).P2 4+ x(u).y(v).P; used, e.g., in [23] is a less faithful encoding, because:
(i) in the third sub-expression multiple inputs must be arbitrarily sequentialised and
(ii) the third alternative can be selected even if a message arrivesbaoih none ar-
rives ony, causing a deadlock. Of course one can still use the more precise translation
X(u).(PL+y(Vv).Ps) + y(v).(x(u).Ps + P) but it is immediately seen that combinatorial
explosion would make the encoding unreadable when larger groups of actions and more

Translating Orc features into Petri nets and the Join Calculus 3

complex patterns are considered. Secadoih adheres to a locality principle ensuring
that extruded names cannot be used in input by the process that received them (they
can only output values on such ports). This feature is crucial for deploying distributed
implementations [10,7] and it is not enforced in the full pi-calculus. Third, but not last,
in [9], Join has been envisaged as some kind of higher-order version of Petri nets mak-
ing it easier to reconcile all views analysed here.

Our contribution shows that:

— In absence of mobility, P/T nets can encaale expressions when mono-sessions
are considered.

— Serialised multi-sessions require reset nets [6,12] (as shown in § 3).

— TheJoin calculus encode®rc primitives in a rather natural way (as shown in § 4,
the only verbosity is due to the encoding of variables, which is also very simple).

The last item shows thadrc primitives can be seen as syntactic sugar Jan
processes. Therefore, as an overall result, we would like to proiotas an elegant
language integrating workflow orchestration, messaging, and computation (see § 5).

2 Background

2.1 Orc

This section briefly recaprc, borrowing definitions from [20] (apart from minor syn-

tactical differences)Orc relies on the notion of @ite an abstraction amenable for

being invoked and for publishing values. Each site invocatios eticits at most one

value published by. Sites can be composed (by means of sequential and symmet-

riclasymmetric parallel composition) to form expressions. The difference between sites

and expressions is that the latter can publish more than one value for each evaluation.
The syntax ofrc is given by the following grammar

D:i=E(x1,....,%n) A f
ef,gu=0|M(py,....pn) | E(P1,....pn) | f>x>g | flg| f wherex:eg

wherexs, ..., X, are variablesM stands for site names afidfor expression names. We
consider a set of constansranged over by and the special sitet(xy,...,x,) that
publishes the tuplécy,...,c,). A value is either a variable, a site name or a constant
(values are ranged over lmy, po, .. .).

The expressiong where x :€ f and f > x > g bind the occurrences ofin g (in
gwherex:e f, the expressiogis said to be in the scope wfc f). The occurrences of
variables not bound are free and the set of free variables of an expréssidenoted by
fn(f). In the following, all definitionEE(xy,...,xn) A f are well-formed, i.e.fn(f) C
{X1,..., %} andxy,...,x, are pairwise distinct. We writéfor x, ..., X, and f[c/X] for
the expression obtained by replacing the free occurrencesof with c.

The operational semantics Ofc is formalised in Figure 1 as a labelled transition
system with four kinds of labels: (1) a site call ev&h(c, k), representing a call to site
M with argument< waiting for response on the dedicated handief2) a response

4 R. Bruni, H. Melgratti, E. Tuosto

(Len k globally fresh(S CALL) (SITERET) EX)Af (0ep)
ET) —————~ (SITECALL ——————— (SITERET — (DEF
let(c) - 0 M(e) " %% let(c) E(P) - f[p/X
fS flf 1 2e
(SEQPIPE) (SEQ)

f>x>g-— (f'>x>g)|glc/x f>x>g-f>x>g

g £ N
glig (SymL) — (SYMR) g i g (AsymL)
glf—d|f g|f—glf gwherex:e f — ¢ wherex:e f
N AT fo
i (AsYMR) T (ASYMPRUNE)
gwherex:e f — gwherex:e f’ gwherex:e f — g[c/X]

Fig. 1. Operational semantics @frc.

eventk?c, sending the responsdo the call handlek (there is at most one such event
for eachk); (3) a publish eventd (4) an internal event.

A declarationD specifies an expression nargethe formal parameters, ..., %,
and the bodyf, like for usual function or procedure declarations. The bddyf an
expression declaration can be the expression O (i.e., a site which never publishes any
value), the invocation of a sitd (ps, ..., pn), Or an expression cai(ps, ..., pn). Calls
to sites are strict (actual parameters are evaluated before the call) while expression calls
are non-strict. Expressiorfsandg can be sequentially composed with> x > g which
first evaluatesf and then, for each value published byf, evaluates a new copy of
g wherex is replaced withv (if f never publishes any value, no freghwill ever be
evaluated). Expressions can be composed with the symmetric and asymmetric parallel
operators. The former is writtefig; it evaluatesf andg in parallel and publishes the
values thatf andg publish (we remark that there is no interaction betwéemdg and
that usual monoidal laws fdwith 0 as neutral element hold). The latter, caelere-
expressionis writteng where x :€ f. The evaluation ofjy where x :€ f proceeds by
evaluatingf andg in parallel. Expressiori is meant to publish a value to be assigned
to x and all the parts off depending orx must wait until such a value is available.
Evaluation off stops as soon as any value, sais published. Thenyis assigned ta
so that all the parts ig depending ok can execute, but the residual bfs cancelled.

Example 2.1.We borrow from [20] some of interesting examplesiot declarations.

— Assume thalCNN and BBC are two sites that return recent news when invoked
while siteEmail(a,m) sends an email containing messag#® the addresa. (No-
tice that an invocation temail changes the receiver’'s mailbox).

— DeclarationNotify(a) A (CNN|BBC) > x > Email(x,a) specifies a service for no-
tifying last news fromCNN and BBCBY rule SEQPIPE, the news from botiCNN
andBBCare notified in two different emails.

— Another interesting exampleMailOncega) A Email(x,a) wherex:€ (CNN|BBC)
specifying serviceMailOnce(a) that notifies address with only one of the news
selected either frorl®NN or from BBC.

Translating Orc features into Petri nets and the Join Calculus 5

An Orc program represents an orchestralarxecuted in a host sequential program;
O is a pair{D,z:c E(P)) whereD is a set of definitionsz a variable of the host pro-
gram,E(C) is anOrc expression call wher@) E is an expression name definedZn
and(ii) € are the actual parameters. The notatioa E(C) specifies that even E(C)
might publish any number of valueswill be bound to just one of them. The types of
values published b¥ () are left unspecified, however it is assumed that they can be
dealt with in the hosting program (see § 2.2 of [20]).

2.2 Petri Nets

Petri nets, introduced in [21], have become a reference model for studying concurrent
systems, mainly due to their simplicity and the intrinsic concurrent nature of their be-
haviour. They rely on solid theoretical basis that allows for the formalisation of causal-
ity, concurrency, and non-determinism (in terms of non-sequential processes or unfold-
ing constructions). Petri nets are built up frelaces(denoting resources types), which

are repositories adiokens(representing instances of resources), #adsitions which

fetch and produce tokens. We assume an infinit€s#tresource names is fixed.

Definition 2.1 (Net). A netN is a 4-tuple N= (Sy, Ty, 0on, 01n) Where & C P is the
(nonempty) set of places,a/,..., Ty is the set of transitions;, t/, ... (with SyNTy =

0), and the functiongon, d1n : Tv — O¢(Sy) assign finite sets of places, called respec-
tively source and target, to each transition.

Place / Transition net@P/T nets) are the most widespread model of nets. The places
of a P/T net can hold zero, one or more tokens and arcs are weighted. Hence, the state
of the P/T netis described in termsrofirkings i.e., multisets of tokens available in the
places of the net. Given a sgtamultisetover Sis a functionm: S— N (whereN is
the set of natural numbers). The set of all finite multisets &isrdenoted byMs and
the empty multiset b.

Definition 2.2 (P/T net). A marked place / transition Petri n@/T net) is a tuple N=

(SN, Tn, Oon, 01w, Mon) Where & € P is a set of places,\Tis a set of transitions, the
functionsdon, O1n : Tn — Ms, assign respectively, source and target to each transition,
and nmyy € Mg, is the initial marking.

Given a transitiort € T, *t = 8g(t) is its presetandt® = &;(t) is its postsetLet
N be a net andi a marking ofN; then a transitiort € Ty is enabled at uff *t(a) <
u(a),Va € Sy. We say a marking! evolves tou’ under thefiring of the transitiont
written u[t)u', iff t is enabled ati andu/(a) = u(a) — *t(a) +t°*(a),Va € S. A firing
sequencérom up to Uy is a sequence of markings and firings Bgft 1)Uy . . . Un, [tn)Un.
Reset net$6] extend P/T nets with speciaéset arcs A reset arc associating a
transitiont with a placea causes the placeto reset when is fired.

Definition 2.3 (Reset net)Areset nets a tuple N= (S, Tn, on, O1n, Mon, Ry), Where
(SN, Tn, Oon, 01N, Mon) is @ P/T net and R: Ty — O¢(Sy) defines reset arcs.

The condition for the enabling of a reset transition is the same as for ordinary P/T
nets, while their firings are defined as followsevolves tou’ under thefiring of the
reset transitiort, written u[t)J, if and only if t is enabled att andVa € Sy : U'(a) =
u(a) —*t(a) +t°(a) if a ¢ Ry(t), andu’(a) = O otherwise.

6 R. Bruni, H. Melgratti, E. Tuosto

(oPEN AB:=0|x(y)|defsDin A|AB D,E :=Jr-P|DAE (DEF)
(PROQ PQ:=0|x(y)|defDin P|P|Q JK =x{y)|JK (PAT)
(a) Syntax
x(¥)) = {¥} dn(x(y)) = {x}

rn(J|K) m(J) wrn(K) dn(J|K) = dn(J) wdn(K)
fn(J>P) = dn(J) U (fn(P)\rn(J)) dn(J>P) =dn(J)
fn(DAE) =fn(D)Ufn(E) dn(DAE) =dn(D)udn(E)
(0) =0 xn(0) = 0
fn(x(y)) = {x} U {y} xn(x(y)) = 0
fn(defs D in A) = (fn(D) Ufn(P))\dn(D) xn(defs D in A) = Swxn(A)
in(AIB) = (f(A)\xn(B)) U (fn(B)\xn(A)) Xn(A|B) = Xn(A) wxn(B)

(b) Free, Defined, Bound and Received names

(STR-NULL) FsO0 = IFs
(STR-JOIN) FsP|Q = FsP,Q
(STR-AND) DAElFs = D,Elrs
(STR-DEF) IFgdefg Din P = Do lkFsyg PO o aglobally fresh renaming afn(D)\S
(RED) JoPlkgdo - JsPlrgPo
Sx(d
(EXT) IFs x(T) L(Q IFsyg x is free, andS are the local names ié not in S
u
(INT) = xpws xa, IF{xyws X(U) dcontains free, extruded and fresh names

(c) Semantics

Fig. 2. Open-join Calculus.

2.3 Join Calculus

This section summarises the basics of dpen-join [15], a conservative extension of
Join [14] equipped with the notion of weak bisimulation used in § 4. We rely on an
infinite set of names,y,u,v,... each carrying fixed length tuple of names (denoted as
0). A sorting discipline that avoids arity mismatch is implicitly assumed and only well-
sorted terms are considered. Open proceAspocesseR, definitionsD and patterng
are defined in Figure 2(a). 2oin process is either the inert process 0, the asynchronous
emissiorx(y) of message on poxtthat carries a tuple of namggthe procesdef D in P
equipped with local ports defined B, or a parallel composition of procesg@€. An
open procesA.is like aJoin process, except that it has open definitions at top-level. The
open definitiondefs D in P exhibits a subse® of names defined bl that are visible
from the environment: thextruded name®pen processes are identified with ordinary
Join processes when the sebf extruded names is empty. definitionis a conjunction
of elementary reactionk> P that associat@in-patterns Jwith guarded processes. P

The sets of defined namdg, received names, free name$n and extruded names
xnare shown in Figure 2(b}(denotes the disjoint union of sets). Note that the extruded
names of two parallel processes are required to be disjoint because they are introduced

Translating Orc features into Petri nets and the Join Calculus 7

by different definitions. Similarly, the extruded nang&af defs D in A are disjoint from
the extruded names &f As usual, patterns are required to be disjoint.

The semantics of th®pen-join calculus relies on thepen reflexive chemical ab-
stract machinanodel OpenRCcHAM) [15]. A solution of an OperRCHAM is a triple
(R,8,A), written R IFs A, whereA is a multiset of open processes with disjoint sets
of extruded namesR is a multiset of active definitions sdn(R) Nxn(A) = 0, and
§ C dn(R) is a set of extruded name®(dn andxn lift to multisets in the obvious
way). Moves are distinguished betwestructural = (or heating/cooling), which stand
for the syntactical rearrangement of terms, and reductienghich are the basic com-
putational steps. The multiset rewriting rules fopen-join are shown in Figure 2(c).
Rule STR-NULL states that 0 can be added or removed from any solution. Rukes
JOIN and STR-AND stand for the associativity and commutativity |aind A, because
_,_is such.sTR-DEF denotes the activation of a local definition, which implements a
static scoping discipline by properly renaming defined portglbially freshnames.

Reduction rules are labelled either by (i) internal reductipi) output messages
SxU) on the free pork that extrude the s& of local names, or (iiix(ti) denoting the
intrusion of a message on the already extruded local narRelle RED describes the
use of an active reaction ruldif P) to consume messages forming an instance(&dr
a suitable substitutioa, with dom(o) = rn(J)), and to produce a new instarniee of its
guarded proced3. Rule EXT) consumes messages sent on free names; these messages
may extrude some nam&sfor the first time, thus increasing the set of extruded names.
Rule (INT) stands for the intrusion of a message on a defined-extruded name. We remark
that rules are local and describe only the portion of the solution that actually reacts.
Hence, any rule can be applied in a larger context.

3 Orc vs Petri Nets

In this section we sketch an intuitive explanationd€ basic orchestration primitives
in terms of Petri nets. At first glance, the composition patterns availaleioan seem
easily representable using (workflow) Petri nets. Assume that@aokxpressiorf is
represented by a suitable Mgt with two distinguished placeas (for getting tokens in
input that activate the net) amalit; for publishing tokens. A pipeline between the nets
N¢ andNg can be obtained by adding just one transition frauty to ing. Similarly, the
parallel composition ofNt andNg can be obtained by adding plades |y andoutyq
with three transitions: (i) fronin¢ g to iny anding, (i) from out; to outsy, and (iii)
from outg to outy 4. Finally asymmetric parallel composition can be obtained by adding
a placewhs g with just one token in it and no incoming arc, together with a transition
from out; andwhs g to ing (so that such transition can be fired at most once).

However it is easy to realise that the modelling is not as simple as above. Take Ex-
ample 2.1, where two instancesBimail(_,a) can concurrently run wheNotify(a) is
invoked. If site invocation is modelled by passing the control-flow token to the net rep-
resentingemail, then the tokens of two different sessions can be mixed! Apart from the
cumbersome solution of representing sessions identifiers within tokens, there are two
possible solutions to the multi-session problem (i.e., the possibility of re-using parts of
the net when for different invocations). The first is to replicate the net corresponding to

8 R. Bruni, H. Melgratti, E. Tuosto

Minvoc; (O X1 (O

Fig. 3. Net for the invocation of a sit¥

the body of an expression for each invocation, while the second is using dynamic nets,
where fresh ports of the net can be released during the execution. The first alternative is
considered here, while § 4 provides an encodin@mfin Join, as a linguistic counter-

part of dynamic nets [9]. Another problem is that expressions can carry arguments, so
that more than one input place can be needed (e.g., one for each variable).

In this section we shall focus abrc™, a simplified fragment obrc, where recur-
sion is avoided and values are not considered. Avoiding recursion is necessary in order
to have finite nets, indeed each invocation will result in a new instance of the body of
the defined expression. Petri nets can encode expressions in absence of mobility
and when each expression is evaluated at most once (i.e., when mono-session are con-
sidered). Multi-sessions require reset arcs and can only be dealt with by serialising the
accesses to the re-used part of the net. We prefer to keep the presentation of the Petri
net semantics at an informal level. A more technical presentation is postponed to § 4,
where the concurrent multi-session problem is tackled by establishing a strong formal
correspondence between observational semantioscaind its encoding idoin.

Since recursion is banned fro@rc™ programs, invocations to site (resp. expres-
sions) can be enumerated and we WKtg(X1,...,Xn) (resp.Ej(x1,...,X)) to denote
the j-th invocation to siteM (resp. expressioB). The main difference w.r.Orc, is that
Orc™ uses names (i.e., variables) only for passing signals. For instance, the sequential
operator oforc™ is simplified asf >> g. This implies that variables are only required
for site invocations and asymmetric parallel composition, saljere z:€ g. In the for-
mer case, variables are used to render the strict policy of site invocation in the Petri net
encoding. In the latter casewill be used as the output place for the net represemting

Let (D,z:€ E(P)) be anOrc™ program. The encoding of arc™ expressiorf into
Petri nets is denoted gsf]]f,f’fo wheref; andf, are distinguished places (entry and
exit points of f). The idea is that;fis the place for the activation df and £, is the
place for returning the control. Data dependencies/flows due to asymmetric parallelism
are rendered by places associated with variable names, which may coincide with output
places of other parts of the net (to store results).

Minvocj

We first consider the translatidiM; (xq, ..., xn) [" of the j-th invocation
to siteM (see Figure 3). The placéisandMlock are shared by all the invocations and
Mlock is meant as a lock mechanism for serialising multiple concurrent invocations to

Translating Orc features into Petri nets and the Join Calculus 9

Fig. 4. A schema of net fof f wherez:c g]5;°.

M. IndeedMcall; is enabled only iMMlock contains a token as it initially does. The
invocation takes place whefinvoc; and all places;, ..., x, contain a token (i.e., the
actual parameters have been evaluated). MoreoverMretty andMvoid; put a token
into Mlock once they are fired so that the next invocation can proceed. Remarkably,
Mret; andMvoid; are mutually exclusiveMret; models the case in whidd returns
avalue, whileMvoid; the case in which no value is returned to the invoker.

If E(z1,...,2n) A f € D, the j-th invocation ofE, sayEj(xi,...,Xn), is translated as
[Ej(X1,.-, %) 15 = [f[X1/21, ., % /2] |5 For the remaining constructs aic™,
the simplest case ig0]5;° which is the net with a single transition whose preset is
the placei and whose postset is empty. For the sequential operafos; > g]]§3’° =

[f]];fl U [[g}]%‘O where?d' is a fresh place and where given two ndksandN,, we

write N; UN;> for the net whose set of places (resp. transitions) is the union of the places

(resp. transitions) dfl; andN, and, for each transitionin N; andN,, the preset (resp.

postset) ot is the union of the presets (resp. postset) of N; andN,. For the parallel

operator, given two fresh places andi,, [flg]3’ = [f |5 °U[g]5° UN whereN

is the net made by a single transition with presend postsefi;,i,}.
Where-expressions, sdywhere z:< g, require some subtlety, because their evalu-

ation requires thag terminates when a value fars available. In our encoding, this is

modelled by resetting all the placesgmf

[fwherez:eg]y =[f]i°U[g]i2*uUR 1)

ig,o ig,z

wherei,, i, are two new places aridis a net for connecting f];3° and[g]73* and

for resetting the places ¢fg]]3;’2. More preciselyR contains
1. the placei together with two fresh placesandr and a token irs;
2. afresh transitios such thatt = {i,s} andt® = {i;,1,,r};
3. afresh transitiom, such thatt, = {z,r} andt,*® includess and the set of all the

iq,0

places in[f]53° corresponding to the occurrenceszih f, moreover, for each

i,z

placep in [g]55* (including i» andz), there is a reset arc fropto t..

A pictorial representation of f wherez:e g]];’" is given in Figure 4 where the bold
boxes represent the nets fbrandg; the double arrow is the set of arcs described in 3

10 R. Bruni, H. Melgratti, E. Tuosto

and the crossed double arrow is the set or reset arcs described in 3. Placds
serialise the activation df andg. When a token is available an thent, can be fired:
it distributes the token to all the occurrenceszdh f, resetsg and enables further
activation of the net by restoring the tokensin

Reset arcs are not needed if just mono-sessions are considered. As an alternative to
reset arcs, inhibitor arcs [13] could have been used. However, the inetl) would
have been more complex.

4 EncodingOrc in the Join Calculus

When encodingdrc™ either into reset or inhibitor nets, different evaluations of cer-
tain expressions are computed sequentially (e.g., site calls, where-expressions). Since
in general it is possible to write expressions involving an unbounded number of concur-
rently executing sessions, it is evident that any static net topology will either introduce
some serialisation or mix tokens from different sessions.

In this section, we propose an encoding of falc into Join in which different
evaluations of the same expression can be computed concurrently. This is achieved by
taking advantage of the reflexive mechanism provideddiy and dynamic nets that
allows for the dynamic creation of places and transitions. The main strategy of the
encoding is to associate a fresh portion of a net to any evaluation@fcagxpression.

That is, if the evaluation of an expressifrcan be represented by a mét, we assure
that any evaluation of is performed by a fresh copy ®™;. In this way confusions
among concurrent evaluations of the same expression are avoided.

Definition 4.1. LetO = (D, z:€ E(P)) be anOrc orchestrator. Then, the corresponding
Join process is B = {{O]}, where{[_]} is inductively defined in Figure 5.

We comment on the definitions in Figure 5. Adyc definitionD € D becomes a
local definition{[D]} of the correspondingoin proces®y, while the initial expression
z:€ E(p1,...,pn) becomes the active proce§&(p,..., pn)]}z- Note that the initial
expressiorE(py, ..., pn) is encoded by considering a contexi.e., the channet en-
codes the homonymous variable). In this wRywill send a messaggv) for any value
v obtained during the evaluation Bf(py, ..., pn). Any Orc definitionE(xq,...,X,) A f
is translated as a basic rlqy, . . .,0n, 2) > {[f]}z, wherezis a fresh name used for re-
turning the values produced during the evaluatiori dfe.,zis used for implementing
the usual continuation passing styleJofn.

All remaining rules define the translation of expressions. In particular, thednert
expression 0 is translated as the inmih process 0, while the constant expression
is encoded ag(c), i.e., as the assignment of the unique vatu® z. Differently, the
encoding of an expression consisting of a variable translated as a message). In
fact, as we will see later, we associate @any variable with a basidoin definition that
answers any messagéz) with z(v) if x has been assigned a valueMoreover, any
requesk(z) will be blocked until a value is assignedxo

The invocationM(p,..., pn) Of a serviceM is translated as a process that starts
by evaluating all actual parametgps Since actual parameters can be only constants
or variables, the evaluation ¢ffpi]}y; will finish by producing messages(x;) on fresh

Translating Orc features into Petri nets and the Join Calculus 11

{0=(D,z:eE(P))]} = def Apcp {[DI} in {[E(P)]}z
{E(Qq,....,an) A f]} = E(tn,....on, 2> {fl}z withz¢ {a1,...,an}
oz = 0
{lchz = Zco)
Xz = x(@
{IM(p1,.-.,pn)]}z = defyi(Xy)|...|yn(Xn)>defk(Vv)|tok()>z({v)

in M(x1,...,%n,K) | tok()
in {[pal}ya |- - [{[Pnl}ty,
{X(pr,-, P}z = defys(xo)]... Iyn{xn)ly(M) > def k(v) tok() > z(v)
in M(xq,...,%n,K) | tok()
in {[pal}yal. . {[Pnliyn [{[XT}y
..... pine fwdp (k) >k(p)
in E(qplDf ERER) (]pnl)vz)
where(pi) = pi if pi ¢ € and(pi) = fwd,, otherwise
{{fhz | {(g]}z
defw(v)> defx(y) | val(u)>y(u) | val(u)
in {[gl}z | vak(v)
in {[f]}w
defx(y) | val(u) >y(u) | val(u)
A W(V) | tok() > valy (V)

in {[g]}z | {{f]}w | tok{)

{E(p1,---,pn)]}z

I
Q.
]
=
>

©
m
—~
©
=

{f g}z
{[f >x>dl}:

{lgwherex:e f]};

Fig. 5. Encoding of arbrc Orchestrator iroin.

namesy;. Hence, the unique local definition is enabled only when all actual parameters
have been completely evaluated. Moreover, the firing of the local rule creates two fresh
ports:k andtok and a unique firing rule. Channleindicates the port where the orches-
trator awaits the answers of the invoked service (We assume the definition of any site to
be extended in order to receive this extra parameter.) Chaokatsures that just one
answer is considered for any invocation. In fact, there is only one metsidgewhich
is consumed (and it is not generated anymore) when the first message i@teived.

In case the name of the invoked service is the varizblinenX has to be evaluated
before the invocation, just like any other actual parameter. The name of ti\ witié
be returned as he value ¥fon porty.

The use of arOrc definitionE(py, ..., pn) differs from the invocation of a service
in the fact that definitions are called by following a lazy evaluation, i.e., parameters are
not evaluated before the call. Hence, invocationk chn take place even though some
of the formal parametergy, ..., pn, have not been initialised. The local pofftard, in-
troduced by the encoding f € C allow the constant parameters to be used as variables
inside the expression definitify(see Example 4.1).

The encoding of a parallel compositidifg corresponds to the parallel composition
of the encodings of andg. Note that both encoded expressions produce results on the
same channel On the other hand, the sequential composition x > g is translated
as a process that starts by evaluatffig} (i.e., the encoding of) whose values will
be sent as messages to the local porHence, any message @ancorresponds to the

12 R. Bruni, H. Melgratti, E. Tuosto

activation of a new evaluation @f In fact, the local definition, which is enabled with
a message/(v), will create a fresh copy of the encoding@fwhich will evaluateg by
considering the particular valuweproduced byf.

The last rule handles the translation of asymmetric parallel composition. Note that
the encodings off andg are activated concurrently. Unlike sequential composition,
there is a unique copy dfg]} and a unique instance of the variaklén fact, asymmet-
ric composition requires to evaluaggust for one value off. The unique messadek
assures that only one value produced ly} will be set to the variable.

Example 4.1.LetO = ({d}, z:€ Invokg StockQuoteSun), with d : Invokgm, n) A m(n).
The correspondingoin process is as follows.

{[0]} = def Invokem,n,z) > def y1(X1)|y(M) > def k(v) | tok() >z(V)
in M(xq,k) | tok()
in n(y1) | my)
in def fwdstockouoték) >Kk({StockQuote
A fwdsur(k) >k(Sun
in Invoke fwdstockquote f Wdsun 2)

Note the difference when calling a local definition (ileyoke and when invoking
a service (i.e.StockQuotg In particular, actual parameters are not evaluated when call-
ing a local definition. Moreover, a new forwarder is created for any constant parameter.
In this case, the portéwdstockouotend fwdsyn are introduced and are used as actual
parameters. In this way the definitionlofzokemay handle all its parameters as if they
were variables. In fact, when rulavokem,n,z) ... is fired by consuming the token
Invoke fwdstockouote fWsun 2), then the arguments and n are evaluated by send-
ing the messagelvdsyn(y1) and fWdstockquotéy), Which will return the corresponding
constants, i.e., the messagesSur) andy(StockQuotewill be produced.

The remaining part of this section is devoted to show the correspondence amsong
processes and their encoded form. The following definition introduces the equivalence
notion we will use to comparerc processes with their encoded form, which is a kind
of weak bisimulation. In the following, given abrc label a, the correspondingoin
label is denoted witial and it is defined ably(v) = {K}M(v,k), kK = k(v), Iv = 0z(v).

Definition 4.2 (Weak Bisimulation).LetO = (D,z:€ E(py,..., pn)) be an orchestra-
tor, and P be aloin process. We callveak bisimulatiorany relationR satisfying the
following condition:O R P iff

0 -% 0" anda # 1 then P—* -5 P and®’ R P/
0 -5 O then P-*P and®’ R P/
P-L P anda # k() then® —* -5 O’ and 0’ R P/

P, P then either ()0 <™ 0’ and ' R P, or (i) 0% andO R P

5 P-% P then® ——* 9 andO R P’

H b

The largest relatiorR is said the weak bisimilarity and it is writtes.

Translating Orc features into Petri nets and the Join Calculus 13

All rules but the fourth one are quite standard. In fact, rule 4 handles the case in
which aJoin process performs an intrusion on an already extruded name. The only
possibility is when the process receives an answer for a site call. Hence, such step

should be mimicked by the orchestrator (i.e., the conditioi™% O’). Nevertheless,

this situation may take place only when the first answer is received. In facipite
encoding of arOrc site call ignores all the answers following the first one. On the other
end, the open semantics adin allows for the intrusion of those messages (even if
they cannot be exploited). Hence, the weak bisimulation says that the intrusion of extra

answers does not change the behaviour of the encoded forn@(ﬁ%. andO R P)).

In the following, we show that there exists a weak bisimulation an@egrches-
trators and their encoded form when considering a non-killing versia@rgfthat is, a
version in which asymmetric composition does not imply the killing of the residual of
f. In fact we consider the following version of the rukesfyM PRUNE).

A

T (NOTKILL -WHERE)
gwherex:e f — g[c/x] | (Owherez:e ')

Note thatg is evaluated as in ordina®rc just for one value produced by Neverthe-
less, the residual’ of f is allowed to continue its execution, but the obtained values
are thrown away since 0 appears as the left-hand-side of the cldngse. We remark
that (NOTKILL -WHERE) does not significantly altei®rc’'s semantics and it can be en-
visaged as an implementation of thavhere x :c f construct that simply ignores alll
values published by but the first one.

Lemma 4.1 (Correspondence)When considering ruleoTKILL -WHERE, O ~ {[O]}.

Proof (Sketch)The proof follows by coinduction, showing that the following relation
Ris a weak bisimulation.

R={(0,P)|{{0]} - *P}U{(0',P)|0 - 0'and{[o]} — * & P}

Actually the proof is up-to strong-bisimulation [15] dwein processes, since we
consider terms up-to the relatien, defined below

1. if P=*QthenP = Q, i.e.,P andQ are structural equivalent;

2. P=.P|defDin 0, i.e., useless definitions are removed; and

3. if Q=defs D in defyy k(V)[tok()>z(v) in R|k({t) —* Q impliesQ’ = defs D' in
defyg k(V)[tok()>z(V) in R | k(l) andP = defs D in R—* defs D’ in R andtok ¢
fn(R), thenP =¢ Q, i.e., intruded messages that do not alter the behaviour of the
process can be removed.

Note that=¢ is a strong bisimulation (proved by standard coinduction).

Finally, we show that the computed values of ordinang orchestrators corre-
sponds with the computed values of their encoded form.

Theorem 4.1. 0 —* %o/ iff {0} —* P

Proof (Sketch)The proof follows by (i) showing that the results computeddy and
its not killing version are the same and (ii) by using Lemma 4.1.

14 R. Bruni, H. Melgratti, E. Tuosto

5 Concluding remarks

Orchestration paradigms can be roughly categorised into three key trends:

— technology-driven languages: all XML dialects and standardisation efforts (e.g.,
WS-BPEL [8], XLANG [27], WSFL[16]);

— model oriented: workflow aspects are prominent (e.g., Petri nets [24,3], YAWL [4]);

— process algebraic or messaging-based: the orchestration is ruled by communication
primitives (e.g., CCS [17], pi-calculus [18], addin calculus [14]).

A few years ago, when the series of WS-FM Workshop started, each trend contained
several proposals substantially separated from the other two trends, with different back-
ground, scope and applications. For example, a still ongoing debate [25,1,2] adverses
the use of workflow to that of pi-calculus and it has led to the establishment of an
expert forum (the Process Modelling Group [22]) to investigate how the two differ-
ent approaches can solve typical service composition challenges, like van der Aalst et
al.'s workflow patterng28,5], and compare the solutions. Workflow enthusiasts advo-
cate that name mobility and message passing are not really necessary, while pi-calculus
enthusiasts are confident that mobility aspects play a prominent role in dynamic assem-
bling of services. The discussion has led also to the combined use of ideas from both
world, like in the case of SMAWL [26], a CCS variant.

We have investigated the modelling of the orchestration langGage Petri nets
and theJoin calculus.Orc is an interesting proposal that can hardly fit in the orches-
tration categories discussed above. Our comparisons have allowed us to identify some
key features obrc, that are not so evident from its original definition. First, pipelin-
ing, site calls and asymmetric parallel composition involve dynamic creation of names
and links, that cannot find a natural encoding in Petri nets with static topology, unless
seriously restrictingrc. Second, the pruning associated with asymmetric conflict is a
rather peculiar and powerful operation not common in process calculi. In fact, one can
argue that it is also not very realistic to impose atomic cancelling of complex activities
in a distributed setting (especially when side effects due to e.g. name passing and extru-
sion could have taken place). Nevertheless, from the point of view of process calculi,
cancelling can be rendered as equivalent to the disabling of the input ports where the
cancelled activities could send their data. In Petri netsJaidthe disabling is mod-
elled by void tokens that enable just one occurrence of certain eventiibiias the
advantage of not introducing cleaning activities and serialisation of site calls, which are
instead necessary for dealing with multiple invocations in the Petri net encodings of § 3.

Finally, we mention thaloin appears to be adequate as coordination language since
it can suitably encod®rc. RemarkablyJoin, despite its thinness, also results a re-
spectable language for choreography and computing. Fidallyjs perhaps also more
suitable as coordination/orchestration language than e.g. pi-calculus because its join-
pattern construct yields more flexible and convenient communication patterns.

AcknowledgementThe authors thank the anonymous reviewers for their valuable com-
ments and suggestions that contributed to improve this work.

Translating Orc features into Petri nets and the Join Calculus 15

References

N -

10.

11.
12.

13.

14.

15.
16.

17.
18.

19.

20.

21.

22.
23.

24.

25.
26.

27.

28.

. W.M.P. van der Aalst. Why workflow is NOT just a pi proceB®Trendspages 1-2, 2004.
. W.M.P. van der Aalst. Pi calculus versus Petri nB8Trendspages 1-11, 2005.
. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow patterns: On the expressive power

of (Petri-net-based) workflow languageBroc. of CPN’02 volume 560 ofDAIMI, pages
1-20. University of Aarhus, 2002.

. W.M.P. van der Aalst and A.H.M. ter Hofstede. Yawl: yet another workflow langukne.

Syst, 30(4):245-275, 2005.

. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow

patterns Distributed and Parallel Database44(1):5-51, 2003.

. T. Arakiand T. Kasami. Some decision problems related to the reachability problem for Petri

nets. TCS 3(1):85-104, 1976.

. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions foPi©c. of

ECOOP’02 volume 2374 of.NCS pages 415—-440. Springer, 2002.

. BPEL Specification (v. 1.1)http://www.ibm.com/developerworks/library/ws-bpel.
. M. Buscemi and V. Sassone. High-level Petri nets as type theories in the join caRulos.

of FoSSaCS’0lvolume 2030 oL NCS pages 104-120. Springer, 2001.

S. Conchon and F. Le Fessant. Jocaml: Mobile agents for Objective-CBroc. of
ASA/MA'99 pages 22-29. IEEE Computer Society, 1999.

W.R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in Orc, 2006. Submitted.

C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and undecid-
ability. Proc. of ICALP’98 volume 1443 oL NCS pages 103-115. Springer, 1998.

M. J. Flynn and T. Agerwala. Comments on capabilities, limitations and correctness of Petri
nets.SIGARCH Computer Architecture Nevpsges 81-86, 1973.

C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join calculus.
Proc. of POPL'96 pages 372—-385. ACM Press, 1996.

C. Fournet and C. Laneve. Bisimulations in the join calculi3S 266:569—-603, 2001.

F. Leymann. wsrL Specification (v. 1.0). http://www-306.1ibm.com/software/
solutions/webservices/pdf/WSFL.pdf.

R. Milner. A Calculus of Communicating Systemslume 92 ofLNCS Springer, 1980.

R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, | andftirm. and
Comput, 100(1):1-40,41-77, 1992.

J. Misra and W. R. Cook. Orc - An orchestration languagep: //www.cs.utexas.edu/
“wcook/projects/orc/.

J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Mode]iag06. To appear.

C.A. Petri. Kommunikation mit AutomaterPhD thesis, Institutifr Instrumentelle Mathe-
matik, Bonn, 1962.

The Process Modelling Group web sitetp://www.process-modelling-group.org/.

F. Puhlmann and M. Weske. Using the pi-calculus for formalising workflow pattBros.

of BPM'05, volume 3649 oL NCS pages 153-168. Springer, 2005.

W. Reisig. Petri Nets: An Introduction EATCS Monographs on Theoretical Computer
Science. Springer Verlag, 1985.

H. Smith and P. Fingar. Workflow is just a pi proceBBTrendspages 1-36, 2004.

C. Stefansen. SMAWL.: A small workflow language based on GCAISE’'05 Short Paper
Proceedingsvolume 161 ofCEUR Workshop ProceedingSEUR-WS.org, 2005.

S. Thatte XLANG: Web Services for Business Process Desigttp: //www.gotdotnet.
com/team/xml_wsspecs/xlang-c/default.htm, 2001.

Workflow Patterns web sit@ttp://is.tm.tue.nl/research/patterns/.

